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FIELDS OF TOTALLY ISOTROPIC SUBSPACES AND
ALMOST COMPLEX STRUCTURES

By ALBERT CRUMEYROLLE

Abstract

Our aim 1s to prove global existence of a differentiable field of totally
isotropic planes over the sphere S;, to obtain from this result a counterexample
nullifying a conjecture about some manifolds or fibre bundles.

Probably according an assertion given in rather conjectural way in [2],
some people, papers or books consider the following statement as an obviousness :

If the complexified tangent bundle Tc(M) of a 2r-dimensional real C> manifold
M is a Whitney sum -

(L Tc(l‘/[):v@"’],

where n, n' are v-complex subbundles, such that for any x belonging to M, 7%
=74, then M owns an almost complex structure. More generally, if a real vector
Jiber bundle &, with base M and rank v 1s such that the complexified bundle &, 1s
a Whitney sum :

Ec=E,DE, &, &, rank v complexe subbundles, with E(x)=E(x), YxeM, then
& owns an r-complex structure.

This paper intends to etablish that statement is erroneous, building a such
decomposition over M=S,: indeed it is well known that S, doesn’t admit any
almost complex structure. One can define the sphere S, by angular parameters
6, 8., 0, 8,, according the following equations :

x1=cos §,cos f,cos O;cos 8.,

x,=8in #, cos f,cos O;cos 8., —r=60,=r,

2) x,=sin @, cos §;cos 8,
x,=sinf;cos 0, —% <0, 0, 0,< i;;,
xs=sinf,.
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With inequalities in the strict meaning, these equations define a diffeomorphism
from a hypercubic set in R* to an open dense set in S,.

LEMMA 1. There exists over the sphere S,, defined by :
x3+xi+xi+xi=1,
a global field of real orthonormed frames.

1t’s a classical result: 7'(S,) is a trivializable bundle. If the e¢,, 1=1, 2, 3, 4, 5
constitute a direct orthonormed frame in RS, it is sufficient to choose :

U=—x3e:+x005— x50, %405,
(3) V=—2x40t x50+ x:0,— %105,
W=—xse,— x5t X584+ X005
LEMMA 2. There exists over the sphere S,, defined by :
xi+ait+xi=1,
a field of wsotropic directions in the complexified tangent bundle T c(S,).

Let S, be defined by :

4) x3=0¢0S @, cos 8,, x,=sinf,cos f,, xs=sind,,
_7T§03§7Ty _%§04§%
Let —é—(:@l)o be the half open circle corresponding to §,=0, ——72r—<04<—g—, and

%(Sl),,g thel intersection of S, with the half plane @,, for some ;.

Over ?(Sl)o, in T¢(S,), we consider a field of isotropic vectors, everywhere
different from 0.

Uy=—ezsin 0,4 e; cos 0, +ie,;

from which by a #;-rotation around e¢; we deduce:
(5) U g,= —es(sin 6, cos @3-+ sin ;) —e,(sin 6, sin 0;—7 cos ;)¢5 cos 0.
a field of isotropic vectors, everywhere different from 0, over —;—(gl)h, in T ¢(Sy).
Varying 6., between (—r) and (+x) appears a field of isotropic vectors over S..

Indeed, it is sufficient to verificate that #, tending to il(we obtain thus =e;),

gives an unique isotropic direction, to verify:
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(expf)(—estie), i f.—
Elsewhere there is no difficulty.
LEMMA 3. S; is a principal fibre bundle, with base S, and fibre S,.

This is a classical result pointed out by Hopf (good reference in Dieudonné,
Cours d’Analyse, Tome 3, p. 71-72). S, is defined by the equations:

Xs=C0S #,cos f,cos b,,

© x3=sin @, cos f,cos b,, —r=<6,<m,
x,=sinf;cosf,,
. e T
X5:S]n04 —7§03, ﬁgéf.
S, is the open set corresponding to:
T T
“—7T<02<7T, —7<03, 04<§‘,

diffeomorphic with a cubic set in R® and if we choose:

T

2 <02y 03’ 04<%y

we define %(S‘s) also diffeomorphic with a cubic set. According the quoted book,

the bundle projection p over S,:

x'=p(x)= p(xs, X3, X4, Xs5)
is stated by:

xs=2Imud), x;=2Re(uv), xi=|u|*—|v|?
with: u=x,+ixs, v=x5F1x,.
If xe %Sg, the hemisphere corresponding to ——72T—§ 03§—72£ in (4)—also defined
by 02=-725 in (6)—x’ is the point of %(SZ) with coordinates :

] x5=C0S @, cos (264— g—),
) l x}=sin 03cos(204—%),

xg=sin (204—%) ;
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whereas, for the symmetric hemisphere —;—(S;)(ﬁgz———g— in (6)) we obtain .

( X5=— COS 0, cos<2¢9.‘— %)

®) l x| =sin 0, cos(Z&—%),

xézsin(&%——g—).

Writing abusively x=(6,, 5, 6,), when x belongs to S, so that <62, 0,

%-}——Z—) also belong to S,, we define p’: S,—S, according :

x0:ﬁ<02, 1931 %"*"45):/7/(02, H:h (9,,):/)/(/\7)

and we see immediately :

x=p'(x), if x=S.,1S,.

Demonstration.

First step. Let A, A, be two fields of vectors over —é—(&) in T¢(S,), with:
{ A=x30+x3V+xIW+1e,,

A1:a3U+a4v+a5W ’

we have put x’=p"(x), xe%(&), U, V, W respectively for U(x), V(x), W(x), and

ay, ay, s for as(x°), au(x,), as(x®), which are the components of the isotropic
direction introduced by lemma 2, and:

(ats)*(x°) () (x0)+(a5)*(x4) =0,
as(xo)x3+ay(xo)xd+as(x0)x3=0.
We observe that definition is tributary of an arbitrary complex coefficient.

One can easily verify that the pair (A4, A;) defines over %(gs) a field of
totally isotropic planes.

Second step: Now consider the rotation 01—%, —r=<#,=r, in the plane
1 . o . . -
(ey, es); ?(Ss) generates an open set S, of S,, dense in S,, A and A, give A

and A4, respectively :

A=—[(x0x,4 x%x,+x2x5) cos 8,+:sin 8, e,
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—[(x3xs+x$x,+x2x5)sin B, —i cos 0, ]e,
F(xdxFxlxs—x0x,)esH(—x%xs+ xxe+ x0x)e,
F(xdx,—xSx5+x0x5)es,
A= —[(asxsta,xi+asxs) cos O ]e,—[(asxs+ax+asxs)sin 0 Jes
F(asxstaxs—asxy)es+(—ax;+ox,+asx3)e,
Flasxs—auxsFasxy)es.

Thus, A and A, define over S, in Te(S), a totally isotropic differentiable

field of planes.
Concerning S,, we must verify that any ambiguity appears when 4,, 0, 0,

. T .. A A
tend either to i—z—, so that we can complete the definition of A and A, by mean
of limits. Indeed, we verify, in each case that:

A determines over S, the direction :

(*COS 61_‘_1 Sin 00(@1")‘5@2) .

and A4, the direction:
as(x%)es+a(x%)e,+as(x%es.

This ends the proof, because (4, A,) defines a subbundle 7, with rank 2, such

that:
Tg(s‘i):y]l‘@ Tr»

the metric being positive definite, but the vector bundle 7, doesn’t admit a direct
Whitney factor 7’ such that cocycles of 7 and 7’ are conjugate (only 2.=
Gz, YxEM), otherwise S, would own an almost complex structure, that is im-
possible. However classicaly, S, admits a spinor structure (in the strict mean-
ing) and it’s possible to prove that statement (1) caracterises spinor structure,
in the large meaning. We demonstrated that in [1, p. 617.
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