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RIEMANNIAN METRICS ON PRINCIPAL CIRCLE
BUNDLES OVER LOCALLY SYMMETRIC
KAHLERIAN MANIFOLDS

By YOSHIYUKI WATANABE

0. Introduction.

In Riemannian Geometry, one of the most interesting problems is to find
all Einsteinian manifolds. A. Besse has suggested the research for Einsteinian
manifolds satisfying the condition (see [3], p. 165)

(%) Ry perRPT=constant g, ,

where g=(g,;) is the Riemannian metric and R=(R?;;,) is the curvature tensor.
Its typical examples are a locally symmetric spaces and a harmonic Riemannian
manifold (cf. [13]). But the author [17] has recently shown that Sp(2)/SU(2)
of Berger (cf. [2]) is an Einsteinian manifold satisfying (x).

On the other hand, J.E. D’Atri and H. K. Nickerson has initiated a study of
the Riemannian manifold whose local geodesic symmetries are volume-preserving
(up to sign). In this paper, we call such a manifold a (locally) volume symmetric
space. It has been studied by J.E. D’Atri and H.K. Nickerson ([5]. [6]), K.
Sekigawa ([15]) and Y. Watanabe ([16]). This class of manifolds obviously
includes harmonic Riemannian manifolds and locally symmetric spaces. Then
we are interested in Einsteinian manifolds (especially Einsteinian manifolds
satisfying (%)), which are volume symmetric.

In this paper, we consider the Riemannian metric g(f) given on a principal
circle bundle P over a Kéihlerian manifold M (cf. §2). We show that if M is
locally symmetric, then (P, g(t)) is locally homogeneous and volume symmetric.
Especially we also remark that an Einsteinian metric is given on P in the
case that M is Einsteinian.

In §2, we define the Riemannian metric on a principal circle bundle over an
n-dimensional Riemannian manifold and give the fundamental formulas. In §3,
we calculate the covariant derivative of the Riemannian curvature tensor by
using the structure equations obtained in §2. In §4, we define a tensor field T
of type (1,2) on P and state its properties for later use. In §5, M is assumed
to be a locally symmetric Kihlerian manifold. Then by using the equations ob-
tained in sections 3 and 4, we show the main results. In the last section, an
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example is stated in detail, because in the opinion of the author the method in
this paper should have other applications.

The author wishes to express his sincere thanks to Prof. S. Ishihara, Prof.
S. Tachibana and Prof. K. Takamatsu for their valuable suggestions and en-
couragements.

1. A principal circle bundle.

Let M and M be two Riemannian manifolds of dimensions m and n respec-
tively, where m—n>0. A Riemannian submersions, which shall call simply
submersion, is a differentiable map = : M— M, which is onto, and for which at
each point x €M the differential map n« acts as an orthogonal projection of Tz M
onto T .M, where x==n(%). Then for each point x&M its inverse image = '(x)
is a submanifold of M of dimension m—n, which is called the fibre over x.

A vector field on M is called vertical if it is always tangent to fibres and
holizontal if always orthogonal to fibres; we use corresponding termmology for
individual tangent vectors. We denote the Riemannian connections by V on M
V on M and ¥V on the fibres, defined by the Riemannian metrlcs g on M g on
M and g on the fibres respectively. For a submersion «: M — M, let & and <V
denote the projections of the tangent space of M onto the subspaces of hori-
zontal and vertical vectors, respectively. We define a vector field X on M to
be basic provided X is horizontal and z-related to a vector field X on M. Every
vector field X on M has a unique horizontal lift X to 1\7[, and X is basic. Thus
Xo X is a one-to-one correspondence between basic vector fields on M and
arbitrary vector fields on M. This correspondence preserves brackets, inner
products and covariant derivatives to the following (see [12]).

LEMMA 2.1. If X and Y are basic vector fields on M, then

1) X, V=X, Y)eom,

2) [X Y] is the basic vector field corresponding to [ X, Y],

3 VXY 1S the basic vector field corresponding to VXY
whevre <X, > (resp. <X, Y)) s the inner product g(X, Y) (resp. g(X, Y)) of
vectors X and ¥ of M (resp. X and Y of M).

Let P be a principal circle bundle over an n-dimensional manifold with pro-
jection 7, g a Riemannian metric on M and 7 a connection form on P defining
a connection in the bundle P. Functions on M such as components of tensor
fields on M are considered sometimes as functions on P in a natural way with-
out any change of notations. We shall also agree on that indices 7, j, # and [
run from 1 to n and «, B, v and 0 run from O to n. Since the structure group
S* of P is abelian, the structure equation is given by

@.1) dp=2Q,

where 2 is the curvature form of 7. Then g==*g-+*y®y for any >0, is a
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Riemannian metric on P with respect to which = becomes a Riemannian submer-
sion ([7], [12]). Explicitly if ¥P, X, YT3P, then

(2.2) 83X, V=g X, m V) +eepXn().

The action of S* on P allows us to take a unit fundamental vector field & such
that

(2.3) 35X, o=tpX),

foNr any vector field XonP If Xis basic, then [)?, &7 is vertical. Thus since
[X, &] is horizontal (cf. [11]), we have the following

LemMmA 2.2 (cf. [7]). If X is a basic vector field on M, then
(2.4) [X, &1=0.

3. Structure equations of the fibring

To calculate the Riemannian curvature tensor # of F at any fixed point
P, we shall take a special orthonormal frame field on a neighborhood Qf
x=n(%) such that Vx X;=0 at x for any 7/ and ;. The basic vector fields X,
corresponding to X, are orthonormal vector fields such that ﬁ;’iX , is vertical on
the fibre passing through % for any 7 and ;. Therefore we have a local ortho-
normal frame field {£, X,, ---, X,} around %. Using the standard formula

200:Y, Dy=X<¥, 2>+ V<Z, Vo—Z2X, V)X, [V, ZD
Y, 2, XD+<Z, X, VD,

for any vector fields X, ¥ and Z and the definition (2.2), we can prove the
following lemma (cf. [14]).

LEMMA 3.1. The components of the connection NV with respect to the ortho-
normal frame field taken above ave given by

() V&£=0,
@ V.X=V;e=t30,%X,,
@) W@ X)=1/VIX, X,1=—12.¢,
@ w5V X)=3SX,
6 T2, X)=0,
. a neighborhood of %, where 2,,=2(X,, X)) and S.,3=<Vx,X,, X)o7

Let ﬁ(resp. R) be the curvature tensor of P(resp. M). Then by repeated
use of Lemma 3.1, we can obtain the following
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LEmMmA 3.2, (cf. [10]). ThNe components of the curvature tensor R with respect
to the orthonormal frame {§, X, ---, Xa} are giwen by

(l) ﬁto;o:tzzgﬂglz ’
(2) ﬁwjk:vtgjk ’
©)) ﬁzju:szkl_fz(gugjk—gzijz‘—z-szka),

where ﬁ10]0:<ﬁ<)?’w S))?J} ‘S>} ]?zojk:<kz(fu E),g?]y /\Xk>’ ﬁzjkl:<ﬁ(X~u )?j))?k) )?l>7
szkl=<R(Xu Xj)Xk; X and Vszkz(V,?iQ)(Xn X4

LEMMA 3.3. The curvature tensor B 1s expressed in the terms of R.;u and
£2,, as follows:

() RE X)e=r202,0.%,,

@) R, X)X ,=—123(2,,0,,6—17.2,.X0),

3) R, X)e=137,2,,X,,

) BX, X)X =172, + 2[R jui—1%(2:2,0— 2,12, —22,,2,)1X, .

We shall calculate the covariant derivative V£ of the curvature tensor & by
using Lemmas 3.1, 3.2 and 3.3.

LEMMA 34.
1) (VR X)e=0,
@ (Ve R)E X)e=13[202.(S:ra+Sias)
+ 804245201+ 20120 )+ 21,20+ 2,7.2,,1X,
(3) (VeB)E, X)X, =—t3[6(0.2;0)—12,,7.2,,+ 2,2+ 2:9.2,.0X &,
@ (Ve R X)X, == {2502+ 2,V 210} €
—1QuR&K,, X)X, —SwuBE, X)X, —S.BE, X)X,
6 T, B)X., X)e=301R o(0,2,)X+1S11.%,2,X,—12 R X, X)X,
—SauRX, X)e—151 Va0 X o +120240(21.21— 2 ;2,0 X o +17,:2,.,6
©®) (T3, X)X =30 L(Tx, RAXs, X)X, XD— 14259020
+ 2002552570201 — 2,902, —22,9,2,,—22,,9, 2.0 X,
Q0B+ SniaR X a—SnuRX,, X)X i—SuuR(X,, X)X,
—S, B, X)X +11(—120,2,6+7.20X )25 +122,,,(7.2.)X,
12102 1216 +.2 X)) 25,7
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Proof. Using the standard formula
TRYY, 2 W=Vu(R(Y, Z)W)—R(:Y, 2)W
— R, 0 2W—R(¥, Z)(0:W),
for any vector fields )?, Y and Z, we shall prove this lemma. By using the

above formula for X=¢, Y=¢, Z=X, and W=§, we have, from (1) and (2) of
Lemma 3.1 and (1) of Lemma 3.2,

TR e, X)e=":(Re, X)e)—Bg, X)e—RE, W.X)6—RE, X)(V8)
:ZEtZﬁE(Qﬂ‘QlIXj)_tQilﬁ(S; Xl)é]
:Z[l‘z(QﬂQ”)ﬁg)?j—tZQiLijQkLXv]]:() .

Thus we obtain the formula (1). Similarly, we can obtain the formulas (2), (3),
4), (5) and (6) by Lemmas 3.1 and 3.3.

4. The tensor field 7 of type (1,2) on P.

We shall give a tensor field T of type (1,2), which plays an important role
in our assertion, and study its properties. Let us define T by

(4.1) T(X, V)y=1LX, Ve+tpX)p¥ —p(V)pX)],

for any vector fields X ¥ on P, where ¢ is deﬁned by g(gSX Y) Q(X Y), then
T is a tensor field of type (1,2) on P such that T(X Y)——T(Y X) With res-
pect to the orthonormal frame field taken in section 3, we have

“2) T, X)=t292.X,,
and
(4.3) TX,, X,)=t0.£.

Hence we obtain
LEMMA 4.1.
1) (TT)X, X)=T)E, X)=0,
@ (T5,1)E X)=t2(V.2,0X,
@) Ve, 1)K, X0=1(7,2,0)+ Z12(2,,2,+ 2,00 —2,.2,0X, .
Proof. Using the standard formula
4.4) (Y, 2)=VT, 2)—T Y, D)1, ¥:2),

for any vector fields )Z', ¥ and 7, we shall prove this lemma. Using the above
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formula for X=X,, Y=X , and Z=2X,, we verify the third assertion as follows:
By (2) and (3) of Lemma 3.1 and the definition (4.1) of T, we have

T2, DK, K=V TX,, Xe)—-TV, X, X)—-T(X,, ¥2,X0)
=Vz,[t2KX,, XDe+r(pX )X i — (X )¢ X,)]
—[12(7:, X, X6+ X )pX i— (X 0pX )]
—[t2X,, V2 X0E+2(X g2, X 0 —7(02, X )p X )]
=1V, 26+ 123(2,,2:+ 2,20 —2.,2,)X, .

The assertions (1) and (2) follow similarly from (4.1), (4.2), (4.3) and Lemma 3.1.
Here if we put

@5  (Te-T)Y, D)=TQ&X, T(¥, 2)~-TT KX, V), 2)-1(F, T(X, Z)),

for any vector fields )?, ¥ and Z, the T3-T is a tensor field of type (1,2) on P
and satisfies the following

LEMMA 4.2.
D) (Te, D&, X)=—152,20+ 22— 22,01,
@) (T, T)E X)=(Te- T)X,, X)=0.
Proof. By (4.1), (4.2), (4.3) and Lemma 3.1, we have
7K, TX, £0)—-T(TX, X), X0—-TX, T, X))
=102, T(X,, —2,,T¢E X)—2,T(X,, 8]
=12 3(Q: 20+ 22— 2,.2;0X, .

Similarly we can verify the assertion (2).
Now for later use, we define a tensor field T3-R of type (1,3) on P by

(4.6) (Tw-BYX, VWZ=TW, RX, Y2)-R(TW, X), ¥)Z
—R&X, TW, ¥YNZ-RX, YT W, Z)),
for any vector fields X, VY, Z and W. Then we have the following
LEMMA 4.3.
) (TR X)=0,
@ (Tx,-R)E X)e=—230,7,2.0%,,
@) (TeR)E X)X =050 — 201,20+ 20T 2,0+ 2,4(7.2,01Xs
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@) (Tr,R)E XDX,=2[0212020. X0~ 1220(V.2,)¢
+12,RX,, X)X, —122,,2,.92,.X.7,
B) (Tz, RYX., X)e=3[12:(V.2,,)6—1%(24.22.:2,)X,
+1202,,2.2,.X,+12,,R X, X)X,],
6) (T, BX, X)X i=30—1207:2,, 8 +1Q R0 4+10021,0,,0, &
120, (0,20 X —12025,20,2,,6— 122, ,(7,2,)X ] .
Proof. By Lemmas 3.1 and 3.2, (2.4), (4.1), (4.2), (4.3) and (4.6) imply that
(Te-RYE X )E=T (&, Ri&, X06)—R(T¢ &), X)e—R(&, T, X)e—RBe, X)T (€, &)
=23[120,,0,,TE X)—12,,R¢E, X)e]1=0.

Similarly we can obtain the equations (2), (3), (4), (5) and (6).

5. Main results.

Let M be a locally symmetric Kédhlerian manifold with a Kéihlerian metric
g and the fundamental 2-form @. Let P be a principal circle bundle over M, g
a Riemannian metric on P given by (2.2) and 7 a connection form on P such
that dp=r*60. Let z be a local cross-section of P defined on a neighborhood U

~

of x such that z(x)=% and the differential map of ¢ maps the tangent space of
M at x onto the horizontal space of P at %, and J,, the component of the almost
complex structure J with respect to the orthonormal frame field {X;, ---, X,}
taken in section 3. Noting that %z.X,=X, on U for each ;, we obtain

(.1) QX X)ecp=0xX,, w6 X0)-p=*DX,, X»)
=={JX;, Xy=—Ji,
for any y of U. Hence we see that
(5.2) V.2;:=YY,2:,=0.
Now we define a linear connection D on P,
(5.3) D;¥V=V:Y+T(X, 1),
for any vector fields )?, Y and Z. Then by (2.3) and (4.1), we have
(5.4) (De&)Y, 2)=0.

This means that D is a metric connection. Since M is locally symmetric
Kéihlerian manifold, after a long calculation Lemmas 34, 4.1, 4.2, 4.3, 5.2 and
5.3 imply that for any vector field X,
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D3R=0 and D;T=0.
By a result of W. Ambrose and I. M. Singer (see [1], p. 656), we find that Pis

locally homogeneous. Thus we have

PROPOSITION 5.1. Let M be a locally symmetric Kdhlerian mamifold and P
a principal circle bundle over M with a Riemannian metric given by (2.2) and a
connection form 3 such that dyp=n*6, where © s the fundamental 2-form of M.
Then P 1s locally homogeneous.

Furthermore we find from the definition of 7 and (5.5) that

(5.6) TR, X5)X=—T(X, R(¥, HX)+RT X, 1), X)X
and
(5.7) VT X, V)=0,

for any vector fields X and V. Thus by a result J. E. D’Atri and H. K. Nickerson
(see [6], p. 252), we have

THEOREM 5.2. Let M be a locally symmetric Kdhlerian manifold and P a
principal circle bundle over M with a Riemannian metric given by (2.2) and a
connection form u such that dp==n*0@. Then P is a locally homogeneous and
volume symmetric space.

Now let 1’3\1.(’: and Ric be the Ricci tensor of § and g respectively. Then by
Lemma 3.2, we have the following

LEMMA 5.3 (cf. [10]).
(1) Ric(X,, X)=Ric(X,, X,)—2t%,,,
@) Ric(X, =0,

~~
(3) Ric(§, §)=nt*.
By this lemma, S. Kobayashi [10] showed that if M is Einsteinian, Ric (X,, X;)
=(S/n)d;,, then putting t*=S/n(n+2), we have an Einsteinian metric on P.
Then he proved the following

PROPOSITION 54. If M s a complete Einstein-Kahlerian manifold with
positive scalar curvature, then we can construct a principal circle bundle P over
M and specially an Einstetman metric with positive scalar curvature.

Combining Theorem 5.2 and Proposition 5.4, we have the following

THEOREM 5.5. If M 1s a complete locally symmetric Einstein-Kdhlerian
manifold with positive scalar curvature. Then we can construct a principal circle
bundle P over M, which is locally homogeneous and volume symmetric (especially
even Einsteiman).
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Now assume that the Einsteinian metric obtained in Proposition 5.4 satisfies
the condition (x). Then we first note that

ZRoaprBonsi=22 RoojRoi0y=25*/n(n+2),
taking (1) of Lemma 3.2. Hence we have
ZRuprsRasro=3RoprsRosrst I RosrsRisrs
=(n+1)2Ros58,5,5=25%/n(n+1).
This concludes that P is of constant curvature. Thus we have

PROPOSITION 5.6. A Riemanmian metric on P obtained in Proposition 54 1is
an Einsteinian manifold satisfying () if and only if 1t is of constant curvature.

6. An example.

Consider the complex quadric of complex dimension 2, Q*C)=CP'XCP.
Then Q*C) admits the natural product Einstein-K&hlerian metric, which is locally
symmetric. Therefore by Theorem 5.5, we can construct a principal circle
bundle over @Q%*C), which is homogeneous and volume symmetric (especially
Einsteinian).

Now we give an explicit construction of this example. We take G/H as

follows :
e—zu
(R I | 1
H= ¢ , u, vVeR

G= : :
l 0 SU(Z)J l 0 o J

Then G is a compact connected Lie group with the Lie algebra ¢ and H a
closed subgroup with the Lie algebra §. His locally the direct product of two
closed normal subgroups H; and H,:

{ e-zu 0 1 { e—“} O 1
elu ew
H= ,UER }, = , ,VER }.
e-w, e’L’U
l O elu J l 0 e—l’l) J

This means that H=9,PY, (direct sum of ideals), where §; and Y, are the Lie
algebras of H, and H,, respectively. Then P=G/H, is a principal circle bundle
over G/H with projection 7 and structure group H; where = : P— G/H is defined
by #(gH,)=gH for geG (see [9]). The ad(G)-invariant positive definite sym-
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metric bilinear form B:gXg— R is taken to be —(1/2) the Kkilling form on g=
su(2)4su(2). An orthonormal basis for g with respect to this form is given by

( 0100 0z 00 00 00
-1 0 0 0 : 00 0 00 00
€= » €ry= ’ €3—= )
00 0O 0000 00 01
00 0O 0000 0 0—10
00 0O —1 —1
0 0
0000 B ? o 1
ey= , es=1/4/2 , ee=1/+/2 .
00 0 ¢ —1 7
L0 0 2 O 0 7 O —1

Now note that {e;, es} is a basis for the Lie algebra %) of H, and ¢, a basis for
the Lie algebra §,. We set m—the orthogonal complement of ¥, in g spanned
by {ey, s, es, €4, ¢5} and m’=the orthogonal complement of §) in g spanned by
{ey, es, €5, ¢4t. Let {,> be the metric induced by restricting B to m’, <{, Yo =Bm
and J,=—adw(es), where {,>, (resp. J,) is the restriction of <,) (resp. J) to
the tangent space T, (G/H) of G/H at o’=H, identifying m’ with T, (G/H).
Thep\/( J, {,>) is the natural (product) Kdhlerian structure on G/H. FurthreLmore
et {,> be the metric induced by restricting B to m, <,’\J>O:B.m, where (, >, is
the restriction of <f,\/> to tangent space T,(G/H,) of G/H, at o={H,} €G/H,,
identifying m with To(G/H,). Setting 7,(X)=(X, e;», for Xem, one can see
that » is a connection form on G/H, and dyp=zr*@ where O is the fundamental
2-form of the Kdihlerian structure (J, {, ).
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