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ON THE GROWTH OF MEROMORPHIC FUNCTIONS
OF ORDER LESS THAN 1/2, II

By HIDEHARU UEDA

1. Let f(z2) be meromorphic in the plane. We denote the order and lower
order of f(z) by p and g, respectively. And we set

m*(r, f)=min | f(2)] .

A nonconstant meromorphic function f(z) of finite order p is further classified
as having maximal, mean, or minimal type according as

lim sup T'(r, f)/7*

is infinite, positive, or zero, respectively.
Ostrowskii [5] and Edrei [3] proved

THEOREM A. Let f(z) be meromorphic of order p (0=p<1/2). Suppose there
is a 0(0, 1] such that

ey cos p—1+406>0
and
@) N(r, oo, )=(1=0)T(r, f)+0(og r) (r— ).

Then, given >0,

% np _ _
3) log m*(r, f)> Smzp (cos wp—14-0—&)T(r, f)
on an unbounded sequence of r.
From this, we deduce the following result immediately.

COROLLARY 1. Let f(z) be meromorphic of order p (0=p<1/2). Suppose
0(co, f)>1—cos mp. Then, given ¢>0,

log m¥(r, f)> g 00 (cos mp—1-+8(e0, N=e)T(r, 1)
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398 HIDEHARU UEDA
on a sequence of r — oo,
As is easily shown, we may restate Theorem A in the following manner.

THEOREM A’. Let f(z) be meromorphic of order p (0=p<1/2), and suppose
there is a 0<(0, 1] satisfying (1) and (2). Then there exists a positive continuous
Sunction h(r) (r=0) tending to zero as r — co such that

* __Tp — _
4) log m*(r, f)> sinzp (cos p—1+0) 1—h()T(r, f)

for certain arbitrarily large values of r.

At this stage we introduce some notations. Let S; be the set consisting of
all functions A(r) (»=0) which are positive, continuous and tend to zero as »— co.
The set S, is defined to consist of all slowly varying functions which belong
to S;. A function h(r)eS, is further classified as h(»)eS; or h(r)e S, according
as the integral
[

1

is finite or not.
In our previous paper [6], we studied the estimate (4).

THEOREM B. ([4, Theorems 1 and 2]) Let f(z) be meromorphic of order
p (0<p<1/2), and suppose there is a 0<(0, 1] satisfying (1) and (2).

(1) If f(z) is of mean type, and if h(r) belongs to S,, then the estimate (4)
holds on an unbounded sequence of r.

(M) If f(z)is of minimal type, then

5) log m*(r, f)> -ﬁ%ﬁ—(cos 2p—1+8)T(r, f)—O(og r)

on a sequence of r — co. In particular, if the term O(logr) vanishes in (2), so
does in (5).

As corollaries of Theorem B (II) we have the following two results.

COROLLARY 2. Let f(z) be a meromorphic function of order p (0<p<1/2)
and minimal type. Suppose there 1s a 0<(0, 1] satisfying (1) and (2). Then the
estimate (4) with h(r)=r-*(0<2<p) holds for certain arbitrarily large values of r.

COROLLARY 3. Let the assumptions on f(z) and 0 of Corollary 2 be unchanged.
If h(r) belongs to S, then the estimate (4) holds on an unbounded sequence of r.

Proof of Corollary 2. Assume first that the lower order ¢ of f(z) is less
than p. Then as in the proof of Theorem B (II), we deduce that
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log m*(r, f)> 7sfnﬁ#' -(cos wp' —140)T(r, f)—O(log r)
for certain arbitrarily large values of », where p'>p. Since the function
(x/sin x) (cos x—1-+0) decreases strictly as x<[0, =/2) increases, we obtain

log m*(r, f)>- SB‘—(COS ro—14+0)T(r, f)
on a sequence of » —co, Hence the conclusion of Corollary 2 is trivially true in
this case. Assume now that y=p. This condition implies that, for any ¢>0,
T(r, f)=re=*(r=r,e). Hence O(logr)/T(r, f)=o0(r *)(r — o), where 1€(0, p).
Combining this with the estimate (5), we have the desired result.

Proof of Corollary 3. 1If h(r) belongs to S, then #°h(¥) — oo (» — o) for
each ¢>0. This result is due to Karamata [2]. Thus from Corollary 2 we

obtain the conclusion.
2. As supplements of Theorem B, we showed

THEOREM C. ([6, §5 and Remark]) Let h(r)S; (h(r)<S,) be given. Let p
and 0 be numbers with 0<p<1/2, 1—cos wp<0=1. Then there exists a mero-
morphic function f(z) satisfying the following conditions (i)—(iv)((i)’, (ii), (iii) and
(iv)").

(i) f(z) is of order p and mean type.

(i) f(z) is of order p and minimal type.

(ii) d(oo, f)=0.

(iii) N(r, oo, f)=(1=0)T(r, /)+O(logr) (r— ).

(iv) log m*(r, f)<~- (cos rp—1+0)1—h)T(r, f) for all sufficiently

sinmw
large .
(v) log m*(r, [)< Aéizll:rp (cos wp—1+40) X-+h(r)T(r, f) for all sufficiently
large .

In this section we prove the following result.

THEOREM 1. Let h(r)eS, be given. Let p and  be numbers with 0<p<1/2,
1—cos rp<0=1. Then there 1s a meromorphic function f(z) having all the fol-
lowing properties.

(i) f(z) is of order p and maximal type.

(ii) d(oo, f)=96.

(iii) N(r, oo, f)<(1—5)T(7' F)+0(og r) (r— o).

(iv) log m*(r, f)< (cos rp—1+0)A—h)NT(r, f) for all sufficiently

large v.
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LEMMA 1. Guwen h(r)eS,, there 18 a function h(r)ES, such that hi()=h()
(r=0).

Proof. Put M=max h(r). We give a positive sequence {r,}% such that
720

7’n+1/7’nZn+1 (n:1: 2’ 3) )

and
h(in<M/2® (rzr,; n=1,2, --).

Now we define h,(r) as follows:

M 0=r=r),

h(r)= M(log 741—10g 74)

nSr Sy n=1, 2, )
2m- ‘(logr—l—]ogrnﬂ——logﬂ) (rasr=ro.; n )

Clearly h,(r)eS, and h,(r)=h(r) (r=0). It remains to prove that h.(»)=S.
For this purpose, it is sufficient to show that for every fixed A>1

h.(2r)

© M) T

Assume first that 7,<r=<r,,/A. Then

1> 1(11”) — log »+log 41 —2 log Yo
hir) — log A+log r+log ra.i—2log 7y
) > log rat+log rp—2log vy

= log 2+log rn+10g 7ns1—21l0g rr

log(rpsfra) . loglntl) (n — o3)

" log A+10g (rns:/7) = log A-+log (n+1)

Assume next that r,,;/A<r=<7,... Then

> h(ar) 1 10g 7742108 7541 log r+log rne1—2 log 7
hy(r) ~ 2 log A+log r-10g 7psz—2 10g 7res log 7.1 —log r,,

1 log #ni2—10g 741 210g 7oy —2logra—log A

=
B Og 2+10g rn+2"10g Vot lOg rn+1_‘10g Ya

 log(rass/rass)  log(rnsa/ra)—(ogn)/2 (n— o0).

T 10g AH10g (Fnio/Trer) 108 (Faei/Tn)
Combining (7) and (8), we obtain (6).

LEMMA 2. Let h(r)eS, be given. Let p and & be numbers with 0<p<l/2,
1—cos 7p<3=1. Then there is a meromorphic function f(z) of order p and
maximal type satisfying the following conditions.
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(i) d(co, f)=0.
(il) N(r, o0, /)=(1=0)T(r, /)+0Uogr) (r—c0).

(iii) log m*(r, f)< Sifl‘lr)cp (cos mp—14+0)A—h()NT(r, f) for all sufficiently

large values of r.
For the construction of such a function f(z), see §5 in [6].

Proof of Theorem 1. Let h(»)ES, be given. If h(r)ES,;, our conclusion is
an immediate consequence of Lemma 2. Assume that A(r)e&S;. By Lemma 1
there is a function A,(r)€S, such that ~A,(¥)=h@)(r=0). If h()eS, our con-
clusion follows from Lemma 2. Assume that h,(r)S,. In this case, we take
a function h,(r)=S, arbitrarily, and consider the function /,(r)+h.(r). We easily
see that h,(r)+hy(r)eS,. Hence from Lemma 2 our conclusion follows. This
completes the proof of Theorem 1.

3. The purpose of this section is to give a result similar to Theorem 1 in
the case of p=0.

THEOREM 2. Let h(r) be positive and continuous for »>0 and, for 0<r<1,

(3.1) h(r)= ‘Béi%*
Define ¢(r)(r>0) by

(3.2) ()= S:,@;fl dt
where

(3.3) ¢1(r):exp{gz ﬁ,(f,)%?gf Ly !.
Suppose

(3.4) h(r)logr —0 (r— c0),
(3.5) 7(%%15(;;H 0 (r—co),
and, for each >0,

(3.6) llh_(('%lﬁ 1 (o0

Then, if 60, 1], there is a meromorphic function f(z) of order zero satisfyving
the following conditions (i )—(iii):

(i) T, /H)=0@w) (r— oo).

(ii) N, oo, IEA—=0)T(r, f)+0Oogr) (r— oo).

(iii) log m*(r, NS@—h(NT(», f) for all sufficiently large values of r.
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Remark. An example of a function h(r) satisfying our conditions is
h(r)=(ogr) "¢ (0<a<l)
for large values of r.

LEMMA 3. (cf. [2, Example 1]). Dejine ¢:(r) by (3.3) and let ¢o(r)=r¢i(r).
If we define g(z) by

tog g(2)= | log (1+ 2 )arg(01,
then, for ¢>0

logm*(r, g) _ |1 g™ &)
g Mir- g <\TAT29% Gy 2.

Proof. By (3.3) and (3.4)

dular) o
(3.7 ”9/11(7’) -1 (r— o)
for each A>0. Since ¢u(r)=rdi(r)=~h(r)logr-¢.(r) (r=1), ¢x(r) is positive and
continuous for »>1, and for each 1>0 we deduce from (3.7) that

D7)
¢2(7’)

Further, by (3.5), ¢s(r) — co(r — c0). Thus we may apply the argument in [2,
Example 1] to our ¢(r), and have the desired result.

—1 (r— ).

LEMMA 4. Put

T = S:.ﬁ(?;%fa(fl dt

and
(" 9O—i(r)
./2(7’)—7’ST i) dt.
Then
(3.8 7 (}’)/\/-—-—{i ,,,(,:_—l)_n‘}gb ) (r — o0)
. 1 & (n1) 2 ,
and
o0 (_l)n
3.9) RS e ) o9,

Proof.
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BiD—4(r) . B
K=t (PP 4= [ 5 1(L) g0 -gutrna

=5 o go-pora
=2 ol B e di= B P g a

nilg "gbg(ru)du—ggbz(ru{ %}du

The inversions in the order of integration and summation are legitimate because

— ni:'o(_]‘)nH

© 1 1
D Sou"¢2(ru)du<00.

Now, we put
( 1)7L+lun

pw)= 24—1— O<u=l), pw)=0 (u>1).

Then for a<(0, 1),

foree1ptu1dus e 8280 um 8- faean

Hence by a result of Aljanéié, Bojanié and Tomié [1]

[Lg.rmprdungn| pdu - o).

Thus

Fo={ & e

The proof of (3.9) is quite similar to the one of (3.8), so we omit the proof.

Proof of Theorem 2. Let a and B be numbers such that 1=a>p=0 and
0=1—f/a. Let P@)=I11+z/a,), Q@)=I11—z/b,)(as b,>0) be canonical
products satisfying n(r, 0, P)=[a¢:(r)], n(r, 0, Q)=[B¢{i(r)], respectively. Then
we shall show that f(z)=P(z)/Q(z) satisfies all the conditions (i )—(iii).

We first assert that

(3.100  log M(r, P)—N(r, 0, P)< { zz(j)l}? +0 l)}¢2(r)+log2 (r — o2).



404 HIDEHARU UEDA

Clearly
Y/ _ [a¢1(t>] J:f!(/)l(l‘)]

- log M(r, P)—N(r, 0, P)=r SO ool ar- SO A0

__(rLagu®)] = rladg:®] 4

- SO ttr df+Sr 1) dt=I,(2)+1,(z), say.
By (3.8)

—11(2)25 %I}L@dt log 2=a {¢(,(r) log 2+ J,(r)} —log 2

(3.12) 0

(—1r

éa{gl'l(r) log 2+ (i (n _'H)z"+0(1 )¢-2(r)}_10g2.

Similarly, by (3.9)

10<al™ 720 dr<aip ) log 24 L)

(3.13) tt+r)

<afgiog2+(F o))

Substituting (3.12) and (3.13) into (3.11), we obtain (3.10).
Now,

T(r, N=T(r, P)+T(r, QH=mlr, P)+m(r, Q)+0(1)
<log M(r, P)+log M(r, Q)+0(1)<21log M(r, P)4+0(1).
Hence it follows from (3.10) that
T(r, /)<2{N(r, 0, P)+O0(g:(r)} <2a¢(r)+0(gx(r))

=0((r)) (r—o0).
Next,

N(r, oo, f)= S LB ¢‘(t>j dr< S ‘Y(/’;(t) dt

<£— {N(», 0, f)+logr}=(1—0)N(r, 0, f/)+0O(log r)
<(1=8)T(r, /)+O(logr).
It remains to show (iii). Using Lemma 3, we deduce that

log m*(r, P)<{1 (1—2¢ )'; 9:;((” }log M(r, P) (r=r4e)).

Further,
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log M(r, Q):rf%%%—ldt ﬁ a [sz(%—“;] dt—log (r-+1)

— 2 1og M(r, P)—tog (r+D).
Hence
log m*(r, f)=log m*(r, P)—log M (r, Q)
(3.14)

77'- ¢'2 7’) h |
{5 ~1-295 9% }logM(r, P)+log (r+1) (r=roe)) .

It follows from (3.10) and (3.14) that

gy 8 D<fima-ze )5 SL N, 0, P)-+log 2--2a(C-+o)gutr)
(—1"

nrpy SO 1

+log(r+1) (»r — o0), where C= Z
Here we note that
NG, 0, P)> S “Sb‘(” Lt agr)—a—tog ».

Hence, we deduce from (3.15) that

T Gulr) | [, log 2+2a(C+o(L)pu(r)
Z 40 Hu () —a—log r kNG, 0, P)

tog m*(r, /)< {5—(1—25

-+ % o) o(7)
10g(7*—’—1)<{o (1295505 }{1+3c@ﬁ}1v<r 0, P)-+log (r-+1)

3.6 <{s [(1 2-)— 30] fz(r)) b NG, 0, P)+log (r+1)

<fp-11¢ o) JN, 0, P)tlog(r D) (e<4/49)

&(r)
¢o(r) | log(r+1) e
{0 11 o) + ag(r)—a—logr }T(r, n )

It is a easy consequence of (3.1)—(3.3) that
3.17) log 3-¢(r/3)<d(r)<¢:(r) logr (r>1),

so that by (3.3) or (3.5)

) hiry logr 1) _iniry .

o(r) e ad(r)—a—logr
Thus, from (3.16) we have
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log m*(r, /)<{P—hE)}T(r, f) (— o0).

This completes the proof of Theorem 2.
As minor variations of the proof of Lemma 1, we have the following

LEMMA 5. Let hy(r) be positive and continuous for r>0. Suppose hy(r)logr
—0(r > o0). Tnen there is a function h(r) satisfying all the assumptions of
Theorem 2 such that h(r)=h,(r) for large values of r.

Proof. Put M= zrnﬁx h,(r)log r, where r,(>1) is an arbitrarily fixed number.
We give a positive sequfence {ra}% such that
Tnat/Tozn+2 (n=0,1,2, -+,
h(r)logr=M/2" (r=vr,; n=0,1,2, --),

1 2 M
;glgz:—)l < 227;-1 (rgrn; n:]-; 2) 37 “') .

Define h(r) as follows:

( 0 (I<r<ry,

<r<
hr) log r={ M (ro=r=ry),

\ M(I0g 741 —10g 7,)

<r<rpe; n=1,2, -
| 2 (log rlog rps—log r) == me =L 2 )

Clearly, h(r)=h,(r) r=7r,) and h(»)logr — 0(r — o). By the proof of Lemma 1

h(Ar) log 27; N
h(r) log r L (r=co),
so that

h(Ar)
h(r)

—1 (r—oc0).

To prove (log #)/(h(r)i(r)) = 0(r —co) (where ¢,(r) is defined by (3.3).), assume
that »,<r=<7,.;. Then

log » (log 7)? i (log 7) RN N
RNgsr) < R (og o esr < (g <0 (e

This completes the proof.
Combining Theorem 2 with Lemma 5, we deduce the following

THEOREM 3. Let h(r) be positive and continuous for r=r,. Suppose h(r)logr
— 0@ —00). Then, 1f 6<(0, 1], there is a transcendental meromorphic function
f(z) of order zero satisfying



and

(1]
(2]
[3]
[4]
[5]
(6]
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N(r, oo, /)<(A—=0)T(r, /)+O0(logr) (r— o),

log m*(r, f)<(O@—h(r)T(r, f) for all sufficiently large values of r.
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