M. OKA KODAI MATH. J. 6 (1983), 419-433

ON THE BOUNDARY OBSTRUCTIONS TO THE JACOBIAN PROBLEM

BY MUTSUO OKA

§ **1. Introduction**

Let K be an algebraically closed field of characteristic zero and let $f(X, Y)$ and $g(X, Y)$ be polynomials with *K*-coefficients which satisfy the Jacobian condition :

(1.1)
$$
J(f, g)=f_Xg_Y-f_Yg_X=1
$$

where f_X , f_Y etc. are respective partial derivatives. The so-called Jacobian conjecture is the following.

(J. C. I) "If (1.1) is satisfied, X and Y are polynomials of f and g ".

Typical examples are given by elementary transformations which are defined by finite compositions of the following transformations.

- (i) $(f, g) = (aX+bY+e, cX+dY+e')$ where $ad-bc \neq 0$ or
- (ii) $(f, g) = (X, Y + h(X))$ where $h(X)$ is an arbitrary polynomial.

By the theorem of Jung [J], (J.C.I) is equivalent to

(J. C. II) "If (1.1) is satisfied, (f, g) is an elementary transformation".

Let $m=$ degree *(g)* and let g_m be the *m*-th homogeneous part of g . Among the various results about (J.C. I), the following is due to Abyankar $[Ab]$:

 $g_m=0$ has at most 2 points in $P^1(K)$ if (1.1) is satisfied by f and g. It is easy to prove that $(J.C. II)$ is equivalent to $(J.C. III)$ (See §4.):

(J.C. III) "If $g_m=0$ consists of two points, there is no polynomial f such that $J(f, g) = 1$ ".

In this paper, we study the necessary conditions ("boundary obstruction") of the boundaries of the Newton polygon $N(g)$ for the existence of f such that $J(f, g)=1$. Unfortunately there exist polynomials which have no obstructions on the boundary. Our main results are in §6 (Theorem (6.3) etc.).

Received February 1, 1983

§ **2. Jacobian problem for weighted homogeneous rational functions I.**

Parts of the results of this and the next section are obtained by Abyankar [Ab] but our approach is made from a different point of view.

DEFINITION (2.1). A polynomial $f(X, Y)$ is called a weighted homogeneous polynomial of type (a, b; d) if $f(t^a X, t^b Y) = t^d f(X, Y)$ for any $t \in K$. Here a and *b* are integers such that (i) *a* and *b* are coprime if $ab \neq 0$ and (ii) $(a, b) = (1, 0)$ or $(0, 1)$ if $ab=0$. (a, b) are called the weights and d is called the degree of f with respect to the weights (a, b) . We denote it by $d = \deg_{(a, b)} f$.

EXAMPLE (2.2) $X^2(Y+1)$ is a weighted homogeneous polynomial of type $(1, 0; 2)$. $X^2(XY+1)$ is of type $(1, -1; 2)$.

DEFINITION (2.3). A rational function $F(X, Y)=f(X, Y)/g(X, Y)$ is called a weighted homogeneous rational function of type $(a, b; d)$ if f and g have the same weights (a, b) and $d = \deg_{(a, b)}f - \deg_{(a, b)}g$. From the equation $F(t^a X, t^b Y)$ $=t^d F(X, Y)$, we obtain the Euler equation:

(2.4)
$$
dF(X, Y) = aXF_X(X, Y) + bYF_Y(X, Y).
$$

PROPOSITION (2.5). Let $F(X, Y) \neq 0$ be a weighted homogeneous rational func-**TO** *t*_H (*x*^{*b*} + *c_{<i>t*}*l***</sup>** *y*
n=1
*n*_{*i*}_H (*x*^{*b*} + *c_t<i>l***</sup>)** \mathcal{L}^{max} **are non-zero** and \mathcal{L}^{max} \mathcal{L}^{max} \mathcal{L}^{max}

Proof. We may prove the assertion for a weighted homogeneous polynomial f . If $ab=0$, the assertion is nothing but the unique factorization property of a polynomial of one variable. Assume that $ab \neq 0$. We can write $F(X, Y) =$ $X^p Y^q f_1(X^b, Y^a)$ for some homogeneous polynomial $f_1(X, Y)$. Thus the assertion is reduced to the homogeneous case which is well known.

DEFINITION (2.6). For a given $F(X, Y)$ as above, we define $p = val_x F$, $q = val_YF$ and $n_i = val_{\sigma_i}F$ where $\sigma_i = X^b + c_iY^a$ for $i = 1, \dots, m$.

PROPOSITION (2.7) . $((17.4), [Ab])$. Let $F(X, Y)$ and $G(X, Y)$ be non-zero *weighted homogeneous rational functions with the same weights (a, b). Let d¹* $deg_{(a, b)}F$ and $d_2=deg_{(a, b)}G$. Assume that $J(F, G)=0$. Then there exists a constant *c* such that $F^{d_2} = cG^{d_1}$

Proof. From the assumption $F_X G_Y - F_Y G_X = 0$, we get $d_I F G_Y - d_I F_Y G =$ $(a X F_X + b Y F_Y) G_Y - F_Y (a X G_X + b Y G_Y) = 0.$ Similarly we get $d_z F_X G - d_z F G_X = 0.$ Thus taking the differential of F^{d_2}/G^{d_1} , we get

$$
d(F^{d_2}/G^{d_2}) = \left\{ \frac{d_2 F_X}{F} - \frac{d_1 G_X}{G} \right\} \frac{F^{d_2}}{G^{d_1}} dX + \left\{ \frac{d_2 F_Y}{F} - \frac{d_1 G_Y}{G} \right\} \frac{F^{d_2}}{G^{d_1}} dY = 0.
$$

This completes the proof.

The following lemma plays a key role in the following sections.

LEMMA (2.8) . Let $F(X, Y)$ be a weighted homogeneous rational function of *type* (*a*, *b*; *d*). Let σ be one of the divisors X, Y and $X^b + cY^a$ for some $c \neq 0$. *Assume that* $d \neq 0$ *and val* $F=0$. Then we have val $J(\sigma, F)=0$.

Proof. First observe that $J(\sigma, F)$ is a weighted homogeneous rational function of type $(a, b; d' - a - b)$ where $d' = d + \deg_{(a, b)} \sigma$. Let $F(X, Y) = X^p Y^q \prod_{i=1}^m$ $(X^b+c_1Y^a)^{n_1}$. By the assumption, $d=p a + q b + \sum_{i=1}^{m} n_i a b \neq 0$. We put $\sigma_i = X^b+c_1Y^a$ for brevity's sake.

Case 1. Suppose $\sigma = X$. Then $\text{val}_{\sigma}F=0$ implies $p=0$. Let F_1, F_2 and G be rational functions. The following property of the Jacobian is used throughout this paper.

$$
(2.8.1) \t\t J(G, F1F2) = J(G, F1)F2 + J(G, F2)F1.
$$

As $J(X, Y)=1$ and $J(X, \sigma_i)=c_i aY^{a-1}$, we have

$$
J(X, F) = qY^{q-1} \prod_{i=1}^m \sigma_i^{n_i} + \sum_{i=1}^m n_i c_i a Y^{q+a-1} \sigma_i^{n_i-1} \quad (\prod_{j \neq i} \sigma_j^{n_j}).
$$

Substituting $X=0$, we have

$$
(2.8.2) \t\t J(X, F)1 X=0=\alpha Y^{n\alpha+q-1}
$$

where $n = \sum_{i=1}^{m} n_i$ and $\alpha = (q+na) \prod_i c_i^n$. As $d = qb+nab = (q+na)b$ is not zero, α \mathbf{v} = 1 \mathbf{v} is the 1 \mathbf{v} is the 1 \mathbf{v} is not zero. Thus $(2.8.2)$ implies $val_X J(X, F) = 0$. (If *b* is a negative integer, the sustitution $X=0$ should be replaced by $X'=0$ where $X'=X^{-1}$.

The case that $\sigma = Y$ is treated in the exact same way.

Case 2. Suppose that $\sigma = X^b + cY^a$ where $c \neq 0$, $c \neq c_i$ for $i = 1, \dots, m$. As $J(\sigma, \sigma_i)=(c_i-c)abX^{b-1}Y^{a-1}$, we have

$$
J(\sigma, F) = -\rho a c X^{p-1} Y^{q+a-1} \prod_{i=1}^{m} \sigma_i^{n_i} + q b X^{p+b-1} Y^{q-1} \prod_{i=1}^{m} \sigma_i^{n_i} + \sum_{i=1}^{m} n_i (c_i - c) ab X^{p+b-1} Y^{q+a-1} \sigma_i^{n_i-1} \prod_{j \neq i} \sigma_j^{n_j}.
$$

Restricting $J(\sigma, F)$ to $X^b + cY^a = 0$, we obtain

$$
J(\sigma, F)_{|\sigma=0} = d \prod_{i=1}^{m} (c_i - c)^{n_i} X^{p+b-1} Y^{na+q-1} \neq 0
$$

by the assumption. This implies $\text{val}_{\sigma} J(\sigma, F)=0$, completing the proof.

THEOREM (2.9). *Let h(X, Y) be a weighted homogeneous polynomial of type* $(a, b; d)$ and suppose that $a > 0$, $b > 0$. Then there exists a weighted homogeneous *rational function* $\varphi(X, Y)$ *such that* $J(\varphi, h)=1$ *if and only if either*

(i) $h = \sigma_1^p \sigma_2^q$ where σ_1 and σ_2 are linear forms and $p \ge 0$, $q \ge 0$, $p \ne q$ or

(ii) $h = cX^p(Y + c'X^b)^q$ where c, $c' \neq 0$ and $a = 1$ and p and q are as in (i), or (iii) $h = cY^p(X + c'Y^a)^q$ where c, $c' \neq 0$, $b = 1$ and p and q are as in (i). (Com pare with (18.9)—(18.12), [Ab].)

Proof. Let $h = c \sigma_1^{\alpha_1} \cdots \sigma_k^{\alpha_k}$ be the factorization of *h* as in Proposition (2.5). We assume that $\sigma_1 = X$, $\sigma_2 = Y$ and $\sigma_i = X^b + c_i Y^a$ for $i \ge 3$ and α_1 and α_2 are non-negative and α_{\imath} ($\imath{\geq}3$) is positive. Suppose that φ is a weighted homogeneous rational function such that $J(\varphi, h)=1$.

ASSETION 1. (i)
$$
\text{val}_{\sigma_i} \varphi \geq 1 - \alpha_i
$$
 if $\alpha_i \neq 0$,

\n
$$
\geq 0 \quad \text{if } \alpha_i = 0
$$
\n(ii) $\text{val}_{\sigma} \varphi \geq 0$ for any $\sigma \neq \sigma_1, \cdots, \sigma_k$.

Proof. The second part of (i) and (ii) can be treated in the same way. Let σ be a divisor such that val_{σ} h=0. Let $\varphi = \sigma^{\alpha} \varphi_1$ and val_{σ} $\varphi_1 = 0$. Suppose $\alpha = \text{val}_{\sigma} \varphi < 0$. Then we have

(*)
$$
1=J(\varphi, h)=\alpha \sigma^{\alpha-1} \varphi_1 J(\sigma, h)+\sigma^{\alpha} J(\varphi_1, h).
$$

val_{*s*} $J(\sigma, h)=0$ by Lemma (2.8) and val_{*s*} $J(\varphi_1, h) \ge 0$ because *a* and *b* are positive. Taking val_{*σ*} of (*), we get a contradiction $0 = \alpha - 1 < 0$. Now take σ_i such that $\alpha_i \!>\! 0$ and let $\beta_i \!=\!\mathrm{val}_{\sigma_i} \varphi$ and $\phi \!=\! \varphi^{\alpha_i} h^{-\beta_i} \varphi$

Case 1. Suppose that $\deg_{(a,\,b)}\phi\!=\!\alpha_i\deg_{(a,\,b)}\varphi\!-\!\beta_i\deg_{(a,\,b)}h\!=\!0.$ By the assump tion $J(\varphi, h)=1$, we have

$$
\deg_{(a,b)}\varphi+\deg_{(a,b)}h=a+b>0.
$$

Therefore $\frac{\beta_i}{\alpha_i}$ =deg_(*a, b*) φ /deg_(*a, b*) h >—1 and this implies β_i >— α_i which is the assertion.

Case 2. Suppose that $\deg_{(a,\,b)}\phi\!\neq\!0$. Then using (2.8) and the equality

$$
J(\phi, h) = \alpha_i \sigma_i^{\alpha_i - 1} J(\phi, \sigma_i) \prod_{j \neq i} \sigma_j^{\alpha_j} + \sigma_i^{\alpha_i} J(\phi, \prod_{j \neq i} \sigma_j^{\alpha_j})
$$

we get $val_{\sigma_i}J(\phi, h)=\alpha_i-1$. On the other hand, we can write $J(\phi, h)=J(\phi^{\alpha_i}, h)$ $h^{-\beta} = \alpha_i \varphi^{\alpha_i-1} h^{-\beta_i}$. Therefore $\text{val}_{\sigma_i} J(\phi, h) = (\alpha_i-1)\beta_i - \beta_i \alpha_i = -\beta_i$. Combining the two equalities, we get $\beta_i = 1 - \alpha_i$. This completes the proof of Assertion 1.

By Assertion 1 and the equality $a+b= \deg_{(a, b)}\varphi + \deg_{(a, b)}h$, we get the following inequality.

(2.9.1)
$$
a+b\geq (\alpha_1+\beta_1)a+(\alpha_2+\beta_2)b+\sum_{i\geq 3}(\alpha_i+\beta_i)ab
$$

$$
\geq (\alpha_1+\beta_1)a+(\alpha_2+\beta_2)b+(k-2)ab.
$$

Note that $\alpha_i + \beta_i \ge 1$ if $\alpha_i \ne 0$ and $\alpha_i + \beta_i \ge 0$ if $\alpha_i = 0$.

First case: $k=2$. Then $h = cX^{\alpha_1}Y^{\alpha_2}$. Suppose that $\alpha_1 \neq \alpha_2$. Then $\varphi =$ $\frac{1}{\sqrt{(\mu_1 + \mu_2)}}$ *X*^{1- α_1} $Y^{1-\alpha_2}$ clearly satisfies $J(\varphi, h) = 1$. Suppose that $\alpha_1 = \alpha_2 > 0$. Then by the above inequalities, φ must be written as $c'X^{1-\alpha_1}Y^{1-\alpha_2}$ for some c' . However this is absurd because $J(\varphi, h)=0$.

Second case: $k=3$. As $0 \lt a+b-ab= -(a-1)(b-1)+1$, we must have a $=$ **1** or $b=1$. ($a=b=2$ is not allowed.) Assume that $b=1$. As $a+1 \geq (a_1+\beta_1)a+1$ $a+(\alpha_2+\beta_2)$, we must have $\alpha_1=0$ or $\alpha_2=0$ and $a=1$. (i) Suppose that $\alpha_1=0$. Then $h = cY^{\alpha_2}(X+c_3Y^a)^{\alpha_3}$. If $\alpha_2 \neq \alpha_3$, $\frac{1}{(\alpha_2-\alpha_3)c}Y^{1-\alpha_2}(X+c_3Y^a)^{1-\alpha_3}$ is the de sired solution. If $\alpha_2 = \alpha_3 > 0$, by the inequality (2.9.1), φ must be $c'Y^{1-\alpha_2}$ $(X+c_sY^a)^{1-\alpha_3}$ which gives the contradiction $J(\varphi, h)=0$. (ii) Suppose that α_2 $=0$ and $a=1$. By the same discussion as in the case $k=2$, $\alpha_1 \neq \alpha_3$ is the neces sary and sufficient condition for the existence of φ .

The case that *k=3* and *a — I* can be discussed in a similar way so that *h* is either $cX^{\alpha_1}(X^b+c_3Y)^{\alpha_3}(\alpha_1 \neq \alpha_3)$ or $cY^{\alpha_2}(X+c_3Y)^{\alpha_3}(\alpha_2 \neq \alpha_3)$.

Third case: $k=4$. As $a+b\geq 2ab$, we get $a=b=1$. By (2.9.1), *h* must be $c\sigma_3^{\alpha_3}\sigma_4^{\alpha_4}$. As σ_3 and σ_4 are linear forms, we obtain, by the same discussion as in case 1, that $\sigma_3 \neq \sigma_4$ is the necessary and sufficient condition. The case that $k>4$ is clearly impossible by (2.9.1). This completes the proof of Theorem (2.9).

§3. **Newton polygon and the Jacobian problem.**

Let $f(X, Y) = \sum a_{\nu,\mu} X^{\nu} Y^{\mu}$ be a polynomial. We define the Newton polygon *N(f)* by the convex hull of points (ν, μ) for which $a_{\nu, \mu} \neq 0$. This is a compact polyhedron in R^2 . For a face $\Delta(\Delta)$ may be a vertex) of the boundary $\partial N(f)$, let $f_A(X, Y)$ be the partial sum $\sum_{\mu} a_{\nu,\mu} X^{\nu} Y^{\mu}$. There are integers a, b and d such that *a* and *b* are coprime and $f_A(X, Y)$ is a weighted homogeneous polynomial of type $(a, b; d)$. If dim $\Delta = 1$ and Δ and the origin are not colinear, a, b and d are unique if we assume $d > 0$.

DEFINITION (3.1). We call (a, b) the weights of Λ . Let $\Gamma_{\infty}(f)$ be the union of Δ 's which have positive weights. See Figure A.

Figure A.

Let $f(X, Y)$ and $g(X, Y)$ be polynomials which satisfy the Jacobian condition (1.1). Let *a* and *b* be coprime integers. Let $f = f_{-n} + f_{-n'+1} + \cdots + f_n$ and $g =$ g_{-m} , $+g_{-m'+1}$ $+ \cdots + g_m$ be the gradations of f and g respectively. Namely $f_i(X, Y)$ *a*_{*vμ}X^{<i>vY*^{*μ*}. Note that we can write f_n as f_j for some $\Delta \in \partial N(f)$.</sub>}

We consider the equation $J(f, g)=1$. As $J(f_i, g_j)$ is a weighted homogeneous polynomial of degree $i+j-a-b$, $J(f, g)$ has the gradation $J(f, g)_k = \sum_{i+j=k+a+b}$ $J(f_i, g_j)$. In particular, we have

PROPOSITION (3.2). $J(f_n, g_m)=0$ if $n+m\neq a+b$.

 $Write\,\,g_{\it m}\!=\!h^{\it e}$ so that e is a positive $\it integer$ and h is a square-free weighted *homogeneous polynomial of degree r. (er—m).*

PROPOSITION (3.3). For any $N>0$, there exists a rational function $\hat{g}(X, Y)$ *such that g is a finite sum of weighted homogeneous rational functions so that deg(a>b)(g-g^e)<-N.*

Proof. Let *g—gr+gr-i+* ••• *+£-M>* where *g³* is defined inductively by

(3.3.1)
$$
\hat{g}_r = h
$$
 and $\sum_{i_1 + \dots + i_e = j} \hat{g}_{i_1} \hat{g}_{i_2} \dots \hat{g}_{i_e} = g_j$ for $j < m$.

For example, $\hat{g}_{r-1} = g_{m-1}/eh^{e-1}$, $\hat{g}_{r-2} = \left\{g_{m-2} - \left(\begin{array}{c} e \\ 2 \end{array}\right) h^{e-2} \hat{g}_{r-1}^2 \right\} / eh^{e-1}$. By definition, (g^e) _{*j*} = *g*, for *j* \geq (*e*-1)*r*-*M*. Thus the assertion is immediate if we take *M*>0 large enough.

LEMMA (3.4) . If $m>0$, there exists a weighted homogeneous rational function *of degree* $(a+b-m)$ such that $J(\varphi, g_m)=1$.

Proof. Take $N>0$ large enough and let \hat{g} be as in Proposition (3.3). By Proposition (3.2) and Proposition (2.7), we can write $f_n = c_q h^q$ for some $c_q \neq 0$. (*qr*=*n*). Then $deg_{(a, b)}(f - c_q \hat{g}^q) < n$ and we have

(3.4.1)
$$
J(f - c_q \hat{g}^q, g)_i = J(f, g)_i \quad \text{for} \quad i \geq 0.
$$

To see this, let $R = g - \hat{g}^e$. Then $\deg_{(a, b)} R < -N$ and we have

$$
J(\hat{g}^q, g)_i = J(\hat{g}^q, \hat{g}^e + R)_i
$$

= $J(\hat{g}^q, R)_i = 0$ for $i \ge 0$,

because $qr + \deg_{(a, b)}R - (a+b) < 0$. Let s be the minimal integer such that $sr >$ $a+b-m$. We repeat the same argument for $f-c_q\hat{g}^q$ and g using (3.4.1).

I. Assume that $s \ge 0$. By the inductive argument, we find constants c_q , $c_{q-1},\; \cdots,\; c_{s}$ so that

(3.4.2)
$$
\deg_{(a, b)}(f - \sum_{j=s}^{q} c_j \hat{g}^j) < sr \text{ and } J(f - \sum_{j=s}^{q} c_j \hat{g}^j, g)_i = J(f, g)_i
$$

for $i \ge 0$. Let φ be the maximal gradation part of $f - \sum_{i=1}^{q} c_i \hat{g}^i$. By (3.4.2), we have $deg_{(a, b)}\varphi = a+b-m$ and $J(\varphi, g_m)=J(f, g)_0=1$.

II. Assume that $s < 0$. We can find constants c_q , \cdots , c_0 so that

(3.4.3)
$$
\deg_{(a, b)} \left(f - \sum_{j=0}^{q} c_j \hat{g}^j \right) < 0 \text{ and } J \left(f - \sum_{j=0}^{q} c_j \hat{g}^j, g \right)_i = J(f, g)_i
$$

for $i \ge 0$. Let ζ be the sum of weighted homogeneous factors of degree greater than $-N$ in the formal sum

$$
\hat{g}^{-1} = \hat{g}_r^{-1} (1 + \hat{g}_{r-1}/\hat{g}_r + \dots + \hat{g}_{-M}/\hat{g}_r)^{-1}
$$

= $h^{-1} \sum_{j=0}^{\infty} (-1)^j k^j$ where $k = \sum_{j=-M}^{r-1} \hat{g}_j/\hat{g}_r$

We can write $\hat{g}\check{g}=1+S$ and $\deg_{(a,b)}S\leq r-N$. Now we consider

(3.4.4)
$$
J(\check{g}^i, g) = J(\check{g}^i, \; \hat{g}^e + R) \; .
$$

It is easy to see that $deg_{(a, b)}J(\check{g}^i, R) < 0$ for $i \ge 0$. We consider

$$
J(\check{g}^i, \; \hat{g}^e) \hat{g}^i = J(\check{g}^i \hat{g}^i, \; \hat{g}^e) = J((1+S)^i, \; \hat{g}^e) = J((1+S)^i - 1, \; \hat{g}^e) \; .
$$

If $0 \lt i \leq -s$ and M and N are large enough, we see that $\deg_{(a, b)}J(\check{g}^i, \hat{g}^e)$ is negative. Thus we have

(3.4.5)
$$
\deg_{(a, b)} J(\check{g}^i, g) < 0
$$
 for $0 < i \leq -s$.

The rest of the argument is exactly parallel to that of I . Suppose that we have chosen constants c_q , \cdots , c_k such that $0 \ge i > s$ and $\deg_{(a, b)} f^{(i)} \le ir$ and $J(f^{(i)}, g)_k = J(f, g)_k$ for $k \ge 0$ where $f^{(i)} = f - \sum_{j=0}^{k} c_j \hat{g}^j - \sum_{k=i}^{n} c_k \check{g}^{-k}$. By Proposition (2.7), we can find a constant c_{i-1} such that $\deg_{(a, b)}(f^{(i)} - c_{i-1}\check{g}^{-i+1}) < (i-1)r$. Let $f^{(i-1)} = f^{(i)} - c_{i-1} \check{g}^{-i+1}$. Then by (3.4.5) we have

(3.4.6)
$$
J(f^{(i-1)}, g)_k = J(f, g)_k \quad \text{for} \quad k \ge 0.
$$

We stop the argument at $f^{(s)}$ and let φ be $(f^{(s)})_{a+b-m}$. Then φ is the desired function.

COROLLARY (3.5). *Let f and g be as in Lemma* (3.4). *For any face or vertex* Δ *of* $\Gamma_{\infty}(g)$ *,* $g_{\Delta}(X, Y)$ *is one of* (i), (ii) and (iii) of Theorem (2.9).

Proof. Take positive integers a, b and d so that $g_d(X, Y)$ is a weighted homogeneous polynomial of type $(a, b; d)$. The assertion is immediate from

Lemma (3.4) and Theorem (2.9). (Thus $\Gamma_{\infty}(g)$ has at most one 1-dimensional simplex.)

§ **4. Equivalence of (J. C. II) and (J. C. III).**

We prove the equivalence of (J, C, II) and (J, C, III) in § 1. Let (f, g) be a polynomial pair which satisfies the Jacobian condition (1.1) . Assume that (f, g) is an elementary transformation. By an inductive argument on the number of compositions of transformations of type (i) and (ii) in $\S 1$ and by Propositions (2.7) and (3.2), we can see easily that $g_m = 0$ has a unique solution in $P^1(K)$. Thus (J.C. Π) implies (J.C. ΠI). Now assume that (J.C. IΠ) is verified. We prove (J.C. Π) by the induction on *m—*degree *g.*

Case 1. $m=1$. Then we may assume that $g(X, Y)=X$. Then (1.1) can be solved directly so that we get $f(X, Y) = -Y + h(X)$ for some polynomial $h(X)$. This is clearly an elementary transformation.

Case 2. $m>1$. We may assume that $g_m(X, Y) = X^m$ by a linear change of coordinates if necessary. We consider the Newton polygon $N(g)$ and we take the face Δ of $\partial N(g)$ which has the point $(m, 0)$ at the end. By Corollary (3.5), we can write $g_A(X, Y)$ as $c_1 X^p (Y + c_2 X^b)^q$ for some $b \ge 2$, $p \ge 0$ and $q>0$ where c_1 and c_2 are non-zero. We change the coordinates by $X' = X$ and $Y' = Y + c_2 X^b$. Then it is easy to see that the degree of $g(X', Y')$ is strictly less than m. Thus $(f(X', Y'), g(X', Y'))$ is an elementary transformation by the induction's hypo thesis. Therefore $(f(X, Y), g(X, Y))$ is an elementary transformation.

§ 5. **Jacobian problem for weighted homogeneous rational functions II.**

Let $h(X, Y)$ be a weighted homogeneous polynomial of type $(a, b; d)$ and we assume that h is not a monomial and $ab \leq 0$. In this section we study the necessary condition for the existence of a weighted homogeneous rational function $\varphi(X, Y)$ such that $J(\varphi, h)=1$. The Newton polygon $N(h)$ is a line segment PQ for some $P=(\alpha, \beta)$ and $Q=(\alpha', \beta')$ where $\alpha \leq \alpha', \beta \leq \beta'$ and $\alpha+\beta < \alpha'+\beta'$.

DEFINITION (5.1). We call *P* and *Q* the left and right end of *N(h)* res pectively.

(1) Assume that $(a, b) = (1, -1)$. Then $N(h)$ is parallel to the line $Y-X$ $=0$. This case is exceptional by the following property. (*) deg_(1,-1) $J(F, G)$ = $\deg_{(1,-1)}F+\deg_{(1,-1)}G$ for any weighted homogeneous rational functions F and G. Let $h(X, Y) = X^{\alpha} Y^{\beta} \prod_{i=1}^{\infty} (XY + c_i)^{\nu_i} (c_i \neq 0)$. By the assumption, $k \geq 1$ and $d = \alpha - \beta$. If *d* is not zero, $\varphi = -XY/dh$ is a desired function. Suppose that $d=0$. By the above property, φ must be written as $(XY)^r \prod_{i=1}^t (XY+d_j)^{\mu_j}$. However this gives a contradiction $J(\varphi, h)=0$. Thus we obtain

THEOREM $(5.2.)$ *.* If $(a, b) = (1, -1)$ *, the necessary and sufficient condition for the existence of* φ *is d* \neq 0.

(II) Assume that $a+b\neq 0$ and $(a+b)d>0$. Changing the signs of a, b and *d* if necessary, we may assume that $a+b$ and *d* are negative. We may also assume that $a \ge 0$ > b, taking the coordinates $X' = Y$ and $Y' = X$ if necessary. Let $h(X, Y) = X^{\alpha}Y^{\beta} \prod_{i=1}^{\infty} (X^{-b}Y^a + c_i)^{\nu_i} = X^{\tilde{\alpha}}Y^{\beta} \prod_{i=1}^{\tilde{\alpha}} (Y^a + c_i X^b)^{\nu_i}$ where $\{c_i\}$ are non-zero and mutually distinct and $\tilde{\alpha} = \alpha - \Sigma v_i b$. Suppose that there exists a weighted homogeneous rational function φ such that $J(\varphi, h)=1$. Let $\varphi(X, Y)=c_0X^{\gamma}Y^{\delta}$ $\prod_{i=1}^{k+t} (X^{-b}Y^{a}+c_{j})^{\mu_{j}}.$

ASSERTION (5.3). (i) $\nu_i + \mu_i \geq 1$ for $i \leq k$ and (ii) μ_j is non-negative for $j = k+1, \cdots, k+t.$

Proof. The proof is parallel to that of Assertion 1 in the proof of Theorem (2.9). First, the assertion (ii) is immediate from Lemma (2.8) and the following equality: $1 = J(\varphi, h) = J(\varphi_j, h)\xi_j^{\mu_j} + J(\xi_j, h)\mu_j\xi_j^{\mu_j-1}\varphi_j$ where $\varphi_j = \varphi/\xi_j^{\mu_j}$ and $\xi_j = Y^a$ *+c_jX^b*. To prove (i), let $\phi_i = \varphi^{\nu_i} h^{-\mu_i}$. Assume that $\deg_{(a, b)} \phi_i = \nu_i \deg_{(a, b)} \varphi$ $\mu_i d = 0$. Combining this with the equality $deg_{(a, b)} \varphi = -d + a + b$, we obtain

$$
-\mu_{\iota}/\nu_{\iota} = -\deg_{(a,b)}\varphi/d = 1 - (a+b)/d < 1.
$$

Thus we get $-\mu_i < \nu_i$ i.e. $\nu_i+\mu_i \geq 1$. Assume that deg (a, b) $\psi_i \neq 0$. We consider two expressions of $J(\psi_i, h)$. First it is equal to $\nu_i \varphi^{\nu_i-1} h^{-\mu_i}$ as $J(\varphi, h) = 1$ and *<i>J*(*h*, *h*)=0. Secondly we can write $J(\phi_i, h)$ as $J(\phi_i, h/\xi_i^{\nu_i})\xi_i^{\nu_i}+J(\phi_i, \xi_i)\nu_i\xi_i^{\nu_i-1}h/\xi_i^{\nu_i}$. Comparing the val_{ξ_i}'s of both expressions, we get by Lemma (2.8)

$$
(\nu_i-1)\mu_i-\mu_i\nu_i=\nu_i-1.
$$

Namely we get $\nu_i + \mu_i = 1$, completing the proof of the assertion.

ASSERTION (5.4). Let $Q = (\alpha', \beta')$ be the right end of $N(h)$ and assume that *a f <β\ Then there exists a weighted homogeneous rational function ψ such that* $J(\varphi, h)=1$ *if and only if* $a=\alpha=0$ *and k=1.*

Proof. Let $\phi = \phi h$. Then by Assertion (5.3), ϕ is a Laurent polynomial $(i.e. \phi \in K[X, Y, X^{-1}, Y^{-1}])$ such that

(5.4.1)
$$
\phi = c_0 X^{\alpha + \gamma} Y^{\beta + \delta} \prod_{j=1}^{k+t} (X^{-\delta} Y^{\alpha} + c_j)^{\nu_j + \mu_j} \text{ and}
$$

(5.4.2)
$$
J(\phi, h)=h
$$
.

Let $P' = (\varepsilon, \delta)$ and $Q' = (\varepsilon', \delta')$ be the left and right ends of $N(\phi)$ respectively. Let L be the line which contains (1.1) and which is parallel to the segment \overline{PQ} .

As $\deg_{(a, b)} \phi = a+b$, *L* contains *P'* and *Q'*. Let *P"* and *Q"* be the intersections of *L* and *OP* and *OQ* respectively. See Figure B.

As $J(X^{\varepsilon}Y^{\delta}, X^{\alpha}Y^{\beta}) = (\varepsilon'\beta' - \delta'\alpha')X^{\varepsilon' + \alpha' - 1}Y^{\delta' + \beta' - 1}, (\varepsilon' + \alpha' - 1, \delta' + \beta' - 1)$ is the right end of $N(J(\phi, h))$ if $\varepsilon' \beta' - \alpha' \delta' \neq 0$. By (5.4.2), this implies that $Q' = (1.1)$. Thus we get that $Q'=(1,1)$ or $Q' = Q''$ and Q'' is an integral point in the latter case. By the same discussion, $P'=(1, 1)$ or P'' . In the latter case, P'' must be an integral point. In our case Q'' is not an integral point because $0 < \alpha' < \beta'$. (See Figure B.) Thus $Q'=(1, 1)$. P'' is an integral point if and only if \overline{PQ} is parallel to the X-axis and P is on the Y-axis. Namely $a = \alpha = 0$. As ϕ is not a monomial by (5.4.1) and Assertion (5.3), the case that $P'=Q'=(1, 1)$ is impossible. Thus $P' = P'' = (1, 0)$ and $a = \alpha = 0$. By (5.4.1), *k* must be one. Thus $h =$ $Y^{\beta}(X+c_1)^{\nu_1}$ and $\varphi = c_0Y^{1-\beta}(X+c_1)^{1-\nu_1}$, where $c_0 = 1/(\nu_1-\beta)$, is the desired solution. Now we consider the case that $\alpha' \geq \beta'$.

ASSERTION (5.5). $\alpha \neq \beta$ and $\alpha' \neq \beta'$.

Proof. Assume that $\alpha = \beta$. Then by the above discussion, $P' = P'' = (1, 1)$. This is impossible because $J(\phi, h)$ cannot contain the non zero term $cX^{\alpha}Y^{\beta}$ as $J(XY, X^{\alpha}Y^{\beta}) = 0$. The case that $\alpha' = \beta'$ is impossible by the same argument. We have two possible configurations.

 $=X$

Case C.I. $\alpha > \beta$. As P'' is on the right side of (1, 1), we must have P'= (1, 1) to have a non-zero term $cX^{\alpha}Y^{\beta}$ in $J(\phi, h)$. If Q'' is not an integral point, we have that $Q'=(1,1)$ which is impossible by (5.4.1). Thus it is necessary that *Q"* is an integral point. (The sufficient condition is difficult to describe.)

Case C. II. First note that P'' is integral if and only if $a = \alpha = 0$. Remember that ϕ is not a monomial. Thus if $(a, \alpha) \neq (0, 0)$, Q'' must be an integral point. We do not try to clarify the sufficient condition. (This is an algebraic condition on ${c_i}$ where $h(X, Y) = X^{\alpha}Y^{\beta} \prod_{i=1}^k (X^b + c_i Y^a)^{\nu_i}$ if $k, \alpha, \beta, \nu_1, \cdots, \nu_k$

are fixed.)

As a conclusion, we have:

THEOREM (5.5). Assume that $a \ge 0>b$, $a+b<0$ and $d<0$. The following are *necessary conditions for the existence of a weighted homogeneous rational function* φ such that $J(\varphi, h) = 1$.

(i) The end points P, Q of $N(h)$ are not on the line $Y-X=0$.

(ii) *If* $(a, \alpha) \neq (0, 0)$, Q'' must be an integral point. Namely there exists a *positive integer s such that* $(1 + sa)\alpha' = (1 - sb)\beta'$. In particular, Q must satisfy α' > β' .

Remark (5.6). The above conditions are not sufficient for the existence of *φ.* We give some examples.

(A-I) Assume that $Q'' = (1 + a, 1 - b)$ i.e. $(1 + a)\alpha' = (1 - b)\beta'$. By (5.4.1), we must have $k=1$ and $h(X, Y)=X^{\alpha}Y^{\beta}(X^{-\delta}Y^{\alpha}+c_1)^{\nu_1}$. In this case we can solve as $c_0XY(X^{-b}Y^{a}+c_1)$, $c_0=1/(\beta-\alpha)c_1$ and $\varphi=\varphi/h$.

(A-II) Assume that $(1+2a)\alpha' = (1-2b)\beta'$ and $k=2$. By (5.4.1), ϕ must be $c_0XY(X^{-b}Y^{a}+c_1)(X^{-b}Y^{a}+c_2)$. By an easy calculation, ϕ is a solution if and only if c_1 and c_2 satisfy the following equation:

$$
\langle \nu_1 c_1 + \nu_2 c_2 \rangle \Big|_{\alpha' + b, \beta' = a}^{1 - 2b, 1 + 2a} \Big| + (c_1 + c_2) \Big|_{\alpha', \beta'}^{1 - b, 1 + a} \Big| = 0.
$$

(B) Assume that $(a+b)d < 0$. We may assume that $a \ge 0 > b$, $a+b<0$ and $d > 0$. This case is more difficult. The main reason is that Assertion (5.3) is not true in general. For example, let $h(X, Y) = X(X^3Y^2 + c_1)^2$ and let $\varphi = \frac{1}{2}$ $(X³Y²+c₁)⁻³(X³Y²+3c₁)$. It is easy to see that $J(\varphi, h)=1$.

§6. **Boundary obstructions and further remarks.**

Let (f, g) be a pair of polynomials which satisfy the Jacobian condition. We assume that (f, g) is not an elementary transformation. Then by finite changes of coordinates of type (i) and (ii) in § 1 if necessary, we may assume that $g_m(X, Y) = X^p Y^q (p > q > 0$ and $m = p+q$) where $m =$ degree (g). Then the Newton polygon *N(g)* is included in the rectangle *OPQR* in Figure *D* by Corol lary (3.5).

We may also assume that $0 \in N(g)$ and $0 \in N(f)$ by adding constants if necessary.

LEMMA (6.1) *. Let f and g be as above. Then the polygons* $N(f)$ *and* $N(g)$ *are similar.*

Proof. Let *Δ* be a 1-dimensional simplex of the boundary *N(g)* which is not colinear with the origin. Let $(a, b; d)$ be the weights of Λ . Let $f_{\Lambda}(X, Y)$ be the maximal gradation part of f with respect to (a, b) where Δ' is a face of *N(f)*. Assume that $\deg_{(a, b)} f_A + d = a + b$. Then we have $J(f_A, g_A) = 1$. As f_A , and g_{μ} are polynomials, we may assume that, for example, $(1, 0) \in \mathcal{A}$ and $(0, 1)$ e J'. Let S and S' be the right ends of *Δ* and *Δ f* respectively. See Figure E.

Figure E.

As S and S' and the origin are not colinear, $J(f_A, g_A)$ contains a non-zero term $cX^{\alpha+\alpha'-1}Y^{\beta+\beta'-1}$ which is absurd. Thus we get $\deg_{(a,b)} f_A + d \neq a+b$. By (3.2), $f^d_{d'}/g^d$ is a constant where $d' = \deg_{(a, b)} f_d$. Let S and T (respectively S' and T') be the ends of Δ (respectively ends of Δ'). Then the triangle *OST* is similar to the triangle OS'T' and $|A|/|A'| = \overline{ST}/\overline{S'T'} = \overline{OS}/\overline{OS'} = \overline{OT}/\overline{OT}'$. As the faces *Δ's* of *N(g)* as above are connected, the assertion is immediate.

COROLLARY (6.2). *Let f and g be as above. N(f) and N(g) contain the points* (1, 0) and (0, 1). (Otherwise $J(f, g)$ cannot be 1.)

430

Let \varDelta_1 and \varDelta_2 be the two particular faces of $\partial N(g)$ which have $Q = (p, q)$ as the right ends. See Figure F.

Assume that $\Delta_1 = QR$ and let $g_{\Delta_1}(X, Y) = Y^q \prod_{i=1}^r (X + c_i)^{i}$. Then we take the new coordinates $X' = X + c_1$ and $Y' = Y$. Then R is not contained in the Newton polygon of $g(X', Y')$. Note that the under part of $\partial N(g)$ i.e. $\{(x, y) \in \partial N(g)$; $py \leq qx$ } remains unchanged. By the same device, we may assume that $P \in \partial N(g)$. Now the results of § 5 can be read as

THEOREM (6.5). *(Boundary obstructions). For any simplex Δ of dN(g) which is not colinear with the origin, there exists a weighted homogeneous rational function* φ *such that* $J(\varphi, g)=1$ *. Let* $\langle a_{{\it i}}, b_{{\it i}} \rangle$ *be the weights of* $\varDelta _{{\it i}}$ *(i=1, 2). In particular, we have the following.*

- (i) There exists a positive integer s such that $(1+s\,a_1|)p = (1+s\,b_1|)q$.
- (ii) $a_2 > 0 > b_2$ and $a_2 + b_2 \leq 0$. (See Figure F.)

Remark (6.4). Let (f, g) be a pair of polynomials which satisfy the Jacobian condition (1.1). Then f and g do not have any critical points in K^2 as functions from *K²* to *K.* However the converse is not true in general. For example, let $g_1(X, Y) = X + \sum_{i=1}^{n} c_i (X^a Y^b)^i$ and assume that $c_k \neq 0$, $a > 1$ and $b > 0$. It is easy to see that g_1 has no critical point. As $N(g_1)$ does not contain (0.1), there is no polynomial f such that $J(f, g)=1$. A similar example is given by $g_2(X, Y)$ $2 + \cdots + c_m X^m + a X^n Y$ where $n > m$ and $a \neq 0$.

Remark (6.5). Let $g(X, Y)$ be a polynomial with $g_m(X, Y) = X^p Y^q$ where m =degree (g) and $m=p+q$ and p, $q\geq 1$. Let Δ be a 1-dimensional simplex of $\partial N(g)$ such that Δ is not colinear with the origin. Write $g_{\Delta}(X, Y) = h_{\Delta}(X, Y)^{e(\Delta)}$ where *h (X, Y)* is a weighted homogeneous, square free polynomial and *e(Δ)* is a positive integer. Let *e(g)* be the greatest common divisor of such *e(Δ)'s.* The following is related to "Segre's Lemma" ([B-C-W]) and it might be well known

to specialists.

LEMMA $(6.5.1)$. Assume that there exists a polynomial $f(X, Y)$ such that $J(f, g)=1$. Then $e(g) > 1$.

Proof. For a 1-dimensional simplex *Δ* of *dN(g)* which is not colinear with the origin, let Δ' be the simplex of $\partial N(f)$ which corresponds to Δ by Lemma (6.1). Let $m = \text{degree}(g)$ and $n = \text{degree}(f)$. Assume that $e(g) = 1$.

ASSERTION, *m divides n.*

Proof. Let $\frac{n}{m} = \frac{n_1}{m_1}$ where n_1 and m_1 are coprime. Let $d(\Delta)$ be the degree of $h_A(X, Y)$ with respect to the weights of Δ and let d and d' be the respective degrees of $g_A(X, Y)$ and $f_{A'}(X, Y)$. By the proposition (2.7) and (3.2), $f_{A'}(X, Y)$ $= ch_A(X, Y)^{k(A)}$ where $k(A)$ is defined by $d' = k(A)d(A)$. By Lemma (6.1), this implies that $d' = d \frac{n_1}{m_1} = d(\Delta)e(\Delta)n_1/m_1$ is a multiple of $d(\Delta)$. As $e(g)=1$ by the assumption, this is possible only if $m_1=1$. This completes the proof of the assertion.

The rest of the argument is well known. Let $f_1(X, Y) = f(X, Y) - cg(X, Y)^{n_1}$. Then degree (f_1) degree (f) and $J(f_1, g)=1$. By the inductive argument, we come to the situation that $J(f_s, g)=1$ and degree $(f_s) <$ degree (g) which is impossible.

Remark (6.6). The final remark is a bit unfortunate for us: There exist polynomials without any obstructions from the boundary.

EXAMPLE (6.6.1). Let $g(X, Y) = Y^n (X^2Y+1)^{3n} + X^{2n} (XY+1)^{4n} - X^{6n} Y^{4n}$. Then *g* has no obstruction on the boundary, i. e. there exists a weighted homogeneous rational function φ_A such that $J(g_A, \varphi_A) = 1$ for any simplex φ_A of $\partial N(g)$ which is not colinear with the origin. However there does not exist any polynomial $f(X, Y)$ such that $J(g, f)=1$ because g has many critical points. We finish this paper with the following question.

Question: Is there any polynomial $g(X, Y)$ such that (i) $g_m(X, Y) = X^p Y^q$ where $m=$ degree g and $p+q=m$ and p, $q>0$ and (ii) g has no obstruction on the boundary and (iii) g has no critical point?.

REFERENCES

- [Ab] ABYANKAR, S.S., Expansion techniques in algebraic geometry, Tata Inst. Fundamental Research, Bombay, 1977.
- [J] JUNG, H. W. E., Uber ganze birationale Transformatione der Ebene, J. Reine Angew. Math. **184** (1942), 161-174.
- [B-C-W] BASS, H., CORNELL, E. H. AND WRIGHT, D., The Jacobian conjecture, Bull. American Math. Soc, Vol. 7, Number 2, (1982), 287-330.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU, TOKYO