A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

BY B. E. RHOADES

Let *H* be a real Hubert space, *C* a closed convex subset of *H, T* a selfmap ping of C. Let $A_n x$ denote the *n*th term of the Cesaro transform of the sequence of iterates $\{T^k x\}$. Baillon [1] proved that, if T is a nonexpansive selfmapping of *C* which has a fixed point, then *{Λⁿ x}* converges weakly to a fixed point of *T*. This result has been extended to strongly regular matrices by Brézis and Browder [2], Bruck [3], and Reich [9]. In a recent paper [6] the Baillon result was extended to asymptotically nonexpansive mappings. In this paper the result of [6] is extended to a wide class of matrix methods.

A mapping *T* is said to be asymptotically nonexpansive over *C* if, for each $x, y \in C$

(1)
$$
||T^i x - T^i y|| \leq (1 + \alpha_i) ||x - y||, \qquad i = 1, 2, \cdots,
$$

where $\lim_{i \alpha_i} = 0$.

An infinite matrix $A=(a_{nk})$ is called regular if it is limit-preserving over c, the space of convergent sequences. Necessary and sufficient conditions for regu larity are: (i) $||A|| = \sup_n \sum_{k=0}^{\infty} |a_{nk}| < \infty$; (ii) $\lim_n a_{nk} = 0$ for $k = 0, 1, 2, \cdots$, and (iii) $\lim_{n \to \infty} 1$, where $t_n = \sum_{k=0}^{\infty} a_{nk}$. Let X be a locally convex space. A sequence ${x_n} \subset X$ is said to be almost convergent, written *ac*, if there exists a point $s \in X$ such that $\lim_{n\to\infty}\sum_{k=0}^{n-1}x_{k+i}/n=s$, uniformly in *i.* A matrix *A* will be called strongly regular if, in addition to satisfying conditions (i) and (iii) for regularity, it also satisfies (ii') $\lim_{n \to \infty} \sum_{k} |a_{nk} - a_{n, k+1}| = 0$. A is called triangular if all its entries above the main diagonal are zero.

THEOREM. *Let C be a closed convex subset of a real Hilbert space H, T an asymptotically nonexpansive self map of C such that {Tⁿ z} is bounded for each* $z \in C$. Let A be a strongly regular matrix. Define $A_n x = \sum_{k=0}^{\infty} a_{n,k} T^k x$. Then, *for each* $x \in C$, $\{A_n x\}$ converges weakly to a fixed point p, which is the asymptotic *center of {Tⁿ x}*.

The proofs of Lemmas 2 and 3 of [β] are independent of the matrix *A* in volved. So, to prove the Theorem, it is sufficient to show that Lemma 1 of $[6]$ is true for each strongly regular matrix A ; i.e., there exists a positive integer

Received February 28, 1980

 K_0 such that, for each $m \geq K_0$, there exists a positive integer N_m satisfying

(2)
$$
||A_n x - T^m A_n x|| < \varepsilon \quad \text{for all } n \ge N_m.
$$

A regular matrix *A* will be called a hump matrix if each row contains a hump, and the heights of the humps tend to zero; i.e., for each *n* there exists an integer $p(n)$ such that $a_{nk} \le a_{n,k+1}$ for $0 \le k < p$ and $a_{nk} \ge a_{n,k+1}$ for $k \ge p$, and $\lim_{n \text{ sup}_k |a_{nk}|} = 0.$

The proof of (2) will make use of the following Lemma, which is an improve ment of Lemma 1.1 of [3].

LEMMA. Let *X be a sequentially complete space. Then the following are equivalent* :

- (i) A sequence $x \in X$ is ac,
- (ii) $\lim_{n \sum_{k} a_{nk} x_k$ exists for every strongly regular matrix A,
- $\lim_{n \to \infty} \lim_{k \to \infty} a_{nk} x_k$ exists for every regular hump matrix A,
- (iv) *\ivcir,Σ^k ankXk exists for every regular tnanglar hump matrix A with nonnegative entries and row sums one.*

The equivalence of (i) and (ii) comes from [3]. The implications (ii) \Rightarrow (iii) \Rightarrow (iv) are clear, since a regular hump matrix is also strongly regular. In [10] it was shown that (iii) \Rightarrow (i), but the proof there uses matrices satisfying (iv). Therefore $(iv) \Rightarrow (i)$.

From the Lemma, it is sufficient to establish (2) for triangular regular hump matrices with nonnegative entries and row sums one.

For any $u \in H$,

$$
||A_n x - u||^2 = ||\sum_{k=0}^n a_{nk} T^k x - u||^2 = ||\sum_{k=0}^n a_{nk} (T^k x - u)||^2
$$

=
$$
\sum_{k=0}^n \sum_{j=0}^n a_{nk} a_{nj} (T^k x - u, T^j x - u).
$$

Since *H* is a real Hilbert space, $2(T^kx - u, T^jx - u) = \|T^kx - u\|^2 + \|T^jx - u\|^2$ $-\|T^kx - T^jx\|^2$, so that

(3)
$$
2||A_n x - u||^2 = 2\sum_{k=0}^n a_{nk}||T^k x - u||^2 - \sum_{k=0}^n \sum_{j=0}^n a_{nk} a_{nj}||T^k x - T^j x||^2.
$$

Substituting $u = A_n x$ in (3) yields

(4)
$$
\sum_{k=0}^{n} \sum_{j=0}^{n} a_{nk} a_{nj} \| T^{k} x - T^{j} x \|^{2} = 2 \sum_{k=0}^{n} a_{nk} \| T^{k} x - A_{nk} \|^{2}.
$$

Put (4) in (3) and set $u = T^k A_n x$ to get, for $k \leq n$,

$$
||A_n x - T^k A_n x||^2 = \sum_{j=0}^{k-1} a_{nj} ||T^j x - T^k A_n x||^2
$$

+
$$
\sum_{j=k}^{n} a_{nj} ||T^j x - T^k A_n x||^2 - \sum_{j=0}^{n} a_{nj} ||T^j x - A_n x||^2.
$$

Using (1), and the fact that $a_{nk} \ge 0$, it then follows that

(5)
\n
$$
||A_n x - T^k A_n x||^2 \leq \sum_{j=0}^{k-1} a_{nj} ||T^j x - T^k A_n x||^2
$$
\n
$$
+ (2\alpha_k + \alpha_k^2) \sum_{j=0}^{n-k} a_{n, j+k} ||T^j x - A_n x||^2
$$
\n
$$
+ \sum_{j=0}^{n-k} (a_{n, j+k} - a_{nj}) ||T^j x - A_n x||^2
$$
\n
$$
= I_1 + I_2 + I_3, \text{ say.}
$$

By hypothesis $\{T^jx\}$ is bounded for each $x \in C$. Let $M = \sup{\{\|T^jx\| : j = 0, 1\}}$ 2, \cdots }. Since *A* is nonnegative with row sums one, $||A_n x|| \le M$.

Since *A* is a hump matrix, $a_{n,j+1} - a_{n,j} \leq 0$ for $j \geq p$. An estimate will first be found for I_3 .

Case I. Suppose $p \le k < n - k$. Then

$$
I_{3} \leq \sum_{j=0}^{p} (a_{n,j+k} - a_{nj}) \| T^{j} x - A_{n} x \|^{2}
$$

$$
\leq \sum_{j=0}^{p} (a_{n} - a_{n0}) \| T^{j} x - A_{n} x \|^{2} \leq 4M^{2} k a_{n}.
$$

.

Case II. $k < p \leq n-k$. Then

$$
I_{3} \leq \sum_{j=0}^{p-k} (a_{n,j+k} - a_{nj}) \|T^{j}x - A_{n}x\|^{2} + \sum_{j=p-k+1}^{p} (a_{n,j+k} - a_{np} + a_{np} - a_{nj}) \|T^{j}x - A_{n}x\|^{2}
$$

\n
$$
\leq 4M^{2} \Big[\sum_{j=0}^{p-k} (a_{n,j+k} - a_{nj}) + 0 + ka_{np} - \sum_{j=p-k+1}^{p} a_{nj} \Big]
$$

\n
$$
= 4M^{2} \Big[\sum_{j=k}^{p} a_{nj} - \sum_{j=0}^{p} a_{nj} + ka_{np} \Big] = 4M^{2} \Big[- \sum_{j=0}^{k-1} a_{nj} + ka_{np} \Big] \leq 4M^{2} ka_{np}.
$$

Case III. $n-k < p \leq n$. Then

$$
I_{3} = \sum_{j=0}^{p-k} (a_{n,j+k} - a_{nj}) \|T^{j}x - A_{n}x\|^{2} + \sum_{j=p-k+1}^{n-k} (a_{n,j+k} - a_{np} + a_{np} - a_{nj}) \|T^{j}x - A_{n}x\|^{2}.
$$

Proceeding as in Case II again yields $I_s \leq 4M^2ka_{np}$.

Case IV. $p \leq n-k < k$. Then

$$
I_{3} \leq \sum_{j=0}^{p} (a_{n,j+k} - a_{nj}) \| T^{j} x - A_{n} x \|^{2},
$$

and, following the same argument as Case II, one obtains $I_3 \leq 4M^2 k a_{np}$.

Case V. $n-k < p \leq k$. Then

$$
I_{3} = \sum_{j=0}^{n-k} (a_{n,j+k} - a_{np} + a_{np} - a_{nj}) ||T^{j}x - A_{n}x||^{2}
$$

\n
$$
\leq 4M^{2}[0 + (n-k+1)a_{np} - \sum_{j=0}^{n-k} a_{nj}] \leq 4M^{2}ka_{np}
$$

Case VI. $n - k < k < p \leq n$. Then I_3 is the same as in Case V. Thus, in all cases,

$$
I_{3} \leq 4M^{2} \Big[\sum_{j=0}^{k-1} a_{nj} + k a_{np} \Big].
$$

Now fix $\varepsilon > 0$, and choose K_0 so that, for all $k \geq K_0$, $2\alpha_k + \alpha_k^2 < \varepsilon^2/12M^2$. Then, for all $k \geq K_0$,

$$
I_2 \leq 4(2\alpha_k + \alpha_k^2)M^2 \sum_{j=0}^n a_{n,j+k} \leq \varepsilon^2/3
$$
.

Since *A* is a regular hump matrix, $\lim_{n \to \infty} a_{np} = 0$ and *A* has a zero column limits. For each $m \ge K_0$ choose N_m so that, for $n \ge N_m$, $I_1 < \varepsilon^2/3$ and $I_3 < \varepsilon^2/3$, and the theorem is proved.

Remarks 1. A closed convex subset C of a real Hubert space *H* is said to have the fixed point property for a family F of selfmaps of C if, for every $T \in F$, T has a fixed point. Ray $[8]$ has shown that C has the fixed point property for nonexpansive maps if and only if *C* is bounded. This result is extendable to asymptotically nonexpansive mappings. The necessity follows by using the same example as in [8], since every nonexpansive mapping is asymptotically nonexpan sive. For the sufficiency, assume that *C* is bounded. Then, from [4, Theorem 1], *T* has a fixed point in C. Consequently, the hypothesis, in the Theorem of this paper, that $\{T^n z\}$ be bounded for $z \in C$ is a natural and necessary one.

2. There are many strongly regular nonnegative matrices for which the Theorem applies. For example the Cesaro matrices of order $\alpha > 0$; the Euler matrices; all Nörlund matrices with $p_{n+1} \geq p_n$; and all weighted mean matrices with $p_{n+1} \leq p_n$; all Nörlund matrices with $p_{n+1} \leq p_n$ and $P_n \to \infty$; and by all weighted mean methods with $p_{n+1} \geq p_n$ and $\lim_{n} p_n / P_n = 0$. For definitions and basic properties of these methods the reader may consult [5]. The Chebyshev method (see [7] also satisfies the Theorem.

3. Since *T* is not assumed to be linear, one obtains a collection of nonlinear

Ergodic theorems by simply adding the restriction that $t_n = 1$ for each *n*.

4. Theorem 3 of [6] has a natural extension for integral operators.

REFERENCES

- [1] J.B. BAILLON, Un Théorème de type ergodique pour les contractions non linéare dans un espace de Hilbert, C.R. Acad. Sci. Paris Sér. A-B 280 (1975), A1511-A1514.
- [2] H. BREZIS AND F. E. BROWDER, Remarks on Nonliner Ergodic Theory, Advances in Math. 25 (1977), 165-177.
- [3] R.E. BRUCK, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω -limit set, Israel J. Math. 29 (1978), 1-16.
- [4] K. GOEBEL AND W.A. KIRK, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [5] G.H. HARDY, Divergent Series, Oxford Univ. Press, 1949.
- [6] N. HIRANO AND W. TAKAHASHI, Nonliner Ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J. 2 (1979), 11-25.
- [7] MATTHEW LIU AND B. E. RHOADES, Some properties of the Chebyshev method, Pacific J. Math. 80 (1979), 213-225.
- [8] W.O. RAY, The fixed point property and unbounded sets in Hilbert space. Trans. Amer. Math. Soc. 258 (1980), 531-537.
- [9] S. REICH, Almost Convergence and Nonliner Ergodic Theorems, J. Approxima tion Theory 24 (1978), 269-272.
- [10] B.E. RHOADES, Some applications of strong regularity to Markov Chains and fixed point theorems, to appear in "Approximation Theory, III", ed. E. W. Cheney, Academic Press (1980), 735-740.

INDIANA UNIVERSITY BLOOMINGTON, INDIANA 47405 U.S.A.