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ON THE BOUNDARY OBSTRUCTIONS TO THE
JACOBIAN PROBLEM

By Mutsuo OkA

§1. Introduction

Let K be an algebraically closed field of characteristic zero and let f(X, Y)
and g(X, Y) be polynomials with K-coefficients which satisfy the Jacobian con-
dition :

(1.1) Jf, 8)=fxgv—frgx=1

where fx, fy etc. are respective partial derivatives. The so-called Jacobian con-
jecture is the following.

(J.C. 1) “If (1.1) is satisfied, X and Y are polynomials of f and g”.

Typical examples are given by elementary transformations which are defined
by finite compositions of the following transformations.

(i) (f, @d=(aX+bY +e, cX+dY +e’) where ad—bc+0 or

(i) (f, @9=(X, Y+h(X)) where h(X) is an arbitrary polynomial.

By the theorem of Jung [J], (J.C.I) is equivalent to

(J.C.m) “If (1.1) is satisfied, (f, g) is an elementary transformation”.

Let m=degree (g) and let g,, be the m-th homogeneous part of g. Among
the various results about (J.C. 1), the following is due to Abyankar [Ab]:

gn=0 has at most 2 points in PYK) 1f (1.1) s satisfied by f and g.

It is easy to prove that (J.C. II) is equivalent to (J.C. II)(See §4.):

(J.C.1m) “If gn=0 consists of two points, there is no polynomial f such
that J(f, g)=1".

In this paper, we study the necessary conditions (“boundary obstruction”) of
the boundaries of the Newton polygon N(g) for the existence of f such that
J(f, g)=1. Unfortunately there exist polynomials which have no obstructions
on the boundary. Our main results are in §6 (Theorem (6.3) etc.).
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§2. Jacobian problem for weighted homogeneous rational functions I.

Parts of the results of this and the next section are obtained by Abyankar
[Ab] but our approach is made from a different point of view.

DEFINITION (2.1). A polynomial f(X, Y) is called a weighted homogeneous
polynomial of type (a, b; d) if f(t¢X, t°Y)=t¢f(X, V) for any t=K. Here a and
b are integers such that (i) a¢ and b are coprime if ab+0 and (ii) (a, b)=(1, 0)
or (0, 1) if ab=0. (a, b) are called the weights and d is called the degree of f
with respect to the weights (a, b). We denote it by d=degw.»f.

EXAMPLE (2.2) X2*Y +1) is a weighted homogeneous polynomial of type
(1,0; 2). X¥XY-+1) is of type (1, —1; 2).

DEFINITION (2.3). A rational function F(X, YV)=f(X, Y)/g(X,Y) is called
a weighted homogeneous rational function of type (g, b; d) if f and g have the
same weights (a, b) and d=deg.»f—degw.ng. From the equation F(t*X, 1°Y)
=1{¢F(X, Y), we obtain the Euler equation :

(2.4) dF (X, Y)=aXFx(X, V)+DYFp(X, V).

PROPOSITION (2.5). Let F(X, Y)#0 be a werghted homogeneous rational func-
tionof type(a, b; d). Then F(X,Y) can be umquely factored as cX”Yqu (X4 Yo)m
=1
where ¢, 1, -+, Cm are non-zero and c,#c, for i#j.

Proof. We may prove the assertion for a weighted homogeneous polynomial
f. If ab=0, the assertion is nothing but the unique factorization property of a
polynomial of one variable. Assume that ab+0. We can write F(X, Y)=
X?Yef (X Y®) for some homogeneous polynomial f;(X, Y). Thus the assertion
is reduced to the homogeneous case which is well known.

DEFINITION (2.6). For a given F(X,Y) as above, we define p=valyF,
g=valyF and n,=val, F where ¢,=X°+¢,YV* for :=1, -+, m.

PROPOSITION (2.7). ((17.4), [Ab]). Let F(X,Y) and G(X,Y) be non-zero
weighted homogeneous rational functions with the same weights (a, b). Let dy=
deg .o F and dy,=deg,»nG. Assume that J(F, G)=0. Then there exists a constant
¢ such that Fl=cG%,

Proof. From the assumption FyGy—FyGx=0, we get d,FGy—d.FyG=
(a XFx+bY Fy)Gy—Fy(a XG x+bY Gy)=0. Similarly we get d,FxG—d,FGxy=0.
Thus taking the differential of F?/G%, we get
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diFx _ dGxyFe
F G

F G Jgnu

This completes the proof.
The following lemma plays a key role in the following sections.

,d}EYW leY }Fdz

d(F/G%)={ dx+{ car 47 =0.

LEMMA (2.8). Let F(X,Y) be a weighted homogeneous rational function of
type (a, b; d). Let o be one of the divisors X, Y and X°+4cY? for some c¢+0.
Assume that d+0 and val,F=0. Then we have val,J(c, F)=0.

Proof. First observe that J(g, F) is a weighted homogeneous rational func-
tion of type (a, b; d’—a—>b) where d’'=d+degw.no. Let F(X, Y):X”qu[1
(X%+¢,Y*)™, By the assumption, d:pa+qb+§)nlab¢0. We put ¢,=X°+c¢, Y

1=1

for brevity’'s sake.

Case 1. Suppose 6=X. Then val,F=0 implies p=0. Let F;, F, and G be
rational functions. The following property of the Jacobian is used throughout
this paper.

(2.8.1) J(G, Fsz):](G, Fl)Fz"l‘j(G, Fz)Fx .
As J(X, Y)=1 and J(X, ¢,)=c.,aY*"!, we have

J(X, F)=qY*! ﬁl ghb 3 nic,aVIrasight (ITo3) .
1= 1=1 7#1
Substituting X=0, we have
(282) ](X’ F)‘X:O:a,y'naﬂ—l

where n= f} n, and a=(@+na)Ilc}. As d=qgb+nab=(g+na)b is not zero, «
1=1 1

is not zero. Thus (2.8.2) implies valyJ(X, F)=0. (If b is a negative integer,
the sustitution X=0 should be replaced by X'=0 where X'=X"1)

The case that ¢=Y is treated in the exact same way.

Case 2. Suppose that ¢=X°+¢Y* where c¢+0, c#¢, for =1, ---, m. As
J(o, 0.)=(c;—c)abX®'Y%"!, we have

J(g, F)=—pacX?- 'Yt e-1 ] gmtghX 7*0-1Y 01 [T g™
=1 =1

+ f} n(ci—c)abXPro-tyara-igh=1 I g%
=1 ¥
Restricting [(og, F) to X°+cY*=0, we obtain
J(0, Fligeo=d TI (ci—c)m X pro-1y nata-12Q
1=1

by the assumption. This implies val,/(a, F)=0, completing the proof.



422 MUTSUO OKA

THEOREM (2.9). Let W(X,Y) be a weighted homogeneous polynomial of type
(a, b; d) and suppose that a>0, b>0. Then there exists a weighted homogeneous
rational function o(X,Y) such that J(p, h)=1 if and only if either

(i) h=o0%6% where o, and o, are linear forms and p=0, ¢=0, p+#q or

(ii) h=cXP(Y +c’ X" where ¢, ¢’+0 and a=1 and p and q are as in (i), or

(iii) h=cY?(X+c'Y*)? where c, ¢'+0, b=1 and p and q are asin (i). (Com-
pare with (18.9)—(18.12), [Ab].)

Proof. Let h=co%1--- 6f* be the factorization of 4 as in Proposition (2.5).
We assume that ¢,=X, ¢,=Y and ¢,=X°+¢,Y* for /=3 and a; and a, are
non-negative and «, (/=3) is positive. Suppose that ¢ is a weighted homogeneous
rational function such that J(¢p, h)=1.

ASSERTION 1. (i) val,,p=l—-a, if a,#0,
=0 Zf a,=0,
(ii) Valu§0§0 for any o#0y, -, Op.

Proof. The second part of (i) and (ii) can be treated in the same way.
Let ¢ be a divisor such that val, h=0. Let p=0%p, and val, ¢,=0. Suppose
a=val, ¢<0. Then we have

(*) 1=J(p, h)=ac® ¢ J(a, h)+0o*] (@, h).

val, J(o, h)=0 by Lemma (2.8) and val, J(¢;, #)=0 because a and b are positive.
Taking val, of (*), we get a contradiction 0=a—1<0. Now take ¢, such that
a,>0 and let B;=val,, and ¢p=¢p*h=F,

Case 1. Suppose that deg(a, n¢=a;deg ., »ne—pidegw, »h=0. By the assump-
tion J(p, h)=1, we have

deg(a,b)§0+deg(a,b)h:a+b>0.
Therefore %:deg(a,b)¢/deg(a'b)h>—l and this implies f,>—a, which is the

assertion.
Case 2. Suppose that deg(s ,»¢#0. Then using (2.8) and the equality

J(@, hy=a087 ] (¢, az)g0§f+ai’i](¢, JHHUE""),

we get val,, /(¢, h)=a;—1. On the other hand, we can write J(¢, h)=](p*, h)
h=Fi=q;p=i=1h~F:.  Therefore val, J(¢, h)=(a;—1)Bi—psa,=—pf,. Combining
the two equalities, we get B,=1—«,. This completes the proof of Assertion 1.

By Assertion 1 and the equality a-b=deg, »ne+degw,nh, we get the
following inequality.

(2.9.1) a+bg(a1+,81)a+(a2+ﬁz>b+i§ (a;+pB)ab
= (a4 Br)a+-(a,+ )b+ (k—2)ab .
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Note that a;+p8,=1 if a,#0 and a,+8,20 if a,=0.

First case: k=2. Then h=cX“1Y®:, Suppose that a,;#a, Then ¢=
—C—(&;lj&l X1-aiyt-e2 clearly satisfies J(p, h)=1. Suppose that a;=a;>0.
Then by the above inequalities, ¢ must be written as ¢’X*~*1Y*-%2 for some c’.
However this is absurd because (¢, h)=0.

Second case: k=3. As 0<a-+b—ab=—(a—1)(b—1)+1, we must have a
=1 or b=1. (a=b=2 is not allowed.) Assume that b=1. As a+1=(a;+p)e+
a+(az+pB,), we must have ;=0 or a,=0 and a=1. (i) Suppose that a;=0.
Then h=cY*(X+c, Y. If a,#as, —— 1 — Y1 % ( X+, Y919 is the de-

(az—as)c
sired solution. If @,=a;>0, by the inequality (2.9.1), ¢ must be c('Y'
(X+c,Y)!-*s which gives the contradiction J(p, A)=0. (ii) Suppose that «,
=0 and a=1. By the same discussion as in the case k=2, a;#a; is the neces-
sary and sufficient condition for the existence of ¢.

The case that #=3 and a=1 can be discussed in a similar way so that A
is either ¢ X*1( X%+ ¢, Y)*3(a; #a;) or cY o X+c:Y )%, #as).

Third case: k=4. As a+b=2ab, we get a=b=1. By (2.9.1), A must be
co§3cft. As o; and o, are linear forms, we obtain, by the same discussion as
in case 1, that o:;+#0, is the necessary and sufficient condition. The case that
k>4 is clearly impossible by (2.9.1). This completes the proof of Theorem (2.9).

§3. Newton polygon and the Jacobian problem.

Let f(X, YV)=2Xa,, .X*Y* be a polynomial. We define the Newton polygon
N(f) by the convex hull of points (v, ¢#) for which a,,,#0. This is a compact
polyhedron in R% For a face 4(4 may be a vertex) of the boundary oN(f),
let f4(X, Y) be the partial sum | g,edap, «X*Y*#. There are integers a, b and d

such that ¢ and b are coprime and f4(X, Y) is a weighted homogeneous polyno-
mial of type (a, b; d). If dim 4=1 and 4 and the origin are not colinear, a, b
and d are unique if we assume d>0.

DEFINITION (3.1). We call (a, b) the weights of 4. Let I.(f) be the union
of 4’s which have positive weights. See Figure A.

L(f)

N({/)

Figure A.
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Let f(X, Y) and g(X, Y) be polynomials which satisfy the Jacobian condition
(1.1). Let a and b be coprime integers. Let f=f_, +f_pi1+ -+ +f, and g=
gom+g-mr+1+ - +gn be the gradations of f and g respectively. Namely f;(X,Y)

> a,X*Y* Note that we can write f, as f, for some 4=dN(f).

av+bp=1
We consider the equation J(f, g)=1. As J(f,, g;) is a weighted homogeneous
polynomial of degree i+j—a—b, J(f, g) has the gradation J(f, g),=

1+y=k+a+db

J(f+, g5)- In particular, we have

PROPOSITION (3.2). J(fn, gu)=0 f n+m=a+b.
Write gn=~h¢ so that e is a positive integer and h is a square-free weighted
homogeneous polynomial of degree r. (er=m).

PROPOSITION (3.3). For any N>0, there exists a rational function g(X,Y)
such that g is a finite sum of weighted homogeneous rational functions so that
dega,n(g—89<—N.

Proof. Let g=g,+g,-1+ -+ +8-u, where g, is defined inductively by

(3.3.1) g.,=h and > 8.8, g,—g, for ;<m.

11+ Fre=J

For example, &,-1=gm-1/eh®, &ro=9Q9m-2— ¢ he2gi_i+/eh¢'. By definition,
2

(8%,=g, for j=(e—1)r—M. Thus the assertion is immediate if we take M>0
large enough.

LEMMA (3.4). If m>0, there exists a weighted homogeneous rational function
@ of degree (a-+-b—m) such that J(p, gn)=L1.

Proof. Take N>0 large enough and let & be as in Proposition (3.3). By
Proposition (3.2) and Proposition (2.7), we can write f,=ch? for some ¢,+#0.
(gr=n). Then deg(,,»n(f—c£&9)<n and we have

3.4.1) J(f—cig% =] (f, @ for i=0.
To see this, let R=g—g° Then deg,»nR<—N and we have
J(&% g).=](&% &°+R);

=J(g% R)=0 for i=0,

because gr-+deg . nR—(a+b)<0. Let s be the minimal integer such that sr>
a--b—m. We repeat the same argument for f—c¢,8? and g using (3.4.1).

I. Assume that s=0. By the inductive argument, we find constants c,,
Cq-1, "'+, Cs SO that
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q " q
(3.4.2) degm,b><f—]§cjg’><sr and ](f—«;s c;8’, g>i:f(f, 2

for /=0. Let ¢ be the maximal gradation part of f— ‘i‘ngA]. By (3.4.2), we
=3
have deg ., no=a-+b—m and J(p, g»)=J(f, g)=1.
II. Assume that s<0. We can find constants ¢, -+, ¢, so that
q " q .
343  degwn(f—e#’)<0 and J(f— X’ g) =], 2
J=0 J=0 3
for 7=0. Let g be the sum of weighted homogeneous factors of degree greater
than —N in the formal sum
8'=87'1+§r-1/8r - +E-u/8)7"
—h 1D (—17k where k=X g,/8..
=0 =M
We can write §g=14S and degw,»S=<r—N. Now we consider

(3.4.4) J(@&, g)=J (&, &+R).

It is easy to see that degq, 5 /(g" R)<0 for :=0. We consider
J(g, £98'=](g'g", g°=J((1+S), g9=J((1+S)—1, g% .

If 0<:<—s and M and N are large enough, we see that deg(. »/(g*, &9 is
negative. Thus we have

(3.4.5) deg.. 0 /(g 2)<0 for 0<:=—s.

The rest of the argument is exactly parallel to that of /. Suppose that we
have chosen constants ¢, -+, ¢, such that 0=¢/>s and degw,»/”<:r and

J(F9, 9)s=](f, g for k=0 where f®=f— 3}c,g'~ 3 cug™*. By Proposition
7= =1

(2.7), we can find a constant c,-, such that deg, »(f P —c,-:87")<@—1)r. Let
fEV=f®—¢, g+ Then by (3.4.5) we have

(3.4.6) JUO, @=J(f, g  for kz0.

We stop the argument at f and let ¢ be (f*)ssp-m. Then ¢ is the desired
function.

COROLLARY (3.5). Let f and g be as in Lemma (3.4). For any face or
vertex 4 of T(g), ga(X, Y) 1s one of (i), (ii) and (iii) of Theorem (2.9).

Proof. Take positive integers a, b and d so that g4(X, V) is a weighted
homogeneous polynomial of type (a, b; d). The assertion is immediate from
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Lemma (3.4) and Theorem (2.9). (Thus [Iu(g) has at most one l-dimensional
simplex.)

§4. Equivalence of (J.C. II) and (J. C. IID).

We prove the equivalence of (J.C. I) and (J.C.II) in §1. Let (f, g) be a
polynomial pair which satisfies the Jacobian condition (1.1). Assume that (f, g)
is an elementary transformation. By an inductive argument on the number of
compositions of transformations of type (i) and (ii) in §1 and by Propositions
(2.7) and (3.2), we can see easily that g,=0 has a unique solution in P(K).
Thus (J.C. ) implies (J.C.IM). Now assume that (J.C.II) is verified. We
prove (J.C. II) by the induction on m=degree g.

Case 1. m=1. Then we may assume that g(X, Y)=X. Then (1.1) can be
solved directly so that we get f(X, Y)=—Y +h(X) for some polynomial A(X).
This is clearly an elementary transformation.

Case 2. m>1. We may assume that g,(X, Y)=X™ by a linear change of
coordinates if necessary. We consider the Newton polygon N(g) and we take
the face 4 of 0N(g) which has the point (m, 0) at the end. By Corollary (3.5),
we can write g4(X, V) as ¢, X?(Y +c, X% for some b=2, p=0 and ¢>0 where
¢, and ¢, are non-zero. We change the coordinates by X’=X and Y’'=Y +¢,X°.
Then it is easy to see that the degree of g(X’, Y’) is strictly less than m. Thus
(f(X', Y, g(X’,Y") is an elementary transformation by the induction’s hypo-
thesis. Therefore (f(X, V), g(X, Y)) is an elementary transformation.

§5. Jacobian problem for weighted homogeneous rational functions II.

Let A(X, Y) be a weighted homogeneous polynomial of type (a, b; d) and
we assume that A is not a monomial and ab<0. In this section we study the
necessary condition for the existence of a weighted homogeneous rational function

(X, Y) such that J(p, h)=1. The Newton polygon N(h) is a line segment PQ
for some P=(a, ) and Q=(a’, p’) where a=a’, B=p’ and a+p<a’+p".

DEFINITION (5.1). We call P and Q the left and right end of N(h) res-
pectively.

(1) Assume that (a, b)=(1, —1). Then N(h) is parallel to the line Y —X
=(0. This case is exceptional by the following property. (*) degy -1, J(F, G)=
deg, -, F+degy -1,G for any weighted homogeneous rational functions F and G.

Let A(X, V)=XYF I_kIl(XY—l—cl)"i(clq&O). By the assumption, 2=1 and d=a—p.

If d is not zero, o=—XY/dh is a desired function. Suppose that d=0. By

the above property, ¢ must be written as (XY)Tf[l(XY—Fd,»)f‘J. However this
=

gives a contradiction J(¢, #)=0. Thus we obtain
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THEOREM (5.2.). If (a, b)=(1, —1), the necessary and sufficient condition for
the existence of ¢ 1s d=+0.

(II) Assume that a-+b+0 and (¢-+b)d>0. Changing the signs of a, b and
d if necessary, we may assume that a-+b and d are negative. We may also
assume that ¢=0>b, taking the coordinates X’=Y and Y’'=X if necessary. Let

h(X, Y):X“YﬁIkI(X"’Y“%—cl)“i:X‘iYﬁfII(Y“JrcLX”)”i where {c)} are non-zero
1=1 7=

and mutually distinct and @a=a—2v;b. Suppose that there exists a weighted
homogeneous rational function ¢ such that J(p, h)=1. Let o(X, Y)==¢,X7Y?

’ﬁj(X'bYaJrcj)ﬂf.
1]

ASSERTION (5.3). (i) wvi+p=1 for 1=k and (ii) pu, s non-negative for
j=k+1, -, B+t

Proof. The proof is parallel to that of Assertion 1 in the proof of Theorem
(2.9). First, the assertion (ii) is immediate from Lemma (2.8) and the following
equality : 1=J(p, h)=J(p,, ME*1+]J(E,, h)pi€ i ¢, where ¢,=¢/&;#1and §,=Y*
+¢,X° To prove (i), let ¢;=¢*h=#. Assume that deg,n¢i=v;degw, np—
#:d=0. Combining this with the equality deg(,, »nep=—d+a--b, we obtain

—/vi=—deg,np/d=1—(a+b)/d<1.

Thus we get —p;<v; i.e. v,+p;=1. Assume that degs,»n¢;#0. We consider
two expressions of J(¢;, h). First it is equal to v;p*i"*h~#i as [J(p, h)=1 and
J(h, h)=0. Secondly we can write J(¢s, h)as J(¢:, h/E1)E i+ (s, EviEsi"h/Ex,
Comparing the valg’s of both expressions, we get by Lemma (2.8)

wi—Dp—pvi=v;—1.
Namely we get v;+p,=1, completing the proof of the assertion.

ASSERTION (5.4). Let Q=(a’, 8) be the right end of N(h) and assume that
a'<f'. Then there exists a weighted homogeneous rational function ¢ such that
Jle, h)=1 if and only if a=a=0 and k=1.

Proof. Let ¢=¢h. Then by Assertion (5.3), ¢ is a Laurent polynomial
(i.e. g K[X, Y, X7, Y~]) such that

(5.4.1) ¢260XH+7YS+5}1+]§(X‘bya'JrCJVJ”‘J and
7=

(5.4.2) J@, hy=h .

Let P'=(e, ) and Q’=(¢’, ') be the left and right ends of N(¢) respectively.
Let L be the line which contains (1.1) and which is parallel to the segment PQ.
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Let P” and Q” be the intersections

As deg(,,n¢=a+b, L contains P’ and Q’.
of L and OP and OQ respectively. See Figure B

Q
s /!
P S Y=X
4 ," ” /,I/
P_}‘. Q" L
ALY
0
Figure B.
(¢'+a’'—1, 6'+p'—1) is the

5/a/)Xe'+a' 1)/5'+ﬁ'—1
right end of N(J(¢, h) ) if ¢’f'—a’d’+#0. By (5.4.2), this implies that Q'=
Thus we get that Q'=(1.1) or Q’"=Q” and Q” is an integral point in the latter
By the same discussion, P’=(1, 1) or P”. In the latter case, P” must be
In our case Q” is not an integral point because 0<a’<f’
P” is an integral point if and only if PQ is
Namely ea=a=0. As ¢ is not
Q’'=(, 1) is impos-
Thus h=

As J(X¥Y¥, XCYF)=(e'f'—
(L.1).

case.
an integral point.

(See Figure B.) Thus Q’=(1, 1).
parallel to the X-axis and P is on the Y-axis.

a monomial by (5.4.1) and Assertion (5.3), the case that P’'=
(1, 0) and a=a=0. By (5.4.1), % must be one.

sible. Thus P'=P"=(1,
YE(X+¢,)*t and p=coY ""F(X+c,)'™™, where ¢c,=1/(v;—p), is the desired solution
Now we consider the case that a’=p".

ASSERTION (5.5). a+f8 and o' #p'.
Proof. Assume that a=p. Then by the above discussion, P’'=P”=(1, 1)
This is impossible because J(¢, h) cannot contain the non zero term c¢X*Y?# as

J(XY, X*Y#)=0. The case that a’=p’ is impossible by the same argument

We have two possible configurations.
V=X Y=X

C.L
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Case C.I. a>pB. As P” is on the right side of (1, 1), we must have P’'=
(1, 1) to have a non-zero term ¢X*Y# in J(¢, h). If Q” is not an integral point,
we have that @’=(1.1) which is impossible by (5.4.1). Thus it is necessary that
Q” is an integral point. (The sufficient condition is difficult to describe.)

Case C. II. First note that P” is integral if and only if a=a=0. Remem-
ber that ¢ is not a monomial. Thus if (a, a)#(0, 0), @” must be an integral
point. We do not try to clarify the sufficient condition. (This is an algebraic
condition on {c;} where A(X, Y):X“Yﬁf[l (X, YO 0f by a, B, v, ) va
are fixed.)

As a conclusion, we have:

THEOREM (5.5). Assume that a=0>b, a+b<0 and d<0. The following are
necessary conditions for the existence of a weighted homogeneous rational function
¢ such that J(p, h)=1.

(i) The end ponts P, Q of N(h) are not on the line Y —X=0.

(ii) If (a, @)#(0, 0), Q" must be an integral pont. Namely there exists a
positwe integer s such that (1+sa)a’=(1—sb)B’. In particular, Q must satisfy
a’>p.

Remark (5.6). The above conditions are not sufficient for the existence of
¢. We give some examples.

(A-1) Assume that Q”"=(1+a, 1-b) i.e. (1+a)a’=(1—-b)f’. By (5.4.1),
we must have 2=1 and A(X, Y)=XV8(X Y *+c,)**. In this case we can solve
¢ as o XY (XY %c¢), co=1/(B—a)c, and o=¢/h.

(A-T) Assume that (14-2a)a’=(1—2b)8" and k=2. By (5.4.1), ¢ must be
XY (XY %4 (XY %+¢,). By an easy calculation, ¢ is a solution if and only
if ¢; and ¢, satisfy the following equation :

1—-2b, 14+-2a 1-b, 14+a
a’+b, ﬂ/__a (1/, ﬁ/

(B) Assume that (a-+b)d<0. We may assume that a=0>b, a-+b<0 and
d>0. This case is more difficult. The main reason is that Assertion (5.3) is

-Y
not true in general. For example, let A(X, Y)=X(X?Y2+c¢;)? and let =3

|:0.

(v1€1Fvscs) l+(51+02)

(X?Y 2 +c,)%(X*Y?+3c,). It is easy to see that [(p, h)=1.

§ 6. Boundary obstructions and further remarks.

Let (f, g) be a pair of polynomials which satisfy the Jacobian condition.
We assume that (f, g) is not an elementary transformation. Then by finite
changes of coordinates of type (i) and (ii) in §1 if necessary, we may assume
that gn(X, Y)=X?Y%(p>¢>0 and m=p-+q) where m=degree (g). Then the
Newton polygon N(g) is included in the rectangle OPQR in Figure D by Corol-
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lary (3.5).

i
1
!
|
|
P

Figure D.

We may also assume that 0 N(g) and 0N(f) by adding constants if necessary.

LEMMA (6.1). Let f and g be as above. Then the polygons N(f) and N(g)
are stmilar.

Proof. Let 4 be a 1-dimensional simplex of the boundary N(g) which is not
colinear with the origin. Let (a, b; d) be the weights of 4. Let f4(X,Y) be
the maximal gradation part of f with respect to (a, b) where 4’ is a face of
N(f). Assume that dega,»fs+d=a+b. Then we have J(f4, gs)=1. As fu
and gy are polynomials, we may assume that, for example, (1, 0)ed and (0, 1)
€4’. Let S and S’ be the right ends of 4 and 4’ respectively. See Figure E.

S’ S
/
.'l

Figure E.

As S and S’ and the origin are not colinear, J(f4, g4) contains a non-zero term
¢Xeara -1y #+# -1 which is absurd. Thus we get deg. s /s +d+a+b. By (3.2),
f% /g% is a constant where d’=deg »f4. Let S and T (respectively S’ and
T’) be the ends of 4 (respectively ends of 4’). Then the triangle OST is similar
to the triangle OS'T” and |4|/|4'|=ST/S'T'=0S/0S’=0T/OT’. As the faces
4’s of N(g) as above are connected, the assertion is immediate.

COROLLARY (6.2). Let f and g be as above. N(f) and N(g) contain the
ponts (1, 0) and (0, 1). (Otherwise J(f, g) cannot be 1.)
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Let 4, and 4, be the two particular faces of dN(g) which have Q=(p, ¢) as
the right ends. See Figure F.

Y=X Y—¢=X—p

(g T I A 0
4, ;
!

4,
N(g) !
0 P
Figure F.

t

Assume that 4,=QR and let g (X, V)=YII(X+¢,)*". Then we take the new
1

coordinates X’=X-+¢; and Y'=Y. Then R is not contained in the Newton
polygon of g(X’, Y’). Note that the under part of oN(g) i.e. {(x, y)=dN(g);
py=gx} remains unchanged. By the same device, we may assume that P&dN(g).
Now the results of §5 can be read as

THEOREM (6.5). (Boundary obstructions). For any simplex 4 of 0N(g) which
is not colinear with the origin, there exists a weighted homogeneous rational func-
tion ¢ such that J(p, g)=1. Let (a,, b;) be the weights of 4, ¢=1, 2). In parts-
cular, we have the following.

(i) There exists a positive integer s such that (1+sl|a,|)p=~1+s]b()g.

(ii) a,>0>b, and a,+b,=0. (See Figure F.)

Remark (6.4). Let (f, g) be a pair of polynomials which satisfy the Jacobian
condition (1.1). Then f and g do not have any critical points in K* as functions
from K to K. However the converse is not true in general. For example, let

gi(X, V)=X+ X e (X*Y")* and assume that ¢, #0, a>1 and b>0. It is easy to

see that g, has no critical point. As N(g,) does not contain (0.1), there is no
polynomial f such that J(f, g)=1. A similar example is given by g.(X, Y)=
X+, X2+ -« +cpX™+aX™Y where n>m and a+0.

Remark (6.5). Let g(X,Y) be a polynomial with gn(X, Y)=X?Y? where
m=degree (g) and m=p-+¢ and p, g=1. Let 4 be a 1-dimensional simplex of
0N(g) such that 4 is not colinear with the origin. Write g4(X, Y)=h(X, Y)*“»
where h,(X,Y) is a weighted homogeneous, square free polynomial and e(4) is a
positive integer. Let e(g) be the greatest common divisor of such e(d)’s. The
following is related to “Segre’s Lemma” ([B-C-W]) and it might be well known
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to specialists.

LEMMA (6.5.1). Assume that there exists a polynomial f(X,Y) such that
J(f, @)=1. Then e(g)>1.

Proof. For a 1-dimensional simplex 4 of 0/N(g) which is not colinear with
the origin, let 4’ be the simplex of oN(f) which corresponds to 4 by Lemma
(6.1). Let m=degree (g) and n=degree (f). Assume that e(g)=1.

ASSERTION. m divides n.
n_n .
Proof. Let E:;ﬁ? where 7, and m, are coprime. Let d(4) be the degree
1

of hy(X,Y) with respect to the weights of 4 and let d and d’ be the respective
degrees of g4(X, Y) and f4 (X, Y). By the proposition (2.7) and (3.2), f4(X,Y)
=ch X, Y)* where k(4) is defined by d’=k(4)d(4). By Lemma (6.1), this

implies that d’:a’fgf =d(de(d)n,/m,; is a multiple of d(d). As e(g)=1 by the

1
assumption, this is possible only if m;=1. This completes the proof of the as-
sertion.

The rest of the argument is well known. Let f,(X, YV)=f(X, Y)—cg(X, Y)".
Then degree (f,)<degree (f) and J(f;, g)=1. By the inductive argument, we
come to the situation that J(f;, g)=1 and degree (f;)<degree (g) which is
impossible.

Remark (6.6). The final remark is a bit unfortunate for us: There exist
polynomials without any obstructions from the boundary.

EXAMPLE (6.6.1). Let g(X, V)=Y"( XY 41"+ X*"( XY +1)*"—X°"Y**, Then
g has no obstruction on the boundary, i.e. there exists a weighted homogeneous
rational function ¢, such that J(gy ¢4)=1 for any simplex 4 of dN(g) which
is not colinear with the origin. However there does not exist any polynomial
f(X, Y) such that J(g, f)=1 because g has many critical points. We finish this
paper with the following question.

Question : Is there any polynomial g(X, Y) such that (i) gn(X, Y)=X?Y1
where m=degree g and p+¢=m and p, ¢>0 and (ii) g has no obstruction on
the boundary and (iii) g has no critical point?.
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