M. DE LEON
KODAI MATH. J.
4 (1981), 189—216

CONNECTIONS AND /- STRUCTURES ON T*M
By MANUEL DE LEON

Introduction

Grifone [11] defines a connection on M as a differentiable vector 1-form I’ on
TM verifying: JI'=], I'J=—], where J defines the canonical almost-tangent
structure of TM. If T2M denotes the tangent bundle of order 2 over a C*
differentiable manifold M, the existence of the vertical fiber bundles V"2 and
V=12 lead us to define connections on T2M by means of complementary distri-
butions. Taking into account the canonical endomorphisms /; and J, (/, defining
an almost-tangent structure of order 2 on 72%M), and following Catz [5], we
introduce a non-homogeneous connection on M of type 1 as given by a vector
1-form I verifying J.[=],, [J,—=—]..

The connection I is said of type 2 if J,[ =], [J;=—]:.

In §5, we express the non homogeneous character of a connection by means
of its tension. Thus, a connection is said homogeneous if its tension vanishes.
In §6, a semispray or a differential equation of third order, is shown to be
canonically associated with any connection of the same type. Moreover, the
paths of a connection are just the solutions of its associated semi-spray. The
curvature of a connection is defined in §8 and Bianchi’s identities are derived.
In particular, if a connection is homogeneous, its curvature is homogeneous, too.

It is well known that, associated with a linear connection on M, there exists
an almost-complex structure on 7'M, the integrability of which is given through
the curvature and torsion of the connection [8], [127, [15]. In §9, it is shown
that if /" is a connection on M of type 1, there exists an f-structure F associated
with I” and determined by relations

F]'=h, Fh=-]’, F];=0

where J'=],h.
In the same way, an f-structure G is associated with a connection of type 2
and defined by

G/i=h', Gh'=—],, GhX=0, if X& V*(T*M)

where h'=h],.
Integrability conditions for both f-structures are given in Theorem 9.6, 9.12
and 9.13.
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Finally, in § 10, prolongations of metrics given on V7(g%M) and V= 12(I:M)
to 92M are defined with respect to connections of type 1 or 2, respectively. In
fact, these prolongations are shown to be hor-ehresmannian with respect to the
f-structures which are canonically associated with each connection.

§1. Preliminaries.

Let M be a paracompact n-dimensional differentiable manifold. The tangent
bundle of order 2, T2M, of M is the 3n-dimensional manifold of 2-jets at 0€R
of differentiable mappings f: R—M ; T*M has the natural bundle structure over
M, 7, : T2M—M denoting the canonical projection. The tangent bundle TM is
nothing but the manifold of 1-jets at 0= R of differentiable mappings f: R—M.

If we denote 7,,: T2M—TM the canonical projection, then T2M has a bundle
structure over TM with projection my,.

Let {U, x} be a coordinate neighborhood of M, and denote by (x%, y*, 2°)
the induced system of coordinates in z;(UU). The two fiber bundle structures of
T:*M, over M and TM respectively, lead to two exact sequences of vector bundles
over T2M :

1 s
0 —> V(T M) —> TT*M —> T*MX yTM —> 0

1 s
0 —> VA TM) —> TTM —> TM X py TTM —> 0

where V™2(T2M) (respect. V*12(T2M)) denotes the vector bundle of those vectors
of TT:M which are projected to 0 by =} (respect. #%;). These sequences are
called the first and second fundamental exact sequences, respectively.

There exist two canonical isomorphisms of vector bundles

hy: TPMX 3y TM — V™12(T2M)
ho: T2MX oy TTM — V*(T*M)
Thus, two vector 1-forms on T2M are defined:

Ji=taohiesy, Jo=iohses,
and they verify
§=2]1y ]g:()

Moreover, J, has constant rank 2n and determines an almost-tangent struc-
ture of order 2 on T2M.
With respect to the induced coordinates, J; and J, are locally expressed by

0 0 0 0 0 0
Ji:l0 0 0}, J::{of 0 0
o 0 0 0 207 0
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With each fundamental exact sequence, a canonical vector field is associated ;
in fact, let a=idpey X ymi» be the canonical section of the vector bundle
T*MX »TM; we denote C, the vector field defined on 72M by

C1:12°h1°a .

Analogously, if j is the injection T2M—TTM, the canonical section A=
idpay X pyj of the vector bundle T*M X, TTM permits to define the vector field

C; on T2M by
C2:i1°h2°‘8

C, and C, are called the canonical vector fields on T2M. Locally, in a point of
coordinates (x*, y*, z%), the components of C, and C, are, respectively,

0, 0, ¥, (O, y*, 22Y).

The formalism of Frélicher-Nijenhuis [9] will be useful in this paper. The
following identities are verified :

JiCi=0; JiC=0; J.C;=0; [J.C,=2C,
[Cy, JJ=0; [Cy, Jid==2]1; [Cy Jed=—]15 [Co Jod=—]:
Js J1=0; [Jy J21=0; [Ja Jo1=0.

Finally, we denote %M the bundle of all non-zero elements of TZM.

§2. Homogeneous and semibasic forms.

Let us introduce the following definitions.

a) Homogeneous forms.

DEFINITION 2.1. A real-valued differentiable function f on 9%M is said homo-
geneous of degree k if L¢,f=Fk-f.

Always, £ denotes the Lie derivative.

Let h,: R—R be the homothetia of ratio e¢' and let H,: T:M—T2M denote
the fibre-preserving transformation deduced from h,. Since C, generates the
l-parameter group of transformation H,, the condition in Definition 2.1, is equiva-

lent to
foHy=e"'f.

DEFINITION 2.2. A scalar p-form w on 92M is said homogeneous of degree
k if
-L,C’gw: kw.
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DEFINITION 2.3. A vector [-form L on %M is said homogeneous of degree
k if
[C,, L]1=(k—DL.
b) Semibasic forms.

DEFINITION 24. A vector [-form L on T2%M, with (=1, is said:
1) Semibasic of type 1 if

a) L(Xy, -, X)eV*(T2M), for every X, ---, X, vector fields on T2M.

b) L(X,, -, X;)=0, if X, belongs to V=1(T2M).
2) Semibasic of type 2 if

a) L(X,, -, X)eV*(T*M), for every X,, ---, X, vector fields on T2M.

b) L(X,, -+, X;)=0, if X; belongs to V=2(T2M).

A vector field belonging to V=2(T2M) (respectively, V*2(T2M)) is said semi-
basic of type 1 (respect. semibasic of type 2).

Local expressions

1) If L is a semibasic vector [-form of type 1, in an induced local system of
coordinates, it is expressed by

0
0z%

where r+s=I[, and 7’s, j’s and « running over the set {I, 2, ---, n}.

L=L%1,5,3,d 1R Rdx"Pd y'®--Rd yQ

2) If L is semibasic of type 2, it is locally expressed by

0

L=L%.,dx"Q@ Qdx"Q 0z

aia +M§x1.4.”dxh®...®dx“®

PROPOSITION 2.5. Let L be a vector [-form. Then:
1) L is semibasic of type 1 1f and only 1f

J:L=0 and i, yL=0, VXex(T*M)
2) L is semibasic of type 2 1f and only if
JiL=0 and i;,xL=0, VXecx(T*M).

§3. Semi-sprays and potentials.

DDFINITION 3.1. Let S be a vector field on T2M, differentiable C* on T%M.
Then:

1) S is said a semi-spray over M of type 1 if, for every integral curve a of S,
one has

(myea) =mppoax

where (m,ca)’ denotes the canonical lift of (moa) to TM.
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2) S is said a semi-spray over M of type 2 if, for every integral curve a of S,
one has
(mrea)’'=a

where (z,°a)” denotes the canonical lift of (zy°a) to T2M.

The following proposition is easily shown.

PROPOSITION 3.2. Let S be a vector field on T*M, differentiable C* on T2M.
Then

1) S is a semi-spray of type 1 1f and only i1f
nleS=m,
2) S 1s a semi-spray of type 2 1f and only if
nfeS=j
] being the canonical injection T*M—TT M.

Local expressions
With respect to an induced local system of coordinates, we have:
1) if S is a semi-spray of type 1, it is expressed by

S: (v Six, 3, 2), S¥x, ¥, 2)

where the functions S, Si, 1=1, 2, ---, n, are differentiable C* on I2M.
2) if S is a semi-spray of type 2, then

S: (2, Sx, y, 2)
where the functions S*, =1, 2, -+, n, are as above.

Using these local expressions, we can easily prove

PROPOSITION 3.3. Let S be a vector field on T*M, differentiable C* on I*M.
Then S 15 a semuspray of type 1 (respectwely, of type 2) 1f and only 1f J,S=C,
(respect. [,S=C,).

Remark. Evidently, any semi-spray of type 2 is also of type 1.
We shall now express the non-homogeneity of a semi-spray.

DEFINITION 3.4. Let S be a semi-spray over M (indistinctiy of type 1 or 2).
We shall call deviation of S the vector field

S*=[C,, S1-S.

Then, using local components, we have
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PROPOSITION 35. 1) If S s of type 1, S* belongs to V=(T*M).
2) If S s of type 2, S* belongs to V=(T2M).

DEFINITION 3.6. A semi-spray which has zero deviation, and of class C? on
the zero cross-section, is said a spray.

From this definition on, it is easily deduced that a semi-spray of type 1 is a
spray if and only if the functions S, S} are homogeneous of degree 2 and 3
respectively ; analogously, a semi-spray of type 2 is a spray if and only if the
function S* are homogeneous of degree 3.

DEFINITION 3.7. Let L be a semibasic vector [-form on T2*M, of type 1
(respectively, of type 2). We call potential of L the semibasic vector (/[—1)-form,
of type 1 (respect. of type 2) given by L°=i1sL, S being an arbitrary semi-spray

of type 2.

The fact that L° is independent of the election of S and that L° is semibasic

and of the same type as L is easily verified.
This terminology is justified by the following

PROPOSITION 3.8. Let L be a semibasic vector [-form on T2®M, of type 2 and
homogeneous of degree k, with [+k#1. Then

1

ZH—_k:(Ejz’ L%+ ], LO°D).

L

Proof. Let S be an arbitrary semi-spray of type 2. We have

Lis, dy,]=dsas—its, sg=-Lo,— s, 75 -

But
(l[S, J2]L)(X17 ) Xl>:(LK[S: ]2])(X17 ) Xl)
l
= ’§1 L(Xlr Tt Xl—ly I:S) ]2]X1; X1.+ly T Xl)
for any X, -+, X, €2(g*M). On the other hand,

JiLS, X ]=—].X,, 1=1,2, -, n

or, equivalently,
Ju(LS, J. X, ]+ X,)=0, 1=1, 2, -, n.

Then, taking into account that
LS, J:1X=[S, J.X,]—J.[S, X.]

and the fact that L is semibasic, we deduce
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l
(ics, s LN Xy, -, X)= § L(Xy, oy =X, o, Xy)

== L(Xy, o, Xy, o, X).

Hence,
us, gpl=—1-L
and then
Lis, dy]L="Lo,L—Tts spL=(k—1)L+I-L=(I4+k—1)L.
Finally,

. 1 .
L [ls, dJ2]L: m(l,ngzL'}‘szlsL)

. 1
T l+k—-1

1
=71 e LI+ LOD.

COROLLARY 3.9. Let L be a semibasic vector [-form of type 2 and homogene-
ous of degree k, with [4+k+1. Then, 1f L is J,-closed,

1

L=

[Je L°]

i.e., 1f L s Jo-closed, then L 1s expressed as a function of the derwatives of 1its
potential.

§4. Connections on M.

Following Catz [5], we introduce

DEFINITION 4.1. We shall call non-homogeneous connection on 72M of type
1, or simply, connection on M of type 1, a vector 1-form /" on T2M, differentiable
C* on 9%M, such that

D le:fl, 2) F.[z:“‘]2~

DEFINITION 4.2. We shall call non-homogeneous connection on 72M of type
2, or simply, connection on M of type 2, a vector 1-form I on T2M, differentiable
C= on %M, such that

1 jzr:]2, 2) Z71:"./.1-

PROPOSITION 4.3. A wector 1-form [" on T*M 1s a connection on M of type
1 if and only if I defines an almost-product structure over T:*M, differentiable
C= on I°M, such that, for every point w<=T M, the eigenspace corresponding to
the eigenvalue —1 of I, is the subspace VIT*M).

Proof. Let I’ be a connection on M of type 1, then

J =] if and only if  J,(I'—I)=0
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I'J,=—], if and only if (I'+1)/,=0.

But
Ji=teohiesy, Jo=10hses,

hence
130hy08;o('—I)=0 if and only if s;o(/'—1)=0
because 1, is a monomorphism and A, is an isomorphism ; analogously,
(I +1)e130hy05,=0 if and only if (I'+1)°1,=0
because s, is an epimorphism and 4, is an isomorphism.
Thus, we obtain

Im(I'—I)cKer s;=Im1;,, Im:,CKer(I+I)

Im(I'-I)CcKer(I'+1)

and, consequently
(C+D(—DH=I?*—I1=0.

On the other hand, if XeT(T?M) is such that
X=—-TX

we have
JiX=—J ' X=—],X

and thus Xe VixT*M). Conversely, if Xe VZIo(T*M), there exists YT ,(T*M)

such that X=/,Y; hence
I'X=I],Y=~—],Y=—X

and X is associated with the eigenvalue —1.
The sufficiency of the condition is shown as follows; let Xex(T2M), then

J.XeV=*(T*M) and IJ,X=-—],X, and thus IJ,=—],. Moreover, X—I'Xe
V=x(T2M) since I'(X—I'X)=—(X—I'X), and consequently

0:]1(X—FX):]1X—J1FX
and so J.['=]..

By similar devices, we also have

PROPOSITION 4.4. A wector 1-form I' on T*M s a connection on M of type
2 of and only if I' defines an almost-product structure over T*M, differentiable
C*® on I*M, such that, for every point wsT*M the eigenspace corresponding to
the eigenvalue —1 of I, 1s the subspace VZr:(T2M).

To each connection I" on M (of type 1 or 2) there are canonically associated
two projection operators
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1 1
h——f([—Hﬂ), v—7(1*~r)
which are called the horizontal and vertical projectors of I, respectively.

Therefore, we have a decomposition of the tangent bundle of T2M,

T(T*M)=Im vPIm A

and, since
Imv=Ker h={XeT(T*M)/' X=—X}

and accordingly with Propositions 4.3 and 4.4, we obtain :
Imo=V7x(T2M), if I is of type 1; Imov=V=1(T2M), if " is of type 2.
Let us denote Im A=H(T2*M); then, we have the following decompositions :
a) for I’ of type 1: T(T:M)=V=(T*M)DH(T*M) (1)
b) for I' of type 2: T(T*M)=V=xT*M)DH(T*M) (1)

Conversely, decompositions of T(T2*M) as in (1) or (II) determine connections

on M of type 1 or 2, respectively.
If I" is a connection of type 1, we have

Jih=J.,  hJ,=0

Jw=0, v),=],
and, if I' is of type 2,

jzh:JZ, h]1=0

jZU:O) Ujl:]l.

PROPOSITION 4.5. A connection I' on M of type 1 defines a splitting, differ-
entiable C* on T*M, of the exact sequence of vector bundles

1 s
0 —> VAH(T*M) —> T(T*M) —> T*MX  TM —> 0.
Conversely, such a splitting determines a connection I' on M of type 1.

Proof. Let I' be a connection on M of type 1, with horizontal projector A,
and let j be an arbitrary splitting of the exact sequence above, i.e.

J: TPMXyTM — TT*M

and 81°j:idT2MXMTM .

Put y=he-j; then 7 is well-defined, since if j’ is another splitting, s;(;—;’)=0
and then j—j'eKer s,;=V=(T2M); hence, h(j—j')=0, i.e. hej=h-j’. Moreover,
7 is a splitting, since
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]1°h:12°h1°31°h:12°h1°31

and taking into account the fact that i, is a monomorphism and 4, is an iso-
morphism, we deduce s;°h=s;, and, thus,

Syey=S1ohej=s1°J=1dpepry yrar -

Conversely, let 7 be a splitting of the exact sequence and put I'=2y.s,—1,
then

]1F=212°h1°81°7”°31—]1:./1
['f2:27’°31°i1°h2°52_]2:_]2

and so [ is a connection in M of type 1.
A similar Proposition is obtained for connections of type 2.

PROPOSITION 4.6. A connection I' on M of iype 2 defines a splitting, differ-
entiable C* on 9°*M, of the exact sequence of vector bundles

1 s
0 —> V(T M) —> T(T*M) —> T*MX 7y TTM —> 0
Conversely, such a splitting determines a connection I on M of type 2.

Local expressions

Let (U, x?) be a coordinate neighborhood of M, and (x% y% z') the induced
coordinates in #;Y(U). If Xe2(T*M), in =~%U) the local components of X are
(x%, 3%, 2*; a%, b, ¢*). We shall separately discuss the case of a connection I of
type 1 or of type 2.

a) Connections of type 1.
In this case, i being the horizontal projector of I, we have

hX=(x', y*, 2*; o', B4 T

where a’, 57, y? are functions of (x*, y%, z*; a*, b*, ¢*). The linearity of A implies
that a’, B, 7’ are also linear on a*, b, c*.

Since J;h=],, we deduce a*=a*. Moreover, 1J,=0, and, therefore, (0, a*, 2b%)
=740, a*, 2b*)=0; thus B’ and 7’ do not depend on b* and c*.

We denote

Bx, v, z, a)=—Tix, y, 2a*, 1(x, 3, z, a)=—Tx, y, 2)a’
where I, I’} are functions on T2M, differentiable C* on %M ; then, we have
hix, v, z; a, b, o)=(x, v, z; a’, —1'ia*, —T'}a?)

and, consequently
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I'(x, 3, z; a, b, )=2h—I)x, 3, z; a, b, ¢)
=(x, v, z; a’, —2I"a*—b, —2[a*—c?)

and, thus, I" can be represented by the matrix

0} 0 0
I'{—=2ry —o; 0
=2y 0 —d

b) Connections of type 2.
By similar devices, we obtain the following expression for a connection I of

type 2
o] 0 0
I 0 07 0
=2 =2I'y —&

§5. The tension of a connection.
We shall now express the non-homogeneity of a connection

DEFINITION 5.1. Let I” be a connection on M (indistinctly of type 1 or 2)
We shall call tension of I" the vector 1-form on T2M, differentiable C* on I*M,

given by
1
:—Z-ECZr F:I .

Note that, if 4 is the horizontal projector of I, then
H=[C,, h].

Local expressions
1) Suppose I of type 1. Then

: ol ol 0
H:(F{—_’yka 7 z —37)(21761@'—8‘—7

@___2 kaf) Ir®

+(2r1—y* a .
or, in a matrix form
0 0 0
- _85“_ » 0L BF
H=| I'— ayk 2z ok 0 0
ori ori 0 0

7k
2li=y oyt % oz
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2) Suppose I of type 2. Then

BF ol

-(ort—y T2 Lhyire 2

ar; ariy
+<”—ykayk 5o )L ®821

or, in a matrix form

0 0 0

H= 0 0 0
. ol o7  _ ori ol
j__ k 1 1 7 k 1 _ k 3

2l —y ay* 2o ri—y oyt 2z Py 0

From these local expressions, we deduce the following

PROPOSITION 5.2. Let I' be a connection on M of type 1 (vespect. of type 2).
Then, the tension H of I' 1s a semibasic vector 1-form of type 2 (respect. of
type 1).

DEFINITION 5.3. A connection I" on M is said homogeneous if its tension
vanishes.

Thus, a connection " on M is homogeneous if I" is an homogeneous vector
1-form.

Once more, from the local expressions above for H, we deduce that a con-
nection I' on M of type 1 is homogeneous if and only if the functions /7 and
I’ are also homogeneous of degree 1 and 2; respectively. In the same way, I’
of type 2 is homogeneous if and only if I} and I} are homogeneous of degree
2 and 1, respectively.

DEFINITION 5.4. An homogeneous connection on M (indistinctly of type 1 or
2) is said linear if it is of class C? on the zero cross-section.

§6. Semi-spray associated to a connection.

PROPOSITION 6.1. To any connection I' on M of type 1 (respect. of type 2)
and tension H, there 1s canonically associated a semi-spray S of type 1 (respect.
of type 2) such that the deviation S* of S 1s equal to the potential H° of H, i.e.
S*=H°

Proof. We shall discuss the case of a connection of type 1; the case of
type 2 is shown by a similar device.
Let S’ be an arbitrary semi-spray of type 1 and let 4 denote the horizontal
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projector of I. Let us consider the semi-spray of type 1 given by S=hS’. Note
that S is independent of S’, since if S” is another semi-spray of type 1, S”—S’
e V*x(T*M), and, therefore, hS’=hS".

Thus, the semi-spray S of type 1 is canonically associated with I. Now, we
shall prove S*=H".

In fact
H":isH:H(S):%([Cg, I's]—I'rc,, S).
But
I'S=I'hS'=hS'=S,
I'[C,, S1=I(h[C;, ST1+V[C,, SD=AhLC,, ST—v[Cs, S]
and 0=hS*=h([C,, S]—S)=h[C,, S]—S.
Consequently
H":%([Cz, S1—-S+v[Cq, ST
= ([Coy S1-S—HC,y STHHLC,, STH2LC,, ST
=[C,, S]—S=S*

Remark. The semi-spray associated with an homogeneous connection is a
spray of the same type.

Local expressions
If I" is a connection of type 1, its associated semi-spray S is locally expressed
by
S=(y?, =y}, —y'T).
If I'is of type 2,
S:(y]) Z]: _ylri__zlfi).
THEOREM 6.2. Let S be a semi-spray of type 2 and let us define

=3 L], SIH2LT, S1, S1-1, L= @], STHD).

Then, we have :
1) Iy 1s a connection on M of type 1, its associated semi-spray being

% {2S+S*+[[C,, ST, ST}

2) I 1s a connection on M of type 2, its associated semi-spray being S+—31—S*.
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3) If S is a spray, then
a) I is homogeneous and 1ts associated spray 1s reduce to

1
5 2S+0C,, SJ, ST
b) I, is homogeneous and its associated spray is exactly S.

Proof. 1) For every Xex(T?M), we have
F1X=—§)-{2]2[S, X]-2[S, J.XJ+2/,[S, [S, X11—4[S, J.[S, X1]

+2[S, [S, Ji.X]]—X}.
But Ji[S, J.X]=—],X, hence

FIJZX:%{ZJZES) JeXI+21LLS, LS, J:XT]—-J.X}.

Moreover

JX=2]iLS, X1—].LS, J.X1-2].(S, [S, J.X]],
JoLS, o XT+2]50S, X]=—].X

and consequently

T\ X=5 (LS, J:XTH21LS, X1-2].X)
= (X2 X)=—].X.
On the other hand

leIX:% {=2L.LS, J.X1—4L.LS, LLLS, XTI+2/.LS, [S, [:X11—/. X}

and, since
L X=/LS, [S, J,.X11-2/.LS, J.LS, X1]

we deduce J;[3X=],X and, thus, [} is a connection of type 1.
The semi-spray associated with I” can be calculated as follows; let 4, be the
horizontal projector of I;; then

hiS= 3 (I+T)S=4(S—[S, J.ST+LS, [S, JiST)

=2(S—[S, GI+LS, IS, CID=5 (§*+25+([C,, ST, SD.

2) For I, we have
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TWX=%@JLS, X1=2LS, LX)+X)
and therefore
T X=5 WS, XI=21.LS, X T+].X).

But
47.[S, X1-2/.CS, J.X1=2],X
and, consequently,
LX=],X.
On the other hand

Lo X=1 @JS, J X1+ X) =5 (—ALX+].X) =—],X

and, thus, I, is a connection of type 2.
If h, denotes the horizontal projector of I,, we obtain its associated semi-
spray as given by

1 1 2 1y 24,1
haS=5(+I)S=5(S— LS, JiSI+55)=55+7LC, 5]

2 1 1 1 1
—§S+—§—S+—3—[C2, S]—-§S—S+—§S*.
3) Suppose now that S is a spray of type 2. From Jacobi’s identity
LGy, Uy, S11+0/w LS, CII+LS, [Ce, J,J]=0

from which we find

LCo, [y STI+L/y, S1=0
and, consequently, if H,=1/2[C,, I';] is the tension of I3, we obtain
6H,=2[C,, [Jo, ST142[C,, [L]y, ST, ST1—LC, 1]
=2[C,, [y, ST, ST
Applying once more Jacobi’s identity we have

[Cy, [LJy, ST, STI+LL/, ST, CS, C.JI+ES, [Cy, [, S111=0
and thus

LC,, [L]y, ST, S1=0.
Analogously, if H,=1/2[C,, I';] is the tension of [, we deduce
6H,=[C,, 2[ ], ST1+[C, I1=2[C,, [J2, S]]

and, from Jacobi’s identity
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[C2y []2) S]:]+[j2y [S: CZ]]+[S) [C2y fz]]:O
or, equivalently

[Co, L2, ST1—0J2 S1-LS, Jo1=0 i.e. [C, [Je, S11=0.

§7. Paths of semi-sprays and connections.

DEFINITION 7.1. A path of a semi-spray S is a parametric curve f:I—M
such that (f”)'=S-f” i.e., such that the canonical lift f” of f to T:M is an
integral curve of S.

If S is a spray, its paths are called geodesics.

If S is a semi-spray of type 1, its paths are the solutions of the system of
differential equations

d;;c; S{(x, dx d2x>:

dt
déx® dx di*x =12,
ar 2<x’ Tt dr ):0

The paths of a semi-spray of type 2 are the solutions of the system of
differential equations

a’xt dx d’x\ __ .
W_ (X, dt y dr )—0, 1—1, 2, , n.
DEFINITION 7.2. A parametric curve f in M is said path of a connection I’
on M if
ve(f7)'=0

v being the vertical projector of I
If " is homogeneous, its paths are called geodesics.

The paths of a connection I' of type 1 satisfy the system of differential
equations

art — vt drr

d?x? . dx® d3x? — ] dx®
todt
and if I" is of type 2, they satisfy
d3x? 7 dx* , d*x*
dat* dt dt® ”

PROPOSITION 7.3. The paths of a connection I' are the paths of 1its associated
semi-spray.
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The proof is an immediate consequence of the local expressions previously
obtained.

§8. Curvature.

DEFINITION 8.1. Let I' be a connection on M (indistinctly of type 1 or 2).
The curvature of " is the vector 2-form R, differentiable C* on 92M, defined by
R=-—1/2[h, h], h being the horizontal projector of I

Local expressions
Let X, Yex(T*M) be locally expressed by

X=(x% y*, 2*; a*, b, ¢*), Y=(x%, y*, 2*; a*, B% 7))
Then, if I' is of type 1, we find

oI:  or: oy

R, Vy=ara( axf+F’a Ty l+maal; ’aarlk)ay
oSBT,
If I'is of type 2, we find
o180
rop (G =g + 15 1)
(@t — b )(WJF%’}%F %Fl y 331; )] o2

The following proposition is easily deduced from the local expressions of the
curvature.

PROPOSITION 8.2. If I'1s a connection on M of type 1 (respectively, of type
2), the curvature of I' is a semibasic form of type 2 (respect. of type 1).

ProPOSITION 8.3. (Bianchi’s identities) Let I be a connection on M (indistinctly
of type 1 or 2). Then, the following identities are verified

I. [Jy RI=[h, U]y, A]] m. [h, R]=0.
LJz, R1=Lh, [Je h1]
Proof. Let us recall Jacobi’s identity for vector 1-forms L, M, N:
[L, [M, NJJ+[M, [N, L7]+[N, [L, M]]=0.
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If we put L=J,, M=N=h, we obtain
CJy Ch, h1+LA, Ch, JiJ1+Lh, 01, R11=0

Ly Ch, h1]=—2Lh, [Js, 1]

or, equivalently [/, R1=[h, [J:, A1].
In the same way, if we put L=],, M=N=h, we obtain [ J,, R1=[h, [J:, h]].
Finally, if M=N=L=h, we have [h, [h, h]1]=0, and thus [A, R]=0.

PROPOSITION 8.4. Let I’ be a connection on M. Then [C,, R1=—Lh, H].

Proof. From Jacobi’s identity we obtain
[Ce Ch, h11+Lh, Lh, C.J1—Lh, [Cy, h]1=0
and, thus [C,, [h, h]1=2[h, [C,, h]]. But [C,, h]=H, hence [C,, R1=—"[h, H].

COROLLARY 85. If I'1s an homogeneous connection, its curvature R 1s also
an homogeneous vector form.

§9. f-structure associated with a connection.

PROPOSITION 9.1. Let I' be a connection on M of type 1, with horizontal
projector h. Then, there exists one and only one vector l-form F on T*M, dif-
ferentiable C* on I°M, such that

FJ'=h, Fh=-]', FJ,=0,
where J'=],h.

In fact, F' is well defined from these identities, and it is uniquely determined
by its action on vertical and horizontal vector fields.

Local expression of F.

Let U be a coordinate neighborhood of M and (x?, y’, z') the induced coordi-
nate functions on #3;(U). Then, we have

H(2)=1( )0

Py =R e 2y )= (e o (37

On the other hand
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F)= Fh( F)= F<8x’ ”aif—m}')%>
:F(ai> FF(aiz) F(a’?ﬁ) ry S =Tiger=I3 a>

ox? 7oyt 7oz
—r(= ai) ri? e 9 pipe 0

-1z,

0
za; Jak I oz*

and then

(3x )= rl-a—]—(51+rkr>a H@l—
In a matrix form, F is given by
Iy 03 0
Fi|—8—Tit ~Ti 0
2ri—rir+ —-r; o

PROPOSITION 9.2. The vector l1-form F defines on T:M an f-structure of
constant rank 2n, which we call the f-structure associated with connection I’ of

type 1.

Proof. From the local expression above for F, it is easily derived that rank
F=2n and F3*+F=0.
We shall now study the integrability of this f-structure F, following Yano-

Ishihara [20].

Let /[=—F?, m=F*+1 be the projection operators of F and L=Im [, M=Imm
denote the complementary distributions associated with [ and m; they have
dimension 2n and n respectively.

Since M=V "12(T?M), the distribution M is always completely integrable.

Before proceeding further, we shall prove the following three lemmas.

LEMMA 9.3. The vector 2-form [J’, h] is semibasic of type 2.

Proof. If X, Yex(T*M), we have

L)', k1(JX, Y)=J'L)X, YI=J'[].X, hY]

=J[].X, hY-+oY1=J[].X, hY1=][].X, vY]=0
On the other hand

LU R XX, V=L)X, RY 1+ LR X, J'Y =/ L)X, YI=/LX, J'Y ]
=L X, hYI-[J'X, YD+/([rX, J'YI-[X, 'Y D=0.

LEMMA 9.4. The vector 2-form N, =1/2[]’, J'] is semibasic of type 2.
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Proof. If X, Yex(T*M), we have
Ny (JX, V)==J'L].X, J'Y]=0
since [J.X, J'Y] is vertical. Moreover,
JiNg (X, V)=LLJ'X, J'Y]=0.
LEMMA 95. [,°[J, h]=N,..
Proof. We have, for every X, YeX(T*M),
L, hJ(X, =LV, h1(hX, hY)
=[J'X, hYI+[hX, 'YI=JThX, hY1—h[J'X, hY1—h[hX, J'Y]
and then
(JooUJ's ADX, V)=LL)'X, hY I+ LR X, J'Y1—=2],[h X, hY]
—J'U'X, hY1=J'ThX, J'Y].
On the other hand
Ny (X, V)=Ny(hX, hY)=UJ'X, J'YI=J.LJ'X, hY]=]:[hX, J'Y]
+2J,[hX, hY].
Moreover, since J, is integrable
0=Np(hX, hY)=[J'X, J'YI1=LLJ'X, hY1—J.LhX, 'YI+2].[h X, hY]
and we obtain

JeelJ', RI=N,. .

THEOREM 9.6. Let I' be a connection on M of type 1, with curvature form
R. If the distribution L is completely integrable, R=0 and [J’, h]=0, then the
f-structure F associated with I is partially integrable.

Proof. For every X, Yex(T*M), taking into account Lemma 9.3, we have
L, hJX, =L/, hJ(hX, hY)
=[J'X, hYI+[hX, J'Y1=J'ThX, hY1—h[J'X, hY1—=h[hX, J'Y]
Therefore
(FL)', R X, hY)=F[J'X, RY1+FChX, 'Y 1+]'L]' X, hY]
+J'[hX, Y]1—h[hX, hY].
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On the other hand
(h*Np)(X, Y)=Np(hX, hY)

=[JX, JYI+FLJ'X, hYI+FLhX, YI+F[hX, hY]
and
Ny (X, Y)=N;p(h X, h)=[]'X, J'Y]=J[J'X, hY1=J'[hX, J'Y].

Since R=0, it follows

h[hX, hY]=[hX, hY]
and then

FLhX, hY]l=—[hX, hY].
Thus

(W*Np) X, V)=UJ'X, JJYI+FLJ'X, hY -+ F[hX, J'Y1-[hX, hY]
=(F-LJ', )X, Y)+N, (X, Y)=(F[J', hJ+N; )X, Y)
i.e.
h*Np=F-[]’, h]+N,.

and, by using Lemma 9.5, we deduce A*Np=0.
We also have

(JV*Ng(X, Y)=[hX, hY]-F[hX, 'Y]=F[J'X, hYI+F[J'X, J'Y]
and, since Ny =0, [J'X, /’Y]elmJ’; thus
(J"INp(X, Y)=[hX, hY]—F[hX, J'Y]-F[J'X, hY]-[J'X, J'Y]

=—(h*Np)(X, Y)
i.e.
(J'Y*Np=—h*Np=0.

Finally, taking into account the integrability of L, and by a similar device,
we obtain

Ne(J'X, hY)=(F-h*Np) X, Y)=0.
We shall now consider the case of connections of type 2.

PROPOSITION 9.7. Let I' be a connection on M of type 2, with horizontal
projector h. Then, there exists one and only one wvector l-form G on TM,
differentiable C* on 9°M, such that

GJl,=h!, Gh'=—],, Gh(X)=0, if Xe& V*(T?M)
where h'="hJ,.
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In fact, G is well defined from these identities, and it is uniquely determined
by its action on vertical and horizontal vector fields.

Local expression of G.
As in the case of a connection of type 1, and by similar devices, the following
expression of G in a matrix form is obtained

0 0 0
G:| I Iy WY
—Iiry =3I —I

PROPOSITION 9.8. The vector l-form G defines on T:M an f-structure of
constant rank 2n, which we call the f-structure associated with connection I’ of

type 2.

Proof. It is easily derived from the local expression of G above.

As before, let [=—G?, m=G*+1 be the projection operators of G and L=Im |,
M=Im m denote the complementary distributions associated with [ and m; they
have dimension 2n and n, respectively.

LEMMA 9.9. J.G=2v,
v being the vertical projector of I.
Proof. It is easily checked since
J.Gli=]h"=2],, J,Gh'=0.
LEMMA 9.10. The vector 2-form R’=1/2[h’, h'] 1s semibasic of type 1.
Proof. Obviously, (h')2=0; then, for every X, YeXx(T*M),
R'(X, V)=[WX, VY]—=h[RY, Y]-h'[X, Y]

and, hence, R'(J,X, Y)=0.
Moreover

JRI(X, )=],LhX, Y1-2]\[h' X, YI-2].[X, h'Y]
and, a simple calculation involving local coordinates leads us to
JR'(X, Y)=0.
LEMMA 9.11. The vector 2-form [J,, k'] 1s semibasic of type 1.

Proof. For every X, Yex(T*M), we have
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Ly 2 I, YV)==/iL]:X, K'Y ]=H'[].X, JiY]=0
and, moreover,
(LS WX V)=L0NLX, Y I+LLRX, [ Y 1=-2][X, .Y 1-2]\[]:.X, Y]
=LLLX, MYI+LLX, [, Y1-2[]. X, /.Y ]=0.

THEOREM 9.12. If the f-structure G 1s integrable, then R’=0 and [ J,, h’]=0.

Proof. Putting Ns=1/2[G, G], we have, for every X, Yex(T*M)
(WY*Ng(X, V)=LJ:X, \)Y1+GLJ X, " YI+GLh'X, ,)YI+GLR' X, Y]
=[:X, LW/ YI+GL. X, Y14+GIr' X, ) YI1-[WX, 'Y].
On the other hand,
Lo WIX, Y)=LLX, R'YI+[0'X, ,)YI=]i[X, h'Y]
=X, Y1=-r'LX, )Y1=-h'[]X, Y]
and, therefore,
GLJ, WIX, Y)=GLJ.X, WYI+GIWX, ) YI1-h[X, h'Y]

- X, YI+LLX, LY].

Thus
(W)Y *Ng—G-[Ji, VKX, V)=—[h'X, K'Y I+h'[X, k'Y ]

+h'[hX, Y]=—R(X. Y)

(h'Y*Ng=G-[ ], ']—R".
Operating J, on both sides of this identity, we obtain
Jo(hW)*Ne=20vL]1, h"]J=2[];, h']

since [J;, A’] and R’ are semibasic forms.
Now, the result follows from the fact that G is integrable if and only if

NG=O.

A partial converse of this theorem can be stablished as follows :

THEOREM 9.13. If R’=0 and [J,, h’]=0, then the f-structure G 1s partially
integrable.

Proof. Firstly, from the proof of Theorem 9.12, we have

(W )*Ng=G-LJ1, h"]=R’
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and, thus (h")*Ng=0.
Secondly, for every X, Yex(TM),
Ne(W' X, L.Y)=—[J.X, ¥Y1-G[WX, WYI+GL]. X, )YI-[NX, J:Y]
=(G(h")*Ne)(X, Y)
and, then Ng(h'X, ], Y)=0.
Thirdly,
Ne( . X, [/V)=[X, WY1-G[NVX, ) YI-GLJ.X, YI—-[].X, J.Y]
=—(h")*Ng(X, Y)=0.
These three identities together imply the partial integrability of G.

Remark. Note that the vanishing of curvature R of I’ implies that of R’;
in fact

R'(X, V)=R'(hX, hY)=[h'X, WY1—=n'[WX, hY]-HW[hX, 'Y ]
=[r]oX, W)Y 1=h[Lh].X, hY IJ—h]:[hX, h],Y]
=hLJX, LYJ=h[LLX, YI=h][X, .Y 1=h(=2/i[X, Y])=0.

§10. Prolongation of metrics on the vertical bundles to %M.

Let g be a Riemannian metric on the vertical bundle V72(g2M). Then, fixed
a point w€ 92M, we can define a metric g, on TM as follows:

gw(u: v):g(h2<w; u)) hz((l), U))y Vu; UET:rm(m)(TM)

where h, is the canonical isomorphism introduced in § 1.

Therefore, a Riemannian metric on the vertical bundle V~2(g%M) can be
considered as a Riemannian metric on 7'M, the latter depending not only on the
point but also on a previously fixed point weT?M, with w non belonging to the

zero cross-section.
Given on M a connection I” of type 1, it is possible to extend Z to the whole
fibre bundle T(€*M), that is, to a Riemannian metric g on I%M, by putting

grX, Y)=g(J'X, 'Y)+20wX, vY), VX, Yex(I*M)
being h, v and J’ as defined in the previous sections.

ProproOSITION 10.1. g ts a Riemannian metric on I2*M, which will be called
the prolongation of Z along the connection I
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Proof. Bilinearity and symmetry of g, are immediate. Moreover, g is
positive definite, since

gr(X, X)=g(J'X, J'Y)+3wX, vY)

and because J'X and vX are simultaneously zero if and only if X is zero.
Finally, gr extends g, since gr(/.X, /.Y)=g(J.X, J.Y) as consequence of
the fact that J'J,=J,hJ,=0.

ProposITION 10.2. A Riemanman metric g on I°M 1s the prolongation of a
Riemannian metric § on V™I M) along a connection I' on M of type 1 i1f and

only if
1) ghX, vY)=0
2) ghX, hY)=g(J'X, J'Y)=8(J'X, J'Y), g(J.X, .Y)=5(].X, ].Y)

for every X, YeX(9*M).

Proof. Let gr be the prolongation of g along a connection I of type 1.
Then,
gr(hX, vY)=g(J'hX, J'vY)=0

since J'v=0. Moreover

grhX, hW)=g(J'hX, 'hY)=g(J'X, J'Y)
and
gr(.X, LY)=2(].X, ].Y).

The converse is immediate.

PROPOSITION 10.3. Let I be a connection on M of type 1 and g a Riemanman
metric on the vertical bundle V(I M), such that g(J,X, J.Y)=0, VX, Ye2(I*M).
Then, the prolongation gr of g along I 1s a hor-ehresmannan metric with respect
to the f-structure F associated to I

Proof. Let [=—F? m=F®41 be the projection operators of F. It is easily
verified that
gr(X, mY)=0, VX, Yex(g:M)

that is, the distribution L and M are mutually orthogonal with respect to g .
Moreover,
gr(X, FX)=0, VXex(g*M)

and, thus, gy is hor-ehresmannian with respect to F. Note that there exist
Riemannian metrics on 92M verifying

g(.X, .Y)=0, VX, Yex(a*M).
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In fact, given a Riemannian metric g on M, the second canonical lift g% of
g to g2M, [20], makes mutually orthogonal V=2(T2M) and V™12(T2M).

Under the hypothesis of Proposition 10.3., gr permits to define the funda-
mental form K by putting

Kp(X, V)=gp(FX, Y), VX, Yex(a*M).
We then have

PROPOSITION 10.4. Under the hypothesis of Proposition 10.3., the fundamental
form Kp verifies

Kr(X, Y)=gr(X, 'Y)—gr(J'X, Y), VX, YeX(°M).

Proof. From previous definitions, we have
Kr(X, V)=gr(FX, V)=gr(FhX+FvX, hY+vY)
=gr(FhX, hY)+gr(FvX, hY)+gr(FhX, vY)+gr(FvX, vY)
=—gr(J'X, hY)+gr(FvX, hY)—gr(J'X, vY)+gr(FvX, vY)

for every X, Yex(I*M).
On the other hand

gr(J’X, hY)=0
since v and 4 are mutually orthogonal with respect to gp. But Fy=hF, hence
gr(FvX, vY)=gr(hFX, vY)=0
and, therefore
Kr(X, Y)=gr(hFX, hY)—gr(J'X, vY).
But
gr(hFX, hY)=g(J'FX, J'Y)=20wX, J'Y)=grX, J'Y)

and, consequently,
Kr(X, Y)=gr@X, I'Y)—gr(J’X, vY)=gr(hX+vX, J'Y)—gr(J'X, vY+hY)
=gr(X, J'Y)—gr(J’X, Y).

We shall now consider the case of the vertical bundle V*12(g2M). Let g be
a Riemannian metric on V*12(32M); as before, for a fixed point weJ2M, we can
define a metric g, on M by putting

Zo(u, V)=g(hi(w, u), hi(w, v)), Yu, vET z,(M)

where h; is the canonical isomorphism introduced in §1. Thus, a Riemannian
metric on the vertical bundle V712(g2M) can be considered as a Riemannian
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metric on M, the latter depending not only on the point but also on a previously
fixed point weT*M, with w non belonging to the zero cross-section.

If I" is a connection on M of type 2, we can extend g to the whole fibre
bundle T(g*M), that is, to a Riemannian metric gy on %M by putting

gr(X, V)=g(.X, ,Y)+z(X, vY), VX, Yex(T*M).

PROPOSITION 10.5. gr is a Riemanman metric on T*M, which will be called
the prolongation of g along the connection I.

We omit the proof, which is analogous to that of Proposition 10.1.
The following Propositions are all similar to those in the case of metrics on
V=2 M).

PROPOSITION 10.6. A Riemanman metric g in I°M 1s the prolongation of a
Riemanman metric § on the vertical bundle V=12(92M) along a connection I" on
M of type 2 1f and only if

for every X, Yex(a:M).

PROPOSITION 10.7. Let I' be a connection on M of type 2 and g a Riemannian
melric on the vertical bundle V™12(I:M). Then, the prolongation gr of g along
I' is a hor-ehresmannian metric with rvespect to the f-structure G associated to I

Once more, under the hypothesis of Proposition 10.7., gy permits to define
the fundamental form K by putting

Kr(X, V)=gr(GX, Y), VX, Yex(a:M).
We then have

PROPOSITION 10.8. Under the hypothesis of Proposition 10.7, the fundamental
form Kp verifies

Kr(X, V)=gr(GhX, V), VX, Yex(g*M).
In particular,
Kr(w'X, Vy=—gr(J:X, Y), Kr(J.X, Y)=0.

Proof. It is proved by a similar calculation to that in the proof of Proposi-
tion 10.4.
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