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1. Introduction. Let g be a Riemannian metric which is defined on a com-
pact orientable differentiable manifold M of dimension n and makes its volume

V4 equal to 1, that is, SMdngl, where dV, is the volume element of M meas-

ured by g. We denote the set of all such metrics by M. When g is fixed we
have a Riemannian manifold (M, g). Let us take a covering {U} of M by co-
ordinate neighborhoods and denote the local coordinates in U by {x%}, where
a, b, ¢, --- run over the range {1, 2, 3, -, n}. In each U, g is expressed by its
components gq,. We adopt summation convention so that the contravariant com-
ponents g®® of g satisfy g,.g°°=0.°. By Ra? R, and R we denote the com-
ponents of the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature of (M, g), respectively. Now let us consider the integral

Fulel=|, f(RYAV,,

where f(R) is a scalar field on M determined by g as the contraction of a tensor
product of the curvature tensor. This integral defines a mapping F:M—R. A
critical point of F is denoted by gr and is called a critical Riemannian metric
with respect to the field f(R) or the integral Fy[g]. The following four kinds
of critical Riemannian metrics have been studied by M. Berger [1] and Y. Muto
[5 6,7 8, 97:

Aulgl={ Rav,,  Bulgl=| R'dv,,

Culgl=|, RuR*dV,, Dulgl={ RuwaR®dV,.

The equations of the critical Riemannian metric are written as follows:
(L.1) Aab:CAgab, Bav=Cpgas, Car=Cc¢gas, Dav=Cpgas,

where Cy4, Cp, C; and Cp are undetermined constants and Ags, Bas, Cas and Dy,
are given by
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1
(12A) Aab:_Rab+§Rgab’

(1.2B) Bab:ZVEVI,R—ZVTVTRga,,—ZRRa,,—I—%—Rzgab,

1
2
(1.2D) Doy=2VNyR—4V,N"R 4y +4R 0, Ry —A4R 51y R°T

(]-ZC) Cab:vava_erTRab" vrergab””ZRasrbRsr‘{"%RsrRsrgab )

1
#2Ratxerwr+ ‘2“ Rtsqutsrqgab ’

where V means covariant differentiation with respect to the connection induced
by g. It 1s well known that a critical point g of Ay[g] in M is an Einstein
metric.

Although critical Riemannian metrics were first defined on a compact mani-
fold, it is to generalize the definition when M is not compact. The resulting
equations are the same as the foregoing ones and (1.1) and (1.2) are valid.

The purpose of this paper is to study the results obtained by Y. Muto [9]
more deeply. §2 is recalled the definition of a Sasakian manifold. In §3 a Sasa-
kian manifold is studied when g turns out to be a critical Riemannian metric
and moreover we consider critical Riemannian metrics in a Sasakian manifold
with vanishing C-Bochner curvature tensor in §4. In §5 we investigate some
conditions to be a critical Riemannian metric go or gp. §6 is devoted to the
study of a Sasakian submersion I7 : (M, &, 7)—(B, Zg) where § and Zg become
critical Riemannian metrics simultaneously.

2. Sasakian manifold.

Let (M, g, ) be an n(n=3)-dimensional Sasakian manifold (connected and C*)
with metric tensor g. Then there exist a Killing 1-form 7 satisfying

¢abzvaﬂb; ¢ab:_¢ba; Wa:g'"’?n 77a77a:1’
2.1

¢aT¢rb:“5ab+ 77a77b B va¢bc: No8ac— Nelab-

On a Sasakian manifold (M, g, »), the following identities are well known:

(2.2) Rabcry/‘r:ﬁagbc_vbgac s Rarvr:(n_l)ﬁa s
(23) Rabsr¢cs¢dr"—Rabcd:gacgbd—gbcgad’¢ac¢bd+¢bc¢ad »
(2.4) Rsurb¢w:”‘sab+(n”_l)¢ab ’

where we put S;p=0,"R.
We introduce the tensor field Ugp? and G, in a Sasakian manifold (M, g, 7),
defined by
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H+-3
(2 5) Uabcd:Rabcd‘“ 7’717*<gbc5adwga05bd)

H—1
— 7'T(gac77b77d+ﬁaﬁcabd_bbcﬁaﬁd_77b7]05ad

+¢bc¢ad—¢ac¢bd“—2¢ab¢cd) ’

R—n+1 n(n—1)—R
(2.6) Gu=Rau— T*i——gab—’*‘*’ﬁ'*f"*"“/]aﬁb,
_AR—(n—1)Bn—1)
where we put H= (n—Din+1)

A Sasakian manifold (M, g, ) is called a space of constant ¢-holomorphic
sectional curvature H or a locally C-Fubinian manifold if its Ug,® vanishes
identically. A Sasakian manifold (M, g, 7) is called an 7-Einstein manifold or a
C-Einstein manifold if its G,, vanishes identically. In an 7-Einstein manifold
(n>3), the scalar curvature R is necessarily constant. A 3-dimensional 7-Einstein
manifold means that R is constant.

The equations (2.5) and (2.6) yield the followings:

2
@D 1GI=CuG=| Ry 2R~ n(n1),
2
2__ abed — 2 = _ 2_1 J— .
28 U1 =Unseal ™= RI“ (8 s (AR 2= 13— DR

—n(n—1*3n—-1)},

where we put |R|*=RapaR*?, |Ri|*=R,,R®.
Next we introduce the C-Bochner curvature tensor B,,.? in an n-dimensional
Sasakian manifold given by

1
(2.9) Basea=Rapeat "}'/’L’;!_'Tg'"(Racgbd_Rbcgad‘["gacRbd-'gbcRad

+Sac¢bd-‘sbc¢ad+¢acsbd“‘¢bcsad+25ab¢cd+2¢abscd

—Racﬁbﬂd“l‘Rbcﬁa??d—77a7]cRbd+7]b7]cRad)

+ ‘Ri—tgn‘_j 1718?:_;21(“ ¢ac¢bd+ ¢bc¢ad _2¢ab¢cd)

(n4-1)(
R—3n—5
+ A D(nE3) (—gacQoatgocgaa)
R+n—1
+ “(;Il)'(m (GaeoatNafeGoa—GocNaNa—NoNeLaa)

which is constructed from the Bochner curvature tensor in a Kdhlerian manifold
by fibering of Boothby-Wang [3].
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By straight forward computations the following identities are obtained:
Basea=—Braca, Basca=Becqar, Babcd+Bbcad+Bcabd:0; Bay®=0,
Babcdvd:Oy ¢LLTBrbcd:¢bTBracdy ¢abBabcd:0; gdrBabcr:Babcd~

In the rest of the present section, we assume that a Sasakian manifold
(M, g, ) has the vanishing C-Bochner curvature tensor with a constant scalar
curvature R. Then we have following identity [3].

(2.10) vdRab:(n_l)(ﬁa¢db+7]b¢da>_<77asdb+ﬁbsda)'
Operating V. to (2.10) and using the Ricci identity, we have
(2.11) RosoR"=R o, Ry — R op+ {R—n(n—l)} 77a7]b+(n_‘1)gab-

Also, applying V¢ to (2.10), we get
(2.12) VAV Rop=—2R o +2(n—1)gar+2{R—n(n—1)} nons .

Contracting the vanishing C-Bochner curvature tensor with R% and R.’°¢, we
find respectively

(2.13)  (n+Dn—=1RaRy=(n—1)R—3n—5)R4s
H{(n+DIR.|*—=R*+4(n+1)R—(n—1)(n"+3n+4)} gas
H{=(+DIR,|*+ R*—(n*+2n+5)R+n(n—1)(n*+3n+4)} nans,

2.14)  (n+Dn+3)Rarer R =16(n+1)R . R"—4(3n*—2n—9-+2R)R.q
+2{(n—1*3n+7)—8R} gea+8(n+ 1) {R—n(n—1)} nena,

where we used (2.11). These will be needed later.

3. Sasakian manifolds with critical Riemannian metrics.

Let (M, g, ») be an n-dimensional Sasakian manifold. If the Riemannian
metric g is a critical Riemannian metric gz, g¢ Or gp, then the undetermined
constants Cp, C; and C, given by (1.1) are determined as follows [9]:

(3.1B) CB:%RZ—Z(n—l)R,
(3.1C) Cc:—é‘IR1|2*4R+2(71—1)(71+1),
(3.1D) cl,:% |R|*—12R+4(n—1)3n—1).

Moreover Y. Mutd [9] has proved
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THEOREM A. If g is a critical Riemanman metric g4, g5, ¢ 07 gp 1 @
Sasakian manifold (M, g, u), then scalar curvature is constant.

We first consider the case when g is a critical Riemannian metric gz in a
Sasakian manifold (M, g, »). By the aid of (1.1), (1.2B) and Theorem A, we can
easily see that (M, g, ») is an Einstein manifold. Conversely, if (M, g, ») is an
Einstein manifold, then we can see from (1.2B) that B,;=Cpgs. Thus we have

THEOREM 3.1. In a Sasakian manifold (M, g, ), n ovder that g be a critical
Riemannian metric gp, it is necessary and sufficient that (M, g, 5) be an Einstein
manifold.

Second, let us discuss the case when g is a critical Riemannian metric g in
a Sasakian manifold (M, g, »). It follows from Theorem A, (1.1) and (1.2C) that

1
C(Jga.b: _vrerab—ZRasrbRsr+ 7 ] Rl I anb .

Transvecting the above equation with g%°, we have

_on=4
Co=-"s LRI,

which and (3.1C) yield
|Ry|?=2nR—n(n—1)(n-+1).
If we take account of (2.7), then we get
(n—D|G*=—R*+2(n*~1)R—n(n—1)(n+2)=0,
that is,
(3.2) nn—=R=(n—1)(n+2).

Now, let us examine the following two special cases of (3.2):

(i) the scalar curvature R equals to n(n—1),

(ii) the scalar curvature R equals to (n—1)(n+2).
It is evident that (M, g, ») is an Einstein manifold or an z-Einstein manifold
satisfying Rq,=(n+1)gs—27947s respectively, if the case (i) or (ii) holds.

Thus we have

THEOREM 3.2. If g is a critical Riemanman metric g¢ tn an n-dimensional
Sasakian manifold (M, g, 7), then the scalar curvature R s pinched with

nn—1)ZR=(n—1)(n-+2).

Especially, 1f the scalar curvature R equals to n(n—1) or (n—1)(n-+2), then the
manifold is Einstein satisfying Ra,=(n—1)ge or n-Einstein satisfying Rqp=
(n+1)gav—27947ms respectively.
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In the rest of this section, we study that g is a critical Riemannian metric
gp in a Sasakian manifold (M, g, ). From Theorem A, (1.1) and (1.2D) it is

clear that
CDgab: _4VTVTRab‘|'4RaerT"—4Rasrb RST_ZRatsertsr”{_ % | R I 2gab )

from which by contraction this with g%® we have

n—4

Co= 2n

IR|®,
which implies
|R|*=6nR—2n(n—1)3n—1),
because of (3.1D). This together with (2.8) gives
(n*—1) |U|*=—8R*+2(n—1)Bn*+9n—2)R—2n(n—1)*(n+2)(3n—1)=0,
that is,
3.3) n(n—l)§R§%(n—l)(n+2}(3n——l).

If the equalities hold respectively, then we can prove that (M, g, 7) is of con-
stant curvature 1 or of constant ¢-holomorphic sectional curvature H=3n—1.

Therefore we get

THEOREM 3.3. If g 1s a critical Riemannian metric gp in an n-dimensional
Sasakian mamifold, then the scalar curvature R 1s pinched with

nn—1)=R= —Ali—(n—l)(n—E—Z)(Bn——l) .

Especially, 1f the scalar curvature R equals to n(n—1) or %(n—l)(n—l—Z)(Sn—l},

then the mamifold 1s of constant curvature 1 or of constant ¢-holomorphic sectional
curvature H=3n—1 respectively.

4. Critical Riemannian metrics in a Sasakian manifold with vanishing
C-Bochner curvature tensor.

If g is a critical Riemannian metric g4 or gp in a Sasakian manifold with
vanishing C-Bochner curvature tensor, then by virtue of Theorem 3.1 we can
easily verify that it is of constant curvature 1.

Next suppose that g is a critical Riemannian metric g, in a Sasakian mani-
fold with vanishing C-Bochner curvature tensor, then from Theorem A, (1.1),
(1.2C), (2.11) and (2.12) we find

4.1 2n-F1(n—1DCegar=4n—1){(5n4+7)—R} R4y
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+{(n+1)(n—5)| R [*+4R*—16(n+1)R—4n—1)(n*—3n—6)} gus
+{4(n+1)| R, |*—4R*—4(n*—2n—T)R-+-4n(n—1)(n*—3n—6)} nans -

Differentiating covariantly both side of (4.1) and using (2.10), we get
(n—=1)6n+T7—=R)(7aSavt7pSea)={(n+1D| R |*—R*—=2(n+1)(n—3)R
F(n—1)(n*+2n*—4n—")} (NaPaot+ NoPaa) -
If we contract this with 7°$.% and make use of (1.1), then we obtain
42)  (n—D{R—(GBn+D}Rac
={—n+D|R|*+R*+2(n+1)(n—3)R—(n—1)(n’+2n*~4n—7)} gac
H{n+D|R:|*—R*—(n*—2n—T)R+n(n—1)(n*—3n—6)} a7.,
from which, by contraction
4.3) |R|*=2nR—n(n—1)(n+1).
Substituting (4.3) into (4.2), we have
{R—Gn+T}[(n—1)Rap— {R—(n—1)} gapt+ {R—n(n—1)} 5.7,]=0,

R n(—nl 1)’gab+ n(nn_li_&mm' If the scalar

curvature R equals to 5n-7, then we can prove by Theorem 3.2 that 7 is neces-

sarily 7 and the manifold is of constant curvature 1. It follows from (2.7) and

(4.2) that the scalar curvature R equals to n(n—1) or (n—1)(n+2) if R*#5n-7.

Consequently Theorem 3.2 actually shows that (A, g, ) is of constant curvature

1 or of constant ¢-holomorphic sectional curvature H=(n-+9)/(n+1), respectively.
Thus we obtain

from which R=5n-+7 or R,=

THEOREM 4.1. If g is a critical Riemannian metric g¢ in an n-dimensional
Sasakian manmifold (M, g, ) with vanishing C-Bochner curvature tensor, then the
manifold 1s of constant curvature 1 or of constant ¢-holomorphic sectional curva-
ture H=(n+9)/(n+1).

Finally we assume that g is a critical Riemannian metric gp in a Sasakian
manifold with vanishing C-Bochner curvature tensor. From Theorem A, (1.1),
(1.2D), (2.11), (2.12) and (2.4) we find

4.4) 2n—=1)(n+1)n+3)Cpgar=8(n—1)9n*+32n+31—4R)R 4,
+{16(n+1)(n—>5)| R,|*—8(n—9)R*—4(3n*—3n*-+37n--91)R
+2(n—1)(3n'—27n*—19n*4-163n-+136)} gqs
+ {64(n+-1)| R,|*—64 R*—8(3n*4-5n2—19n—53) R
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+8n(n—1)(3n*4+5n*—27n—45)} a7 -

Differentiating (4.4) covariantly and making use of (2.10), we get
(m—1)On*+32n+31—4R)(9aSav+76Sda)
={8(n+1)|R,|*—8R*—(3n*+9n*—27n—49)R

+(n—1)3n*+14n*—4n*—46n—3D} (naPar+ NoPaa) ,
from which we have by contraction of this with 7’g.?
(4.5) (n—1){4R—(9n*4-32n+31)} Rqe
={-—-8(n+1D|R,|*+(3n*+9In*—27n—49)R+8R*
—(n—1)(3n*+14n*—4n*—46n—31)} gqe
+ {8(n+1)| R,|*—8R*—(3n*+5n*—19n—53)R
+n(n—1)3n*4+-5n°—27n—45)} naye,

which implies

(4.6)  8(n+1)|R,|*=4R*+(3n*+18n*+9In—22)R—n(n—1)3n*+14n*4-5n—14).

Comparing this with (4.5), we have

{4R—On*4+32n+3D} [(n—DRa— {R—(n—1)} gas+{R—n(n—1)} 9an1=0.

First let us discuss the case of 4R+#9n®+32n+31. Then we can easily verify
that the manifold is 7-Einstein with R=n(n—1) or (n—1)(n+2)(3n—1)/4. Con-
sequently it follows by virtue of Theorem 3.3 that (M, g, ») is of constant cur-
vature 1 or of constant ¢-holomorphic sectional curvature H=3n—1. The case
of 4R=9n2+32n-+31 implies that n=7 by Theorem 3.3.

Gathering these, we have

THEOREM 4.2. Let g be a critical Riemanman metric gp in an n-dimensional
Sasakian manmfold (M, g, n) with vamshing C-Bochner curvature tensor. Then

(i) for 4R+9n*+32n+31, the mamfold is of constant curvature 1 or of con-
stant @-holomorphic sectional curvature H=3n—1,

(ii) for 4R=9n*+32n+31, the scalar curvature R satisfies the inequality

n(n—l)§R§%(n—l)(n-}—Z)(Bn—l), (n=7).
5. Conditions to be critical Riemannian metrics.

In this section we shall investigate some conditions that g is a critical
Riemannian metric go or gp in a Sasakian manifold (M, g, 7).
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Let (M, g, ») be an p-Einstein manifold. Then we have

(5.1 (n—DRyp={R—(n—1} g+ {n(n—1)—R} pans,
from which
(5.2) (n—1)| R, |?*=R*—2(n—1)R-+n(n—1)%.

Substituting (5.1) into (2.12), we can see

(5.3) (n=1V:.V"Ray=2{n(n—1)—R}(gas—n7a70) -

Substituting (5.1) and (5.2) into (2.13), we have

6.4 (n—1PR.R,={R—(n—1}*gart+ {n(n—1)— R} {R+(n—1)Xn—2)} pars .

From (5.1), (5.4) and (2.11), we can get

(5.5) (n—=1)R 5o R"={R*—3(n—1)R+(n—1)*(n+1)} gas

—{R—n(n—D}{R—=2(n—1)} nans.
Consequently we get
2(n—1)Car=A{(n—5)R*—2(n—1)(n—9NR+(n—1)*(n*—9n—4)} gas

+4{R—n(n—1} {R—(n—1)(n+2)} pa7s

by virtue of (1.2C), (5.2), (5.3) and (5.5). Therefore we find

THEOREM 5.1. In an n-dimensional n-Einstein manifold, if the scalar curvature
R equals to n(n—1) or (n—1)(n+2), then g s a critical Riemannian metric gg.

As for a critical Riemannian metric gp we shall prove

THEOREM 5.2. In an n-dimensional Sasakian manifold (M, g, ) of constant
@-holomorphic sectional curvature H, 1f H equals to 1 or 3n—1, then g s a
critical Riemanman metric gp.

Proof. 1t is well known that the C-Bochner curvature tensor coincides with
Ugpe® if and only if (M, g, ») is an z-Einstein manifold. Thus, (M, g, ) is
considered as an »-Einstein manifold with vanishing C-Bochner curvature tensor.
Thus we have the following equation by the aid of (2.8):

2

n—1)(n+1)

Substituting (5.1) and (5.4) into (2.14), we have

6.7 (n+D(—172R s Ry =2{4R*—2(n—1)3n—1DR+(n—1)’Bn+1)} gas
—4{R—n(n—1} {2R—(n—1)%} nans .

(5.6) IRP:/—( {4R*—2(n—1)3n—1)R+n(n—1)*@En—1)}.
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Compering with (1.2D), (5.3), (5.4), (5.5), (5.6) and (5.7), we find
(n—1)*n+1)Dgp={4(n—5)R*—2(n—1)(3n*—22n—1)R
+(n—1)*3n*—28n*—3n+4)} gas
+4{R—n(n—1} {4R—(n—1)(n+2)En—1)} nans,

which shows that the assertion of the theorem is true.

6. Sasakian submersion.

We consider Riemannian submersions 7 : (M, &)—(B, Bg) such that fibers F
are complete and connected and imbedded in (1\7[, g) regularly as totally geodesic
submanifolds. The Riemannian metrics on the total manifold M the base mani-
fold B and the fiber F are denoted respectlvely by Z, g and Fg. Let (M g, %)
be a Sasakian manifold where dim M=7. Let the indices a, b, c,d,e - run
over the range {1, 2, ---, 7} and the indices 4,1, j, k&, --- the range {1, 2, ---, n}
where i=n-+1. A Sasakian manifold (1\7[, g, 7) admits a Riemannian submersion
where the unit Killing vector 7 is a vertical vector and the fibers are geodesics
tangent to 7. Such a Riemannian submersion is called a Sasakian submersion.

Let us recall some relations with respect to a Sasakian submersion I7 : (M, g, %)
—(B, 2g). (For details see [9], [14]). For the Riemannian metric ®g on the
base manifold B we have

(6.1) Bgﬂ:gﬂ_ﬁfﬁ“ Bgii=git,

Relation between the curvature tensor Bgp,.¢ of (1\7[, g, 7) and the curvature
tensor 2R,,," of (B, Bg) has be given as follows:

(6.2) <R”)k Lh:BRk;ih_FjiFkh‘i‘FkiF h+2ijth, (Fji:FTBgrL>

where R¥ denotes the horizontal part of the curvature tensor £ of (M, g, %) and
F* represents a complex structure J such that (B, g, J) is a Kidhlerian struc-
ture on B. For the Ricci tensor and the scalar curvature we have

(6.3) R;.=PR;—2%g;+(i—1)7,7.,
(6.4) R=BR—(71—1).

In a Riemannian manifold (M, g), since the tensors B, C and D are given by
(1.2), corresponding tensors of a Sasakian mamfold (M g, 7) will be denoted by
B, C and D and their components by B, Cap and Do, thle these of the base
manifold (B, 8g) by 2B, 2C and 2D and their components by #B,,, 2C,, and 2D,,.
If the scalar curvature [ of (M g, 7) is constant, the following identities are
obtained by Y. Muto [9]:

~

(6.5B) ﬁuZBBU+2(7'Z—1)BRU+{—(%~5)BR—4(15—1)+—;—(ﬁ—l)z}Bguﬂ‘—CB%m,
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~

(6.50) C“:BCU-HZBR”--I-{—ZBR—{——é—(ﬁ+3>(ﬁ—9)}3gu+éc‘%7;,
(6.5D) D.,=2D,;436%R, ;4 {—6PR+(37+2)(7—9)} g.,+Cp7.7,,

where we put

(6.6B) 51;:%(BR)?—B(ﬁ—l)BR—i—%(ﬁ—l)z,

~ 1 5,
(6.6C) Co=5PR,PRY—6"R+ 5 (n—1)(i1+3),
(6.6D) CN‘D:—é—BRWLBR”"‘—183R+5(3ﬁ—{—2)(ﬁ—1) .

Y. Muto [9] has proved the following theorems:

THEOREM B. Let I1: (M, g, 7)—(B, Bg) be a Sasakian submersion. If g and
Bg are critical Riemanman melrics gz on M and B respectively, then the scalar
curvature R 1s constant and (B, Bg) 1s an Einstein manifold satisfying

Ry —(f—1)(+2)? R+(i—1)*(71+1)=0.

Conversely consider the case where (B, Bg) 1s an Einstetn manifold where PR=
#2—1 or i—1. If one of § and Bg 1s a critical Riemannmian metric gg, then the
other 1s also a critical Riemannian metrics gp.

THEOREM C. Let II: (1\7[, g, 7)—(B, g) be a Sasakian submersion. If § and
Bg are critical Riemannian metrics go on M and B respectively, then the scalar
curvature B 1s constant and (B, Bg) 1s an Einstein manifold satisfying (*). Con-
versely, consider the case where (B, 8g) 1s an Einstern manifold satisfying (¥).
If one of & and Bg 1s a critical Riemanman metric gc, then the other s also a
critical Riemanman metric go. Where (*) 1s as follows.

* (PR —2(f—1)(7i+2)P R+ (7-+1)(7+3)(7i—1)*=0 .

THEOREM D. Let IT: (M, g, 7)—(B, Bg) be a Sasakian submersion. If § and
Bg are critical Riemanman metrics gp on M and B respectively, then the scalar
curvature B is constant and (B, Bg) 1s an Einstein manifold satisfying (**). Con-
versely, let us consider the case where (B, 8g) 1s an Einstein manifold satisfying
(**). If one of g and g 1s a critical Riemanman metric gp, then the other 1s
also a critical Riemanman metric gp. Where (¥*) 1s as follows

(%) PRy PRMM=6(7+2)° R — 237+ 27 —1)..
We shall now show the following:

THEOREM 6.1. Let IT: (M, 3, 7)—(B, Bg) be a Sasakian submersion. In order
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that g be a critical Riemannian metric gp in a Sasakian manifold (M, g, 7), it 1s
necessary and sufficient that (B, Bg) be an Einstein manifold satisfying

BRab:(ﬁ+l)Bgab;
and g be a critical Riemannian metric gp.

Proof. If we assume that g isNa critical Riemannian metric gz on M, then,
it follows from Theorem 3.1 that (M, g, #) is an Einstein manifold satisfying

RBov=(—1)as.

In view of (6.1), this means that ZR,,=(si+1)%g,,, namely, the base manifold
(B, Bg) is an Einstein one with 2R=(#—1)(#2+1). Furthermore from (6.5B) we
have 2B,,=2C3%g,, because of g is a critical Riemannian metric gs. The con-
verse is trivial by Theorem B. These complete the proof.

Secondly, let us prove

THEOREM 6.2. Let IT: (M, 3, 7)—(B, Pg) be a Sasakian submersion and g be
a critical Riemannian metric g¢ n a Sasakian manmifold (M, g, 7). Then the
scalar curvature R wn (B, Bg) is pinched with

(6.7) (A—D(A+1)=PR=(A—1)(71+3) .

Especially, 1f the scalar curvature BR equals to (i—1)(7+1) or (i—1)(#+3), then
the manmifold 1s an Einstein one satisfying

(68) BRab:(ﬁ+1)Bgab or BRab:(ﬁ‘{'g)Bgab
respectively, and g 1s a critical Riemanman metric g in (B, Bg).

Proof. Taking account of the fact that g is a critical Riemannian metric
g¢, in view of Theorem 3.2 and (6.4) it is easy to see that the scalar curvature
BR in (B, Bg) is pinched with (6.7). Recalling that if the scalar curvature 2R of
(B, 8g) is #*—1 or (#—1)(7+3), then the scalar curvature B of (A/~[, g, 7) is
7(n—1) or (7—1)(si+2) respectively, we can easily see by virtue of Theorem 3.2
that (1\7[, g, 7) is Einstein or y-Einstein satisfying ﬁ’ab:(ﬁ+1)§'ab—27]a% respec-
tively. Therefore it is evident by (6.3) that (B, 2g) i1s an Einstein manifold
satisfying (6.8). Consequently, regarding to éubzécgab, (6.1) and the mentions
above, we have 2C,,=%C,®g,,, which means that g is a critical Riemannian
metric go. These facts show that the assertion of the theorem is true.

Finally we shall prove the following

THEOREM 6.3. Let II: (]\/N[, g, 7)—(B, Bg) be a Sasakzanwsubmerszon and g be
a critical Riemanman metric gp n a Sasakian manifold (M, g, 7). Then the
scalar curvature BR in (B, Bg) 1s pinched with

6.9) (A= 1)+ DSPRE T (DA 1(3i+2).
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Especially, if the scalar curvature BR equal to #°—1 or (i—1)#+1)(372-+2)/4,
then (B, Bg) 1s of constant holomorphic sectional curvature H=4 or H=3#-+2 re-
spectively, and Bg 1s a critical Riemanman metric gp.

Proof. As g is a critical Riemannian metric gp, it follows from (6.4) and
Theorem 3.3 that (6.9) holds. If 2R is #*—1 or (i—1)(71+1)(372+2)/4, we have
ﬁ:ﬁ(ﬁ—l) or (#—1)(#i+2)(372—1)/4 respectively. So we can see from Theorem
3.3 that (M, g, 7) is of constant curvature 1 or of constant ¢-holomorphic sec-
tional curvature H=37—1. Making use of (6.2), we have that (B, Zg) is of con-
stant holomorphic sectional curvature H=4 or 372 respectively. These facts
prove that Zg is a critical Riemannian metric gp. These complete the proof.

The authors wish to express their sincere thanks to Professor Y. Mutd who

gave kind encouragements.
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