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0. Introduction.

In Riemannian Geometry, one of the most interesting problems is to find
all Einsteinian manifolds. A. Besse has suggested the research for Einsteinian
manifolds satisfying the condition (see [3], p. 165)

(*) RιpqrR/qr= constant g l J ,

where g=(gtj) is the Riemannian metric and R~{Rι

jkι) is the curvature tensor.
Its typical examples are a locally symmetric spaces and a harmonic Riemannian
manifold (cf. [13]). But the author [17] has recently shown that Sp{2)/SU{2)
of Berger (cf. [2]) is an Einsteinian manifold satisfying (*).

On the other hand, J. E. DΆtri and H. K. Nickerson has initiated a study of
the Riemannian manifold whose local geodesic symmetries are volume-preserving
(up to sign). In this paper, we call such a manifold a (locally) volume symmetric
space. It has been studied by J. E. D'Atri and H. K. Nickerson ([5]. [6]), K.
Sekigawa ([15]) and Y. Watanabe ([16]). This class of manifolds obviously
includes harmonic Riemannian manifolds and locally symmetric spaces. Then
we are interested in Einsteinian manifolds (especially Einsteinian manifolds
satisfying (*)), which are volume symmetric.

In this paper, we consider the Riemannian metric g(t) given on a principal
circle bundle P over a Kahlerian manifold M (cf. § 2). We show that if M is
locally symmetric, then (P, g(t)) is locally homogeneous and volume symmetric.
Especially we also remark that an Einsteinian metric is given on P in the
case that M is Einsteinian.

In § 2, we define the Riemannian metric on a principal circle bundle over an
72-dimensional Riemannian manifold and give the fundamental formulas. In §3,
we calculate the covariant derivative of the Riemannian curvature tensor by
using the structure equations obtained in § 2. In § 4, we define a tensor field T
of type (1,2) on P and state its properties for later use. In § 5, M is assumed
to be a locally symmetric Kahlerian manifold. Then by using the equations ob-
tained in sections 3 and 4, we show the main results. In the last section, an
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example is stated in detail, because in the opinion of the author the method in
this paper should have other applications.

The author wishes to express his sincere thanks to Prof. S. Ishihara, Prof.
S. Tachibana and Prof. K. Takamatsu for their valuable suggestions and en-
couragements.

1. A principal circle bundle.

Let M and M be two Riemannian manifolds of dimensions m and n respec-
tively, where m—n>0. A Riemannian submersions, which shall call simply
submersion, is a differentiable map π:M—>M, which is onto, and for which at
each point I E M the differential map τr# acts as an orthogonal projection of T^M
onto TXM, where x=π(x). Then for each point I G M its inverse image π'Kx)
is a submanifold of M of dimension m—n, which is called the fibre over x.

A vector field on M is called vertical if it is always tangent to fibres and
holizontal if always orthogonal to fibres we use corresponding terminology for
individual tangent vectors. We denote the Riemannian connections by 7^ on M,
7 on M and 7 on the fibres, defined by the Riemannian metrics g on M, g on
Mand g on the fibres respectively. For a submersion π : M-+M, let M and <V
denote the projections of the tangent space of M onto the subspaces of hori-
zontal and vertical vectors, respectively. We define a vector field X on M to
be basic provided X is horizontal and π-related to a vector field X on M. Every
vector field X on M has a unique horizontal lift X to M, and X is basic. Thus
X<^X is a one-to-one correspondence between basic vector fields on M and
arbitrary vector fields on M. This correspondence preserves brackets, inner
products and covariant derivatives to the following (see [12]).

LEMMA 2.1. // X and Y are basic vector fields on M, then

(1) <X, Y>=<X, Y>π,
(2) [_X, Y~] is the basic vector field corresponding to [_X, F ] ,
(3) lχΫ is the basic vector field corresponding to 1XY,

where <X Y> (resp. <Z, F » is the inner product g(X, Ϋ) (resp. g(X, Y)) of
vectors X and Ϋ of M (resp. X and Y of M).

Let P be a principal circle bundle over an n-dimensional manifold with pro-
jection π, g a Riemannian metric on M and η a connection form on P defining
a connection in the bundle P. Functions on M such as components of tensor
fields on M are considered sometimes as functions on P in a natural way with-
out any change of notations. We shall also agree on that indices /, j , k and /
run from 1 to n and a, β, γ and δ run from 0 to n. Since the structure group
S1 of P is abelian, the structure equation is given by

(2.1) dv=Ω,

where Ω is the curvature form of η. Then g=π*gJrt2ηC>ϊ)η for any ί>0, is a
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Riemannian metric on P with respect to which π becomes a Riemannian submer-
sion ([7], [12]). Explicitly if * e P , X, Ϋ^T^P, then

(2.2) g(X, Ϋ)=g(π*X,

The action of S1 on P allows us to take a unit fundamental vector field ξ such
that

(2.3) g(X,ξ)=tη(X),

for any vector field X on P. If X is basic, then [Z, f] is vertical. Thus since
[Xj f ] is horizontal (cf. [11]), we have the following

LEMMA 2.2 (cf. [7]). // X is a basic vector field on M, then

(2.4) IX, £ ] = 0 .

3. Structure equations of the fibring

To calculate the Riemannian curvature tensor R of g at any fixed point
X E P , we shall take a special orthonormal frame field on a neighborhood of
x=π(x) such that VXiXj=0 at x for any i and . The basic vector fields Xt

corresponding to Xz are orthonormal vector fields such that Vĵ X, is vertical on
the fibre passing through x for any i and /. Therefore we have a local ortho-
normal frame field {ξ, Xlf ••• , Xn} around x. Using the standard formula

y=x(Ϋ, z>+Ϋ<z, Ϋy-zα, f>-<i, [f,

+<γ,iz,xi>+<z,ιx,
for any vector fields X, Ϋ and Z and the definition (2.2), we can prove the
following lemma (cf. [14]).

LEMMA 3.1. The components of the connection V with respect to the ortho-
normal frame field taken above are given by

(1) ^ = 0 ,

(2) ^

(3)

(4)

(5)

in a neighborhood of x, where Ωτj=Ω(Xl} X3) and SιJk—<slχίX3,

Let^(resρ. R) be the curvature tensor of P(resp. M). Then by repeated
use of Lemma 3.1, we can obtain the following
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L E M M A 3.2. (cf. [10]). The components of the curvature tensor R with respect

to the orthonormal frame {ξ, Xu •••, Xn) are given by

(1) Ά%0}0=t'iΣΩnΩlx,

(2) Riojk—^iΩjk,

(3) Rιjhι=Rιm-t\ΩuΩjk-ΩιUΩjl-2ΩιjΩkι),

where &„„=<£(*„ ξ)X3, ξ>, RloJk=<,R(Xlt ξ)%,, Xk\ Rtm=(R(Zx, Xj)Xk, X{),
Rιjkl=<R(Xι, Xj)Xk, Xt> and ΊιΩjk=φχiΩ){X], Xk).

LEMMA 3.3. The curvature tensor R is expressed in the terms of R%jki and
Ωl} as follows:

(1) X

(2) R(ξ, Xt)Xj=-fΣ{ΩιkΩtjξ-tΐtΩjkXk),

(3) R(XιtXj)ξ=tΣitΩt)Xk,

(4) R(XU X1)Xh=tΐkΩιjξ+ΣlRιm-t\ΩuΩjk-ΩvkΩjl-2ΩιjΩH)-]Xι.

We shall calculate the covariant derivative VR of the curvature tensor R by
using Lemmas 3.1, 3.2 and 3.3.

LEMMA 3.4.

(1) (%R)(ξ, Xτ)ζ=0,

(2) φSiR)(ξ, Xj)ξ=t*ΣlΩHΩu(Sιka+Sιak)

+Sιιk{ΩkjΩal+ΩahΩl])+Ωl]ΐιΩal+ΩalΐιΩlJ-]Xa,

(3) (%

(4) ^ ^

-tΩklR{Xu Xι)X]-SkilR{ξ,

(5) ΦχhR){Xι> XJ)ξ=Σ[tXhφιΩιl)Xι+tSklaΊιΩl3Xa-tΩkιR{Xι, X})Xt

-SkUR{Xι,X])ξ-tSkjlΊaΩilX(ι+fΩal{ΩkιΩιj-ΩkjΩH)Xa+tlkΩιlξ,

(6) ΘίhR)(Xι, XJ)Xk=Σl{(.{lXhR){Xu Xs)Xk, X^-tKΩj^Ωn

-SlUR(Xt, XJ
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Proof. Using the standard formula

, Z)W)-R(SlχΫ, Z)W

for any vector fields X, Ϋ and Z, we shall prove this lemma. By using the
above formula for X=ξ, Y=ξ, Z—Xx and W=ξ, we have, from (1) and (2) of
Lemma 3.1 and (1) of Lemma 3.2,

Thus we obtain the formula (1). Similarly, we can obtain the formulas (2), (3),
(4), (5) and (6) by Lemmas 3.1 and 3.3.

4. The tensor field T of type (1, 2) on P.

We shall give a tensor field T of type (1,2), which plays an important role
in our assertion, and study its properties. Let us define T by

(4.1) τ(x, Ϋ)=t[_Ω{x, Ϋ)ζ+t{η(x)φγ—η{y)φxy],

for any vector fields X, Ϋ on P, where φ is defined by g(φX, Ϋ)—Ω(X, Ϋ)f then
T is a tensor field of type (1,2) on P such that T(X, Ϋ)=-T(Ϋ, X). With res-
pect to the orthonormal frame field taken in section 3, we have

(4.2) T(ζ, Xι)=tΣΩtlXι,

and

(4.3) T(Xι,XJ)=tΩtJξ.

Hence we obtain

LEMMA 4.1.

(1) $ξTXXt, J?,)=(^T)(e, Xt)=0 ,

(2) ^^.T)(ξfXj)=tΣ(VιΩjk)Xk>

(3) fciTXXj, Xk)=t$tΩJk)+Σt\ΩjkΩtl+ΩtjΩkι-ΩιkΩJl)Xι.

Proof. Using the standard formula

(4.4) tfχT)(Ϋ, Z)=%(T(Ϋ, Z))-TφχΫ, Z)-T{Ϋ, %Z),

for any vector fields X, Y and Z, we shall prove this lemma. Using the above
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formula for X=XX} Y=X3 and Z=Xk, we verify the third assertion as follows:
By (2) and (3) of Lemma 3.1 and the definition (4.1) of T, we have

xJf χk)-nx3, y2ixk)

=tφιΩjk)ξ+t2Σ(ΩjkΩiί+ΩιjΩkι-ΩιkΩjl)Xι.

The assertions (1) and (2) follow similarly from (4.1), (4.2), (4.3) and Lemma 3.1.
Here if we put

(4.5) (Tjp Txf, z)=nx, τ(f, z))-πnx, Ϋ), Z)-nΫ, nx, z»,

for any vector fields X, Ϋ and Z, the Tχ-T is a tensor field of type (1,2) on P
and satisfies the following

LEMMA 4.2.

(1) (7VTXJL Xj)=-t2Σ(ΩjkΩiι

JrΩιjΩkl-ΩtkΩjί)Xι,

(2) (7VT)(£, Xj)=(TrTXX%, Xj)=0 .

Proof. By (4.1), (4.2), (4.3) and Lemma 3.1, we have

T(Xlf T{X3, Xk))-T(T(Xι, X,\ Xk)-T(XJf T(Xτ, Xk))

= tlΩjkT(Xτ, ξ)-ΩtJΠξ, Xk)-ΩιkT(XJ} f)]

= -fΣ(ΩjkΩil+ΩιjΩkl-ΩιkΩjι)Xι.

Similarly we can verify the assertion (2).
Now for later use, we define a tensor field Tχ-R of type (1,3) on P by

(4.6) (Tw'RXX, Ϋ)Z=T{W, R(X, Ϋ)Z)-R(T(W, X), Ϋ)Z

-R(X, T(W, Ϋ))Z-R(X, Ϋ){T(W, Z)),

for any vector fields X, Ϋ, Z and W. Then we have the following

LEMMA 4.3.

(1) (7

(2) {T

(3) (T
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(4) {Tχk R)(ξ, Xx)XJ=Σlt"ΩjlΩlιΩkaXa-fΩkιφιΩJί)ξ

+tΩkιR(Xl9 Xι)X3-i*Ωk3ΩalΩlιXa],

(5) {Tχh R){Xty XJ)ξ^Σ[tΩklφιΩl3)ξ-t\ΩkιΩalΩl3)Xa

+t2ΩkjΩalΩlιXa+tΩkιR(Xι, X3)Xt2,

(6) (Tsh ft)(Xt, X3)Xk=Σl-tΩhllkΩl3Xι+tΩkιRιJkιζ+fΩhιΩkιΩl3ς

Proof. By Lemmas 3.1 and 3.2, (2.4), (4.1), (4.2), (4.3) and (4.6) imply that

(TVR)(ξ, Xx)ξ=nς, R(ζ, Xt)ξ)-fί(T(ξ, £), Xt)ξ-R(ζ, T(ξ, Xz))ξ-R(ξ} X%)T{ξ, ξ)

= Σ[t*ΩJιΩι%T(ξ, X3)-tΩuR(ξ, XM1=O.

Similarly we can obtain the equations (2), (3), (4), (5) and (6).

5. Main results.

Let M be a locally symmetric Kahlerian manifold with a Kahlerian metric
g and the fundamental 2-form Θ. Let P be a principal circle bundle over M, g
a Riemannian metric on P given by (2.2) and η a connection form on P such
that άη—π^Θ. Let τ be a local cross-section of P defined on a neighborhood U
of x such that τ(x)=x and the differential map of τ maps the tangent space of
M at x onto the horizontal space of P at x, and Jl3 the component of the almost
complex structure / with respect to the orthonormal frame field {Xlf ••• , Xn}
taken in section 3. Noting that Sίτ^Xj—X3 on U for each , we obtain

(5.1) Ω(XJf Xk)T,y, = Ω(τ*X3, τ*Xk)rty) = (τ*Ω)(XJf Xk)

for any y of U. Hence we see that

(5.2) ΊιΩjk=lιΊ3Ωkh=0.

Now we define a linear connection D on P,

(5.3) D£Ϋ=%Ϋ+T(X, Ϋ),

for any vector fields X, Ϋ and Z. Then by (2.3) and (4.1), we have

(5.4) {DzgW, Z)=0.

This means that D is a metric connection. Since M is locally symmetric
Kahlerian manifold, after a long calculation Lemmas 3.4, 4.1, 4.2, 4.3, 5.2 and
5.3 imply that for any vector field X,



118 YOSHIYUKI WAT AN ABE

DχR=0 and DχT=0.

By a result of W. Ambrose and I.M. Singer (see [1], p. 656), we find that P i s
locally homogeneous. Thus we have

PROPOSITION 5.1. Let M be a locally symmetric Kdhlerian manifold and P
a principal circle bundle over M with a Riemannian metric given by (2.2) and a
connection form η such that dη = π*θ, where Θ is the fundamental 2-form of M.
Then P is locally homogeneous.

Furthermore we find from the definition of T and (5.5) that

(5.6) ($*R)(Ϋ, X)X=-T(X, R(Ϋ, X)X)+R(T(X} f), X)X

and

(5.7) ΦΪT)(X9 ?)=0,

for any vector fields X and Y. Thus by a result J. E. D'Atri and H. K. Nickerson
(see [6], p. 252), we have

THEOREM 5.2. Let M be a locally symmetric Kdhlerian manifold and P a
principal circle bundle over M with a Riemannian metric given by (2.2) and a
connection form rj such that dr) = π*Θ. Then P is a locally homogeneous and
volume symmetric space.

Now let Ric and Ric be the Ricci tensor of g and g respectively. Then by
Lemma 3.2, we have the following

LEMMA 5.3 (cf. [10]).

(1) i

(2)

(3)

By this lemma, S. Kobayashi [10] showed that if M is Einsteinian, Ric(Z t, Xj)
=(S/n)δij, then putting t2—S/n(nJr2), we have an Einsteinian metric on P.
Then he proved the following

PROPOSITION 5.4. If M is a complete Einstein-Kdhlerian manifold with
positive scalar curvature, then we can construct a principal circle bundle P over
M and specially an Einsteinian metric with positive scalar curvature.

Combining Theorem 5.2 and Proposition 5.4, we have the following

THEOREM 5.5. If M is a complete locally symmetric Einstein-Kdhlerian
manifold with positive scalar curvature. Then we can construct a principal circle
bundle P over M, which is locally homogeneous and volume symmetric {especially
even Einsteinian).
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Now assume that the Einsteinian metric obtained in Proposition 5.4 satisfies
the condition (*). Then we first note that

ΣR0aβγR0aβγ~2ΣR0l0jR0l0J=2S2/n(n-\-2)2,

taking (1) of Lemma 3.2. Hence we have

ΣRaβγδRaβrδ~ΣROβrδROβrδ
JrΣRlβΐδRiβrδ

= (n + l)ΣRoβrδRoβϊδ=2S2/n(n + l).

This concludes that P is of constant curvature. Thus we have

PROPOSITION 5.6. A Riemanman metric on P obtained in Proposition 5.4 is
an Einsteinian manifold satisfying (*) if and only if it is of constant curvature.

6. An example.

Consider the complex quadric of complex dimension 2, Q\C)=CP1XCP1.
Then Q\C) admits the natural product Einstein-Kahlerian metric, which is locally
symmetric. Therefore by Theorem 5.5, we can construct a principal circle
bundle over Q\C), which is homogeneous and volume symmetric (especially
Einsteinian).

Now we give an explicit construction of this example. We take G/H as
follows:

G=

SU(2) 0

0 5/7(2).

, #=<

0

0

, u,

Then G is a compact connected Lie group with the Lie algebra g and H a
closed subgroup with the Lie algebra ΐj. His locally the direct product of two
closed normal subgroups Hx and H2:

0

0

0

0

This means that ^=^10^2 (direct sum of ideals), where ϊh and ^2 are the Lie
algebras of H1 and H2, respectively. Then P=G/H2 is a principal circle bundle
over G/H with projection π and structure group Hx where π :P-*G/H is defined
by π(gH2)=gH for g e G (see [9]). The αd(G)-invariant positive definite sym-
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metric bilinear form B :$Xq->R is taken to be —(1/2) the killing form on g=
su(2)Jrsu(2). An orthonormal basis for Q with respect to this form is given by

0 1 0 0 Ί r-0 i 0 0

- 1 0 0 0

0 0 0 0

0 0 0 0.

0 0 0 0

0 0 0 0

0 0 0 /

0 0 i 0.

e2=

i 0 0 0

0 0 0 0

0 0 0 0

""' 0

•0 0

0 0

0 0

0 0

0 0

0 1

0 0 - 1 0

0

0

0

Now note that {eδ, e6} is a basis for the Lie algebra ί) of H, and £6 a basis for

the Lie algebra ϊj2. We set m=the orthogonal complement of I)2 in Q spanned

by {eu e2, eZy e±, eb) and m'—the orthogonal complement of 5 in g spanned by

{£1, £2, £3, £4}- Let <, > be the metric induced by restricting B to πt', ( ,}or=Bm,

and Jo' = — admr(e6), where <, >0, (resp. Jo,) is the restriction of <, > (resp. /) to

the tangent space T0,{G/H) of G/H at o'=H, identifying nt' with T0,(G/H).

Then (/, < , » is the natural (product) Kahlerian structure on G/H. Furthermore

let <>> be the metric induced by restricting B to m, <>>0—B\m, where <,>0 is

the restriction of <,> to tangent space T0(G/H2) of G/H2 at o={H2} ^G/H2,

identifying m with T0{G/H2). Setting ηo(X)=(X, e5}0 for J e m , one can see

that η is a connection form on G/H2 and dη — π^Θ where Θ is the fundamental

2-form of the Kahlerian structure (/, <,» .
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