ON A NEW CLASS OF ULTRAHYPERELLIPTIC SURFACES

BY MITSURU OZAWA

1. Introduction. Let *R* be an ultrahyperelliptic surface defined by $y^2 = g(x)$ with an entire function $g(x)$ having only an infinite number of simple zeros. Let $\mathcal{M}(R)$ be the class of non-constant meromorphic functions on R. Let $P(f)$ be the number of lacunary values of f in $\mathcal{M}(R)$. Let $P(R)$ be $\sup_{f \in \mathcal{M}(R)} P(f)$. This quantity is called the Picard constant of R. In the ultrahypere lliptic case $2 \leq$

 $P(R) \leq 4$. Surfaces with $P(R)=2$ or 4 are completely determined and those with $P(R)=3$ are still undetermined except for those of finite order [2], [8]. Let S be another ultrahyperelliptic surface defined by $Y^2 = G(X)$ with a similar entire function $G(X)$. Let ϕ be a non-trivial analytic mapping of R into S. Then $P(R) \ge P(S)$. The existence of ϕ is equivalent to the existence of entire h and meromorphic f satisfying

$$
f(z)^2 g(z) = G(h(z)) .
$$

Here *h* is called the projection of *φ* and is defined by

 $S \cdot \phi \cdot \mathcal{P}_R^{-1}$

with \mathcal{P}_R : $(x, y) \rightarrow x$ and \mathcal{P}_S : $(X, Y) \rightarrow X$. This *h* is one-valued which is equivalent to the rigidity of ϕ [6], [7]. The above functional equation gives a powerful tool to get several criteria for the existence of analytic mappings [1], [2], [7], $[8]$, $[9]$, $[10]$.

In this paper we shall introduce a new class of surfaces. Let *R* be an ultrahyperelliptic surface defined by $y^2 = g(x)$ with entire $g(x)$ having only an infinite number of simple zeros. Let $\mathcal{E}(R)$ be the set of non-constant regular function on *R*. If there is a member f in $\mathcal{E}(R)$ satisfying the following conditions, then *R* is called of maximal *B* type:

(1) There are constants $a \neq \infty$, $c \neq 0$ satisfying

$$
a^2 - 2af_1 + f_1^2 - f_2^2g = c
$$

when $f \circ \mathcal{P}_R^{-1}(x)$ is represented as

(2) There are systems (a_1, \dots, a_t) and (n_1, \dots, n_t) such that for each j all the roots of $f = a_j$ have their orders $n_j p_{jk}$ with integers $n_j \ge 2$ and Further (n_1, \cdots, n_t) satisfies

Received January 10, 1983

$$
\sum_{j=1}^t \Bigl(1 - \frac{1}{n_j}\Bigr) = 2.
$$

We shall decide the surfaces of maximal *B* type and discuss the existence problem of analytic mappings.

2. In order to go further we need several preparations. We firstly remark that

$$
\sum_{j=1}^t \Bigl(1-\frac{1}{n_j}\Bigr)\!\!\leq\! 2
$$

in general. The Nevanlinna-Selberg theory [11] of two-valued algebroid func tions gives

$$
(q-4)T(r, f) < \frac{q}{2} N(r, w_{\nu}) - N(r, W_f) + O(\log r T(r, f)).
$$

Our function f satisfies $N(r, \infty) = 0$, $N(r, a) = 0$. Further

$$
N(r, W_f) \geq \sum_{\substack{f, (z_0) \neq \infty \\ f'(z_0) \neq \infty}} \{m(z_0) - 1\}
$$

with the multiplicity $m(z_0)$ at z_0 . Hence

$$
(q-4)T(r, f) < \sum_{1}^{q-2} \overline{N}(r, w_{\nu}) + O(\log rT(r, f)), \qquad w_{\nu} \neq \infty, a.
$$

Now we put $w_{\nu} = a_{\nu}$, $q-2=t$. Then

$$
(t-2)T(r, f) < \sum_{j=1}^t \frac{1}{n_j} N(r, a_j) + O(\log r T(r, f)).
$$

Hence

$$
\sum_{j=1}^t \Bigl(1-\frac{1}{n_j}\Bigr)\!\!\le\! 2\,.
$$

Recently Toda [12] had proved the following fact:

Let f ₀, \cdots , f _p (p \geq 1) be $p+1$ non-constant entire functions and let a ₀, \cdots , a _{*p*} be $p+1$ meromorphic functions ($\neq 0$) in $|z| < \infty$ such that $T(r, a_j) = o(T(r, f_j)),$ $j=0, \cdots, p$. Then, if

$$
\sum_{j=0}^{p} a_j(z) f_j^{n_j}(z) = 1
$$

for some integers $n_0, \dots, n_p \ (\geq 1)$,

$$
\sum_{j=0}^p \frac{1}{n_j} \geqq \frac{1}{p}.
$$

3. In this section we shall decide all the surfaces of maximal *B* type.

Firstly we may assume that $a=0$ and hence $a₁\neq 0$. by

$$
\sum_{j=1}^t \Bigl(1-\frac{1}{n_j}\Bigl) = 2
$$

we have the following four possibilities:

i) $t=3$, $n_1=2$, $n_2=3$, $n_3=6$; ii) $t=3$, $n_1=2$, $n_2=4$, $n_3=4$; iii) $t=3$, $n_1=3$, $n_2=3$, $n_3=3$; iv) $i = 4, n_1 = 2, n_2 = 2, n_3 = 2, n_4 = 2.$

Case i). Let us consider the two-valued entire algebroid function satisfying

$$
F(z, y) \equiv y^2 + 2Ay + c = 0.
$$

Fig. $F(x, 0) = c$. Further with entire g_1, g_2, g_3

$$
F(z, a_1) = g_1^2,
$$

$$
F(z, a_2) = g_2^3,
$$

$$
F(z, a_3) = g_3^6.
$$

Hence

$$
a_3g_2^3-a_2g_3^6=(a_3-a_2)(c-a_2a_3).
$$

If $c \neq a_2 a_3$, then Toda's result gives a contradiction. If $c = a_2 a_3$, then $a_2 g_3^6 = a_3 g_2^3$. This shows that g_2 has only zeros of even order ≥ 2 , that is, g_2 can be written as g_4^2 . Hence we may put $n_2=6$, which is a contradiction by

$$
\sum_{j=1}^3 \Bigl(1 - \frac{1}{n_j}\Bigr) = \frac{13}{6} > 2.
$$

When g_2 has no zero, then we may put $n_2 = \infty$ and $n_3 = \infty$. This is again im possible.

Case ii). This case is impossible by the similar reasoning as in case i). Case iii). In this case

$$
F(z, a_j) = g_j^3, \qquad j = 1, 2, 3.
$$

Hence

$$
a_1g_2^3 - a_2g_1^3 = (a_1 - a_2)(c - a_1a_2).
$$

If $c \neq a_1 a_2$, then this is impossible by Toda's result. If $c = a_1 a_2$, then $c \neq a_1 a_3$ and hence

$$
a_1 g_3^3 - a_3 g_1^3 = (a_1 - a_3)(c - a_1 a_3)
$$

implies a contradiction.

Case iv). In this case

$$
F(z, a_j) = g_j^2, \qquad j = 1, 2, 3, 4.
$$

We firstly prove that $c \neq a_1 a_2$, $c \neq a_2 a_3$ implies $c = a_1 a_3$. By $c \neq a_1 a_2$, $c \neq a_2 a_3$ we have

$$
\gamma_2^2 g_2^2 - \gamma_1^2 g_1^2 = 1, \quad \gamma_2^2 = \frac{a_1}{(a_1 - a_2)(c - a_1 a_2)}, \quad \gamma_1^2 = \frac{a_2}{(a_1 - a_2)(c - a_1 a_2)},
$$

$$
\gamma_3^2 g_3^2 - \gamma_2^{*2} g_2^2 = 1, \quad \gamma_3^2 = \frac{a_2}{(a_2 - a_3)(c - a_2 a_3)}, \quad \gamma_2^{*2} = \frac{a_3}{(a_2 - a_3)(c - a_2 a_3)}.
$$

Hence

$$
\gamma_2 g_2 - \gamma_1 g_1 = \beta_1 e^{H_1},
$$

$$
\gamma_2 g_2 + \gamma_1 g_1 = \frac{1}{\beta_1} e^{-H_1}
$$

with entire H_1 , $H_1(0)=0$ and a constant $\beta_1 \neq 0$. Thus

$$
\gamma_2 g_2 = \frac{1}{2} \Big(\beta_1 e^{H_1} + \frac{1}{\beta_1} e^{-H_1} \Big).
$$

Similarly we have

$$
\gamma_2^* g_2 = \frac{1}{2} \Big(\frac{1}{\beta_2} e^{-H_2} - \beta_2 e^{H_2} \Big)
$$

with entire H_2 , $H_2(0)=0$ and a non-zero constant β_2 . Hence

$$
\gamma_2^* \beta_1 d^{H_1} + \frac{\gamma_2^*}{\beta_1} e^{-H_1} = \frac{\gamma_2}{\beta_2} e^{-H_2} - \beta_2 \gamma_2 e^{H_2}.
$$

By the impossibility of Borel's identity we have two possibilities

$$
\begin{cases}\nH_2 = H_1 \\
\gamma_2^* \beta_1 = -\beta_2 \gamma_2 \\
\gamma_2^* \beta_2 = \beta_1 \gamma_2,\n\end{cases}\n\begin{cases}\nH_2 = -H_1 \\
\gamma_2^* \beta_1 \beta_2 = \gamma_2 \\
\gamma_2^* = -\beta_1 \beta_2 \gamma_2.\n\end{cases}
$$

In both cases we have

$$
\gamma_2^{*2}+\gamma_2^2{=}0\,,
$$

which gives $c = a_1 a_3$.

The above fact gives the following possibilities:

$$
\begin{pmatrix} c = a_1 a_2 \\ c = a_3 a_4 \end{pmatrix}, \begin{pmatrix} c = a_1 a_3 \\ c = a_2 a_4 \end{pmatrix}, \begin{pmatrix} c = a_1 a_4 \\ c = a_2 a_3 \end{pmatrix}
$$

We may restrict to the first case. Hence

$$
a_1 g_2^2 = a_2 g_1^2
$$
, $a_4 g_3^2 = a_3 g_4^2$.

Since $c \neq a_2 a_3$

$$
\gamma_{^3}g_3\!=\!\frac{1}{2}\!\!\left(\!\frac{1}{\beta}\,e^{-H}\!-\!\beta e^H\right)
$$

264

with entire *H*, $H(0)=0$ and a constant $\beta \neq 0$ and

$$
\gamma_3^2 = \frac{1}{(a_3 - a_2)(a_1 - a_3)}.
$$

Hence

$$
A = \frac{1}{2a_s} \left\{ \frac{1}{4\gamma_s^2} \left(\beta e^H - \frac{1}{\beta e^H} \right)^2 - a_1 a_2 - a_3 \right\},
$$

$$
C - A^2 = -\frac{1}{64 a_s^2 \gamma_s^4} \left\{ \left(\beta e^H - \frac{1}{\beta e^H} \right)^4 - 2u \left(\beta e^H - \frac{1}{\beta e^H} \right)^2 + v^2 \right\}
$$

with

$$
u = \frac{4(a_1a_2 + a_3^2)}{(a_3 - a_2)(a_1 - a_2)}, \qquad v^2 = \frac{16(a_3^2 - a_1a_2)^2}{(a_3 - a_2)^2(a_1 - a_2)^2}.
$$

Further with a constant K

$$
C - A2 = K \left\{ \left(\beta eH - \frac{1}{\beta eH} \right)^{2} - \delta_{1} \right\} \left\{ \left(\beta eH - \frac{1}{\beta eH} \right)^{2} - \delta_{2} \right\}
$$

Here $\delta_1 \delta_2 (\delta_1 - \delta_2) \neq 0$ and $(\delta_1 + 4)(\delta_2 + 4) \neq 0$. In fact $\delta_1 = 0$ gives $u^2 = u^2 - v^2$, $v = 0$, that is, $a_3^2 = a_1 a_2$. Hence $a_1 a_2 = a_3 a_4$ gives $a_2 = a_4$ $(a_3 \neq 0)$. This is impossible. If $\delta_1 = \delta_2$, $u^2 = v^2$ and hence $a_3 = 0$ or $a_1 a_2 = 0$, which is again impossible. $\delta_1 = -4$ implies $16+8u+v^2=0$. This gives $a_3=0$ or $a_1=a_2$, which is impossible.

We may write

$$
C - A^2 = \frac{K}{\beta^4 e^{4H}} \prod_{j=1}^8 (\beta e^H - \lambda_j).
$$

Hence

$$
\begin{aligned}\n\lambda_1 \lambda_2 &= \lambda_3 \lambda_4 = \lambda_5 \lambda_6 = \lambda_7 \lambda_8 = -1 \,, \\
\lambda_1 + \lambda_2 &= -\lambda_3 - \lambda_4 = -\sqrt{\delta_1} \,, \quad \lambda_5 + \lambda_6 = -\lambda_7 - \lambda_8 = -\sqrt{\delta_2} \,. \n\end{aligned}
$$

 $\delta_1 \neq -4$, $\delta_2 \neq -4$ imply $\lambda_1 \neq \lambda_2$, $\lambda_3 \neq \lambda_4$, $\lambda_5 \neq \lambda_6$, $\lambda_7 \neq \lambda_8$. Further $\lambda_1 \neq \lambda_2$ if $i \neq j$ and $\lambda_i \neq 0$.

LEMMA. Let $N_1(r, r, e^H)$ be the counting function of multiple zeros of $e^H - r$, *γ*≠0. *Then*

$$
N_1(r, \gamma, e^H) = o(m(r, e^H)).
$$

Let $N_2(r, r, e^H)$ be the counting function of simple zeros of $e^H - \gamma$, $\gamma \neq 0$. Then

$$
N_2(r, \gamma, e^H) \sim m(r, e^H).
$$

This was proved in [5]. It is evident that $e^H - \lambda_1 = 0$, $e^H - \lambda_2 = 0$ have no common root if $\lambda_1 \neq \lambda_2$, $\lambda_1 \lambda_2 \neq 0$. These facts imply that $C-A^2$ has infinitely many simple zeros.

Since every f in $\mathcal{E}(R)$ can be represented as

266 MITSURU OZAWA

f satisfies

 $y^2 + 2Ay + A^2 - f_2^2g = 0.$

 $-A+f_{2}\sqrt{g}$,

Hence

Let us put

$$
\beta e^H - \lambda_j = m_j(z)^2 L_j(z) ,
$$

 $-f_{2}^{2}g = c - A^{2}$.

where L_j has only simple zeros. Then

$$
c-A^2=\frac{K}{\beta^4e^{4H}}\prod_{j=1}^8m_j(z)^2\prod_{j=1}^8L_j(z)\ .
$$

Hence we may put

$$
g=\prod_{j=1}^8 L_j(z)\,.
$$

However there does not occur any trouble even if we adopt

$$
\prod_{j=1}^8(\beta e^H-\lambda_j),\qquad H(0)=0
$$

as g , since the structure of R is invariant under this change and $\mathcal{E}(R)$ is too. Hence we put

$$
g = \prod_{j=1}^{8} (\beta e^{H} - \lambda_j), \qquad H(0) = 0.
$$

Here $\lambda_i \neq \lambda_j$ for $i \neq j$, $\lambda_j \neq 0$ and further

$$
\lambda_1 \lambda_2 = \lambda_3 \lambda_4 = \lambda_5 \lambda_6 = \lambda_7 \lambda_8 = -1,
$$

$$
\lambda_1 + \lambda_2 = -\lambda_3 - \lambda_4 = -\sqrt{\delta_1}, \quad \lambda_5 + \lambda_6 = -\lambda_7 - \lambda_8 = -\sqrt{\delta_2}.
$$

Another representation of *g* is

$$
g\!=\!\beta^{s}e^{sH}\!-\!A_{2}\beta^{s}e^{sH}\!+\!A_{4}\beta^{4}e^{4H}\!-\!A_{2}\beta^{2}e^{2H}\!+\!1
$$

with entire *H*, $H(0)=0$, a constant $\beta \neq 0$ and

$$
A_2=4+2u, \qquad A_4=6+4u+v^2.
$$

For u, v we have

$$
v\neq 0
$$
, $u^2\neq v^2$, $16+8u+v^2\neq 0$.

4. In § 3 we have gotten the representation of *g* and hence the surface *R* defined by $y^2 = g(x)$. We shall now prove that this is really of maximal *B* type. We may adopt

$$
g = -\frac{(a_3-a_2)^2(a_1-a_2)^2}{64a_3^2\beta^4e^{4H}}\prod_{j=1}^8(\beta e^H-\lambda_j).
$$

Let us consider the following function

$$
f_1 + \sqrt{g}
$$
, $f_1^2 = a_1 a_2 - g$.

This belongs to $\mathcal{E}(R)$. We now put

$$
f_1 = \frac{1}{2a_3} \left\{ \frac{(a_3 - a_2)(a_1 - a_2)}{4} \left(\beta e^H - \frac{1}{\beta e^H} \right)^2 - a_1 a_2 - a_3^2 \right\}.
$$

This gives

$$
a_3^2 - 2a_3f_1 + a_1a_2 = -\frac{(a_3 - a_2)(a_1 - a_2)}{4} \left(\beta e^H - \frac{1}{\beta e^H}\right)^2 \equiv g_3^2,
$$

$$
a_4^2 - 2a_4f_1 + a_3a_4 = \frac{a_1a_2}{a_3^2} (a_1a_2 - 2a_3f_1 + a_3^2)
$$

$$
= \frac{a_1a_2}{a_3^2} g_3^2 \equiv g_4^2,
$$

$$
a_2^2 - 2a_2f_1 + a_1a_2
$$

= $a_2^2 + \frac{a_2}{a_3} \left\{ \frac{(a_3 - a_2)(a_1 - a_2)}{4} \left(\beta e^H - \frac{1}{\beta e^H} \right)^2 - a_3^2 - a_1a_2 \right\} + a_1a_2$
= $\frac{a_2}{4a_3}(a_3 - a_2)(a_1 - a_3) \left(\beta e^H + \frac{1}{\beta e^H} \right)^2 \equiv g_2^2$,

$$
a_1^2 - 2a_1f_1 + a_1a_2
$$

= $\frac{a_3a_4}{a_2^2}(a_2^2 - 2a_2f_1 + a_1a_2) = \frac{a_3a_4}{a_2^2} g_2^2 \equiv g_1^2$.

Thus our *R* belongs to the class of maximal *B* type.

5. Let S be another ultrahyperelliptic surface defined by $Y^2 = G(X)$ with entire *G* having only infinitely many simple zeros. Let ϕ be a non-trivial analytic mapping of S into R . Then we have the following fact: If R is of maximal *B* type, then S is also of maximal *B* type if *φ* exists.

We shall prove this. Let *h* be the projection of ϕ , that is, $h = \mathcal{P}_R \circ \phi \circ \mathcal{P}_S^{-1}$. Let f be a member of $\mathcal{E}(R)$ such that f satisfies two conditions of maximal B type. Then

$$
f \circ \mathcal{P}_R^{-1} = f_1 + f_2 \sqrt{g} ,
$$

$$
a^2 - 2af_1 + f_1^2 - f_2^2 g = c
$$

for some $a \neq \infty$ and for a non-zero constant *c*. Transplanting f on S by ϕ , that is,

$$
f\!\circ\!\phi\!\circ\!\mathcal{P}_\mathcal{S}^{-1}
$$

we have

268 MITSURU OZAWA

$$
f \circ \phi \circ \mathcal{P}_{S}^{-1} = f \circ \mathcal{P}_{R}^{-1} \circ \mathcal{P}_{R} \circ \phi \circ \mathcal{P}_{S}^{-1}
$$

= $f \circ \mathcal{P}_{R}^{-1} \circ h = f_{1} \circ h + f_{2} \circ h \sqrt{g \circ h}$.

Hence

$$
a^2-2af_1\cdot h+(f_1\cdot h)^2-(f_2\cdot h)^2g\cdot h=c.
$$

However by [7]

 $f^{*2}G = g \cdot h$

with meromorphic f^* . However g and G have only simple zeros. Hence f^* is entire. Thus

$$
a^2 - 2af_1 \cdot h + (f_1 \cdot h)^2 - (f_2 \cdot h)^2 f^{*2} G = c.
$$

Let

$$
f \circ \mathcal{D}_S^{-1} = f_1 \circ h + (f_2 \circ h) f^* \sqrt{G}.
$$

Then $\hat{f} \in \mathcal{E}(S)$ and a is the desired lacunary value of f. The condition (2) in the definition of maximal *B* type holds for *f* with the same a_1 , a_2 , a_3 , a_4 . Thus we have the desired result.

6. Let *R* be of maximal *B* type. We shall consider the existence problem of analytic mappings of *R* into another 5 or of S into *R.*

Assume that $P(S)=4$. Consider a non-trivial analytic mapping ϕ of R into 5. Then there exist an entire function h and a meromorphic function f such that

$$
g \equiv \beta^s e^{sH} - A_2 \beta^s e^{sH} + A_4 \beta^4 e^{4H} - A_2 \beta^2 e^{2H} + 1
$$

= $f(z)^2 (e^{L \cdot h} - \delta_1)(e^{L \cdot h} - \delta_2)$

with constants δ_1 , δ_2 , $\delta_1\delta_2(\delta_1-\delta_2)\neq 0$. For simplicity's sake we put $M=L\cdot h$ — $L \cdot h(0)$, $c = \exp L \cdot h(0)$. The right hand side is

$$
f(z)^2(c e^M - \delta_1)(c e^M - \delta_2).
$$

Then

$$
N_2(r, 0, g) = N_2(r, 0, (ce^M - \delta_1)(ce^M - \delta_2))
$$

$$
\sim 2m(r, e^M)
$$

and

$$
N_2(r, 0, g) \sim 8m(r, e^H)
$$

with a negligible exceptional set of *r.* Hence

 $4m(r, e^H) \sim m(r, e^M)$.

Further

$$
2N(r, 0, f) \leq N_1(r, 0, g) + \overline{N}_1(r, 0, g) = o(m(r, e^H)),
$$

$$
2N(r, \infty, f) \leq \overline{N}_1(r, 0, (ce^M - \delta_1)(ce^M - \delta_2))
$$

$$
+ \overline{N}_1(r, 0, (ce^M - \delta_1)(ce^M - \delta_2))
$$

$$
= o(m(r, e^M)).
$$

By differentiation of

$$
g = f^2(c e^M - \delta_1)(c e^M - \delta_2)
$$

and by elimination of *f²* we have

$$
a_{1}e^{2M+8H} + a_{2}e^{2M+6H} + a_{3}e^{2M+4H} + a_{4}e^{2M+2H} + a_{5}e^{2M} + a_{6}e^{M+8H} + a_{7}e^{M+6H} + a_{8}e^{M+4H} + a_{9}e^{M+2H} + a_{10}e^{M} + a_{11}e^{8H} + a_{12}e^{6H} + a_{13}e^{4H} + a_{14}e^{2H} + a_{15} = 0,
$$

\n
$$
a_{1} = \left(\frac{2f'}{f} + 2M' - 8H'\right)\beta^{8}c^{2}, \qquad a_{2} = \left(\frac{2f'}{f} + 2M' - 6H'\right)(-A_{2})\beta^{6}c^{2},
$$

\n
$$
a_{3} = \left(\frac{2f'}{f} + 2M' - 4H'\right)A_{4}\beta^{4}c^{2}, \qquad a_{4} = \left(\frac{2f'}{f} + 2M' - 2H'\right)(-A_{2})\beta^{2}c^{2},
$$

\n
$$
a_{5} = \left(\frac{2f'}{f} + 2M'\right)c^{2}, \qquad a_{6} = \left(-\frac{2f'}{f} - M' + 8H'\right)\beta^{8}(\delta_{1} + \delta_{2})c,
$$

\n
$$
a_{7} = \left(\frac{2f'}{f} + M' - 6H'\right)A_{2}\beta^{6}(\delta_{1} + \delta_{2})c, \qquad a_{8} = \left(-\frac{2f'}{f} - M' + 4H'\right)\beta^{4}A_{4}(\delta_{1} + \delta_{2})c,
$$

\n
$$
a_{9} = \left(\frac{2f'}{f} + M' - 2H'\right)A_{2}\beta^{2}(\delta_{1} + \delta_{2})c, \qquad a_{10} = \left(-\frac{2f'}{f} - M'\right)(\delta_{1} + \delta_{2})c,
$$

\n
$$
a_{11} = \left(2\frac{f'}{f} - 8H'\right)\beta^{8}\delta_{1}\delta_{2}, \qquad a_{12} = \left(-\frac{2f'}{f} + 6H'\right)A_{2}\beta^{6}\delta_{1}\delta_{2},
$$

\n<math display="</math>

Evidently $T(r, a_j) = N(r, \infty, a_j) + m(r, a_j) = o(m(r, e^M)) + o(m(r, e^H))$ for every *j*, $1 \le j \le 15$. Now we can make use of Nevanlinna's proof [3] of the impossibility of Borel's identity. By $m(r, e^{iH}) \sim m(r, e^{iM})$ we can save our consideration and conclude either $M=4H$ or $M=-4H$. Indeed we have firstly the existence of $(c_j)_{j=1,\,\dots,\,14}$ such that

$$
c_{1}a_{1}e^{2M+6H} + c_{2}a_{2}e^{2M+4H} + c_{3}a_{3}e^{2M+2H} + c_{4}a_{4}e^{2M} + c_{5}a_{5}e^{2M-2H} + c_{6}a_{6}e^{M+6H} + c_{7}a_{7}e^{M+4H} + c_{8}a_{8}e^{M+2H} + c_{9}a_{9}e^{M} + c_{10}a_{10}e^{M-2H} + c_{11}a_{11}e^{6H} + c_{12}a_{12}e^{4H}
$$

270 MITSURU OZAWA

$$
+c_{13}a_{13}e^{2H}+c_{14}a_{14}=0
$$
.

If $c_i c_j = 0$ $(i \neq j, i, j = 1, \dots, 13)$, then we have only one possible case

 $c_7a_7e^{M+4H} + c_{14}a_{14} = 0$,

which gives $M+4H=0$. If there is at least one $c_i c_j \neq 0$ (*i*, $j=1, \dots, 13, i \neq j$), then we have the existence of $(c'_j)_{j=1,\dots,13}$ such that

$$
c_1'a_1e^{2M+4H}+c_2'a_2e^{2M+2H}+\cdots+c_{12}'a_{12}e^{2H}+c_{13}'a_{13}=0.
$$

If $c'_i c'_j = 0$ ($i \neq j$, i , $j = 1$, \dots , 12), then we have two possible cases

$$
c_6'a_6e^{M+4H}+c_{13}'a_{13}=0
$$

and

$$
c_{10}'a_{10}e^{M-4H}+c_{13}'a_{13}=0.
$$

These give either $M+4H=0$ or $M-4H=0$. If there is at least one $c'_i c'_j \neq 0$ ($i \neq j$, $i, j=1, \dots, 12$, we continue the same process repeatedly. In each step we have the desired result: *M=4H* or *M=—4H.*

The case $M=4H$. Then we have

$$
a_1e^{16H} + a_2e^{14H} + (a_3 + a_6)e^{12H} + (a_4 + a_7)e^{10H} + (a_5 + a_8 + a_{11})e^{8H} + (a_9 + a_{12})e^{6H} + (a_{10} + a_{13})e^{4H} + a_{14}e^{2H} + a_{15} = 0.
$$

By our earlier result in [2] this gives

$$
a_1 = a_2 = a_3 + a_6 = a_4 + a_7 = a_5 + a_8 + a_{11}
$$

= $a_9 + a_{12} = a_{10} + a_{13} = a_{14} = a_{15} = 0$.

Hence f is a constant and $A_2=0$,

$$
cA_4 = -\beta^4(\delta_1 + \delta_2), \qquad \beta^8 \delta_1 \delta_2 = c^2.
$$

The case *M=—4H.* Then we have

$$
a_5e^{-8H} + a_4e^{-6H} + (a_3 + a_{10})e^{-4H} + (a_2 + a_9)e^{-2H}
$$

+
$$
a_1 + a_8 + a_{15} + (a_7 + a_{14})e^{2H} + (a_6 + a_{13})e^{4H}
$$

+
$$
a_{12}e^{6H} + a_{11}e^{8H} = 0.
$$

This gives

$$
a_5 = a_4 = a_3 + a_{10} = a_2 + a_9 = a_1 + a_8 + a_{10}
$$

$$
= a_7 + a_{14} = a_6 + a_{13} = a_{12} = a_{11} = 0.
$$

Hence

$$
\frac{f'}{f} = -M', \qquad A_2 = 0,
$$

$$
A_4 \beta^4 c = -\delta_1 - \delta_2, \qquad \beta^8 c^2 = \delta_1 \delta_2.
$$

Hence we have the following

THEOREM 1. *Let R be of maximal B type and let S be the surface of P(S) —A. Assume that there is a non-trivial analytic mapping φ of R into* S. *Then, with entire projection h of φ, A2=0 and either*

$$
4H = L \cdot h - L \cdot h(0),
$$

\n
$$
A_4 = -e^{-L \cdot h(0)} \beta^4 (\delta_1 + \delta_2),
$$

\n
$$
e^{2L \cdot h(0)} = \beta^8 \delta_1 \delta_2
$$

\n
$$
4H = -L \cdot h + L \cdot h(0),
$$

\n
$$
A_4 \beta^4 = -e^{-L \cdot h(0)} (\delta_1 + \delta_2),
$$

\n
$$
\beta^8 e^{2L \cdot h(0)} = \delta_1 \delta_2.
$$

or

// *the conditions hold, then φ exists.*

The inverse statement is trivial by [7].

COROLLARY 1. Let R be of maximal B type. If $P(R)=4$, then $A_2=0$, that *is, on assuming that* 0 *is lacunary*

$$
2\;\!a_3^2\!\!\!+\!\!\;a_1a_2\!\!\!+\!\!\;a_3a_1\!\!\!-\!\!\;a_3a_2\!\!\!+\!\!\;a_2^2\!\!\!=\!\!0
$$

and vice versa.

THEOREM 2. *Let R be of maximal B type and let S be the surface of P(S)* =4. *Assume that there is a non-trivial analytic mapping φ of S into R. Then ^A2—^ and either*

$$
4H \cdot h - 4H \cdot h(0) = L,
$$

\n
$$
A_4 = -\beta^4 e^{4H \cdot h(0)} (\delta_1 + \delta_2),
$$

\n
$$
\beta^8 e^{8H \cdot h(0)} \delta_1 \delta_2 = 1
$$

\n
$$
4H \cdot h - 4H \cdot h(0) = -L,
$$

\n
$$
A_4 \beta^4 e^{4H \cdot h(0)} = -(\delta_1 + \delta_2),
$$

\n
$$
\beta^8 e^{8H \cdot h(0)} = \delta_1 \delta_2.
$$

or

If the conditions hold, then φ exists.

There is an ultrahyperelliptic surface *R* of maximal *B* type and with *P(R)* = 3. It is known that $P(R) \ge 3$ implies

$$
g\!=\!1\!-\!2\beta_1 e^{\textit{H}}\!-\!2\beta_2 e^{\textit{L}}\!+\!\beta_1^2 e^{2\textit{H}}\!-\!2\beta_1\beta_2 e^{\textit{H}+L}\!+\!\beta_2^2 e^{2L}
$$

with two entire functions $H L (H(0) = L(0) = 0)$ and non-zero constants β_1 , β_2 . Let us put *2H=L.* Then we have

$$
g\hspace{-0.05cm}=\hspace{-0.05cm}1\hspace{-0.05cm}-\hspace{-0.05cm}2\beta_1 e^H\hspace{-0.05cm}+\hspace{-0.05cm}(\beta_1^2\hspace{-0.05cm}-\hspace{-0.05cm}2\beta_2)e^{2H}\hspace{-0.05cm}-\hspace{-0.05cm}2\beta_1\beta_2 e^{3H}\hspace{-0.05cm}+\hspace{-0.05cm}\beta_2^2e^{4H}\,.
$$

If we put

$$
-2\beta_1 = -A_2\beta^2,
$$

\n
$$
\beta_1^2 - 2\beta_2 = A_4\beta^4,
$$

\n
$$
2\beta_1\beta_2 = A_2\beta^6,
$$

\n
$$
\beta_2^2 = \beta^8,
$$

then *g* has the form of maximal *B* type. In this case

 $\beta^4 = \beta_2$, $4\beta_1^2 = A_2^2\beta_2$, $A_2^2 = 4A_4 + 8$.

Hence a_1 , a_2 , a_3 , a_4 must satisfy

$$
a_1a_2 = a_3a_4, \qquad 16a_1a_2a_3^2 = (a_3-a_2)^2(a_1-a_2)^2.
$$

Next we shall prove that

$$
y^2 = 1 - 2\beta_1 e^H + (\beta_1^2 - 2\beta_2)e^{2H} - 2\beta_1 \beta_2 e^{3H} + \beta_2^2 e^{4H} \equiv g_1
$$

determine a surface of $P(S)=3$, when $16\beta_2 \neq \beta_1^2$.

If $16\beta_2 \neq \beta_1^2$, it is easy to prove

$$
N_2(r, 0, g_1) \sim 4m(r, e^H)
$$
.

Assume that $P(S)=4$. Then

$$
g_1 = f^2(e^L - \delta_1)(e^L - \delta_2), \qquad \delta_1 \delta_2(\delta_1 - \delta_2) \neq 0.
$$

Then the similar consideration as in the proof of Theorem 1 does work. And we have either $L=2H$ or $L=-2H$. If $L=2H$, then $a_{15}=0$ implies the constancy of f . Thus

$$
1 - 2\beta_1 e^H + (\beta_1^2 - 2\beta_2) e^{2H} - 2\beta_1 \beta_2 e^{3H} + \beta_2^2 e^{4H}
$$

= $c^2 (e^{4H} - (\delta_1 + \delta_2) e^{2H} + \delta_1 \delta_2).$

This gives $\beta_1 = 0$, which is a contradiction. If $L = -2H$, then $a_5 = a_{11} = 0$. Hence we have

$$
\frac{f'}{f} = 4H', \qquad f = f(0)e^{4H}.
$$

Thus

$$
\begin{aligned} 1\!-\!2\beta_1 e^H\!+\!(\beta_1^2\!-\!2\beta_2)e^{2H}\!-\!2\beta_1\beta_2 e^{3H}\!+\!\beta_2^2 e^{4H}\\ =& c^2 e^{8H}(e^{-4H}\!-\!(\delta_1\!+\!\delta_2)e^{-2H}\!+\!\delta_1\delta_2)\, . \end{aligned}
$$

This gives $\beta_1=0$, which is a contradiction. Therefore $P(S)=3$.

Assume that $16\beta_2 = \beta_1^2$. Then $N_2(r, 0, g_1) \sim 2m(r, e^H)$. However $N_2(r, 0, g) \sim$ $4m(r, e^H)$ if

$$
g\!=\!1\!-\!A_{\rm z}\beta^{\rm z}e^{\rm H}\!+\!A_{\rm 4}\beta^{\rm 4}e^{\rm zH}\!-\!A_{\rm z}\beta^{\rm 6}e^{\rm sH}\!+\!\beta^{\rm 8}e^{\rm 4H}
$$

with $\beta^4 = \beta_2$, $4\beta_1^2 = A_2^2\beta_2$, $A_2^2 = 4A_4 + 8$. This is a contradiction. Therefore $16\beta_2 \neq \beta_1^2$. Thus $P(R)=3$.

7. Let R and S be of maximal B type. Let ϕ be a non-trivial analytic mapping of R into S . Then

$$
g = \beta^4 e^{4H} - A_2 \beta^8 e^{3H} + A_4 \beta^2 e^{2H} - A_2 \beta e^H + 1
$$

= $f^2 [\gamma^4 e^{4L_2 h} - B_2 \gamma^3 e^{3L_2 h} + B_4 \gamma^2 e^{2L_2 h} - B_2 \gamma e^{L_2 h} + 1]$
= $f^2 G \cdot h$.

Let $L \cdot h - L \cdot h(0)$ be M and let c be $\exp L \cdot h(0)$. Then

$$
g = f^2[\gamma^4 c^4 e^{4M} - B_2 \gamma^3 c^3 e^{3M} + B_4 \gamma^2 c^2 e^{2M} - B_2 \gamma c e^M + 1].
$$

By differentiation of this equation and by elimination of f^2 we have

$$
a_{1}e^{4H+4M} + a_{2}e^{3H+4M} + a_{3}e^{2H+4M} + a_{4}e^{H+4M} + a_{5}e^{4M} + a_{6}e^{4H+3M} + a_{7}e^{3H+3M} + a_{8}e^{2H+3M} + a_{9}e^{H+3M} + a_{10}e^{3M} + a_{11}e^{4H+2M} + a_{12}e^{3H+2M} + a_{13}e^{2H+2M} + a_{14}e^{H+2M} + a_{15}e^{2M} + a_{16}e^{4H+M} + a_{17}e^{3H+M} + a_{18}e^{2H+M} + a_{19}e^{H+M} + a_{20}e^{M} + a_{21}e^{4H} + a_{22}e^{3H} + a_{23}e^{2H} + a_{24}e^{H} + a_{25} = 0,
$$

$$
a_{1} = (4H' - \frac{2f'}{f} - 4M')\beta^{4}\gamma^{4}c^{4}, \qquad a_{2} = A_{2}(-3H' + \frac{2f'}{f} + 4M')\beta^{3}\gamma^{4}c^{4},
$$

$$
a_{3} = A_{4}(2H' - \frac{2f'}{f} - 4M')\beta^{2}\gamma^{4}c^{4}, \qquad a_{4} = A_{2}(-H' + \frac{2f'}{f} + 4M')\beta\gamma^{4}c^{4},
$$

$$
a_{5} = (-\frac{2f'}{f} - 4M')\gamma^{4}c^{4}, \qquad a_{6} = -B_{2}(4H' - \frac{2f'}{f} - 3M')\beta^{4}\gamma^{8}c^{3},
$$

$$
a_{7} = -B_{2}A_{2}(-3H' + \frac{2f'}{f} + 3M')\beta^{3}\gamma^{3}c^{3}, \qquad a_{8} = -B_{2}A_{4}(2H' - \frac{2f'}{f} - 3M')\beta^{2}\gamma^{3}c^{3},
$$

$$
a_9 = -B_2 A_2 \Big(-H' + \frac{2f'}{f} + 3M'\Big) \beta \gamma^3 c^3, \qquad a_{10} = -B_2 \Big(-\frac{2f'}{f} - 3M'\Big) \gamma^3 c^3,
$$

\n
$$
a_{11} = B_4 \Big(4H' - \frac{2f'}{f} - 2M'\Big) \beta^4 \gamma^2 c^2, \qquad a_{12} = B_4 A_2 \Big(-3H' + \frac{2f'}{f} + 2M'\Big) \beta^3 \gamma^2 c^2,
$$

\n
$$
a_{13} = B_4 A_4 \Big(2H' - \frac{2f'}{f} - 2M'\Big) \beta^2 \gamma^2 c^2, \qquad a_{14} = B_4 A_2 \Big(-H' + \frac{2f'}{f} + 2M'\Big) \beta \gamma^2 c^2,
$$

\n
$$
a_{15} = B_4 \Big(-\frac{2f'}{f} - 2M'\Big) \gamma^2 c^2, \qquad a_{16} = -B_2 \Big(4H' - \frac{2f'}{f} - M'\Big) \beta^4 \gamma c,
$$

\n
$$
a_{17} = B_2 A_2 \Big(3H' - \frac{2f'}{f} - M'\Big) \beta^3 \gamma c, \qquad a_{18} = -B_2 A_4 \Big(2H' - \frac{2f'}{f} - M'\Big) \beta^2 \gamma c,
$$

\n
$$
a_{19} = B_2 A_2 \Big(H' - \frac{2f'}{f} - M'\Big) \beta \gamma c, \qquad a_{20} = B_2 \Big(\frac{2f'}{f} + M'\Big) \gamma c,
$$

\n
$$
a_{21} = \Big(4H' - \frac{2f'}{f}\Big) \beta^4, \qquad a_{22} = -A_2 \Big(3H' - \frac{2f'}{f}\Big) \beta^3,
$$

\n
$$
a_{23} = A_4 \Big(2H' - \frac{2f'}{f}\Big) \beta^2, \qquad a_{24} = -A_2 \Big(H' - \frac{2f'}{f}\Big) \beta, \qquad a_{25} = -\frac{2f'}{f}.
$$

In the present case we have

$$
4m(r, e^H) \sim N_2(r, 0, g) = N_2(r, 0, G \cdot h) \sim 4m(r, e^M)
$$

and

$$
N_1(r, \infty, f)=o(m(r, e^H)).
$$

Hence

$$
T(r, a_j) = o(m(r, e^H)).
$$

Thus we can make use of Nevanlinna's method of proof of the impossibility of Borel's identity. In our case $m(r, e^H) \sim m(r, e^M)$ brings us a simplicity. By a similar consideration as in §6 we only have two possibilities: a) $H=M$ or b) $H = -M$.

Case a). We have

$$
a_{1}e^{8H} + (a_{2} + a_{6})e^{7H} + (a_{3} + a_{7} + a_{11})e^{6H} + (a_{4} + a_{8} + a_{12} + a_{16})e^{5H} + (a_{5} + a_{9} + a_{13}a + a_{17} + a_{21})e^{4H} + (a_{10} + a_{14} + a_{18} + a_{22})e^{3H} + (a_{15} + a_{19} + a_{23})e^{2H} + (a_{20} + a_{24})e^{H} + a_{25} = 0.
$$

Hence $a_{25}=0$ and hence f is a constant. Therefore

$$
\beta^4 = f^2 \gamma^4 c^4 \,, \quad A_2 \beta^2 = f^2 B_2 \gamma^3 c^3 \,, \quad A_4 \beta^2 = B_4 \gamma^2 c^2 f^2 \,,
$$

$$
A_2 \beta = f^2 \gamma c B_2 \,, \quad f^2 = 1 \,.
$$

274

These give $\beta^4 = \gamma^4 c^4$. If $\beta^2 = \gamma^2 c^2$, we have $A_4 = B_4$, $A_2 = B_2$ or $A_2 = -B_2$. If β^2 $=-\gamma^2 c^2$, we have $B_2 = A_2 = 0$ and $A_4 = -B_4$. Case b). We have

 $a_{21}e^{8H} + (a_{16} + a_{22})e^{7H} + (a_{11} + a_{17} + a_{23})e^{6H} + (a_{6} + a_{12} + a_{18} + a_{21})e^{6H}$ $+(a_1+a_7+a_{13}+a_{19}+a_{25})e^{4H}+(a_2+a_8+a_{14}+a_{20})e^{3H}$ $+(a_3+a_4+a_{15})e^{2H}+(a_4+a_{10})e^{H}+a_5=0$.

Hence $a_{21}=0$ and $f=f(0)e^{2H}$. Thus

$$
\beta^{4}e^{4H} - A_{2}\beta^{3}e^{3H} + A_{4}\beta^{2}e^{2H} - A_{2}\beta e^{H} + 1
$$

= $d^{2}\lbrack\gamma^{4}c^{4} - B_{2}\gamma^{3}c^{3}e^{H} + B_{4}\gamma^{2}c^{2}e^{2H} - B_{2}\gamma c e^{3H} + e^{4H}\rbrack.$

Therefore

$$
\beta^4 = d^2, \quad A_2 \beta^3 = B_2 \gamma c d^2, \quad A_4 \beta^2 = B_4 d^2 \gamma^2 c^2
$$

$$
A_2 \beta = B_2 \gamma^3 c^3 d^2, \quad 1 = d^2 \gamma^4 c^4.
$$

Hence

$$
A_2\beta^3\gamma^3c^3 = B_2\,,\quad A_2\beta\gamma c = B_2\,,\quad \beta^4\gamma^4c^4 = 1\,.
$$

If $\beta \gamma c = 1$, then $A_2 = B_2$ and $A_4 = B_4$. If $\beta \gamma c = -1$, then $A_2 = -B_2$ and $A_4 = B_4$. If $\beta \gamma c = i$, then $A_2 = B_2 = 0$ and $A_4 = -B_4$. If $\beta \gamma c = -i$, then $A_2 = B_2 = 0$ and $A_4 =$ $-B_4$. Therefore we have the following

THEOREM 3. *Let R and S be of maximal B type. Assume that there is a nontrivial analytic mapping φ of R into S. Then there exists an entire function h* such that either $H = L \cdot h - L \cdot h(0)$ and one of the following four holds⁻

$$
\begin{cases}\n\beta = \gamma \exp(L \cdot h(0)) \\
A_4 = B_4 \\
A_2 = B_2, \\
A_3 = -B_4\n\end{cases}\n\qquad\n\begin{cases}\n\beta = -\gamma \exp(L \cdot h(0)) \\
A_4 = B_4 \\
A_2 = -B_2,\n\end{cases}
$$
\n
$$
\begin{cases}\n\beta = i\gamma \exp(L \cdot h(0)) \\
A_4 = -B_4 \\
A_2 = B_2 = 0,\n\end{cases}
$$
\n
$$
\begin{cases}\n\beta = -i\gamma \exp(L \cdot h(0)) \\
A_4 = -B_4 \\
A_2 = B_2 = 0,\n\end{cases}
$$

or $H = -L \cdot h + L \cdot h(0)$ and one of the following four holds:

$$
\begin{cases}\n\beta \gamma \exp(L \cdot h(0)) = 1 \\
A_4 = B_4 \\
A_2 = B_2\n\end{cases}\n\qquad\n\begin{cases}\n\beta \gamma \exp(L \cdot h(0)) = -1 \\
A_4 = B_4 \\
A_2 = -B_2\n\end{cases}
$$

$$
\begin{cases} \beta\gamma\exp(L\cdot h(0)){=}i \\ A_4{=}{-}B_4 \\ A_2{=}B_2{=}0 \end{cases} \qquad \begin{cases} \beta\gamma\exp(L\cdot h(0)){=}{-}i \\ A_4{=}{-}B_4 \\ A_2{=}B_2{=}0 \end{cases}
$$

The inverse statement is also true.

8. We here mention some remarks.

We can prove that the following types do not occur: The condition (1) holds and in the condition (2)

$$
(n_1, n_2, n_3) = (2, 3, 5), (2, 3, 4), (2, 3, 3), (2, 2, 3)
$$

instead of

$$
\sum_{j=1}^{t} \Bigl(1 - \frac{1}{n_j}\Bigr) = 2.
$$

We can also prove that, if the condition (1) holds,

$$
(n_1, n_2, n_3)\equiv (2, 2, 2)
$$

implies the existence of another value a_4 defined by $a_1a_2 = a_3a_4$, when $a=0$, say, and the function g_4 as in our result mentioned already, that is, R belongs to the class of maximal *B* type.

REFERENCES

- [1] HIROMI, G. AND H. MUTO, On the existence of analytic mappings, I. Kodai Math. Sem. Rep. 19 (1967), 236-244.
- [2] HIROMI, G. AND M. OZAWA, On the existence of analytic mappings between two ultrahyperelliptic surfaces. Kδdai Math. Sem. Rep. 17 (1965), 281-306.
- [3] NEVANLINNA, R., Einige Eindeutigkeitssatzes in der Theorie der meromorphen Funktionen. Acta Math. 48 (1926), 367-391.
- [4] OzAWA, M., On complex analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 93-102.
- [5] OZAWA, M., On ultrahyperelliptic surfaces. Kδdai Math. Sem. Rep. 17 (1965), 103-108.
- $\lceil 6 \rceil$ Ozawa, M., On complex analytic mappings between two ultrahyperelliptic surfaces. Kδdai Math. Sem. Rep. 17 (1965), 158-165.
- [7] Ozawa, M., On the existence of analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 191-197.
- [8] Ozawa, M., On an ultrahyperelliptic surface whose Picard's constant is three. Kδdai Math. Sem. Rep. 19 (1967), 245-256.
- [9] OzAWA, M., A remark on ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 19 (1967), 381-383.
- [10] OZAWA, M. AND N. SUITA, On the existence of analytic mappings. Kδdai Math. Sem. Rep. 25 (1973), 397-405.
- [11] SELBerg, H. L., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid. Akad. Oslo 8 (1934), 1-72.
- [12] Topa, N., On the functional equation $\sum_{i=0}^{p} a_i f_i^n i = 1$. Tôhoku Journ. Math. 23 (1971), 289-299.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU, TOKYO JAPAN