A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

BY B. E. RHOADES

Let H be a real Hilbert space, C a closed convex subset of H, T a selfmapping of C. Let $A_n x$ denote the *n*th term of the Cesàro transform of the sequence of iterates $\{T^k x\}$. Baillon [1] proved that, if T is a nonexpansive selfmapping of C which has a fixed point, then $\{A_n x\}$ converges weakly to a fixed point of T. This result has been extended to strongly regular matrices by Brézis and Browder [2], Bruck [3], and Reich [9]. In a recent paper [6] the Baillon result was extended to a symptotically nonexpansive mappings. In this paper the result of [6] is extended to a wide class of matrix methods.

A mapping T is said to be asymptotically nonexpansive over C if, for each $x, y \in C$,

(1)
$$||T^{i}x - T^{i}y|| \leq (1 + \alpha_{i})||x - y||, \quad i = 1, 2, \cdots,$$

where $\lim_{i} \alpha_i = 0$.

An infinite matrix $A=(a_{nk})$ is called regular if it is limit-preserving over c, the space of convergent sequences. Necessary and sufficient conditions for regularity are: (i) $||A|| = \sup_{n \ge \infty} \sum_{k=0}^{\infty} |a_{nk}| < \infty$; (ii) $\lim_{n} a_{nk} = 0$ for $k=0, 1, 2, \cdots$, and (iii) $\lim_{n} t_n = 1$, where $t_n = \sum_{k=0}^{\infty} a_{nk}$. Let X be a locally convex space. A sequence $\{x_n\} \subset X$ is said to be almost convergent, written ac, if there exists a point $s \in X$ such that $\lim_{n} \sum_{k=0}^{n-1} x_{k+1}/n = s$, uniformly in i. A matrix A will be called strongly regular if, in addition to satisfying conditions (i) and (iii) for regularity, it also satisfies (ii') $\lim_{n} \sum_{k} |a_{nk} - a_{n, k+1}| = 0$. A is called triangular if all its entries above the main diagonal are zero.

THEOREM. Let C be a closed convex subset of a real Hilbert space H, T an asymptotically nonexpansive selfmap of C such that $\{T^nz\}$ is bounded for each $z \in C$. Let A be a strongly regular matrix. Define $A_nx = \sum_{k=0}^{\infty} a_{nk}T^kx$. Then, for each $x \in C$, $\{A_nx\}$ converges weakly to a fixed point p, which is the asymptotic center of $\{T^nx\}$.

The proofs of Lemmas 2 and 3 of [6] are independent of the matrix A involved. So, to prove the Theorem, it is sufficient to show that Lemma 1 of [6] is true for each strongly regular matrix A; i.e., there exists a positive integer

Received February 28, 1980

 K_0 such that, for each $m \ge K_0$, there exists a positive integer N_m satisfying

(2)
$$||A_n x - T^m A_n x|| < \varepsilon$$
 for all $n \ge N_m$.

A regular matrix A will be called a hump matrix if each row contains a hump, and the heights of the humps tend to zero; i.e., for each n there exists an integer p(n) such that $a_{nk} \leq a_{n,k+1}$ for $0 \leq k < p$ and $a_{nk} \geq a_{n,k+1}$ for $k \geq p$, and $\lim_{n \to \infty} \sup_{k \neq n} |a_{nk}| = 0$.

The proof of (2) will make use of the following Lemma, which is an improvement of Lemma 1.1 of [3].

LEMMA. Let X be a sequentially complete space. Then the following are equivalent:

- (i) A sequence $x \in X$ is ac,
- (ii) $\lim_{n \sum_{k} a_{nk} x_{k}} exists$ for every strongly regular matrix A,
- (iii) $\lim_{n \sum_{k} a_{nk} x_{k}} exists$ for every regular hump matrix A,
- (iv) $\lim_{n \sum_{k} a_{nk} x_{k}}$ exists for every regular trianglar hump matrix A with nonnegative entries and row sums one.

The equivalence of (i) and (ii) comes from [3]. The implications (ii) \Rightarrow (iii) \Rightarrow (iv) are clear, since a regular hump matrix is also strongly regular. In [10] it was shown that (iii) \Rightarrow (i), but the proof there uses matrices satisfying (iv). Therefore (iv) \Rightarrow (i).

From the Lemma, it is sufficient to establish (2) for triangular regular hump matrices with nonnegative entries and row sums one.

For any $u \in H$,

$$\|A_n x - u\|^2 = \|\sum_{k=0}^n a_{nk} T^k x - u\|^2 = \|\sum_{k=0}^n a_{nk} (T^k x - u)\|^2$$
$$= \sum_{k=0}^n \sum_{j=0}^n a_{nk} a_{nj} (T^k x - u, T^j x - u).$$

Since *H* is a real Hilbert space, $2(T^{k}x-u, T^{j}x-u) = ||T^{k}x-u||^{2} + ||T^{j}x-u||^{2} - ||T^{k}x-T^{j}x||^{2}$, so that

(3)
$$2\|A_n x - u\|^2 = 2\sum_{k=0}^n a_{nk} \|T^k x - u\|^2 - \sum_{k=0}^n \sum_{j=0}^n a_{nk} a_{nj} \|T^k x - T^j x\|^2.$$

Substituting $u = A_n x$ in (3) yields

(4)
$$\sum_{k=0}^{n} \sum_{j=0}^{n} a_{nk} a_{nj} \|T^{k} x - T^{j} x\|^{2} = 2 \sum_{k=0}^{n} a_{nk} \|T^{k} x - A_{n} x\|^{2}.$$

Put (4) in (3) and set $u=T^{k}A_{n}x$ to get, for $k \leq n$,

294

$$||A_n x - T^k A_n x||^2 = \sum_{j=0}^{k-1} a_{nj} ||T^j x - T^k A_n x||^2 + \sum_{j=k}^n a_{nj} ||T^j x - T^k A_n x||^2 - \sum_{j=0}^n a_{nj} ||T^j x - A_n x||^2.$$

Using (1), and the fact that $a_{nk} \ge 0$, it then follows that

(5)
$$\|A_{n}x - T^{k}A_{n}x\|^{2} \leq \sum_{j=0}^{k-1} a_{nj} \|T^{j}x - T^{k}A_{n}x\|^{2} + (2\alpha_{k} + \alpha_{k}^{2}) \sum_{j=0}^{n-k} a_{n,j+k} \|T^{j}x - A_{n}x\|^{2} + \sum_{j=0}^{n-k} (a_{n,j+k} - a_{nj}) \|T^{j}x - A_{n}x\|^{2} = I_{1} + I_{2} + I_{3}, \quad \text{say}.$$

By hypothesis $\{T^{j}x\}$ is bounded for each $x \in C$. Let $M = \sup\{\|T^{j}x\| : j=0, 1, 2, \cdots\}$. Since A is nonnegative with row sums one, $\|A_{n}x\| \leq M$.

Since A is a hump matrix, $a_{n,j+1}-a_{n,j} \leq 0$ for $j \geq p$. An estimate will first be found for I_3 .

Case I. Suppose $p \leq k < n-k$. Then

$$I_{3} \leq \sum_{j=0}^{p} (a_{n, j+k} - a_{nj}) \| T^{j} x - A_{n} x \|^{2}$$
$$\leq \sum_{j=0}^{p} (a_{np} - a_{n0}) \| T^{j} x - A_{n} x) \|^{2} \leq 4M^{2} k a_{np}$$

Case II. k . Then

$$\begin{split} I_{s} &\leq \sum_{j=0}^{p-k} (a_{n, j+k} - a_{nj}) \| T^{j} x - A_{n} x \|^{2} + \sum_{j=p-k+1}^{p} (a_{n, j+k} - a_{np} + a_{np} - a_{nj}) \| T^{j} x - A_{n} x \|^{2} \\ &\leq 4 M^{2} [\sum_{j=0}^{p-k} (a_{n, j+k} - a_{nj}) + 0 + k a_{np} - \sum_{j=p-k+1}^{p} a_{nj}] \\ &= 4 M^{2} [\sum_{j=k}^{p} a_{nj} - \sum_{j=0}^{p} a_{nj} + k a_{np}] = 4 M^{2} [-\sum_{j=0}^{k-1} a_{nj} + k a_{np}] \leq 4 M^{2} k a_{np}. \end{split}$$

Case III. n-k . Then

$$I_{3} = \sum_{j=0}^{p-k} (a_{n,j+k} - a_{nj}) \|T^{j}x - A_{n}x\|^{2} + \sum_{j=p-k+1}^{n-k} (a_{n,j+k} - a_{np} + a_{np} - a_{nj}) \|T^{j}x - A_{n}x\|^{2}.$$

Proceeding as in Case II again yields $I_3 \leq 4M^2 k a_{np}$.

Case IV. $p \leq n - k < k$. Then

$$I_{3} \leq \sum_{j=0}^{p} (a_{n, j+k} - a_{nj}) \| T^{j} x - A_{n} x \|^{2},$$

and, following the same argument as Case II, one obtains $I_3 \leq 4M^2 k a_{np}$.

Case V. n-k . Then

$$I_{3} = \sum_{j=0}^{n-k} (a_{n,j+k} - a_{n,p} + a_{n,p} - a_{n,j}) \|T^{j}x - A_{n,k}x\|^{2}$$
$$\leq 4M^{2} [0 + (n-k+1)a_{n,p} - \sum_{j=0}^{n-k} a_{n,j}] \leq 4M^{2} k a_{n,p}$$

Case VI. $n-k < k < p \le n$. Then I_3 is the same as in Case V. Thus, in all cases,

$$I_3 \leq 4M^2 \left[\sum_{j=0}^{k-1} a_{nj} + k a_{np} \right].$$

Now fix $\varepsilon > 0$, and choose K_0 so that, for all $k \ge K_0$, $2\alpha_k + \alpha_k^2 < \varepsilon^2/12M^2$. Then, for all $k \ge K_0$,

$$I_2 \leq 4(2\alpha_k + \alpha_k^2) M^2 \sum_{j=0}^n a_{n, j+k} \leq \varepsilon^2/3.$$

Since A is a regular hump matrix, $\lim_{n a_{np}} = 0$ and A has a zero column limits. For each $m \ge K_0$ choose N_m so that, for $n \ge N_m$, $I_1 < \varepsilon^2/3$ and $I_3 < \varepsilon^2/3$, and the theorem is proved.

Remarks 1. A closed convex subset C of a real Hilbert space H is said to have the fixed point property for a family F of selfmaps of C if, for every $T \in F$, T has a fixed point. Ray [8] has shown that C has the fixed point property for nonexpansive maps if and only if C is bounded. This result is extendable to asymptotically nonexpansive mappings. The necessity follows by using the same example as in [8], since every nonexpansive mapping is asymptotically nonexpansive. For the sufficiency, assume that C is bounded. Then, from [4, Theorem 1], T has a fixed point in C. Consequently, the hypothesis, in the Theorem of this paper, that $\{T^n z\}$ be bounded for $z \in C$ is a natural and necessary one.

2. There are many strongly regular nonnegative matrices for which the Theorem applies. For example the Cesàro matrices of order $\alpha > 0$; the Euler matrices; all Nörlund matrices with $p_{n+1} \ge p_n$; and all weighted mean matrices with $p_{n+1} \le p_n$ and $P_n \rightarrow \infty$; and by all weighted mean methods with $p_{n+1} \ge p_n$ and $\lim_n p_n / P_n = 0$. For definitions and basic properties of these methods the reader may consult [5]. The Chebyshev method (see [7] also satisfies the Theorem.

3. Since T is not assumed to be linear, one obtains a collection of nonlinear

296

Ergodic theorems by simply adding the restriction that $t_n=1$ for each n.

4. Theorem 3 of [6] has a natural extension for integral operators.

References

- [1] J.B. BAILLON, Un Théorème de type ergodique pour les contractions non linéare dans un espace de Hilbert, C.R. Acad. Sci. Paris Sér. A-B 280 (1975), A1511-A1514.
- [2] H. BRÉZIS AND F.E. BROWDER, Remarks on Nonliner Ergodic Theory, Advances in Math. 25 (1977), 165-177.
- [3] R.E. BRUCK, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math. 29 (1978), 1-16.
- [4] K. GOEBEL AND W.A. KIRK, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [5] G.H. HARDY, Divergent Series, Oxford Univ. Press, 1949.
- [6] N. HIRANO AND W. TAKAHASHI, Nonliner Ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J. 2 (1979), 11-25.
- [7] MATTHEW LIU AND B.E. RHOADES, Some properties of the Chebyshev method, Pacific J. Math. 80 (1979), 213-225.
- [8] W.O. RAY, The fixed point property and unbounded sets in Hilbert space. Trans. Amer. Math. Soc. 258 (1980), 531-537.
- [9] S. REICH, Almost Convergence and Nonliner Ergodic Theorems, J. Approximation Theory 24 (1978), 269-272.
- [10] B.E. RHOADES, Some applications of strong regularity to Markov Chains and fixed point theorems, to appear in "Approximation Theory, III", ed. E. W. Cheney, Academic Press (1980), 735-740.

Indiana University Bloomington, Indiana 47405 U.S.A.