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ON A NEW CLASS OF ULTRAHYPERELLIPTIC SURFACES
By MITSURU OZAWA

1. Introduction. Let R be an ultrahyperelliptic surface defined by y*=g(x)
with an entire function g(x) having only an infinite number of simple zeros.
Let M(R) be the class of non-constant meromorphic functions on R. Let P(f)
be the number of lacunary values of f in H(R). Let P(R) be/ y(%)P( f). This

(=

quantity is called the Picard constant of R. In the ultrahypere lliptic case 2=
P(R)<4. Surfaces with P(R)=2 or 4 are completely determined and those with
P(R)=3 are still undetermined except for those of finite order [2], [8]. Let S
be another ultrahyperelliptic surface defined by Y?=G(X) with a similar entire
function G(X). Let ¢ be a non-trivial analytic mapping of R into S. Then
P(R)=P(S). The existence of ¢ is equivalent to the existence of entire 4 and
meromorphic f satisfying

f(2)3g(2)=G(h(2)).
Here h is called the projection of ¢ and is defined by
Sego Pr!

with @Pr: (x, y)—>x and Ps: (X, Y)—X. This h is one-valued which is equivalent
to the rigidity of ¢ [6], [7]. The above functional equation gives a powerful
tool to get several criteria for the existence of analytic mappings [1], [2], [7],
[81, [91, [10].

In this paper we shall introduce a new class of surfaces. Let R be an
ultrahyperelliptic surface defined by y?=g(x) with entire g(x) having only an
infinite number of simple zeros. Let &R) be the set of non-constant regular
function on R. If there is a member f in &(R) satisfying the following condi-
tions, then R is called of maximal B type:

(1) There are constants a oo, ¢#0 satisfying

a*~2af+fi-fig=c

when f-Pz'(x) is represented as f(x)+f(x)v/g(x).

(2) There are systems (ay, ---, a;) and (n,, -, ny) such that for each j all
the roots of f=a, have their orders n;p,, with integers n,=22 and p;,=1.
Further (n,, ---, n,;) satisfies
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¢ 1
ng(l— E-)_z .

We shall decide the surfaces of maximal B type and discuss the existence
problem of analytic mappings.

2. In order to go further we need several preparations. We firstly remark
that

3(1-1)=e

J=1 n,

in general. The Nevanlinna-Selberg theory [11] of two-valued algebroid func-
tions gives

(=T, NH< ZT)N(r, w,)—=N(r, W)+0(log rT(r, f)).

Our function f satisfies N(r, c0)=0, N(r, a)=0. Further

N(r, W)= {m(z0)—1}
f (zg) #o0
S (zg)#o0

with the multiplicity m(z,) at z,. Hence
G—9TC, H<E NG, w)+000grTw, 1), wteo, a.
Now we put w,=a,, ¢—2=t. Then

(=270, H<Z N, a)+000g 1T, 1)
- J
Hence

f)(l——l—)él

=1 n,

Recently Toda [12] had proved the following fact:

Let fo, ==+, fp (p=1) be p+1 non-constant entire functions and let a,, -, a,
be p-+1 meromorphic functions (#£0) in |z|<co such that T(r, a)=0o(T(r, f,),
7=0, .-+, p. Then, if

3 0,/ 1) =1

for some integers n, -+, n, (Z1),

1
5

M-

1.
o n,

J

3. In this section we shall decide all the surfaces of maximal B type.
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Firstly we may assume that a=0 and hence a,#0. by

we have the following four possibilities :
i)

ii)

iii)

iv)

=3, m=2, n,=3, n;=6;
=3, m;,=2, n,=4, n;=4;
=3, n,=3, n,=3, n;=3;
=4, n,=2, n,=2, ny=2 n,=2.

Case i). Let us consider the two-valued entire algebroid function satisfying
F(z, y)=y*+2Ay+c=0.
Then F(z, 0)=c. Further with entire g, g, g
F(z, a)=gt,
F(z, a)=g3,
F(z, a;)=g8.

Hence
asgi—azg§=(as—az)(c—aza3) .
If ¢c#a,a; then Toda’s result gives a contradiction. If c=a,a,, then a.gi=a;g3.

This shows that g, has only zeros of even order =2, that is, g, can be written
as g% Hence we may put n,=6, which is a contradiction by

3 1 13
SRSV
;Z=;1 n, 6
When g, has no zero, then we may put n,=co and ny;=co. This is again im-
possible.
Case ii). This case is impossible by the similar reasoning as in case i).
Case iii). In this case )
F(z, aj)=g3, 1=1,2, 3.
Hence
a;g8—a.gi=(a;—as)(c—aia,).
If ¢+#a,a,, then this is impossible by Toda’s result. If ¢=a,a,, then c#a,a; and
hence
a:g3—asgi=(a,—as)(c—a,as)
implies a contradiction.
Case iv). In this case

F(z, a,)=g%, 1=1,2,3,4.
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We firstly prove that c#a,a,, ¢+#a.a; implies c=a,a;. By c¢#a,a,, c#asa; we
have

Qs
a,——az)(c‘—aﬂz) ’

a;
a;,—az)(c—aay) ’

rigi—rigt=1, ri= ( 7= (

as
a;—as)(c—a,a,)

a
rgi—rgi=1, ri= ( -

o, 1=
a,—as)(c—ayas) ’ (

Hence
7:8:—718:= 12",

1
T:got 1181 =——e 1
B
with entire H;, H,(0)=0 and a constant j8,#0. Thus
1 1
72g2== ?(ﬁleHl‘f‘—pTe—Hl) .
Similarly we have
1/1
Mg g(g e )
with entire H,, H,(0)=0 and a non-zero constant 8,. Hence
wp gy 15 g Te g, "
738 dH it —=e 1= e H2— B0z,
B B

By the impossibility of Borel’s identity we have two possibilities

H,=H, H,=—H,
7’?181:—/927'2 T?ﬁlﬁzzrz
75B.=Bire, 7¥=—p1B:7>.
In both cases we have
7”52‘{"7’2:0 )

which gives c=a,as.
The above fact gives the following possibilities :

(c:a1a2 C=a,a;4 (czala4
c=asa,;, \C=0ayQ,, \C=ayds.
We may restrict to the first case. Hence

a,gi=a.gt, a.gi=a.g}.
Since c¢#a.as

73gs—= %(-lﬁ e—H_ﬁeH)
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with entire H, H(0)=0 and a constant 8+0 and
1

e
Hence
A= gty (8"~ ﬁi” ) -aaaf,
C—dt=— 64i§r§ {(ser- ﬁl7>4’2”(ﬁey_ ,8(12’1 )+
with

4(a,a,+aj) . 16(ai—aia.)’

- (as—az)(a;—ay) ’ N (03—02)2(01_02)27 ’

Further with a constant K

Cc—ar=K{(pen - ﬁi,, )2—5,}{(ﬁeﬁ—ﬂ—i,,~)2—5z}.

Here 0,0,(0,—0.)+#0 and (0,+4)(0.+4)+#0. In fact §,=0 gives u’=u2-—v?% v=0,
that is, a?=a,a,. Hence a,a,=asa, gives a,=a, (a;#0). This is impossible.
If 0,=0d,, u>=v? and hence a;=0 or a,a,=0, which is again impossible. 0J,=—
implies 164-8u-+1?*=0. This gives a;=0 or a;=a, which is impossible.

We may write

K f1gen—1).

— A= ——
C-4 Blett 32

Hence
2112: 2324: 2526: 1723: -_ 1 y
21—1")\2: “‘/23_124: '—\/57 ’ 15_'_26:—‘27—28: - \/52 .

O1#=—4, 0,%#—4 imply A, #2As, AsFAs, AsF A, Ar#As. Further 4,#24, if 7#; and
2;#0.
LEMMA. Let Ny(r, 7, e¥) be the counting function of multiple zeros of e®—r,
y#0. Then
Ny(r, 7, e®)y=o0(m(r, e¥)).

Let Ny(r, 7, e¥) be the counting function of simple zeros of e®—y, y#0. Then
No(r, 7, eB)y~m(r, ).

This was proved in [5]. It is evident that e¥—2,=0, ¢¥—2,=0 have no
common root if A;#2, A,4:#0. These facts imply that C— A? has infinitely many

simple zeros.
Since every f in &(R) can be represented as
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—A+fg,
f satisfies
yi42Ay+ A —fig=0.
Hence
—fig=c—A*.
Let us put

Be —2,=my(2)*L(z),

where L, has only simple zeros. Then

C_Az:,,,&ﬁ m (2)2ﬁ Li(2)
.842“1 =1 =

Hence we may put
8
g=1I L2).
=1
However there does not occur any trouble even if we adopt

]Il(/aeﬁ—,zj), H(0)=0

as g, since the structure of R is invariant under this change and &(R) is too.
Hence we put

g=11(Be"=2),  HO)=0.
Here 2,#4, for 1+, 4,0 and further
Ahe=224=As ;=2 As=—1,
At le=—A—=—~0, AtA=—A—A=—~/0,.
Another representation of g is
g=PF%H — A,B0e + A, fletT — A, B2 41
with entire H, H(0)=0, a constant 8+0 and

A;=4+2u, A,=6+4u+02%.
For u, v we have
v#0, wu®#0v?, 16+8u+v?+#0.

4. In §3 we have gotten the representation of g and hence the surface R
defined by y*=g(x). We shall now prove that this is really of maximal B type.
We may adopt

__ (as—a(ai—an)* & o 4 o
64as Bl ]l;Il(ﬁe ;).
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Let us consider the following function

f1+ '\/g )
This belongs to &(R). We now put

fi= 1_{ (a3—as)(a,—a,) (per—

~ 2a, 4 \

This gives

ai—2a;fi+aa,=— 1

fi=a,a.—g.

E%H—Y—alag—a%} .

leamade=ad (g 1 Yo

Be

a,a,
ai—2a.f+asa,~= #(0102—203][1"[‘0%)
3

_.a: gi=g
az °*7

2
4

a}—2a,f,+aa,

o, Qs [ (as—as)(a1—ay)
=a:t a3{ 4

1\
(‘Beﬁ—fé_”_) —aﬁ—alaz}—f—alaz

—_Va_z_ — — H _i_ 2: 2
= 4a, (as—as)(a, 03)(,3@ + ‘BeH ) =gz,
ai—2a.f1+a,a,
asa a
= 23“ (a3—2a,f +a,a,)= Z%“ gi=gt.

Thus our R belongs to the class of maximal B type.

267

5. Let S be another ultrahyperelliptic surface defined by Y?*=G(X) with
entire G having only infinitely many simple zeros. Let ¢ be a non-trivial analytic

mapping of S into R. Then we have the following fact:

B type, then S is also of maximal B type if ¢ exists.
We shall prove this. Let & be the projection of ¢, that is, A=PregPs
Let f be a member of &(R) such that f satisfies two conditions of maximal B

type. Then

f°5~7’51=f1+f2\/§ ’
a*=2af,+fi—fig=c

for some a#co and for a non-zero constant c.

that is,
fo ¢og)§1

we have

If R is of maximal

Transplanting f on S by ¢,
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fo¢og>§1—_—fog>;zlog)ko¢o_q>§l

:feg)ﬁloh:floh—f—fzeh»\/é:ﬁ .

Hence

a*=2afioh+(fioh)*—(fsoh)*goh=c.
However by [7]

feG=goh

with meromorphic f*. However g and G have only simple zeros. Hence f* is
entire. Thus

a*=2afoch+(f1oh)*—(fooh)* f*G=c.
Let

fo@Ps'=f1oh+(fooh)[*VG .
Then f €&(S) and a is the desired lacunary value of f. The condition (2) in the

definition of maximal B type holds for f with the same a,, a,, as;, a,., Thus we
have the desired result.

6. Let R be of maximal B type. We shall consider the existence problem
of analytic mappings of R into another S or of S into R.

Assume that P(S)=4. Consider a non-trivial analytic mapping ¢ of R into
S. Then there exist an entire function A and a meromorphic function f such
that

gE‘BSQSH_AZﬁGeGH+A4ﬂ4e4H_AZ‘BZeZH+1
= [t =5 =3y

with constants 0, 0;, 0,05(0;—0,)#0. For simplicity’s sake we put M=Leh—
L-h(0), c=exp L-h(0). The right hand side is

f(@)*ce™ —0)(ce™—3ds) .
Then
No(r, 0, g)=Ny(r, 0, (ce™—0d,)(ce™ —ds))

~2m(r, ™)
and
Ny(r, 0, g)~8ml(r, e¥)
with a negligible exceptional set of . Hence

dm(r, e¥)~m(r, ).
Further
2N(r, 0, /)SNy(r, 0, 9)+Ny(r, 0, g)=0(m(r, e¥)),
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2N(r, o, IZN,(r, 0, (ce®—8,)(ce™ —0,))
+N1(7’, 0, (CQM—51)(C€M'—52))

=o(m(r, e™)).
By differentiation of
g=/f*(ce”—0d,)(ce” —0by)

and by elimination of f? we have
ale2M+8H+0292M+6H+a382M+4H+0482M+2H+0582M
+aeeM+8H_|_a7eM+6H_i_ageM+4H+ageM+2H+aloeM

+a et tapetf+aet+ae?f+a,,=0,

alz(sz' M —8H' ), azz(%: M —6H')(— A e,

as:(.z% M)A, a4:(27f' L2M—2H )~ A)Be,

o= gy, a=(= 2 —wrism)sotoae,

269

f f
a7=(%{i/— + M —6H) A0+, ag=(— 2~}H——-M’+4H’)‘B“A4(51+52)c :
a9=(% M —2H) At ode,  aw=(— %’“—M’)@ﬁam ,
au=(2%—8H')585152, am=<—2—]{,——|—6H’)A2565152,
a13=(2§'~—4H')A4[345152 o aw=(— 2—]’:- +2H') A3,
s

Evidently T(r, a;)=N(r, o, a;)+m(r, ajy=o0(m(r, e™))+om(r, e?)) for every j,
1=<;<15. Now we can make use of Nevanlinna’s proof [3] of the impossibility
of Borel’s identity. By m(r, e*®)~m(r, ) we can save our consideration and
conclude either M=4H or M=—4H. Indeed we have firstly the existence of

(¢5);=1,.-.14 Such that
610162M+GH+620222M+4H+ng3€2M+2H+C4a4€2M
+650592M-2H+66068M+GH+C707€M+4H+CsageM+2H

+ 9™+ C10a100M M 401101107 € 1501000
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+c15a55e*F 4-¢44a,4=0.
If ¢;c,=0 (G+#7, 7, j=1, -+, 13), then we have only one possible case
ciae 4-¢1,a,,=0,

which gives M+4H=0. If there is at least one c;c;#0 (7, j=1, -+, 13, i#j),
then we have the existence of (¢}),-s,...1s Such that

cla e el 4 o felap0e T+ olpa,=0.
If ¢ic;=0 (G+#7, 7, =1, -+, 12), then we have two possible cases

csage i 4cl3a,3=0
and
Clo@r0e™ 4  4-cl3a4,=0.

These give either M+4H=0 or M—4H=0. If there is at least one cic;#0 (/#,
i, j=1, --+, 12), we continue the same process repeatedly. In each step we have
the desired result: M=4H or M=—4H.

The case M=4H. Then we have

@107 4 a0 7 - (a,+ag)e ™ +(as+aq)e®™
+(astasta)e? +(as+a)e® (a0t ams)et?
+ape+a,,=0.

By our earlier result in [2] this gives
a,=a=a3tas=asta,=as+agt+ay
=0yt 012=010+A13=01s=0,5;=0.
Hence f is a constant and A,=0,
cAy=— B*0,+0,),  p°0.0.=c.
The case M=—4H. Then we have
ase a6 4-(as+aj)e 7+ (as+az)e ¥
+aitastast(ata)e*? +(a+as)et”

+a50°7F+ a0 7=0.
This gives
A5=04=03+0;0=0, 1t as=0a;+ag+ay5
=Q+au=as+a;5=0,,=0a,;=0,
Hence
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%:—M/y AZZO:

Afle=—0,—0,, B8ct=0,05.
Hence we have the following

THEOREM 1. Let R be of maximal B type and let S be the surface of P(S)
=4. Assume that there is a non-trivial analytic mapping ¢ of R into S. Then,
with entire projection h of ¢, A:=0 and either

4H=Loh—L-h(0),
A4:"“e-L°h(0)ﬁ4(51+52) ’

eHLen = 655,35,
or
4H=—L-h+L-~h(0),

A4ﬂ4: _e—L.h<o)(5l+52) ,
ﬂ882luh(0) :5152 .
If the conditions hold, then ¢ exists.

The inverse statement is trivial by [7].

COROLLARY 1. Let R be of maximal B type. If P(R)=4, then A,=0, that
is, on assuming that 0 is lacunary

2a%+a,a,+asa,—aza,+a3=0
and vice versa.

THEOREM 2. Let R be of maximal B type and let S be the surface of P(S)
=4. Assume that there is a non-trivial analytic mapping ¢ of S into R. Then
A,=0 and either

4Hoh—4H-h(0)=L,
Ag=—BletT 0§, 15,),

BEet A3 5, =1
or
4H-h—4H-h(0)=—L,

A Bt O =—(5,15,),
BoeH O =55, .

If the conditions hold, then ¢ exists.
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There is an ultrahyperelliptic surface R of maximal B type and with P(R)
=3. It is known that P(R)=3 implies

g:1—'2,310H—2‘82@L+ﬁ?eZH—ZﬁlﬁzeH+L+ﬁ§egL

with two entire functions H, L (H(0)=L(0)=0) and non-zero constants f3;, fB.
Let us put 2H=L. Then we have

g=1-2:e"+(Bi—28)e* ™ —20, s + e " .
If we put
—2p,=—A,8%,

Bi—2B.=Asp*,
2B1Bs=Af°,
pi=6",
then g has the form of maximal B type. In this case
B'=P., 4Bi=AiB., A3=4A,+8.
Hence a,, a,, a;, a, must satisfy
a1a,=asaq, 16a,a,a5=(a;—a,)*(a,—a,)*.
Next we shall prove that
y2=1-2Be7+(Bi—2B:)e* " —2B,B:e* 7 + Biet =g,
determine a surface of P(S)=3, when 168,+ 5%
If 168,+ 3, it is easy to prove
Ny(r, 0, g)~4dm(r, e¥).
Assume that P(S)=4. Then
g1=fUel—0,)(ef—05),  0.02(0,—02)#0.

Then the similar consideration as in the proof of Theorem 1 does work. And
we have either L=2H or L=—2H. If L=2H, then a;;=0 implies the constancy
of f. Thus

1_—zﬁleH_'_(‘Bf—2‘82)82H—2ﬂlﬁze3}1+ﬁ%e4;’
:c2(e4H_(51+52)e2H+5152) .

This gives 8,=0, which is a contradiction. If L=—2H, then a;=a,;=0. Hence
we have

%:4H’ , f=r0)e*".
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Thus
1286 +(Bi—2B5) e —2,B:¢° 7 + B3t

=c%t (e~ —(§,+0,)e 27 +6,0,) .

This gives 8;=0, which is a contradiction. Therefore P(S)=3.
Assume that 168,=p% Then Ny(r, 0, g,)~2m(r, e®). However Ny(r, 0, g)~
dm(r, e¥) if
g=1—A,p%"+ A,fte* — A,B0e*H + BietH

with p=p., 48i=A%B,, A3=4A,+8. Thisis a contradiction. Therefore 163,+ f33.
Thus P(R)=3.

7. Let R and S be of maximal B type. Let ¢ be a non-trivial analytic
mapping of R into S. Then

g=plet— A, PPt 4+ A B2 — Ay e +1
:f2[7,4e4Lon__BZ7,aeaLeh+BJzezLon__BzreLoh_*_l]
=f:G-h.
Let Loh—L-h(0) be M and let ¢ be exp L-h(0). Then
g=frce*™— Boric*e*™ + B,y c?e®™ — Byyce™+1].
By differentiation of this equation and by elimination of f? we have
ale4H+4M_|_ aze3H+4M+ a382H+4M+ a4€H+4M+a5e4M
+a694H+3M+a7e3H+3M_|_ase2H+3M+aseH+3M+ameaM
+alle4H+2M+alze3H+2M+ a13e2H+2M_|_a“eH+2M+ alse2M
+alee4H+M+ a17e3H+M_|_01822H+M_|_ a198H+M+agoeM

+ anet T 4 550° T+ ag50* "+ aye" +a,5=0,

01=(4H’— %j: —4M’)ﬁ“r4c‘ : azzAz(—sH’Jr E}f— M) B,

amaer =2 o pre, a4 M car)pre,

a=(— %f:—/ —AM e, ae= —32(411'—27]“ —3M )8,
4= ——BZAQ(——3H/+ % HIM)BPE, ag= —BZA4(2H’— 2}{ ' —3M’),8273c3 )



274 MITSURU OZAWA

ay=—Bo Ay —H'+ 2 +3M)Bre’,  ai=—By— Z;f» —3M e,

f
an=B,(4H'~ %{l —2M ), aw=B.A{—3H'+ 2—}(~+2M’>ﬁ3rzc2 ,

013:B4A4(2H/'—’2—j:_ _ZM/).BZTZCZ s (114=B4A2(—H/+2—;— +2M')‘BT262 ,

(115:B4(—— _2—}1:: —ZM/)TZC2 ’ 016:—32(41—1,'_ 3]{7, —M')ﬁ42’6 ’
2f

au:BzAz(3H’—~2~j:—/ —M)§re,  aw=—B.A(2H — - —M)rc,

am:BZAQ(HI_ZT}H —M)re,  aw=B{*L

f
021:(41_1/_2;;)134 ’ 022:‘A2<3H’—£J{i)ﬂ3,

-l-M’)rc ,

21
e

2f7 2f'
023:A4(2H/_-:],:_>B27 024—_"‘1‘12([’1/—%)}9: Qys=—
In the present case we have

dm(r, e®)~Ny(r, 0, g)=Ny(r, 0, Goh)~4dm(r, 2M)
and

Ny(r, oo, fi=o(m(r, ef)).
Hence

T(r, a;)=o0(m(r, ef)).

Thus we can make use of Nevanlinna’s method of proof of the impossibility of
Borel’s identity. In our case m(r, e¥)~m(r, e™) brings us a simplicity. By a
similar consideration as in §6 we only have two possibilities: a) H=M or b)
H=—M.

Case a). We have

a7+ (a,+aqde™ +(as+ar+ai)e®+(a,+ as+ ay+ay6)e’?
+(as+astanatan+an)et?+ (a0t au+ast+as)e’”
F(a15F 19+ A2)e* T (a5t as)e® +a,=0.
Hence a,;=0 and hence f is a constant. Therefore
B=Fre, AF=FBrc, AF=Bref,
Ap=f%cB,, f?=1.
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These give Bi=yic*. If B*=r%c®, we have A,=DB, A;=B, or A,;=—B, If
=—7%? we have B,=A4,=0 and A,=—58,.
Case b). We have

Ay +(ay6+F ago)™ (a1 + a1+ a25)e (a6t Q1o+ a15taz)e®™
+(al+a7‘|‘a13+a19+025)94H+(02+as+014+azo>93H
+(as+as+ass)e?+(a,+as)e” +a;=0.

Hence a,;=0 and f=/f(0)e?”. Thus
[34e4H—A2,83e3”+A4/32e2”—A2,BeH+1
=d?[7'c'— Byy*c®e¥ + Byc®e®  — Byyce®H 4ot H7]
Therefore
B=dt, Af=Bied®, AF=Bdic,
Ap=Brcd, 1=d’rc.
Hence
ABric*=B,, A:Brc=DB,, p'rict=1.

If Byc=1, then A,=B, and A,=B, If frc=—1, then A;=—DB, and A=B..
If ﬁ)’C:Z', then A2:BZZO al'ld A4:'—B4. If ‘BTC:"‘Z., thel’l A2:BZZO al’ld A4-——
—B,. Therefore we have the following

THEOREM 3. Let R and S be of maximal B type. Assume that there is a non-
trivial analytic mapping ¢ of R into S. Then there exists an entire function h
such that either H=L-h—L-h(0) and one of the following four holds -

or H=—Leh-+L-h

<

B=rexp(L-h(0))

14,=B,

A,=B,,

B=ir exp(L-h(0)
A,=—B,
A,=B,=0,

Brexp(L-h(0)=1
A,=B,

A2=B2 ’

B=—1exp(L-h(0))
A,=B,

A,=—B,,
B=—1rexp(L-h(0))
A,=—B,
A,=B,=0,

(0) and one of the following four holds:

Brexp(L-h(0)=—1
A=DB,
A2:_BZ »
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Brexp(L-h(0)=1 Brexp(L-h(0)=—17
A4:_B4 A4:“_B4
A2:BZZO, A2:BZZO-

The 1nverse statement 1s also true.

8.

We here mention some remarks.

We can prove that the following types do not occur: The condition (1) holds
and in the condition (2)

(nb No, n3):(2y 3; 5): (2y 3y 4)) (2) 3) S)y (2y 2; 3)

instead of

Jé:l(l—i):z.

n,

We can also prove that, if the condition (1) holds,

(nly Ng, ns):(zy 2) 2)

implies the existence of another value a, defined by a,a,=asa,, when a=0, say,
and the function g, as in our result mentioned already, that is, R belongs to the
class of maximal B type.
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