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ON THE BOUNDARY OBSTRUCTIONS TO THE

JACOBIAN PROBLEM

BY MUTSUO OKA

§ 1. Introduction

Let K be an algebraically closed field of characteristic zero and let f(X, Y)
and g(X, Y) be polynomials with /^-coefficients which satisfy the Jacobian con-
dition :

(1.1) /(/, g)=fzgr-fγgx = l

where fXt fγ etc. are respective partial derivatives. The so-called Jacobian con-
jecture is the following.

(J. C. I ) "If (1.1) is satisfied, X and Y are polynomials of / and g".

Typical examples are given by elementary transformations which are defined
by finite compositions of the following transformations.

( i) (/, g) = (aX+bY+e, cX+dY+e') where ad-bcφQ or

(ϋ) (/, g)—{X> Y+h{X)) where h(X) is an arbitrary polynomial.

By the theorem of Jung [J], (J.C.I) is equivalent to

(J. C. Π) "If (1.1) is satisfied, (/, g) is an elementary transformation".

Let m—degree (g) and let gm be the m-th homogeneous part of g. Among
the various results about (J. C. I ) , the following is due to Abyankar [Ab] :

gm=0 has at most 2 points in P\K) if (1.1) is satisfied by f and g.
It is easy to prove that (J. C. Π) is equivalent to (J. C. IΠ)(See §4.):

(J. C. HI) "If gm=0 consists of two points, there is no polynomial / such
that /(/, g) = V.

In this paper, we study the necessary conditions ("boundary obstruction") of
the boundaries of the Newton polygon N(g) for the existence of / such that
J(f> £ ) = 1 Unfortunately there exist polynomials which have no obstructions
on the boundary. Our main results are in §6 (Theorem (6.3) etc.).
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§ 2. Jacobian problem for weighted homogeneous rational functions I.

Parts of the results of this and the next section are obtained by Abyankar
[Ab] but our approach is made from a different point of view.

DEFINITION (2.1). A polynomial f(X, Y) is called a weighted homogeneous
polynomial of type (a, b; d) if f{taX, tΎ)=tdf(X, Y) for any t<=K. Here a and
b are integers such that (i) a and b are coprime if abφO and (ii) (a, b) = (l, 0)
or (0, 1) if ab=0. (a, b) are called the weights and d is called the degree of /
with respect to the weights {a, b). We denote it by d=degίa>b)f.

EXAMPLE (2.2) X2(Y+1) is a weighted homogeneous polynomial of type
(1, 0; 2). X2(XY+1) is of type (1, - 1 ; 2).

DEFINITION (2.3). A rational function F(X, Y)=f(X, Y)/g(X, Y) is called
a weighted homogeneous rational function of type (a, b d) if / and g have the
same weights (a, b) and d=deg(a,b)f—deg(a,b)g- From the equation F{taX, tbY)
— tdF(X, Y), we obtain the Euler equation:

(2.4) dF{X, Y) = aXFx(X, Y)+bYFγ(X, Y) .

PROPOSITION (2.5). Let F{X, Y)Φθ be a weighted homogeneous rational func-
TO

tion of type (a, b; d). Then F{Xy Y) can be uniquely factored as cXpYqH (Xb+ctY
a)nt

where c, clf ••• , cm are non-zero and cτΦCj for iΦj.

Proof. We may prove the assertion for a weighted homogeneous polynomial
/. If ab~0, the assertion is nothing but the unique factorization property of a
polynomial of one variable. Assume that abΦO. We can write F(X, Y) =
XpYqfx{Xb, Ya) for some homogeneous polynomial f^X, Y). Thus the assertion
is reduced to the homogeneous case which is well known.

DEFINITION (2.6). For a given F(X, Y) as above, we define ρ=valΣF,
q = vSi\γF a n d nι=va\(TtF w h e r e σι = XbJ

ΓctY
α for ι = l, •••, m.

PROPOSITION (2.7). ((17.4), [Ab]). Let F{X, Y) and G(X, Y) be non-zero
weighted homogeneous rational functions with the same weights (a, b). Let d1 —
deg(a>b)F and d2=degUib)G. Assume that J(F, G)=0. Then there exists a constant
c such that Fd*=cGdK

Proof. From the assumption FxGγ—FγGχ—0, we get d1FGγ—d2FγG —
(aXFx-\-bYFγ)Gγ-Fγ(aXGχJrbYGγ)=O. Similarly we get d.FxG-d.FGx^O.
Thus taking the differential of Fd*/Gdl, we get
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This completes the proof.
The following lemma plays a key role in the following sections.

LEMMA (2.8). Let F{X, Y) be a weighted homogeneous rational function of
type (a, b; d). Let σ be one of the divisors X, Y and XbJrcYa for some cφO.
Assume that dφO and Y2i\σF=0. Then we have valσ/(σ, F)=0.

Proof. First observe that J(σ, F) is a weighted homogeneous rational func-
m

tion of type (a,b;d'-a-b) where d' = d+deg ( α Wff. Let F(XfY) = XpYqU
ι = l

m

(XbJrcιY
a)n\ By the assumption, d = paJ

rqbJrΣlnιabφ0. We put σt = Xb+cιY
a

for brevity's sake.
Case 1. Suppose σ = X Then valσF-=0 implies p=0. Let Fu F2 and G be

rational functions. The following property of the Jacobian is used throughout
this paper.

(2.8.1) J{G, F1F2)=J{G9 FJFt+JiG, F2)Ft .

As J(X, Y) = l and J{X, al) = claYa~1, we have

771 771

J(X, F)=gY"'1 Π «τ? + Σ ΠiCiaY^-'σΐ^1 (Πff?0 •

Substituting X=0, we have

(2.8.2) J(X, F)ίX=0=aYna+(ί-1

m

where n— Σ n% and α=(^+nf l )Πί ι . As d=gb+nab~(gJ

Γna)b is not zero, a
1 = 1 I

is not zero. Thus (2.8.2) implies va\xJ(X, F)—0. (If b is a negative integer,
the sustitution X=0 should be replaced by X'=Q where Xf=X~K)

The case that σ — Y is treated in the exact same way.
Case 2. Suppose that σ = XbJrcYa where cφO, cΦc% for ι — \, •••, m. As

/(σ, σi) = (ci —^α^X 6 " 1 ^ 0 " 1 , we have

771 771

1K«+α-1 Π σp+qbX^-Ύ*-1 Π ^ ι

t=l 1=1

+ Σ n ι ( ^ ί ^
1 = 1 J ^ l

Restricting J(σ, F) to XbJrcYa=0, we obtain

/((7, F){σ=«=d Π fc-O^^-^^^VO

by the assumption. This implies valσ/(σ, F)=0, completing the proof.
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THEOREM (2.9). Let h(X, Y) be a weighted homogeneous polynomial of type
(a, b; d) and suppose that a>0, b>0. Then there exists a weighted homogeneous
rational function φ(X, Y) such that J(φ, h) — l if and only if either

( i ) h — σ\o% where σλ and σ2 are linear forms and p^O, q^O, pφq or
(ii) h — cXp{Y+c/Xb)q where c, C'ΦO and a = l and p and q are as in (i), or
(iii) h = cYp(X+c'Ya)q where c, c'ΦO, b=l and p and q are as in (i). (Com-

pare with (18.9)—(18.12), [Ab].)

Proof. Let h = cσa

ί

1 ••• σξk be the factorization of h as in Proposition (2.5).
We assume that σι=X, σ2—Y and σι=Xb+cιY

a for z'^3 and ax and a2 are
non-negative and a% (/^3) is positive. Suppose that ψ is a weighted homogeneous
rational function such that J(φ, h) = l.

ASSERTION 1. ( i ) val^^l—<*» // atφ0,

( i i ) v a l σ ^ ^ 0 for any σΦσlf' ',σk.

Proof. The second part of ( i ) and (ii) can be treated in the same way.
Let σ be a divisor such that vaU h=0. Let <p=σaφ1 and valσ φ1=0. Suppose

Then we have

(*) l=J(φ, h)=aσa'1φ1j(σ9 h) + σ"J{φu h).

val(T/((7, h)=0 by Lemma (2.8) and valσ J(φlf /z)Ξ>0 because a and b are positive.
Taking valσ of (*), we get a contradiction 0 = α - l < 0 . Now take σt such that
aτ>0 and let i 8 i = v a l σ ^ and φ=φa^h-β\

Case 1. Suppose that deg ( α i 6 )0=α ideg ( α > 6 )^— i5 ideg ( α ( δ)/z=O. By the assump-
tion J(φ, h)=lf we have

Therefore — =deg ( α i 6)^/deg ( α,δ)/i>— 1 and this implies βt>—aτ which is the

assertion.
Case 2. Suppose that άeg(a,b)φΦθ. Then using (2.8) and the equality

J(ψ, h^aiσ

we get va.lσtj(ψ, h)—ai—l. On the other hand, we can write J(ψ, h)=J(φai, h)
h-^=aiφ

a^1h-^κ Therefore va\σ%J{φ, h) = (aί-l)βi-βiaι = -βι. Combining
the two equalities, we get βι—l—aι. This completes the proof of Assertion 1.

By Assertion 1 and the equality α+^=deg ( α ) δ ) ^-f deg(a,6)/z, we get the
following inequality.

(2.9.1) a+b^(a1+β1)a+(a2+β2)b+ Σ (at+βt)ab
i S3
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Note that ai+βι^l if atΦθ and α t + β ^ 0 if α t = 0 .
First case: k=2. Then h = cXaiYaK Suppose that aλφa2. Then <p=

—j-1—-Z1-"^1-** clearly satisfies J(φ, Λ) = l. Suppose that α ^ α ^ X ) .

Then by the above inequalities, ^ must be written as c'X
1~aiY1~a2 for some c'.

However this is absurd because J(φ, h)=Q.
Second case: k—3. As 0<a-\-b—ab~ — (a — l)(b—1)+1, we must have α

= 1 or b=l. (a~b~2 is not allowed.) Assume that b=l. As aJ

Γl^(a1-
jrβ1)a +

we must have « 1 =0 or α 2 =0 and α —1. ( i ) Suppose that αi=0.

Y^iX+CY*)Then h = cYaKX+c*Ya)a*. If is the de-
(a2—a3)c

sired solution. If α 2 = α 3 > 0 , by the inequality (2.9.1), φ must be cΎ 1"" 2

(X+ c3Y
ay~as which gives the contradiction J(φ, h)=0. (ii) Suppose that α2

=0 and a—\. By the same discussion as in the case k=2, aλΦas is the neces-
sary and sufficient condition for the existence of <p.

The case that k=3 and a — I can be discussed in a similar way so that h
is either cXai(XbJrc3Y)as(a1Φa3) or cYa2{X-JrC3Y)az(a2.Φaz).

Third case: &=4. As a+b^2ab, we get a=b=l. By (2.9.1), Λ must be
cσpσ"4. As σ3 and σά are linear forms, we obtain, by the same discussion as
in case 1, that σ3Φσ4 is the necessary and sufficient condition. The case that
&>4 is clearly impossible by (2.9.1). This completes the proof of Theorem (2.9).

§3. Newton polygon and the Jacobian problem.

Let f(X, Y)—*Σiav>μX
vYμ be a polynomial. We define the Newton polygon

N(f) by the convex hull of points (v, μ) for which av>μφ0. This is a compact
polyhedron in R2. For a face Δ (Δ may be a vertex) of the boundary dN(f),
let fΔ{X, Y) be the partial sum Σ au,μX

vYμ. There are integers a, b and d

such that a and b are coprime and /j(Z, Y) is a weighted homogeneous polyno-
mial of type (a, b; d). If dim Δ—\ and Δ and the origin are not colinear, α, /?
and rf are unique if we assume d>0.

DEFINITION (3.1). We call (α, 6) the weights of Δ. Let / ! (/) be the union
of J's which have positive weights. See Figure A.

Figure A.
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Let f{X, Y) and g(X, Y) be polynomials which satisfy the Jacobian condition
(1.1). Let a and b be coprime integers. Let f=f-n*+f-n'+i+ ••• +fn and g—
g-m, Jrg-m,+1+ ••• Λ-gm be the gradations of / and g respectively. Namely /*(X, Y)

Σ avμXΎμ. Note that we can write fn as fΔ for some J<=dN(f).

We consider the equation / ( / , g) = l. As J(ft, gj) is a weighted homogeneous
polynomial of degree i+j—a—b, / ( / , g) has the gradation / ( / , g)k— Σ

7(Λ, gj)- In particular, we have

PROPOSITION (3.2). J(fn, gm)=0 if n+?nΦa+b.
Write gm = he so that e is a positive integer and h is a square-free weighted

homogeneous polynomial of degree r. (er—m).

PROPOSITION (3.3). For any N>0, there exists a rational function g{X, Y)
such that g is a finite sum of weighted homogeneous rational functions so that

deg(a>b)(g-ge)<-N.

Proof. Let g—gr+gr-i+ ••• +£-M> where g3 is defined inductively by

(3.3.1) gr=h and t+Ί2χ _ £tjι2 ~ £*e=gj for j<m.

For example, gr-i^gm-i/eh6"1, gr-2=\gm-2—(r>)he~2gr-Λ/ehe~1. By definition,

(ge)j—gj f° r j"^(e—l)r—M. Thus the assertion is immediate if we take M>0
large enough.

LEMMA (3.4). // m>0, there exists a weighted homogeneous rational function
φ of degree (a+b—m) such that J(φ, gm) = l.

Proof. Take ./V>0 large enough and let g be as in Proposition (3.3). By
Proposition (3.2) and Proposition (2.7), we can write fn — cqh

q for some cqΦθ.
(qr=n). Then deg(α>δ)(/—cqg

q)<n and we have

(3.4.1) J(f-cqg
q, g)i=J(f, g)t for ί^O.

To see this, let R—g—ge. Then deg(a,b)R<—N and we have

J(gq, g\=J(gq, t+R)i

=J(gq, R)t=0 for ί^O,

because qrJ

raeg(a,b)R—(a+b)<0. Let 5 be the minimal integer such that sr>
a+b—m. We repeat the same argument for f—cqg

q and g using (3.4.1).
I. Assume that s^O. By the inductive argument, we find constants cq,

Cq-iy ••• , cs so t h a t
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(3.4.2) deg ( α , w (/-Σc>£')<sr and / ( / - Σ c / , g)i=J(f, g),

q

for f^O. Let φ be the maximal gradation part of /— Σ CjgJ. By (3.4.2), we

have άegia.b>φ=a+b—m and J{φ, gm)=J(f, g)0=l.
II. Assume that s<0. We can find constants cq, •••, c0 so that

(3.4.3) deg ( α j δ ) ( / - Σ cjgΛ<0 and / ( / - Σ c,g>, g) = / ( / , #) t
\ J^O / \ j-Q /%

for f^O. Let ̂  be the sum of weighted homogeneous factors of degree greater
than —N in the formal sum

1 Σ ( - D ^ J where ft=Σ
; = 0 j=-Λf

We can write gg=l+S and deg(α)δ)5^r—iV. Now we consider

(3.4.4) J{g\ g)=J(g\ t+R) .

It is easy to see that deg(a,&)/(^1, R)<0 for i^O. We consider

If 0<2^— s and M and A/" are large enough, we see that deg(a,b)J(gι, ge) is
negative. Thus we have

(3.4.5) deg(α.*,/(£*, £)<0 for Q<ι^-s .

The rest of the argument is exactly parallel to that of /. Suppose that we
have chosen constants cq, •••, cx such that O^z>s and deg(α>&)/U)<zr and

J(f(ί\ g)k=J(f, g)k for ̂ ^0 where fw = f- Σ c&- Σ ckg'k By Proposition
;=-0 k = ι

(2.7), we can find a constant cτ-λ such that deg ( α ) δ ) (/ ( O — cι-1g~ι+1)<{ι — l)r. Let
/(<-1> = / ( i ) -^- 1 g- ι + 1 . Then by (3.4.5) we have

(3.4.6) J(f{i-1},g)k=Λf,g)k for &^0.

We stop the argument at / ( s ) and let ̂  be {f(s))a+b-m Then ^ is the desired
function.

COROLLARY (3.5). Let f and g be as in Lemma (3.4). For any face or

vertex Δ of Γ^g), gΔ{X, Y) is one of ( i ), (ii) and (iii) of Theorem (2.9).

Proof. Take positive integers a, b and d so that gj(X, Y) is a weighted
homogeneous polynomial of type (α, 6; d). The assertion is immediate from
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Lemma (3.4) and Theorem (2.9). (Thus Γ^{g) has at most one 1-dimensional
simplex.)

§ 4. Equivalence of (J. C. II) and (J. C. III).

We prove the equivalence of (J.C. Π) and (J. C. IΠ) in § 1. Let (/, g) be a
polynomial pair which satisfies the Jacobian condition (1.1). Assume that (/, g)
is an elementary transformation. By an inductive argument on the number of
compositions of transformations of type ( i ) and (ii) in § 1 and by Propositions
(2.7) and (3.2), we can see easily that gm=0 has a unique solution in P1^).
Thus (J.C. Π) implies (J.C. ΠI). Now assume that (J.C. IΠ) is verified. We
prove (J.C. Π) by the induction on m—degree g.

Case 1. m—l. Then we may assume that g(X, Y)=X. Then (1.1) can be
solved directly so that we get f(X, Y) — —YJrh{X) for some polynomial h{X).
This is clearly an elementary transformation.

Case 2. ra>l. We may assume that gm(X> Y) — Xm by a linear change of
coordinates if necessary. We consider the Newton polygon N(g) and we take
the face Δ of dN(g) which has the point (m, 0) at the end. By Corollary (3.5),
we can write gΔ{X, Y) as c1X

p(YJ

Γc2X
b)q for some b^2, p^O and q>0 where

c1 and c2 are non-zero. We change the coordinates by X' — X and Y'=Y+c2X
b.

Then it is easy to see that the degree of g(X', Y') is strictly less than m. Thus
(f(X't Y'), g(X'f Y')) is an elementary transformation by the induction's hypo-
thesis. Therefore (f(X, Y), g(X, Y)) is an elementary transformation.

§ 5. Jacobian problem for weighted homogeneous rational functions II.

Let h(X, Y) be a weighted homogeneous polynomial of type {a, b; d) and
we assume that h is not a monomial and ab^O. In this section we study the
necessary condition for the existence of a weighted homogeneous rational function
φ(X, Y) such that J(φ, h) — l. The Newton polygon N(h) is a line segment PQ
for some P=(a, β) and Q = (a', β') where a^a', β^β' and a+β<a'+β'.

DEFINITION (5.1). We call P and Q the left and right end of N(h) res-
pectively.

( I ) Assume that (a, 6) = (1, -1) . Then N(h) is parallel to the line Y-X
=0. This case is exceptional by the following property. (*) degα,_i)/(F, G)=

-DG for any weighted homogeneous rational functions Fand G.

Let h(X, Y)=XaY? τi(XYJrcιγKcιΦθ). By the assumption, k^l and d=a-β.
1 1

If d is not zero, φ — —XY/dh is a desired function. Suppose that d=0. By

the above property, ψ must be written as (XY)r

gives a contradiction J(φ, h)=0. Thus we obtain

t

the above property, ψ must be written as (XY)rU (XYJ

ΓdJ)
μJ. However this
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THEOREM (5.2.). // (a, b) = (l, — 1), the necessary and sufficient condition for
the existence of φ is d^O.

(Π) Assume that a+bΦΰ and (a+b)d>0. Changing the signs of a, b and
d if necessary, we may assume that a-\-b and d are negative. We may also
assume that a^0>b, taking the coordinates X' — Y and Yf — X if necessary. Let

h(X,Y)=XaYtJl(X-hYa+c%)vi=X&YtTl{Ya+cιX
b)Vi where {cj are non-zero

and mutually distinct and ά—a—Σvib. Suppose that there exists a weighted
homogeneous rational function ψ such that J(<p, h) — l. Let φ{X, Y)~c()X

ϊYδ

A S S E R T I O N (5.3). ( i ) vί

Jrμι^z\ for i^k and ( i i ) μ 3 is non-negative for
- , k+t

Proof. The proof is parallel to that of Assertion 1 in the proof of Theorem
(2.9). First, the assertion (ii) is immediate from Lemma (2.8) and the following
equality: l=J(φ, h)=J(φJ9 λ ) £ / ' + / ( 6 , h)μ£fnφ3 where φ,=φ/ξf> and ξj=Ya

+CjXb. To prove ( i ) , let ψi—φVih~μ%. Assume that άeg(a>b)φi=Viάeg(a>b)(p—
μid—0. Combining this with the equality άegia>b)φ=^ — dJra+b, we obtain

= l — (a+b)/d<ί .

Thus we get —μi<\>i i.e. i ^ + μ ^ l . Assume that d e g ( α j δ ) ^ ^ 0 . We consider
two expressions of J(φu h). First it is equal to vίφ

Vi~1h~μί as J(φ, h) = l and
}{h, λ)=0. Secondly we can write J(φu h)z$J{ψu h/ξγ)ξ^+J{φu ζάviξV^h/ξy.
Comparing the vaU/s of both expressions, we get by Lemma (2.8)

Namely we get vi

Jrμι—l, completing the proof of the assertion.

ASSERTION (5.4). Let Q = (α/, β') be the right end of N(h) and assume that
af<β\ Then there exists a weighted homogeneous rational function ψ such that
J(φ, h) = l if and only if a=a=0 and k = l.

Proof. Let φ~φh. Then by Assertion (5.3), ψ is a Laurent polynomial
(i.e. φ^K[_X, Y, X-\ F-1]) such that

(5.4.1) ψ=c0X
a+rY^δτL(X'bYa + Cj)^+^ and

(5.4.2) J(φ, h) = h .

Let P'=(ε, δ) and Q/=(ε/

y δ') be the left and right ends of N(φ) respectively.

Let L be the line which contains (1.1) and which is parallel to the segment ψQ.
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As deg ( α, 6 )0=α+&, L contains P' and Q'. Let P" and Q" be the intersections

of L and OP and OQ respectively. See Figure B.

Q

Figure B.

As J(XεΎδ', XaΎfi') = (e'β'-δ'a')Xε'+a'-Ύδ'+P'-ί, (e'+a'-l, δ'+β'-l) is the
right end of N(J(ψ, h)) if ε'β'-a'δ'ΦO. By (5.4.2), this implies that Q'=(l. l).
Thus we get that Q'=(IA) or Q' = Q" and Q" is an integral point in the latter
case. By the same discussion, P ' = ( l , 1) or P"'. In the latter case, P " must be
an integral point. In our case Q" is not an integral point because 0<α'</3'.
(See Figure B.) Thus # ' = ( 1 , 1). P" is an integral point if and only if ΨQ is
parallel to the Z-axis and P is on the F-axis. Namely a—a—0. As φ is not
a monomial by (5.4.1) and Assertion (5.3), the case that P / = Q / = ( 1 , 1) is impos-
sible. Thus P'=P"^{1, 0) and a=a=0. By (5.4.1), k must be one. Thus A =
r ^ ( Z + d ) v i and ^=c0K

1-^(A'+c1)
1- l'i, where c^l/^-β), is the desired solution.

Now we consider the case that a'l^β'.

ASSERTION (5.5). aφβ and a'Φβ'.

Proof. Assume that a—β. Then by the above discussion, P / = P / / = ( 1 , 1).
This is impossible because J(ψ, h) cannot contain the non zero term cXaYβ as
J(XY, XaYβ)=0. The case that α'=/3' is impossible by the same argument.

We have two possible configurations.

Q

C.I. C. II.
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Case C.I. a>β. As P" is on the right side of (1, 1), we must have P ' =
(1, 1) to have a non-zero term cXaYβ in J(φ, h). If Q" is not an integral point,
we have that (?'=(1.1) which is impossible by (5.4.1). Thus it is necessary that
Q" is an integral point. (The sufficient condition is difficult to describe.)

Case C. Π. First note that P" is integral if and only if α = α = 0 . Remem-
ber that ψ is not a monomial. Thus if (a, a)Φ(0, 0), Q" must be an integral
point. We do not try to clarify the sufficient condition. (This is an algebraic

tcondition on {Ci} where h(X,Y)=XaYfitl(Xb+cιY
aγ* if k, a, β, vlf - , vk

are fixed.)
As a conclusion, we have:

THEOREM (5.5). Assume that a^0>b, a+b<0 and d<0. The following are
necessary conditions for the existence of a weighted homogeneous rational function
φ such that J{φ, h) = l.

( i ) The end points P, Q of N{h) are not on the line Y—X=0.
(ii) // (a, a)Φ(0, 0), Q" must be an integral point. Namely there exists a

positive integer s such that (lJrsa)a' = (l — sb)βf. In particular, Q must satisfy

Remark (5.6). The above conditions are not sufficient for the existence of
φ. We give some examples.

(A-1) Assume that Q" = (l + a, 1-b) i.e. (l + a)a'=(l-b)β'. By (5.4.1),
we must have k = l and h(X, Y)=XaYP(X~Ύa-{-c1)

Vl. In this case we can solve
φ as c0XY{X'bYa+c1), c o =l/(i8-α)d and <p=φ/h.

(A-Π) Assume that (l+2a)a'=(l—2b)β' and k=2. By (5.4.1), ψ must be
c0XY(X-bYajrc1)(X-bYa+c2). By an easy calculation, ψ is a solution if and only
if cι and c2 satisfy the following equation:

1 2 ^ i i ^u l /„ I „ \ A u> x ' ** __Q

a'+b, βf-a ' v x ' 2 ; α', 0'

(B) Assume that (α+6)d<0. We may assume that a^O>b, a+b<0 and
d>0. This case is more difficult. The main reason is that Assertion (5.3) is

not true in general. For example, let h(X, Y)=X(XΎ2+c1)
2 and let φ=^-

It is easy to see that J(φ, h) = l.

§6. Boundary obstructions and further remarks.

Let (/, g) be a pair of polynomials which satisfy the Jacobian condition.
We assume that (/, g) is not an elementary transformation. Then by finite
changes of coordinates of type ( i ) and (ii) in § 1 if necessary, we may assume
that gm{X, Y)=XpYq(p>q>0 and m=p+q) where m^degree (g). Then the
Newton polygon N(g) is included in the rectangle OPQR in Figure D by Corol-



430

lary (3.5).

MUTSUO OKA

R

0 P

Figure D.

We may also assume that O^N(g) and O^N(f) by adding constants if necessary.

LEMMA (6.1). Let f and g be as above. Then the polygons N(f) and N(g)
are similar.

Proof. Let Δ be a 1-dimensional simplex of the boundary N(g) which is not
colinear with the origin. Let (a, b; d) be the weights of Δ. Let fΔ.(X, Y) be
the maximal gradation part of / with respect to (a, b) where Δf is a face of
N{f). Assume that deg ( α,6 )/j, + d = α+&. Then we have J(fΔ,, gΔ) = l. As fΔ,
and gj are polynomials, we may assume that, for example, (1, 0)<EJ and (0, 1)
e J ' . Let S and S' be the right ends of Δ and Δf respectively. See Figure E.

1

Figure E.

As S and S' and the origin are not colinear, J(fΔ,, gΔ) contains a non-zero term

cχa+a>-iγβ+β>-i ^ j c h i s absurd. Thus we get άegia>b)fj,+dΦa+b. By (3.2),
fdΔ'/gdΔ is a constant where d 7 =deg ( α , w / j , . Let S and T(respectively S' and
TO be the ends of Δ (respectively ends of Δ'). Then the triangle OST is similar
to the triangle OST 7 and |Δ\/\Δ'\ =ST/SΎ'=US/'OS'=OT/OT'. As the faces
Δ's of N(g) as above are connected, the assertion is immediate.

COROLLARY (6.2). Let f and g be as above. N(f) and N(g) contain the
points (1, 0) and (0, 1). (Otherwise /(/, g) cannot be 1.)
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Let Δx and Δ2 be the two particular faces of dN(g) which have Q — (p, q) as
the right ends. See Figure F.

Assume that ΔX =

Figure F.

and let gΔl(X, Y)=YqΊI(X+ct)
H. Then we take the new

coordinates X'=X+d and Y' — Y, Then R is not contained in the Newton
polygon of g(X;, Y'). Note that the under part of dN(g) i.e. {(*, y)^dN(g);
py^qx} remains unchanged. By the same device, we may assume that P^dN(g).
Now the results of § 5 can be read as

T H E O R E M (6.5). (Boundary obstructions). For any simplex Δ of dN(g) which
is not colinear with the origin, there exists a weighted homogeneous rational func-
tion φ such that J(φ, g) = l. Let (aτ, bt) be the weights of Δ% (z = l, 2). In parti-
cular, we have the following.

( i ) There exists a positive integer s such that iX + s\aλ\)p — (XJrs\b\\)q.
(i i) a2>0>b2 and a2+b2^0. (See Figure F.)

Remark (6.4), Let (/, g) be a pair of polynomials which satisfy the Jacobian
condition (1.1). Then / and g do not have any critical points in K2 as functions
from K2 to K. However the converse is not true in general. For example, let

gx(X, Y)=XJrΈcτ(XaYb)1 and assume that ckΦθ, a>l and b>0. It is easy to
Z = l

see that gλ has no critical point. As N(gλ) does not contain (0.1), there is no
polynomial / such that / ( / , g) = l. A similar example is given by g2(X, Y) =

2A \-cmXm+aXnY where n>m and a^O.

Remark (6.5). Let g(X, Y) be a polynomial with gm(X, Y) = XpYq where
??z=degree (g) and ?n=p+q and p, q^tl. Let Δ be a 1-dimensional simplex of
3JV(̂ ) such that Δ is not colinear with the origin. Write gj(X, Y) = hA(X, Y)eU)

where hΔ(X, Y) is a weighted homogeneous, square free polynomial and e(Δ) is a
positive integer. Let e(g) be the greatest common divisor of such e(Δ)'s. The
following is related to αSegre's Lemma" ([B-C-W]) and it might be well known
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to specialists.

LEMMA (6.5.1). Assume that there exists a polynomial f(X, Y) such that
J(f,g) = l. Thene(g)>\.

Proof. For a 1-dimensional simplex Δ of dN(g) which is not colinear with
the origin, let Δf be the simplex of dN(f) which corresponds to Δ by Lemma
(6.1). Let m=degree (g) and n=degree (/). Assume that e(g)=l.

ASSERTION, m divides n.

Proof. Let — = ---1- where nx and iπx are coprime. Let d{Δ) be the degree
ΎYΪ rri\

of hΔ(X, Y) with respect to the weights of Δ and let d and d' be the respective
degrees of gΔ(X, Y) and f Δ,(X9 Y). By the proposition (2.7) and (3.2), f Δ,(X, Y)
= chΔ{X, Y)k{Δ) where k{Δ) is defined by d' = k(Δ)d(Δ). By Lemma (6.1), this

implies that d' — d-1 = d(Δ)e(Δ)nί/m1 is a multiple of d(Δ). As e(g) = l by the
mi

assumption, this is possible only if m1=l. This completes the proof of the as-
sertion.

The rest of the argument is well known. Let fx(X, Y)=f(X, Y)-cg(X, Y)n\
Then degree (/ΊXdegree (/) and J(flf g)=l. By the inductive argument, we
come to the situation that J(fs, g) = l and degree (/,)<degree (g) which is
impossible.

Remark (6.6). The final remark is a bit unfortunate for us: There exist
polynomials without any obstructions from the boundary.

EXAMPLE (6.6.1). Let g(X, Y)=Yn(XΎ+ΐ)*n+X2n(XY+iyn-X*nY*n. Then
g has no obstruction on the boundary, i. e. there exists a weighted homogeneous
rational function φΔ such that J(gΔ, φΔ) — l for any simplex Δ of dN(g) which
is not colinear with the origin. However there does not exist any polynomial
f(X, Y) such that J(g, f) = l because g has many critical points. We finish this
paper with the following question.

Question: Is there any polynomial g(X, Y) such that ( i ) gm(X, Y)=XpYq

where ra=degree g and p+q^-m and p, q>0 and (ii) g has no obstruction on
the boundary and (iii) g has no critical point?.
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