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THE SPECTRUM OF THE LAPLACE OPERATOR FOR A
SPECIAL RIEMANNIAN MANIFOLD

By GRIGORIOS TSAGAS

1. Introduction. Let (M, g) be a compact orientable Riemannian manifold
of dimension n. Let A%M) be the vector space of exterior g-forms on M, where
¢=0, 1, -+, n. We denote by S%(M, g) the spectrum of 4 on AYM).

It was the following open problem. Does S%(M, g) determine the geometry
of the Riemannian manifold (M, g)? The answer to this problem in general
case is negative. This is a consequence of the counter example which 1s given
in ([3]). If the Riemannian manifold (M, g) is a special one, then problem
remains open.

It has been proved ([4]) that the three spectrums S%(S”, go), SL(S", go) and
S2(S™, g,) determine completely the geometry of the standard sphere (S*, go).

One of the results of the present paper is to prove that for each standard
sphere (S™, g,) there is at least one integer ¢=[0, n] such that the spectrum
S%4(S™, go) determines completely the geometry on the sphere (S”, go).

In the second paragraph we give some known results for the spectrum
of the Laplace operator 4 which acts on the vector space A%M), where
q=0,1, -+, n.

The spectrum of the Laplace operator on the A%M), when the Riemannian
manifold (M, g) has constant sectional curvature different from zero, is studied

in the third paragraph.

2. We consider a compact, orientable Riemannian manifold (M, g) of dimen-
sion n. Let AYM) be the vector space of all exterior g-forms on M, where
¢=0, 1, -, n. For ¢g=0, we obtain the set A°(M) of all differentiable functions
on M.

Let 4=—(dd+48d) be the Laplace operator which acts on the exterior algebra
of M

AM)=AMYDAM)B--- DA (M)= En% A4
=

as follows
4: AM) —> AM), 4: AYM) —> AYM),

4d:a— dla)=—(dd+dd)a)=—ddé(a)—dd(a), Yac AU(M).
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If the exterior g-form is such that da=2A«, where 1€ R, then « is called a
g-eigenform, (or simply a ¢-form), and A the eigenvalue associated with «.

The set of eigenvalues associated with the exterior ¢-forms is called the
spectrum of 4 on A%M), and is denoted by S%4(M, g). Thus

S%(/w, g): {0221,(1: :21,q>22,q: :22q>23q> >~OO},

where each eigenvalue is repeated as many times as its multiplicity, which is
finite and the spectrum S%(M, g) is discrete, since 4 is an elliptic operator.

The spectrum S%(M, g) exerts an influence on the geometry of (M, g). The
aim of the present paper is to show that S%(M, g) determines the geometry on
(M, g), when (M, g) is a special Riemannian manifold and ¢ has a special value
which depends on the dimension of the manifold.

In order to study the influence of S%(M, g) on the geometry of (M, g) we
need the Minakshisundarum-Pleijel-Gaffney asymptotic expansion given by

i etuat~y ; (4ﬂf)_"/2(a0,q—|—a1,ql‘+ +(Xm,ql‘m)+0(l‘m’"/2),
1=1 >0

t->0

where «o 4, ;4 @z 4+ are numbers which can be expressed by
al,q:SMul,qu, 1=0, 1,2, -,

where dM is the volume element of M and
Uyg: M— R, =0, 1, 2, -+

are functions which are local Riemannian invariants. These can be expressed
by the curvature tensor, its associated tensors, and their covariant derivatives.
Some of these have been computed ([5])

=) ) VoM, @.1)
@ =\ Cln, S dM, 22
az,ng‘[[Cl(n, OS2 +Co(n, Q)| E*+Cs(n, ¢)| R|*]JdM, (2.3)
where
1/n n—2
Cln, q):€<q)_<q~l : 24)
1/n 1/n—2 1/n—4
Ci(n, ¢)= '72*((])*3 q~1>+7<q~2 , (2.5)

cins 9=— 155 ()47 (1-1) =21 75), 20
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_ 1 n 1 n—2 _l_ n—4
Cln, )= 180(q> 12((]—-1 + 2(q_2)’ @D
and R, E and S are the curvature tensor field, the Ricci curvature, and the

scalar curvature of (M, g), respectively, and |R|, |E| are the norms of R, E
with respect to g.

Problem 2.1. Let (M, g), (M’, g’) be two compact orientable Riemanmian
manifolds. If S4Y(M, g)=SLM’, g’), 1s (M, g) wsometric to (M’, g’)?

The answer to this problem 1s negative. This is a consequence of the fol-
lowing counter example (J. Milnor [3)].
There exist two lattices L and L’ in R such that

SH(RY/L, go/ L)=Sy(R**/L’, go/L’), (238)

where g, is the Euclidean metric in R'°.
Relation (2.8) implies that

SH(RY/L, go/ L)=SH(R*/L’, go/L").

But (R**/L, go/L) is not isometric to (R*/L’, go/L").
From the relation

SHM, g)=Sy(M’, g),
we conclude that

(i) dim(M)=dim(M"), (i) Vol(M)=Vol(M’), (i) by(M)=0b(M").

That is, the ¢ Betti numbers are equal, since b (M) is the multiplicity of 0 in
SYM, g).

3. We consider two compact, orientable, Riemannian manifolds (M, g) and
(M’, g’), for which we further assume that

Se(M, g)=Sy(M’, g"). (3.1)

We study special conditions, which taken with (3.1), determine the geometry
on (M, g).

THEOREM 3.1. Let (M, g), (M’, g’) be two compact, orientable Riemanman
manifolds. If n s giwen, then we can find at least one integer q (one of them is
qZ[%] of n=8, or q=2, if ne{6,7) or ¢=0 if ne{2, 34,5 such that
SpUM, g)=SpU«M’, g’) implies that (M, g) has constant sectional curvature R, if
and only 1f (M’, g’) has constant sectional curvature k', and k=Fk’.
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Proof. Let C, G be the Weyl conformal curvature tensor field and the
Einstein tensor field respectively, on (M, g). The components (C,,;;) and (G,,)
of C,; and G, respectively, with respect to a local coordinate system (x?, ---, x™)
on the manifold (M, g) are given by

Czjkl:szkl—a(E;kgil_Ejlgzk_g_zkEzl_.5ilEik)_l"ﬁ(gjkgil”—gjlgik)s; (3.2)
where a=1/(n—1), f=1/(n—1)(n—2), and

G,=E,—71g.,S, (3.3)
where y=1/n.
From (3.2) and (3.3) we obtain
[Cl2=|R|*—4|E|%/(n—2)+2S5*/(n —1)(n—2), (3.4)
|G|?=|E|*-S%/n. (3.5)

The formula (2.3) by virtue of (3.4) and (3.5) becomes

az =\ L[4 ICI*+A,| G2+ A,5%]dM, (3.6)
M
where
1 n
A,=4:(n, ¢)= iSOn(ﬁ _"13(*7‘1_27(”_—5( q )'Pl((]r n, (3.7
1
Ay=Ay(n, Q)= igOn(il *_1)(*71_2>2< Z > ‘Py(n, q), (3.8
A=A, =gy (1) P, 0. (39)

The expressions Pi(n, q), P.(n, ¢) and Ps(n, q) in the formulas (3.7), (3.8) and
(3.9) are given by

Pi(n, 9)=%q(g—1)(n—q)(n—q—1)—15¢(n—q)(n—2)(n—3)
+nn—D(n—2)(n-3), (3.10)

Py(n, q)=—360g(q—1)(n—q)(n—q—1)+30g(n—q)(n—2)(3n —8)
—n(n—1)(n—2)(n—6), (3.10)

Py(n, ¢)=180g(¢—1)(n —¢)(n —q—1)—60g(n —q)(n—2)
+n(n-—1)GEn>—Tn+6). (3.12)

By assumption, the Riemannian manifold (M’, g’) has constant sectional
curvature k’. Therefore for (M’, g’) we have C’=0, G’=0, and formula (3.6)
in this case takes the form
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=, ALS AN (3.13)

From (3.1), (3.6) and (3.13) we have
SM[A1 |C12+A2|G]2+A352]dM:SMIAg(S/)ZdM’ . (3.14)

If ¢g=[n/3], then we have
A:>0, 4,>0, 4,=0, it n=7. (3.15)

From the relation a; ,=ai , by virtue of (2.2) yields
S SdM:S SdM’, (3.16)
M M
which, since S’=constant, implies
S SZdMgS (S M’ . 3.17)
M M

From (3.14), (3.15) and (3.17) we obtain |C|?=|G|*=0, which gives C=G=0.
Hence the Riemannian manifold (M, g) has constant sectional curvature k. Finally,
the relation (3.16) implies k=F".

If the dimension of the manifold is between 2 and 5 we take as ¢=0, ([1]).

If the dimension of the manifold is 6 or 7, then we take ¢=2, ([7]).

This completes the proof of the theorem. More details of this will be pub-
lished later.

A consequence of the theorem (3.1) is the following corollary

COROLLARY 3.2. Let (S*, qo) be the standard Euclidean spheve. If n=6 then
the Spt*/*(S™, g,) determines completely the geometry on (S™, g,). Finally if
nel2, 5], then the Sp°(S™, q,) determunes completely the geometry on (S, go).
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