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Introduction. R.C. James [2] and J. Lindenstrauss and C. Stegall [3] gave
the examples of separable Banach spaces having no subspace isomorphic to /*
whose duals are non-separable. We are concerned here with James’ example.
In [2], he constructed a Banach space having properties a) it is separable and
its dual is non-separable and b) every infinite dimensional subspace contains a
subspace isomorphic to /% Property a) is a direct consequence of his construc-
tion, but to see property b) requires a rather deep observation. Property b) is
equivalent to

b’) for any weakly null normalized sequence {x,; n=1, 2, ---} there is a
sequence {y,; n=1, 2, ---} equivalent to an /*-basis for which each y, is a linear
combination of x,’s together with

b”) every infinite dimensional subspace contains a weakly null normalized
sequence.

In this paper we will prove a stronger property than b’), namely that there
is a subsequence, instead of linear combinations, of {x,; n=1, 2, ---} which is
equivalent to an /*-basis. In fact, we will show this under an (apparently)
weaker assumption than being weakly null. It should be mentioned here that
if we use H.P. Rosenthal’s characterization of Banach spaces containing /* [5],
property b”) is equivalent to saying that there is no subspace isomorphic to /'

In section 1, we give a definition of James spaces on trees, which are slightly
more general than James’ example, and we formulate our main result in Theo-
rem. In section 2 we prove our main result.

§1. James Spaces and the Main Result.

Let T be a union of a countable family of pairwise disjoint non-empty finite
sets P,, n=0, 1, 2, ---. We call a point ¢ of P, a point of level n, and write
I(t)y=n. We assume there is a binary relation between points of P, and points
of P,.+:, which we call a connection, such that for every n=0, 1, 2, ---, each
point of level n is connected to at least one point of level n+1 and each point
of level n-+1 is connected to only one point of level n. The following illustrates
an example of connections between points of the first three levels
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level 2

level 1

We call T with connection as above an infinite tree. A finite sequence S=
{to, ti, -+, ta} 1n T is called a segment if t, & Pryn, for all k=0, 1, ---, n, where
no=I(t,), and ¢, is connected to t,,,; for all .=0, 1, ---, n—1. Any two points
s and ¢t of a tree T are called connected if there 1s a segment which initiates
with either s or ¢ and terminates with the other. An infinite sequence B=
{to, t1, toy -} 10 T 1s called a branch if t,€ Pyyq, for all £=0, 1, 2, -+ with n,=
{(t,) and t, is connected to t,+; for all £=0, 1, 2, ---. The starting point 7, of B
is called the initial point of B and [(t,)=n, is called the nitial [evel of B.

The James space J(T') on a tree T is defined to be the space consisting of
all complex valued functions x on 7 such that

Ixl=sup (3 | 2 x(t)] )< +oo,
J=1 leSJ

where the supremum is taken over all choices of mutually disjoint segments
S, S, -+, Sk in T. It is not hard to see that J(T) is a Banach space with
respect to this norm. In particular, if every P, consists of one point, than J(7T)
is identical with the well known classical James space given in [1].

The space J(T) has the natural basis {e,; t€T},

oo

x=2xte=2 X x(t)e
teT n=0 tEPp
for all x=J(T), where e, is the characteristic function of {f} and the order in

the summation Y follows the order of the level of ¢ and any fixed ordering
terT

among points on the same level. It is easy to see that {e,;t=T} is a normalized,
monotone and boundedly complete basis.
Any segment S or branch B in T gives a linear functional with norm 1 on
J(T) by
S(x)=2 x(t) or B(x)=> x(t) for xeJ(T),
tes tEB

where the order in the summation 3 follows the order of the level of t= B.
teB

We recall that a sequence {x,; n=1, 2, ---} in a Banach space is said to be
equivalent to an /[%-basis if for any linear combination > a,x, of x,’s we have
n

G(Zn)|0én|2)”2§l[ ;anxnlléb(; |an|2)”2 »
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where a and b are fixed positive numbers.
Our main result can be stated as follows.

THEOREM. Suppose {x,; n=1, 2, -} 1s a normalized sequence n J(T) satis-
Sfying lim B(x,)=0 for all branches B i T. Then there 1s a subsequence of

{xa; n=1, 2, -} which 1s equivalent to an [>-basis. More precisely, for any >0
we can choose a subsequence {xn,; k=1, 2, -} such that for any linear combina-
tion Zk)akxnk of xn,’s with %}]aklzzl we have

l—esl|Dasxn, [ =2+e.

The constant 2 may not be best possible. We do not know the best possible
constant.

§2. Lemma and Proof of Theorem.

A sequence {x,, a,; n=1,2, ---}, where {x,; n=1, 2, ---} is a sequence in
J(T) and {a,; n=1, 2, ---} is an increasing sequence of levels, is called a block
sequence if the support of x, is located between the level a,, including a,, and
the level a,.i, excluding a4y, for all n=1, 2, ---. We call it bounded or nor-
malized if {x,; n=1, 2, ---} is bounded or normalized. The following Lemma
is a key to the proof of our theorem. We wish to thank Tom Starbird for sim-
plifying the original proof by suggesting the use of Ramsey’s theorem. Our
original proof involved more combinatorial arguments.

LEMMA. Let {x,, an; n=1, 2, -} be a bounded block sequence satisfying
lim B(x,)=0 for all branches B in T. Then for given ¢>0 there 1s a subsequence
n—o0

{xn, an; nEM} of {x4, an; n=1, 2, .-} such that for any segment S 1mtiating
with the level 0, |S(x,)| =S¢ for all neM except at most one n=n(S) n M.

Proof. For given >0, let Q, be the set of all points ¢ with /(t)=a, such
that |S(x,)|>e¢ for some segment S initiating with ¢t. By our definition of the
norm | x,||, it is clear that the number of points of @, is dominated by |[x,|?/e®
<K?/¢? where K= sng? lx.l. Thus we may assume, by passing to a subsequence

if necessary, that each @, consists of a points for all n=1, 2, ---. There is
nothing to prove if a=0, so assume a=1. Ramsey's theorem is applicable in
the following way for choosing a subsequence {x,, a,; n€M} of {x,, a,; n=
1, 2, ---} with property we desire. Let {,,, 1=/=aq, be all points of @,. For
1<i, j=a, let A, , be the set of all pairs {n, m} of positive integers n and m
with n<m such that there is a segment S initiating at ¢, , and terminating at
t, m with |S(x,)|>e. Finally, let A be the set of all pairs {n, m} of positive
integers n and m with n<m which are not in any A,, for 1=: 7<a. It is
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clear that A, , for 1=:, 7=<a together with A give a finite cover of the space
of all pairs {n, m} of positive integers n and m with n<m. By Ramsey’s
theorem [4], there is an infinite subset M of positive integers such that M® is
contained in A, , for some : and ; or otherwise contained in A, where M®
denote the set of all pairs {n, m} with n and m in M and n<m. We claim
M®cC 4. Suppose M®C A, , for some : and 7, then we will see that for any
n and m in M with n<m there is a segment S, ,, connecting ¢, , to ¢, » such
that |S, .(x,)|>e. For given n and m in M with n<m, choose %k in M with
n<m<k. Since {n, k} and {m, k} are in A, , there are segments S; and S,
initiating ¢, , and ¢, , respectively and terminating at ¢, , with |[S,(x,)|>¢ and
[Se(xm)|>2. Since S; and S, are terminating at the same point £, ,, S, must
be a subsegment of S;, thus S; must contain the point ¢, , which is the initial
point of S,. Let S, ,. be the part of S; between ¢, , and ¢, ,, then we have
I1S7, m(xn)| =1S1(x,)| >e. It is clear that this property of M we have just shown
implies that there is a branch B, which connects all points ¢, ,, nE M, and that
| Bo(xn)>¢ for all neM. However this contradicts our assumption lim B(x,)
=0 for all branches B. Thus we have shown M®CA. o

Now we can see that this subsequence {x,, a,; n=M} has the property we
desire. Suppose there 1s a segment S initiating with level 0 such that |S(x,)]
>¢ and | S(xp)|>¢ for some n and m in M with n<m. Let ¢, and ¢, be points
of S with level a, and level a, respectively, then we have t,=¢{, , and t,=t, »
for some : and ; because |[S(x,)|>¢ and |S(x,)|>e¢, thus {n, m} belongs to
A, ,, which contradicts {n, m}eM®CA and ANA, ,=0. This completes the
proof.

A block sequence {x,, a,; n€ M} which satisfies the conclusion of the lemma
will be called e-separated.

Proof of Theorem. We are given an ¢>0 and a normalized sequence {x,;
n=1, 2, ---} in J(T) satisfying

1) lim B(x,)=0 for all branches B in T.

n-0o

Since this assumption implies that lim x,(#)=0 for all t=7T, by the use of the
N —00

standard “gliding hump” argument, we first choose a subsequence {x,”; n=1,2, -}
of {x,; n=1,2, -~} and a normalized block sequence {v,, a,; n=1, 2, ---} such
that

2) "§|Ixn/*yn“2<32‘

It is clear that the normalized block sequence {v,, a,; n=1, 2, ---} also
satisfies 1). Using the lemma, choose a decreasing sequence of infinite subsets
M, of positive integers associated with a sequence of positive numbers ¢, tend-
ing to 0 such that
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3) {¥n, an; n=M,} is ¢,-separated for all k=1, 2, ---.

That is, for each k=1, 2, --- and any segment S initiating at level 0 we have
|S(ya)) Ze, for all n in M, except at most one n=n(S) in M,.

We now apply the diagonal process and choose sequence p,<p.< --- and
k1<k,< - such that

4) 0. EM,, for all n=1, 2, ---,
and
5 S mal( 3 eb)<e?,
n=1 l=n+1
where m, is the number of all points of the level a,, for n=1, 2, ---. Setting

Zn=Ye, bn=a,, and 0,=¢,, for all n=1, 2, ---, we have, from 3), 4) and 5),

6) {zyn, bp; n=Fk, k+1, ---} is §,-separated for all k=1, 2, -,
and
7 N D 8H<er,
n=1 l=n+1
where m, is the cardinality of P, for all n=1, 2, ---. Property 6) tells us that

for any k=1, 2, --- and any segment S initiating at level b, we have |S(z,)| =0,
for all n=1, 2, --- except at most one n=n(S)=*k.

For a segment S, we denote by z(S) the smallest positive integer n with the
initial level of S=b,. We call S regular if S initiates with a point of level
bis). For a regular segment S we denote by A(S) the smallest positive integer
n with |S(z,)| >d,, and we put A(S)=-co if there is no such n. The follow-
ing inequality will be used to estimate the norm of a linear combination of z,’s.
For any regular segment S we have
8) 2 ISE)'s X 0a°.

n#a¢8) nz1(S)
In fact, putting {n; |S(zn)| > 0.} ={ni<n,< ---}, we see that 1(S)=<n,=4(S). By
6), the block sequence {za, bn; n=mny, n,+1, ---} is d,,-separated. Since |[S(z5,)|
>0n,, |S(z,)| £0,, holds for all n>ny, so [S(z,,)| =0,,. Similarly, we see that
[S(zy+1)| =0, for all v=1, 2, ---. Thus we have

> SE)I= 2 IS(zn)lz=§lS(zny)|2+ RN ML
n#A(S) nnii;zslv v=2 nnzi%i)

oo
=30, 2 0uP= 2 0.7
v=1 nz1(8) nz1(8)

n#ENY

Now we will estimate the norm of a linear combination 3 «,z, with > |a,|®
n n
=1. We claim
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9) 1= En}anznll =2+42e.
The first inequality is clear because {z,, b,; n=1, 2, ---} is a normalized block
sequence. To see the other inequality, suppose J={S} is a finite family of
mutually disjoint segments S. We decompose S into its initial end S, and its
regular part S’, where S,={t€S; [t)<b;} and S'={<€S; [{)=b,s}. S, is
empty if S is regular. We decompose S’ into S; and S”; S§'=S,US”, where
SiI={ES; bis =) <bisy+) and S"={t€S; bysr+:1 =)}, S” possibly being
empty. Furthermore, we decompose S” into (possibly) three segments S,”, S,”
and S,” as follows

Si"={ES; bipy1 =D <basn},
S"={t€S; biesn S <biesmii),

Sy"={teS; bisna=IM)}.

We have
S=SOUS'=SOUSIUS”ZSOUsl\JSl'/USZ”USg;” .

Let x=Xa,z, with X |a,|?=1, and observe that
1S 7= I 1 Se(x)+Si(x)+S17(x)+ So"(x)+Sy" (x) | ?
Seyg Seyg
§4SEEJ{ISO(X)Iz_!_|Sl(x)]2+[82”(x)|2+Isl’/(x)+sal/(x)|2}
=4SEZJ {1Se() 2 1S () [P+ 1 S2" () |7} +4SZ_,J [S1"(x)+S,"(x)]*.

To estimate the first summation, note that | R(x)|?=>|a,|?| R(z,)|* if R=S,, S,

or S,”, because we have only one non-zero term in the summation > a,R(z,).
n
Thus we have

SISOl S01 41801
= 5 SlanlHISuan) 1Sz "+ S @)l
= Slanl? 1Sz 182+ 15/l
=S| *lzal'=Dlaa|*=1.
To estimate Sé [S,”(x)+S,"(x)|?, we note from 8) that
IS/HS =] E @S @]

n#A (8"

=( 2 Jaal™X ﬂZEMIS”(Zn)IZ)é > 0t

n#2 (8" nz1(S")
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Let 4, be the set of all S whose regular part S’ initiates with a point of
the level by, that is J,={SeJ; ((S)=Fk} for k=1, 2, ---. Then we have

sé‘sl”<x>+s3”<x>|2=“2 3 18,7(x)+ S (x) 1

k=1 SEJ}

[IA
Ms

5=3 3 N Gl=Sm( D §.H=e,
k=1

k=1 SE€EYJL nz1(8" k=1 S€EJp nzk+1 n>k+1

I

where we used 7) for the last inequality above. Finally, we have
> IS |2=4+4e*<4(1+e)2.
Seg

Thus
| Zanzali=sup ( 2 [S(x)|*)"*=2(1+e).
n g Sey

This establishes 9).

Since {z,; n=1, 2, ---} is a subsequence of {y,; n=1, 2, -~} and {y,; n=
1, 2, ---} satisfies 2), there is a subsequence {x,”; n=1, 2, ---} of the originally
given sequence {x,; n=1, 2, ---} such that

10) i lxn”—zall2<e?.

Now we can see that {x,”; n=1, 2, ---} 1s equivalent to an /*-basis. In fact,
for any linear combination > a,x,” with X |a,|*=1 properties 9) and 10) yield
n n

H ;anxn””g” ;anzn”“;ianlHxn”"_znn
z[ Banzal —(Zlan (X lan” —2u )21,

and
“ ;anxn”“ = A?anzn”"l' :Zl{an | Hxn”_ZnH =2+42¢+e=2-F3e.

The proof of the theorem is complete.

Finally we would like to show that our theorem implies property b) men-
tioned in the introduction.

The following fact was proved by J. Lindenstrauss and C. Stegall (see the
proof of Corollary 3 in [3]).

For any bounded sequence in J(T) we can choose a subsequence {x,; n=
1, 2, -} such that }‘il‘g B(x,) exists for all branches B in T.

From this, it is easy to see that every infinite dimensional subspace of J(7T)
contains a normalized sequence {x,; n=1, 2, ---} with the property that lim B(x,)
=0 for all branches B in T. Thus we have the following result.
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COROLLARY. Every wnfinite dimensional subspace of J(T) contains a subspace
1somorphic to (%

(1]
[2]
£3]
L4]

[5]
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