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Introduction.

The CR submanifolds of a Kaehlerian manifold have been defined and
studied by A. Bejancu [1] and are now being studied by many authors [3, 4, 5,
10, 11, 13, 14].

The main purpose of the present paper is to define what we call contact
CR submanifolds of a Sasakian manifold and to study their properties [2, 13].

In §1, we first of all state some known results on submanifolds of a
Sasakian manifold and define the contact CR submanifolds of a Sasakian mani-
fold. We then prove a theorem which gives a necessary and sufficient condition
in order for a submanifold tangent to the structure vector field & of a Sasakian
manifold to be a contact CR submanifold.

§ 2 is devoted to the study of integrability conditions of the distributions
defining contact CR structure of the contact CR submanifolds.

In §3, we deal with contact CR submanifolds of a Sasakian manifold
whose normal connection is flat and in §4 we study minimal contact CR sub-
manifolds of a Sasakian manifold.

§1. Submanifolds of Sasakian manifolds.

Let M be a (2m-+1)-dimensional Sa%kian manifold with structure tensors
(@, & 7, g). The structure tensors of M satisfy

P X=—X+9X)§, =0, =1, 9(@X)=0,
g@X, ¢Y)=g(X, Y)—nX)n(Y), nX)=gX, &

for any vector fields X and Y on M. We denote by ¥V the operator of covariant
differentiation with respect to the metric g on M. We then have

Vié=¢X, (Txp)V =R(X, OY =—g(X, V)E+p(1)X,
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CONTACT CR SUBMANIFOLDS 239

where R denotes the Riemannian curvature tensor of M.

Let M be an (n+1)-dimensional submanifold isometrically immersed in M.
Throughout this paper, we assume that the submanifold M of M is tangent to
the structure vector field &.

We denote by the same g the Riemannian metric tensor field induced on
M from that of M. The operator of covariant differentiation with respect to
the induced connection on M will be denoted by V. Then the Gauss and
Weingarten formulas are respectively given by

VxY=YxY+BX,Y) and VyV=—A,X+DxV

for any vector fields X, ¥ tangent to M and any vector field V' normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle T(M)* of M. A and B appear-
ing here are both called the second fundamental forms of M and are related by

gBX, Y), V)=g(AvX, Y).

The second fundamental form A can be considered as a symmetric (n+1, n-+1)-
matrix. The mean curvature vector g of M is defined to be p=(Tr B)/(n+1),
Tr B denoting the trace of B. If p=0, then M is said to be minimal. If the
second fundamental form B vanishes identically, then M is said to be totally
geodesic. A vector field V normal to M is said to be parallel if DxV=0 for
any vector fleld X tangent to M. The covariant derivative VyB of B is defined

to be
(NxB)Y, Z)=Dx(B(Y, Z))—B(NyY, Z)—B(Y,VxZ)

and the covariant derivative VyA of A is defined to be
(Vx A)yY =Vx(AyY)—Ap vV —AyVxY .

If VxB=0 for any vector field X tangent to M, then the second fundamental
form of M is said to be parallel, which is equivalent to VyA=0. Let R be the
Riemannian curvature tensor field of M. Then we have

RX, V)Z=R(X, V) Z—Ap. X+ Apcx. Y +(Vx B)Y, Z)—(TyB)(X, Z)

for any vector fields X, ¥ and Z tangent to M. Then we have equations of
Gauss and Codazzi respectively

gR(X, Z, W)=g(R(X, V)Z, W)—g(B(X, W), B, Z))+g(BY, W), BX, Z)),
(R(X, V)Z)*=(xB)Y, Z)—(VyB)X, Z),

(R(X, Y)Z)* denoting the normal component of R(X, Y)Z. We now define the
curvature tensor R* of the normal bundle of M by

RYX,Y)WW=DyDyV—DyDxV—Dix.viV .
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Then we have equation of Ricci
g(RX, )U, V)=g(R*(X, Y)U, V)+g([ Ay, As1X,Y).

If R*=0, then the normal connection of M is said to be flat.
For any vector field X tangent to M, we put

(1.1 ¢$X=PX+FX,

where PX is the tangential part and FX the normal part of ¢X. Then P is
an endomorphism on the tangent bundle T(M) and F is a normal bundle valued
1-form on the tangent bundle T7(M). Similarly, for any vector field V normal

to M, we put
(1.2) oV =tV+fV,

where tV is the tangential part and fV the normal part of #V. For any
vector field Y tangent to M, we have, from (1.1), g(¢X, Y)=g(PX, Y), which
shows that g(PX,Y) is skew-symmetric. Similarly, for any vector field U
normal to M, we have, from (1.2), g(¢V, U)=g(fV, U), which shows that
g(fV, U) is skew-symmetric. We also have, from (1.1) and (1.2),

(1.3) g(FX, V)+g(X, tV)=0,

which gives the relation between F and ¢?.
If we put X=¢£ in (1.1), we have

pE=PE+FE=0,
from which
(1.4) PE=0,  F&=0.
Now, applying ¢ to (1.1) and using (1.1) and (1.2), we find
(1.5) Pl=—]—tF+9Q&,  FP+fF=0.
Applying ¢ to (1.2) and using (1.1) and (1.2), we find
(1.6) Pt4tf=0, [f*=—I—Ft.

DEFINITION. Let M be a submanifold isometrically immersed in a Sasakian
manifold M tangent to the structure vector field & Then M is called a contact
CR submanifold of M if there exists a differentiable distribution 9; x—9,CT (M)
on M satisfying the following conditions:

(i) 9@ is invariant with respect to ¢, i.e., $9,C9, for each x&M, and

(ii) the complementary orthogonal distribution 9*: x—9i:CT (M) is anti-
invariant with respect to ¢, i.e., pD;CT(M)* for each xeM.

Remark. For a contact CR submanifold M, the structure vector field &
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satisfies §€9 or £€9*. Indeed, from ¢$*X=—X+7(X)¢ for any X9, we see
that p(X)é€9. Thus we have £€9 or »(X)=0 and hence {€9*.

Let M be a contact CR submanifold of a Sasakian manifold M. We denote
by [ and [* the projection operators on &9 and 9* respectively. Then we have

1.7 =1, =, [**=(t, [[*=[*[=0.

From (1.1), we have
¢l X=PIX+FIX,

from which, the distribution 9 being invariant, we have
(1.8) I*Pl=0, Fl=0.

From (1.1), we also have
GlI* X=PI*X+FI*X,

from which, the distribution @* being anti-invariant, we have P/*=0, and
consequently

(1.9) PI=P,

since [*=I—I.
Now applying [/ from the right to the second equation of (1.5) and using
the second equation of (1.8) and (1.9), we find

(1.10) FP=0

and consequently

(1.11) fF=0,

Thus, remembering the skew-symmetry of f and the relation (1.3), we have
(1.12) tf=0

and consequently, from the first equation of (1.6),

(1.13) Pt=0.

Thus, from the first equation of (1.5) we have

(1.14) P*4-P=0,

which shows that P is an f-structure in M and from the second equation of
(1.6), we have

(1.15) fi+f=0,

which shows that f is an f-structure in the normal bundle T (M)_l (see [8]).
Conversely, for a submanifold M of a Sasakian manifold M, assume that
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we have (1.10). Then we have (1.11), (1.12), (1.13) and consequently (1.14) and
(1.15). We now put

(1.16) [=—P*+9Q¢, r=I—1.
Then we can easily verify that
I+1+=T, 2=/, [*2=[t, 1+=[*1=0,

which means that [/ and /* are complementary projection operators and con-
sequently define complementary orthogonal distributions 9 and 9* respectively.
From the first equation of (1.16), we have

P[=P
since P*=—P and P£=0. This equation can be written as
Plit=0.

But g(PX, Y) is skew-symmetric and g(/*X, Y) is symmetric and consequently
the above equation gives

[*P=0
and hence

[*P[=0.

From the first equation of (1.16), we have

FI=0,

since FP=0 and F&=0.
The above equations show that the distribution 9 is invariant and 9* is
anti-invariant with respect to ¢. Moreover, we have

£=¢, [1*6=0
and consequently 9 contains &.
On the other hand, putting
(L.17) [=—P%, [*=I+P?,

we still see that [/ and /* define complementary orthogonal distributions 9 and
9D* respectively since P is an f-structure. We also have

Pl=P, [*P=0, FI=0, PI*=0
and see that 9 is invariant and 9* is anti-invariant with respect to ¢ and that
£=0, 1*&=¢,

which means that 9* contains &.
Thus we have
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THEOREM 1.1. In order for a submanifold M of a Sasakian manifold M to
be a contact CR submanifold, it 1s necessary and sufficient that FP=0.

_ THEOREM 1.2. Let M be a contact CR submanifold of a Sasakian mamfold
M. Then P s an f-structure in M and f 1s an f-structure in the normal bundle.

Let M be a contact CR submanifold of a Sasakian manifold M. If dim 9=0,
then M is an anti-invariant submanifold of M, and if dim 9+=0, then M is an
invariant submanifold of M. If ¢9*=T(M)*, then M is a generic submanifold
of M (see [101, [12]).

In the following, we state certain properties of the second fundamental
form of a submanifold M of a Sasakian manifold M. Since & is tangent to M,
for any vector field X tangent to M, we have

Vxé=9X=VxE+B(X, &),
from which

(1.18) Vxé=PX, FX=B(X, &, Ab=—1tV,

where V is a vector field normal to M. Especially, we have

(1.19) B, £=0.

Let X and Y be vector fields tangent to M. Then we obtain
(1.20) (VxP)Y =—g(X, Y)é+n¥) X+ Ay X+tB(X, Y)
and

(1.21) (VxF)Y=fB(X, Y)—B(X, PY),

where we have defined (VxP)Y and (VxF)Y respectively by
(VxP)Y =V (PY)—PVyY and (VxF)Y=Dy(FY)—FVxY.

For any vector field X tangent to M and any vector field V normal to M, we
have

(1.22) (th)V:AJVX—PAVX
and
(1.23) (Vxf)V=—FA,X—B(X, tV),

where we have defined (Vxf)V and (Vxf)V respectively by

If M is a contact CR submanifold of M, then PX=PY =0 for any X, Y € 9*,
and then we have g((VzP)X, Y)=g(V,(PX), Y)—g(PV;X, Y)=0 for any vector
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field Z tangent to M. Therefore, (1.20) implies
0=g((VzP)X, Y)=—9(Y)g(Z, X)+n(X)g(Z, Y)

+g(ArxZ, Y)+g(tB(Z, X), Y),
from which

g ArxY, 2)—g(Am X, Z)=79(Y)g(Z, X)—n(X)g(Z, Y).

Thus we have
(1.24) ApxY —Apy X=9(V) X—9(X)Y for X, Ye9*.

For a contact CR submanifold M we have the following decomposition of
the tangent space T (M) at each x&M:

To(M)=H(M)+{£} +N(M),

where H,(M)=¢H (M) and N,(M) is the orthogonal complement of H,(M)+ {&}
in T,(M). Then ¢N (M)=FN (M)CT(M)*. Similarly, we have

To(M)*=FN(M)+N(M)*,

where N,(M)* is the orthogonal complement of FN, M) in T,(M)*. Then
ON (M) =[N (M)* =N (M)*. _

We take an orthonormal frame e, ---, €ym4+; 0f M such that, restricted to
M, ey, -+, e, are tangent to M. Then e, .-+, e,4; form an orthonormal frame
of M. We can take e;, ---, ¢,+; such that ¢,, -+, ¢, form an orthonormal frame
of N,(M) and ep4y, =+, ¢, form an orthonormal frame of H,(M) and e,+;=§,
where dim N,(M)=p. Moreover, we can take e,4s, -, €am+; Of an orthonormal
frame of T (M)* such that en.s, -, @n+14p form an orthonormal frame of
FN (M) and enis+p, -+, am+: form an orthonormal frame of N (M)*. In case
of need, we can take egis, ', €ps1+p SUch that eni,=Fey, -, ens1ep="Fe,.
Unless otherwise stated, we use the conventions that the ranges of indices are
respectively :

1, 7, k=1, -, n+1; x,y,z=1,--,p; a,b, c=p+1, -, n;
a, B, r=n+2, -+, n+14p.

§ 2. Integrability of distributions

We consider the integrability of the distributions 9 and 9* of a contact
CR submanifold M of a Sasakian manifold M.
Let YV, Y=9*. Then we have

o[ X, YI=P[X, YI+F[X, Y]=—NxP)Y +(VpP)X+F[X, Y]
=ApxY —Apy X=X+ 9n(X)Y +FLX, YI=F[X, Y1,
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from which ¢[X, Y1eT(M)*. Thus we have [X, Y]e9*.

PROPOSITION 2.1. Let M be an (n+1)-dimensional contact CR submanifold
of a (2m-+1)-dimensional Sasakian manifold M. Then the distribution D* 1s
completely integrable and its maximal integral submanifold is a p-dimensional
anti-invariant submanifold of M mnormal to & or a (p-+1)-dimensional anti-
invariant submanifold of M tangent to €.

Let X, Ye9. Then we have
oLX, YI=PLX, YI+F[X, Y]I=P[X, Y1+ (Ve ) X—(Nx F)Y
=P[X, Y]+ B(X, PY)—B(, PX).

Thus we see that [X, Y]e9 if and only if B(X, PY)=B(,6 PX) for any
X, Ye9. If 9 is normal to the structure vector field & then we have

g([X, Y], §)=24(X, PY)

for any X, Y 9. Therefore, if @ is completely integrable and is normal to
the structure vector field & then we have g(X, PY)=0, which shows that
dim 9=0. Therefore we have

PROPOSITION 2.2. Let M be an (n—|—1)-gz'menszonal contact CR submanifold
of a (2m-1)-dimensional Sasakian manifold M. Then the distribution D is com-
pletely integrable if and only if

B(X, PY)=B(, PX)

for any vector fields X, Y €D, and then E€9D. Moreover, the maximal integral
submanifold of D is an (n+1—p)-dimensional invariant submanifold of M.

§3. Flat normal connection

Let S®*™*! be a (2m-+1)-dimensional unit sphere. We know that S?™+!
admits a standard Sasakian structure. Let M be an (n+1)-dimensional contact
CR submanifold of S*™*1,

LEMMA 3.1. If the normal connection of M 1s flat, then
AfV:O
for any vector field V normal to M.

Proof. Let V and U be vector fields normal to M. Since R+=0, equation
of Ricci implies that AyAy=AyAy. Thus, from (1.18), we find

3.1 AytU=AytV .
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Since tf=0, using (3.1), we see that A;tU=0 and A;y6=0. Moreover, from
(1.23), we have

g(Vx NIV, U)=—gFAw X, U)—g(B(X, tfV), U)=g(AstU, X)=0,

from which
(Nxf)fV=0.

Thus, from (1.15) and (1.21), we have
g(Vx NIV, FY)=—g(f*V, VxF)Y)=—g(Asv X, Y)+g(Apw X, PY)=0.
From this and the fact that A,y Arep=Asp Asy, we have
Tr Aby=Tr Apey PA;y=—Tr ApyPAsoy=—Tr Asap AsvP
=—Tr Ay AsoyP=—Tr AseyPA;y=—Tr A%, .

Consequently, we have Tr A%,=0 and hence A;,=0.

LEMMA 3.2. Let M be an (n+1)-dimensional contact CR submanifold of S*™+!
with flat normal connection. If PAy=A,P for any vector field V normal to M,
then

3.2) g(AvX, AyY)=g(X, Y)g(U, tV)—2 g(AutV, e)g(Ape, X, Y).

Proof. From the assumption we see that

g(AUPX) tV):O )

from which

g(Vy AwPX, tV)+g(Av(VyP)X, tV)+ g(AyPX, (Vyt)V)=0.
Thus, from (1.20) and (1.22), we have

g(VyAwPX, tV)—g(X, Y)g(Av€, tV)+9(X)g(AvY, tV)+g(AvArxY, tV)

+g(AytB(Y, X), tV)+g(ApPX, AsyY)—g(ApPX, PAyY)=0,

from which and Lemma 3.1, we find
g((Vpy AyPX, tV)+g(X, PY)g(tU, tV)
+g(AptV, tB(PY, X))—g(AyPX, PAyPY)=0.

On the other hand, we have

g(AytV, tB(PY, X))=—2 g(AvtV, e.)g(Ar. X, PY),

— g(AyPX, PA,PY)=g(A,PX, A,Y).
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From these equations we have
§(Vpy Ay PX, tV)+g(X, PY)gQU, tV)
—2;,‘ g(AutV, e)g(Ape, X, PY)+g(AyPX, AyY)=0.

Therefore, the Codazzi equation implies

g(X, PY)g(tU, tV)—Ez g(AutV, e)g(Arpe, X, PY)+g(AyPX, AyY)=0,
from which
3.3 g(PX, PY)g(tU, tV)~ZL] g(AutV, e)g(Ap. PX, PY)+g(AyP?X, AyY)=0.
On the other hand, we have

g(PX, PY)g(tU, tV)

=g(X, Y)g(U, tV)—n(X)np(Y)g(tU, tV)—g(FX, FY)g(tU, tV),
—El) g(AytV, e)g(Are PX, PY):-—ZZ) g(AptV, e)g(Ape, X, Y)
+p(MNg(AytV, X)+n(X)p(Y)g(tU, iV)—; g(AptV, e)g(Ape, X, tFY),

g(ApP?X, AyY)=—g(Av X, AvY)—n(¥)g(AutV, X)—g(Av X, AytFY).

Substituting these equations into (3.3), we find
g(X, Y)gU, tV)— 2 g(AutV, e)g(Ape X, V)~ g(Av X, AyY)

—g(FX, FY)g(tU, tV)—; g(AptV, e)g(Ape, X, tFY)—g(Ay X, AytFY)=0.
Moreover, we obtain

—Z@) g(AutV, e)g(Ape, X, tFY)=g(AptV, Apy X)+g(FX, FY)gtU, tV),

—g(ApX, AptFY)=—g(AptV, A X).
From these equations we have

g(X, V)gQU, tV)—2 g(AutV, e)g(Ar X, V)—g(ApX, AyY)=0,
which proves (3.2).

LEMMA 33. Let M be an (n+1)-dimensional contact CR submanifold of S*™+!
with flat normal connection. If the mean curvature vector of M 1s parallel, and
if PAy=AyP for any vector field V normal to M, then the square of the length
of the second fundamental form of M is constant.
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Proof. From Lemma 3.1 the square of the length of the second funda-
mental form of M is given by 3 Tr A%, where A,=A4,,. Using (3.2), we have

? Tr Ai=(n+1p+ ;‘,ﬁg(Aatea, teg) Tr Ag.

Since the normal connection of M is flat, we can take {e,} such that Dye,=0
for each a, because, for any Ve FN(M) we have DyVeFNM) by (1.23) and
(3.1). Then we have

V(X Tr A%)= %g((VXA)atea, te,g) Tr Aﬁ
=a2ﬁ g(Vie,A)pteq, X) Tr Ap

by using Vx(te)=(Vxt)e,=As , X—PA,X and Pt=0.
On the other hand, using PA,=A,P, we have, for any XeT (M),

; g((vPe,;A)aPeu X)
:; [g((vPeiP)Aaeu X)+g(P(VPeiA)aeu X)—g(Aa(vPeiP)eu X):l .

Since A, is symmetric and P is skew-symmetric, using (1.4), (1.10), (1.13) and
(1.20), we see that

2 g((Vpe,P)Aaes, X)=0 and 2 g(Au(Tp;Pler, X)=0.
Therefore, we have
2 g((VpeyA)aPer, X)=2 gP(Vpe;A)uer, X)
=—2 g(Vpe;Aats, PX )=—; &(VpxA)aPe, €,)=0,

where we have used the Codazzi equation and the fact that (VpxA), is sym-
metric and P is skew-symmetric.
Since we have X (V. ,A)sea=2] (Vp,, A)aPe,, the above equation implies
a 2

(3.4) %} (Ve A)aa=0.
Moreover, we see that
(3.5 (VeA)oE=0.

From the assumption the mean curvature vector of M is parallel, and hence
0=§) (Ve;Daei=2 (Veg s+ (Ve )b+ 2 (Ve A)aea

:%: (VEIA)ae$:%3 (V,EpA)ateﬁ .
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Therefore the square of the length of the second fundamental form of M is

constant.
From Lemmas 3.1 and 3.3, using a theorem of [9], we have (see [6])

LEMMA 34. Let M be an (n-+1)-dimensional contact CR submanifold of S*™**
with flat normal connection. If the mean curvature vector of M is parallel, and
if PAy,=AyP for any vector field V normal to M, then

(3.6) g(VA, VA)=—(n+1) I Tr A4+3 (Tr A,)*
+ B ITr(AaApP— X Tr As Tr A4 .

LEMMA 3.5. Under the same assumptions as those of Lemma 3.4, the second
Sfundamental form of M is parallel.

Proof. From (3.2) we have
Tr A3 Ap=Tr A.g(ea, eﬁ)—{—; Tr(A,A)g(Ateq, teg),
Tr(A.Ag)=(n+1)gle, eﬁ)—l—zr) Tr A,g(A;teq, tep) .

Thus we have

B [T A A =(ntD) 3 Tr Abt 3 Tr(AeAp) Tr Ag(dtec, tey),
= ETr ATr Apdp=—3 (Tr A= 3 Tr(AcApTr Arg(Aitec, tey).

Substituting these equations into (3.6), we find g(VA, VA)=0, that is, the second
fundamental form of M is parallel.

THEOREM 3.1. Let M be an (n-+1)-dimensional complete contact CR sub-
manifold of S*™** with flat normal connection. If the mean curvature vector of
M is parallel, and if PA,=AyP for any vector field V normal to M, then M s
an S™** or

k k
S™(r) X XS™k(ry), n+l= > m,, 2=k=n-+1, X ri=1
1=1 1=1
mn some S™TPwhere my, -+, my, are odd numbers.

Proof. We first assume that F=0, that is, M is an invariant submanifold
of S®™*, Then the second fundamental form of M satisfies PA,+A,P=0 (cf.
[101). Thus we have PA,=0, which implies that A,=0 and hence M 1s totally
geodesic in S*™*!, Therefore M is an S™*! and n-+1 is odd.

We next assume that F=0. Since the second fundamental form of M 1s
parallel and R*=0, by Lemma 1.2 of [11], the sectional curvature of M 1s non-
negative. On the other hand, from (3.2), we see that A,+0 for any V € FN,(M).
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Thus Lemma 3.1 shows that the first normal space is of dimension p. Therefore,
by a theorem of [9] and a result of Example 3 of [11] (see also [14]), we have
our assertion.

COROLLARY 3.1. Let M be an (n+1)-dimensional complete generic submanifold
of S*™+1 with flat normal connection. If the mean curvature vector of M is
parallel, and 1f PAy=AyP for any vector field V normal to M, then M 1s

k k
S™(p )X - X S™k(ry), n—l—lzzlmt, 25k<n+1, ;”1:1'

where my, -+, my are odd numbers.

§4. Minimal contact CR submanifolds

Let M be an (n-+1)-dimensional contact CR submanifold of S?™*! with flat
normal connection. We denote by S the Ricci tensor of M. For any vector
field X of M, we have generally (see [7])

div(Vx X)—div((div X)X)=5(X, X)—!——;— [L(X)g|*—|VX|*—(div X)?,

where L(X)g denotes the Lie derivative of the Riemannian metric g with
respect to a vector field X and |Y| denotes the length with respect to the
Riemannian metric of a vector field ¥ on M.

Let V be a parallel vector field normal to M. Then, by Lemma 3.1, A;,=0.
Thus (1.22) implies

VxtV=—PA,X.
Hence we have
divtV=—Tr PA,=0, div((div tV)tV)=0.

Consequently, we obtain
4.1) div(V,,tV)=5S@V, z‘V)—i——;— |[LtV)g|?—| VitV |2,

In the sequel, we assume that M is minimal. Then the Ricci tensor S of
M is given by
S(X, Y)=ng(X, Y)—2 g(42X, Y)

because of A;,=0.
On the other hand, we have

[ViV|*=Tr Ay—g(V, tV)—2 g(FAye., FAye,)
=Tr A}—g(tV, tV)—3 g(AatV, AdtV).

Therefore, equation (4.1) reduces to
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4.2) div(VptV)=n+1)gtV, tV)—Tr A%/—f——;‘ [LtV)gl®.

PROPOSITION 4.1. Let M be a compact orientable (n-+1)-dimensional contact
CR submanifold of S*™** with flat normal connection and with parallel section V
m the normal bundle. If M 1s mummal and

[ [Tr 4p—(n+1gv, 1V)171=0,
then tV 1s an infimitessmal 1sometry of M and PAy,=AyP.

Proof. For any vector fields X, Y tangent to M, we have
(L@V)g)X, Y)=g(VxtV, Y)+g(VetV, X)
=g((AyP—PAy)X, Y),

from which we have our assertion.
Since the normal connection of M is flat, we can take a frame {e,} of
FN(M) such that De,=0 for each «. Thus we find

GV Vue o) =(n+Dp—3 Tr A3+ S| Lite)g .
From this we have

THEOREM 4.1. Let M be a compact orientable (n+1)-dimensional minimal
contact CR submamifold of S*™** with flat normal connection. Then

05|, TILtegl1=], (2 Tr At —(n+1)pe1.

As an application of Theorem 4.1, we have

THEOREM 4.2. Let M be a compact orientable (n+1)-dimensional nunimal
contact CR submanifold of S*™** with flat normal connection. If the square of
the length of the second fundamental form of M s (n+1)p, then M 1s

S™M@r) X XS™k(ry), re=(m,/(n+1)"* =1, -, k),

k k
n—|-1=t2mt, 2=2k=n-+1, > ri=1
=1

t=1

in some S™**? where m,, ---, m,; are odd numbers.

Proof. Since A;y=0, the square of the length of the second fundamental
form of M is given by > Tr A%. Thus, from Theorem 4.1, we have |L(te,)g|

=( for each « and hence PA.=A.P. On the other hand. from the assumption,
M is not totallv geodesic. Therefore. our assertion follows from Theorem 3.1.
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If M is minimal, the scalar curvature » of M is given by
r:n(n-l—l)—g) Tr A% .
From this and Theorem 4.2 we have

THEOREM 4.3. Let M be a compact orientable (n-+1)-dimensional minimal
contact CR submanifold of S*™*' with flat normal connection. If r=(n-+1)(n—p),
then M 1s

S™M(r)X X S™k(ry), roe=(m/(n+1)* t=1, -, k),
n+l= ém“ 2Z5k=n+1, ér%:l

in some S™*P where m,, -+, m, are odd numbers.
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