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CONNECTIONS AND /-STRUCTURES ON ΓM

BY MANUEL DE LEON

Introduction

Grifone [11] defines a connection on M as a differentiate vector 1-form Γ on
TM verifying: JΓ-], ΓJ= —J, where / defines the canonical almost-tangent
structure of TM. If TZM denotes the tangent bundle of order 2 over a C°°
differentiate manifold M, the existence of the vertical fiber bundles Vπ2 and
V*12 lead us to define connections on T2M by means of complementary distri-
butions. Taking into account the canonical endomorphisms J1 and J2 (/2 defining
an almost-tangent structure of order 2 on T2M), and following Catz [5], we
introduce a non-homogeneous connection on M of type 1 as given by a vector
1-form Γ verifying ΛΓ-Λ, ΓJ2=-J2.

The connection Γ is said of type 2 if J2Γ=J2, ΓJ1=—J1.
In § 5, we express the non homogeneous character of a connection by means

of its tension. Thus, a connection is said homogeneous if its tension vanishes.
In § β, a semispray or a differential equation of third order, is shown to be
canonically associated with any connection of the same type. Moreover, the
paths of a connection are just the solutions of its associated semi-spray. The
curvature of a connection is defined in § 8 and Bianchi's identities are derived.
In particular, if a connection is homogeneous, its curvature is homogeneous, too.

It is well known that, associated with a linear connection on M, there exists
an almost-complex structure on TM, the integrability of which is given through
the curvature and torsion of the connection [8], [12], [15]. In § 9, it is shown
that if Γ is a connection on M of type 1, there exists an /-structure F associated
with Γ and determined by relations

FJ'=h, Fh = -J', FJλ=0

where ]r—]2h.
In the same way, an /-structure G is associated with a connection of type 2

and defined by

G/1=/ι/, Gh'=-Jl9 GhX=0, if X&VπKT2M)

where h'=hj2.
Integrability conditions for both /-structures are given in Theorem 9.6, 9.12

and 9.13.
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190 MANUEL DE LEON

Finally, in § 10, prolongations of metrics given on VπK%2M) and Vπi2(<I2M)
to £Γ2M are defined with respect to connections of type 1 or 2, respectively. In
fact, these prolongations are shown to be hor-ehresmannian with respect to the
/-structures which are canonically associated with each connection.

§ 1. Preliminaries.

Let M be a paracompact n-dimensional differentiate manifold. The tangent
bundle of order 2, T2M, of M is the 3n-dimensional manifold of 2-jets at O^R
of differentiate mappings / : R-+M T2M has the natural bundle structure over
M, π2: T2M-*M denoting the canonical projection. The tangent bundle TM is
nothing but the manifold of 1-jets at 0<ΞR of differentiate mappings / : R->M.

If we denote π12: T2M-*TM the canonical projection, then T2M has a bundle
structure over TM with projection π12.

Let {U, x*} be a coordinate neighborhood of M, and denote by (xι, y\ zx)
the induced system of coordinates in π2\U). The two fiber bundle structures of
T2M, over M and TM respectively, lead to two exact sequences of vector bundles
over T2M:

O VπKT2M) TT2M — >̂ T2Mx MTM —> 0

0 TT2M T2MX

where Yπ\T2M) (respect. Vπ™{T2M)) denotes the vector bundle of those vectors
of TT2M which are projected to 0 by πl (respect. πf2). These sequences are
called the first and second fundamental exact sequences, respectively.

There exist two canonical isomorphisms of vector bundles

h2:T
2MxTMTTM—> VπKT

Thus, two vector 1-forms on T2M are defined:

and they verify
/ϊ=2/i, / ϊ=0

Moreover, /2 has constant rank 2n and determines an almost-tangent struc-
ture of order 2 on T2M.

With respect to the induced coordinates, /j and J2 are locally expressed by
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With each fundamental exact sequence, a canonical vector field is associated
in fact, let a=idT2M><M^i2 be the canonical section of the vector bundle
T2MXMTM) we denote d the vector field defined on T2M by

C1—ι2°hi°a.

Analogously, if j is the injection T2M->TTM, the canonical section β~
idT2MXτMJ of the vector bundle T2MxTMTTM permits to define the vector field
C2 on T2M by

Cx and C2 are called the canonical vector fields on T2M. Locally, in a point of
coordinates (x\ y\ zι), the components of Cx and C2 are, respectively,

(0, 0, y% (0, y\ 2z*).

The formalism of Frolicher-Nijenhuis [9] will be useful in this paper. The
following identities are verified:

l9JJ=0; CC2,Λ]=-2/i; [C1,/J=-/1; [C2,/2]=-/a

Finally, we denote £Γ2M the bundle of all non-zero elements of T2M.

% 2. Homogeneous and semibasic forms.

Let us introduce the following definitions.

a) Homogeneous forms.

DEFINITION 2.1. A real-valued differentiate function / on ΞΓ2M is said homo-
geneous of degree k if XC2f=k f.

Always, X denotes the Lie derivative.

Let ht: R-^R be the homothetia of ratio eι and let Ht: T2M-^T2M denote
the fibre-preserving transformation deduced from ht. Since C2 generates the
1-parameter group of transformation Ht} the condition in Definition 2.1, is equiva-
lent to

f.Ht=ektf.

DEFINITION 2.2. A scalar p-ίoτm ω on £Γ2M is said homogeneous of degree
* if

Xc9o)—k ω.
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DEFINITION 2.3. A vector /-form L on £Γ2M is said homogeneous of degree
k if

[C2, L ] = ( f t - 1 ) L .

b) Semibasic forms.

DEFINITION 2.4. A vector /-form L on T2M, with /^ l , is said:
1) Semibasic of type 1 if

a) L(Xlf •••, Xi)(=V*iKT2M)f for every Xlf ~ , Xt vector fields on T2M.
b) L(Zi, .- , Xi)=0, if ^ belongs to Vπ^(T2M).

2) Semibasic of type 2 if
a) L(Zi, »., X^V'KTW), for every X2, •••, XL vector fields on T2M.
b) L(Z :, •••, Xt)=0f if Z 2 belongs to VπKT2M).
A vector field belonging to V*12(T2M) (respectively, Vπ*{T2M)) is said semi-

basic of type 1 (respect, semibasic of type 2).

Local expressions
1) If L is a semibasic vector /-form of type 1, in an induced local system of

coordinates, it is expressed by

where r+s=l, and z's, j's and a running over the set {1, 2, •••, n}.

2) If L is semibasic of type 2, it is locally expressed by

PROPOSITION 2.5. Let L be a vector l-form. Then:

1) L is semibasic of type 1 if and only if

J2L=0 and ijlXL=0,

2) L is semibasic of type 2 if and only if

/ i L = 0 and ij2χL=0,

% 3. Semi-sprays and potentials.

DDFINITION 3.1. Let 5 be a vector field on T2M, differentiate C°° on SΓ2M.
Then:
1) S is said a semi-spray over M of type 1 if, for every integral curve a of 5,

one has
(π2°cxy=17r12

oa

where (τr 2

oα) / denotes the canonical lift of (π2°a) to TM.
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2) S is said a semi-spray over M of type 2 if, for every integral curve a of 5,
one has

where (π2

oa)ff denotes the canonical lift of (π2°a) to T2M.

The following proposition is easily shown.

PROPOSITION 3.2. Let S be a vector field on T2M, differentiate C°° on 22M.
Then

1) S is a semi-spray of type 1 if and only if

T C
7Γ2 °O —7Γi2

2) S is a semi-spray of type 2 z/ and only if

j being the canonical injection T2M-*TTM.

Local expressions
With respect to an induced local system of coordinates, we have:

1) if 5 is a semi-spray of type 1, it is expressed by

S: (y\ SKx, y, z), S&x, y, z))

where the functions S\, S\, ι = l , 2, ••• , n, are differentiate C°° on SΓ2M.
2) if S is a semi-spray of type 2, then

S: (y\ z\ SKx, y, z))

where the functions 5', ι=l, 2, •••, n, are as above.

Using these local expressions, we can easily prove

PROPOSITION 3.3. Let S be a vector field on T2M, differentiate C°° on £Γ2M.
Then S is a semispray of type 1 {respectively, of type 2) if and only if / i5=Ci
{respect. J2S=C2).

Remark. Evidently, any semi-spray of type 2 is also of type 1.
We shall now express the non-homogeneity of a semi-spray.

DEFINITION 3.4. Let S be a semi-spray over M (indistinctly of type 1 or 2).
We shall call deviation of S the vector field

S*=[C2, Sl-S.

Then, using local components, we have
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PROPOSITION 3.5. 1) // S is of type 1, S* belongs to VπKT2M).
2) // S is of type 2, S* belongs to V*™(T2M).

DEFINITION 3.6. A semi-spray which has zero deviation, and of class C2 on
the zero cross-section, is said a spray.

From this definition on, it is easily deduced that a semi-spray of type 1 is a
spray if and only if the functions S\, Si are homogeneous of degree 2 and 3
respectively analogously, a semi-spray of type 2 is a spray if and only if the
function Sι are homogeneous of degree 3.

DEFINITION 3.7. Let L be a semibasic vector /-form on T2M, of type 1
(respectively, of type 2). We call potential of L the semibasic vector (/—l)-form,
of type 1 (respect, of type 2) given by L°=ιsL, S being an arbitrary semi-spray
of type 2.

The fact that L° is independent of the election of S and that L° is semibasic
and of the same type as L is easily verified.

This terminology is justified by the following

PROPOSITION 3.8. Let L be a semibasic vector I-form on T2M, of type 2 and
homogeneous of degree k, with l+kφl. Then

Proof. Let 5 be an arbitrary semi-spray of type 2. We have

list dj2~] =

But

(izs.jjLXX!, - , Xt)=(L^ZS, JJ)(Xl9 -,Xι)

i

— Σ L(Xι, •••, Xχ-i, [ 5 , Jϊ\X%, Xχ+i, •••, X{)

for any Xlf •••, X^T^M). On the other hand,

JilS,hXΛ=-JxX%9 ι=l}2, .. ,n

or, equivalently,

/i([S,/2XJ + * 0 = 0 , ι=l ,2, - , n .

Then, taking into account that

C S , / J ^ = [ S , / 8 ^ ] - / 2 [ S , Z J

and the fact that L is semibasic, we deduce
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i

( i ί s , j 2 i L ) ( X i , •••, X i ) z = z Σ L ( X i j •••, Xι, •••, X ι )

= -l L{Xu -,XU -,Xd.
Hence,

and then

ίis, dj2-]L=-CC2L-iίS,j2ΊL=(k-l)L+l L=(l+k-l)L .

Finally,

L= ι+k-lUs' d ^ L

, 1°]).

COROLLARY 3.9. Let L be a semibasic vector l-form of type 2 and homogene-
ous of degree k, with 1+kΦl. Then, if L is J2-closed,

i.e., if L is J2-closed, then L is expressed as a function of the derivatives of its
potential.

§ 4. Connections on M.

Following Catz [5], we introduce

DEFINITION 4.1. We shall call non-homogeneous connection on T2M of type
1, or simply, connection on M of type 1, a vector l-form Γ on T2M, differentiable
C°° on £Γ2M, such that

1) hΓ=Jlt 2) ΓJ2=-J2.

DEFINITION 4.2. We shall call non-homogeneous connection on T2M of type
2, or simply, connection on M of type 2, a vector l-form Γ on T2M, differentiable
C°° on ΈE2M, such that

1) ΛΓ=Γ2, 2) Γ / ^ - Λ .

PROPOSITION 4.3. 1̂ vector l-form Γ on T2M is a connection on M of type
1 if and only if Γ defines an almost-product structure over T2M, differentiable
C°° on £Γ2M, such that, for every point ω^T2M, the eigenspace corresponding to
the eigenvalue - 1 of Γω is the subspace VπΛT2M).

Proof. Let Γ be a connection on M of type 1, then

J1Γ=J1 if and only if UΓ-I)=0
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Γ/ 2 =-Λ if and only if (Γ+/)/a=0.

But

Ji=i2°h1'S1, J2~ii°h2°s2

hence

22°/zi°s1o(Γ-/)=0 if and only if sAΓ-I)=0

because ι2 is a monomorphism and h± is an isomorphism; analogously,

{Γ+I)nι*htos2=Q if and only if (Γ+fyi^O

because s2 is an epimorphism and h2 is an isomorphism.
Thus, we obtain

Im(Γ-/)cKer s^Im zx, Im Zi

i.e.

Im(Γ-/)cKer(Γ+7)

and, consequently

On the other hand, if XZΞT{T2M) is such that

X=-ΓX

we have
JiX= —J1ΓX= —JiX

and thus I e F ? ( T 2 M ) . Conversely, if X^VπΛT2M), there exists Y^Tω(T2M)
such that Z = / 2 F ; hence

and X is associated with the eigenvalue — 1.
The sufficiency of the condition is shown as follows; let X^X(T2M), then

J2X(ΞVπKT2M) and ΓJ2X=-J2X, and thus ΓJ2=-J2. Moreover, X-ΓX<Ξ

V**(T2M) since Γ(X-ΓX)=-(X-ΓX), and consequently

O=J1(X-ΓX)=J1X-JiΓX

and so ΛΓ=/i.
By similar devices, we also have

PROPOSITION 4.4. A vector 1-form Γ on T2M is a connection on M of type
2 if and only if Γ defines an almost-pro duct structure over T2M, differentiate
C°° on ΞΓ2M, such that, for every point ω^T2M the eigenspace corresponding to
the eigenvalue —1 of Γω is the subspace VZ12(T2M).

To each connection Γ on M (of type 1 or 2) there are canonically associated
two projection operators
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λ (/+Γ) (IΓ)

which are called the horizontal and vertical projectors of Γ, respectively.
Therefore, we have a decomposition of the tangent bundle of T2M,

and, since

lmv=Ker h={X^T(T2M)/ΓX=-X}

and accordingly with Propositions 4.3 and 4.4, we obtain:

lmv=V**(T2M), if Γ is of type 1; lmv=Vπ^(T2M)f if Γ is of type 2.

Let us denote Im h=H(T2M) then, we have the following decompositions:

a) for Γ of type 1: T(T2M)=VπKT2M)@H{T2M) ( I )

b) for Γ of type 2: T(T2M)=Vπ^(J2M)@H{T2M) (Π)

Conversely, decompositions of T(T2M) as in ( I ) or (Π) determine connections
on M of type 1 or 2, respectively.

If Γ is a connection of type 1, we have

ΛA=/i, AΛ=0

/iv=θ, v/a=/2

and, if .Γ is of type 2,

J*h=J2, hJ,=0

PROPOSITION 4.5. A connection Γ on M of type 1 defines a splitting, differ-
entiable C°° on 2*2M, of the exact sequence of vector bundles

0 — > Vπ*(T2M) -^> T(T2M) -^> Γ M x M T M — > 0.

Conversely, such a splitting determines a connection Γ on M of type 1.

Proof. Let Γ be a connection on M of type 1, with horizontal projector /z,
and let j be an arbitrary splitting of the exact sequence above, i. e.

j : T2MxMTM—>TT2M

and s1°j=idT2MχMτM'

Put ϊ=h°j; then γ is well-defined, since if / is another splitting, sx{j—/)=0
and then j — y / e K e r s 1 = V ί r 2 ( T 2 M ) ; hence, h(j-jf)=ΰ, i.e. h°j=h°j'. Moreover,
7* is a splitting, since
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and taking into account the fact that ι2 is a monomorphism and hx is an iso-
morphism, we deduce s1°h = slf and, thus,

s1°γ=s1°h°j = s1°j=ιdT2MχMτM -

Conversely, let γ be a splitting of the exact sequence and put Γ=2γ°s1—I,
then

ΓJ2=2γ°s1°i1°h2°s2—J2=—J2

and so Γ is a connection in M of type 1.
A similar Proposition is obtained for connections of type 2.

PROPOSITION 4.6. A connection Γ on M of type 2 defines a splitting, differ-
entiable C°° on 22M, of the exact sequence of vector bundles

0 — > Vπ^(T2M) —^> T{T2M) —^> T2MXTMTTM — > 0

Conversely, such a splitting determines a connection Γ on M of type 2.

Local expressions
Let (U, xl) be a coordinate neighborhood of M, and (x\ y\ zι) the induced

coordinates in π2\U). If X^3C(T2M), in TrW) the local components of X are
O \ y , z r ; α ι, b\ c1). We shall separately discuss the case of a connection Γ of
type 1 or of type 2.

a) Connections of type 1.
In this case, h being the horizontal projector of Γ, we have

hX=(x\ y\ zι a\ β\ f)

where a3, βJ, γ3 are functions of (x\ y\ zι α\ b\ cι). The linearity of h implies
that a3, β3, γ3 are also linear on a1, bι, cι.

Since/i/i=/i, we deduce άi—a\ Moreover, hJ2=0, and, therefore, βj(0, a\ 2b1-)
=γJXO, a1, 2bi)=0; thus β3 and γ3 do not depend on bι and c ι.

We denote

β(x, y, z, a)=-Γ{(x, y, z)a\ γ(x, y, z, a) = -Γ3

t(x, y, z)aι

where Γ{, Γ{ are functions on T2M, differentiable C°° on H*2M; then, we have

h{x, y, z; a, b, c)={x, y, z; a3, -Γ\a\ -Γia*)

and, consequently
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Γ(x, y, z; a, b, c)={2h—I)(x, y, z; a, b, c)

= ( * , y9 z\ a\ -2Γ{ax-b>, -2Γ{ax-c>)

and, thus, Γ can be represented by the matrix

f δί 0 0

199

Γ: -2Γ{ -δ{ 0

[-2Π 0 -δ{)
b) Connections of type 2.

By similar devices, we obtain the following expression for a connection Γ of
type 2

( δί 0 0 )

Γ: 0 δί 0

§ 5. The tension of a connection.

We shall now express the non-homogeneity of a connection.

DEFINITION 5.1. Let Γ be a connection on M (indistinctly of type 1 or 2).
We shall call tension of Γ the vector 1-form on T2M, differentiate C°° on £Γ2M,
given by

Note that, if /z is the horizontal projector of Γ, then

i/=CC2, A].

expressions
1) Suppose Γ of type 1. Then

+(2/V;

or, in a matrix form
0

Γί—y-jr-km

dz"

.dΓj
dzk

0

0

0

0

0

0
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2) Suppose Γ of type 2. Then

or, in a matrix form

ayk
ozk dyk dzk

From these local expressions, we deduce the following

PROPOSITION 5.2. Let Γ be a connection on M of type 1 {respect, of type 2).
Then, the tension H of Γ is a semibasic vector I-form of type 2 {respect, of
type 1).

DEFINITION 5.3. A connection Γ on M is said homogeneous if its tension
vanishes.

Thus, a connection Γ on M is homogeneous if Γ is an homogeneous vector
1-form.

Once more, from the local expressions above for H, we deduce that a con-
nection Γ on M of type 1 is homogeneous if and only if the functions Γ{ and
Γ{ are also homogeneous of degree 1 and 2 respectively. In the same way, Γ
of type 2 is homogeneous if and only if Γ{ and Γ{ are homogeneous of degree
2 and 1, respectively.

DEFINITION 5.4. An homogeneous connection on M (indistinctly of type 1 or
2) is said linear if it is of class C2 on the zero cross-section.

§6. Semi-spray associated to a connection.

PROPOSITION 6.1. To any connection Γ on M of type 1 {respect, of type 2)
and tension H, there is canonically associated a semi-spray S of type 1 {respect.
of type 2) such that the deviation S* of S is equal to the potential H° of H, i. e.
S*=H°.

Proof. We shall discuss the case of a connection of type 1 the case of
type 2 is shown by a similar device.

Let S r be an arbitrary semi-spray of type 1 and let h denote the horizontal
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projector of Γ. Let us consider the semi-spray of type 1 given by S=hS'. Note
that S is independent of S', since if S" is another semi-spray of type 1, S"—S'
EΞVπKT2M), and, therefore, hS'=hS".

Thus, the semi-spray 5 of type 1 is canonically associated with Γ. Now, we
shall prove S*=H°.

In fact

j 2, SI).

But

Γ[C2, S]=Γ(A[C2, 5]+z;[C2, S])=A[Ca, 5]-2;[C2, S]
and

0=AS*=A([C2, 5]-5)=A[C2, S ] - 5 .

Consequently

j(lC2, S]-S+z;[C2, S])

y C2, 5])

= CCa, S ] - 5 - 5 * .

Remark. The semi-spray associated with an homogeneous connection is a
spray of the same type.

Local expressions

If Γ is a connection of type 1, its associated semi-spray 5 is locally expressed
by

S=(y, -yιΓ{, -yιΓi).

If Γ is of type 2,

S=(y>, z>, -yT{-z*Γi).

THEOREM 6.2. Let S be a semi-spray of type 2 and let us define

Λ = y {2CΛ, S]+2[[Λ, S], S]-/}, Γ2= j

1) A zs α connection on M of type 1, its associated semi-spray being

j{2S+S*+ίίC1,S2,SJi.

2) Γ2 is a connection on M of type 2, its associated semi-spray being S+ — S*.
o
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3) // S is a spray, then
a) Γx is homogeneous and its associated spray is reduce to

b) Γ2 is homogeneous and its associated spray is exactly S.

Proof. 1) For every X^3C(T2M), we have

Γ1X=j{2JJiS, X1-21S, J,X1+2J1IS, [S,

+21S,IS,J1XH-X}.

Bat JJLS, JtX^-JiX, hence

ΓJ2X= j {2/,[S, Λ^]+2/1[S, [S,

Moreover

JtX=2J1lS, XΊ-JUS, JtXl-2Jj:s, IS,

and consequently

=j {JzlS, JtX3+2J£S, X1-2J.X}

On the other hand

6

and, since

/ V Γ ΓC ΓC Γ V~l~l OΓ ΓC 7" ΓC

we deduce JJΓxX—JxX and, thus, Γx is a connection of type 1.
The semi-spray associated with Γ can be calculated as follows let hx be the

horizontal projector of Γx then

( / + Γ ) S ( S [ S / S ] + [ 5 , [S, Λ

= j(S-[S, C2]+[5, [5, CJ])=y(S*+2S+[[Clf 5], 5]).

2) For Γ2 we have
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(2/[S Z]

and therefore

=j {4ΛCS, X1-2JJLS,

But

4/iCS, X1-2JIS, JtXl=2JtX

and, consequently,

On the other hand

Γ*hX= j {2/2[S, h 1

and, thus, Γ2 is a connection of type 2.
If h2 denotes the horizontal projector of Γ2, we obtain its associated semi-

spray as given by

( ) | s+|[C 2 ) S]

3) Suppose now that S is a spray of type 2. From Jacobi's identity

[C2, ίju SH+Uu ίS, CJ1+IS, [C2, /J]=0

from which we find

:c,, CΛ, sjβ+Uι, s]=o

and, consequently, if H1=l/2ZCΐ, Λ] is the tension of ΓΊ, we obtain

6^=2:0,, CΛ, S]]+2[C2) [[Λ, S], S3J-CC, /]

=2[C2, [[/„ S], S]] .

Applying once more Jacobi's identity we have

[C2, CΓΛ, S], 5]]+[[/ 1 ; S], [5, C2]]+[S, [C2, [Λ, S]]]=o

and thus

[c,,[LΛ, s], s]=o.

Analogously, if ίΓ2=l/2[C2, A ] is the tension of .Γ2, we deduce

6# 2 =[C 2 , 2[/2, S]]+[C,, /]=2[C 2, C/2, 5 ] ]

and, from Jacobi's identity
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ίC, ίU SH+EΛ, ίS, CJ1+IS, EC,, ΛH=0

or, equivalently

EC,, [/2, SB-Ut, S]-ES,/,]=0 i.e. EC,, E/t, SH=0.

§ 7. Paths of semi-sprays and connections.

DEFINITION 7.1. A path of a semi-spray S is a parametric curve f:I-+M
such that (ff/)f=S°f" i.e., such that the canonical lift f" of / to T2M is an
integral curve of 5.

If 5 is a spray, its paths are called geodesies.

If S is a semi-spray of type 1, its paths are the solutions of the system of
differential equations

d2xι ^,/ dx d2

Λ2 V ' dt ' dt*
1 O γt

The paths of a semi-spray of type 2 are the solutions of the system of
differential equations

dzxx ^,/ dx d2x

DEFINITION 7.2. A parametric curve / in M is said path of a connection Γ
on M if

v being the vertical projector of Γ.
If Γ is homogeneous, its paths are called geodesies.

The paths of a connection Γ of type 1 satisfy the system of differential
equations

d2xJ __ p: dx1 d3xJ _ ^J dx1

dt2 ~~~ i~a7Γ' dtB ~ ι~aT

and if Γ is of type 2, they satisfy

d^ x^ d xι — d2 xι

dt3 ^~Γ{~dt~~Γ3χ dt2 '

PROPOSITION 7.3. 77z£ ^βί/z5 c/ c connection Γ are the paths of its associated
semi-spray.
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The proof is an immediate consequence of the local expressions previously
obtained.

§ 8. Curvature.

DEFINITION 8.1. Let Γ be a connection on M (indistinctly of type 1 or 2).
The curvature of Γ is the vector 2-form R, differentiate C°° on 2*2M, defined by
R=—l/2[/z, h~], h being the horizontal projector of Γ.

Local expressions

Let X, YGX(T2M) be locally expressed by

X=(x\ y\ zι; a\ b\ cι), Y=(x\ y\ zι a\ β\ f).

Then, if Γ is of type 1, we find

If Γ is of type 2, we find

ι By1 + i 3 dzι I ι dzι ) 8zk

dzι

The following proposition is easily deduced from the local expressions of the
curvature.

PROPOSITION 8.2. If Γ is a connection on M of type 1 (respectively, of type
2), the curvature of Γ is a semibasic form of type 2 {respect, of type 1).

PROPOSITION 8.3. (Bianchi's identities) Let Γ be a connection on M {indistinctly
of type 1 or 2). Then, the following identities are verified

I . C/i. Rl=ίh, C/i, A]] Π. [A, /?]=0.

[/., Λ]=[A, ΓΛ, A]]

Proof. Let us recall Jacobi's identity for vector 1-forms L, M, N:

ίL, [A/, ΛΓΠ+CM, CM i ] ] + CM [L, M ] ] = 0 .
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If we put L = / i , M=N=h, we obtain

C/i, [A, A]] + [A, [A,Λ]]+[A, [Λ, A]]=0

i.e.

C/i, [A, A]] = -2[A, [Λ, A]]

or, equivalently CΛ, i?]=[A, [/i, A]].
In the same way, if we put L—J2, M—N~h, we obtain [/2, i?]=[A, [/2, A]].
Finally, if M=N=L=h, we have [A, [A, A]]=0, and thus [A, i?]=0.

PROPOSITION 8.4. Lei Γ be a connection on M. Then [C2, i?]= —[A, / / ] .

Proof. From Jacobi's identity we obtain

[C8, [A, A]]+[A, [A, C 2]]-[A, [C2, A]]=0

and, thus [C2, [Λ, Λ]]=2[Λ, [C2, A]]. But [C2, A]=i/, hence [C2, i?] = -[A, / / ] .

COROLLARY 8.5. // Γ is an homogeneous connection, its curvature R is also
an homogeneous vector form.

% 9. /-structure associated with a connection.

PROPOSITION 9.1. Let Γ be a connection on M of type 1, with horizontal
projector h. Then, there exists one and only one vector I-form F on T2M, dif-
ferentiable C°° on EΓ2M, such that

FJ'=h, Fh = -J', FΛ=0,

where J/—J2h.

In fact, F is well defined from these identities, and it is uniquely determined
by its action on vertical and horizontal vector fields.

Local expression of F.
Let U be a coordinate neighborhood of M and (x\ yJ, z1) the induced coordi-

nate functions on π^iU). Then, we have

On the other hand
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and then

In a matrix form, F is given by

Γi

F: -δί-ΓiΓ> -Γί

0)

0

t2Γ{-ΓίΓl -Γί 0

PROPOSITION 9.2. T/ẑ  vector 1-form F defines on T2M an /-structure of
constant rank 2n, which we call the f-structure associated with connection Γ of
type 1.

Proof. From the local expression above for F, it is easily derived that rank
F=2n and F*+F=0.

We shall now study the integrability of this /-structure F, following Yano-
Ishihara [20].

Let 1——F2, m—F2-{-I be the projection operators of F and L=Im/, M—\mm
denote the complementary distributions associated with / and m; they have
dimension 2n and n respectively.

Since M=Vπi2(T2M), the distribution M is always completely integrable.
Before proceeding further, we shall prove the following three lemmas.

LEMMA 9.3. The vector 2-form [/', A] is semibasic of type 2.

Proof. If X, r e ^ ( T 2 M ) , we have

[/', hJJ2X, Y)=J'ZJ*X, Y1-J'U*X

On the other hand

/iQΛ hJX, Y^LIJ'X, hY^+JilhX, JΎ^-hU'X, Π-ΛH^/'Π

=MU'X, hY-]-U'X, F])+Λ([/ιZ,//F]-[X,/r])=

LEMMA 9.4. The vector 2-forrn Nj,—l/2[_J',Jf~] is semibasic of type 2.
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Proof. If X, YGT(T2M), we have

Nj.iJtX, Y)=-J'ZJ*X, JΎ1=O

since [/2X /' Y~\ is vertical. Moreover,

LNAX, Y)=JJU'X, JΎ1=O.

LEMMA 9.5. /,.[/', hl=Nj..

Proof. We have, for every X, Y<ΞX(TZM),

[/', hl(X, Y)=W, hJhX, hY)

=U'X, hY2+ίhX, JΎl-JΊhX, hY2-hίJ'

and then

(Jt'W, hlKX, Y)=hU'X, hYl+JJihX, JfYl-2JJihX, An

-J'U'X,hYl-J'lhX,JΎl.

On the other hand

NAX, Y)=NAhX, hY)=U'X,JΎl-JtU'X, hYl-JzlhX, JΎ1

+2J£hX, AF].

Moreover, since J2 is integrable

0=Njt(hX, hY)=ίJ'X,JΎl-J£J'X, hYl-JtίhX, J'Y3+2J£hX,

and we obtain

Λ LV', n=Nj,.

THEOREM 9.6. Let Γ be a connection on M of type 1, with curvature form
R. If the distribution L is completely integrable, 7?=0 and [/', ft]=0, then the
f-structure F associated with Γ is partially integrable.

Proof. For every X, Y^TiT^M), taking into account Lemma 9.3, we have

[/', hl(X, Y)=W, hlihX, hY)

=U'X, hY2+ίhX, JΎl-J'ίhX, hYl-hίJ'X, hYl-hίhX,JΎl

Therefore

{F'W, hlXhX, hY)=FU'X, hY2+FίhX,JΎ2+J'U'X, AF]

Γf AF]
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On the other hand

(h*NF)(X, Y)=NF(hX, hY)

and

MAX, Y)=NAhX, hY)=U'X,m-J'U'X, hYl-J'lhX.JΎl.

Since R=0, it follows

h[_hX, hY2=ίhX, hY]

and then

F2ίhX, hY]=-{_hX,

Thus

i. e.

and, by using Lemma 9.5, we deduce
We also have

(h*NF){X, Y)=U'X,JΎ]+FU'X, hY2+FίhX,JΎ2-ίhX, hY]

, Y)+NAX, Y)={F'W, hl+Nj,)(X, Y)

(J')*NAX, Y)=lhX,

and, since NJt=0, [/'Z, JΎ^lmJ' thus

(J'*)NAX, Y)=lhX, hYl-FlhX,JΎl-FZJ'X, hYl~U'X,JΎl

= -(h*NF)(X, Y)
i.e.

U')*NF=-h*NF=0.

Finally, taking into account the integrability of L, and by a similar device,
we obtain

NAJ'X, hY)={F°h*NF){X, Y)=Q.

We shall now consider the case of connections of type 2.

PROPOSITION 9.7. Let Γ be a connection on M of type 2, with horizontal
projector h. Then, there exists one and only one vector 1-form G on T2M,
differentiable C°° on SΓ2M, such that

GJ1=hf

y Ghr=-]λ, Gh(X)=0, if X$ VπKT2M)

where h'=hj2.
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In fact, G is well defined from these identities, and it is uniquely determined
by its action on vertical and horizontal vector fields.

Local expression of G.
As in the case of a connection of type 1, and by similar devices, the following

expression of G in a matrix form is obtained

G:

0 0 0

Γi Γί δ{

{-Γk

τΓ{ -δί-ΓϊΓl -Γ

PROPOSITION 9.8. The vector 1-form G defines on T2M an /-structure of
constant rank In, which we call the f-structure associated with connection Γ of
type 2.

Proof. It is easily derived from the local expression of G above.
As before, let l=—G2, m=G2+I be the projection operators of G and L=lml,

M=Im m denote the complementary distributions associated with / and m they
have dimension 2n and n, respectively.

LEMMA 9.9. J2G=2v,

v being the vertical projector of Γ.

Proof. It is easily checked since

/2G/i=ΛA'=2Λ, / 2 G λ ' = 0 .

LEMMA 9.10. The vector 2-forrn R'=l/2[h', Λ'] is semibasic of type 1.

Proof. Obviously, (/z')2=0; then, for every X, YZΞT(T2M),

R'(X, Y)=Zh'X, hΎ-]-h'[_hΎ, Y~]-h'lX, hΎ~]

and, hence, R\J1X9 F)=0.
Moreover

J*R\X, Y)=Jϋh'X, h'Y^J^h'X, r]-2Λ[Z, h'Yl

and, a simple calculation involving local coordinates leads us to

JtR'(X, F ) = 0 .

LEMMA 9.11. The vector 2-form [_JU /z'] is semibasic of type 1.

Proof. For every X, Y<Ξ3C(T2M), we have
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Ui, h'JLX, Y)=-hUiX, AT]-A'[/ΛΛy]=0

and, moreover,

THEOREM 9.12. // the f-structure G is integrable, then R'=0 and \JU Λ']=0.

Proof. Putting JVG=1/2[G, G], we have, for every X, Y^X(T2M)

(h')*NQ(X, Y)=ZJιX, J1YI+GU1X, h'Yl+Glh'X.JiYl+G'ίh'X, h'Yl

=UiX, LY1+GZΛX, h'Yl+Gίh'X, JxYl-ίh'X, h'Yl.

On the other hand,

Uu h'KX, Y)=UiX, h'Yl+lh'XrLYJ-LlX, h'Yl

-Kh'X, Yl-h'ίX, LYl-h'lJiX, Yl
and, therefore,

GC/i, h'KX, Y)=GUiX, h'Yl + Glh'X, LYl-h'lX, h'Yl

Thus
((AO^β-G CΛ, h'JKX, Y)=-lh'X, h'Yl+h'LX, h'Yl

+ h'lh'X, Y1=-R'(X. Y)

i.e.

(h')*N0=G*Ui, h'l-R'.

Operating J2 on both sides of this identity, we obtain

Mh')*N0=2vUi, Λ/]=2[/ lJ h'l

since [/i, h'~\ and i?/ are semibasic forms.
Now, the result follows from the fact that G is integrable if and only if

JVσ=O.

A partial converse of this theorem can be stablished as follows:

THEOREM 9.13. // R'=0 and [Λ, Λ']=0, then the /structure G is partially
integrable.

Proo/. Firstly, from the proof of Theorem 9.12, we have

(h')*N0=GΊJl9 h'l=R'
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and, thus (h')*NG=Q.

Secondly, for every X, Y^3C(T2M)f

NG{h'X, J1Y)=-ίJ1X> h'γ-]-GlhfX,

=(G*(h')*NaXX, Y)

and, then NG(h'X, J1Y)=0.

Thirdly,

NoUiX, JiY)=lh'X, h'Y-]-Glh'X, JiYl-

= -(h')*N0(X, Y)=0.

These three identities together imply the partial integrability of G.

Remark. Note that the vanishing of curvature R of Γ implies that of R'
in fact

R'(X, Y)=R'(hX, hY)=Zh'X, h'Yl-h'Lh'X, hY^-h'lhX, h'Y~\

§ 10. Prolongation of metrics on the vertical bundles to 32M.

Let g be a Riemannian metric on the vertical bundle Vπ*(32M). Then, fixed
a point U)G2" 2 M, we can define a metric gω on TM as follows:

gω(u, v)=g(h2(ω, u), h2(ω, v)), VM, v^Tπi2^(TM)

where h2 is the canonical isomorphism introduced in § 1.
Therefore, a Riemannian metric on the vertical bundle Vπ2(%2M) can be

considered as a Riemannian metric on TM, the latter depending not only on the
point but also on a previously fixed point ω^T2M, with ω non belonging to the
zero cross-section.

Given on M a connection Γ of type 1, it is possible to extend g to the whole
fibre bundle T(<S2M), that is, to a Riemannian metric gr on ΞΓ2M, by putting

gΓ(X, Y)=g(J'X, JΎ)+g(vX, υY), VZ, yeΞ3f(2 2M)

being h, v and / as defined in the previous sections.

PROPOSITION 10.1. gp is a Riemannian metric on £Γ2M, which will be called
the prolongation of g along the connection Γ.
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Proof. Bilinearity and symmetry of gΓ are immediate. Moreover, gΓ is
positive definite, since

gr(X, X)=g{JfX, JΎ)+g(vX, vY)

and because J'X and vX are simultaneously zero if and only if X is zero.
Finally, gΓ extends g, since gr(J2X, Λ50=iKΛZ, J2Y) as consequence of

the fact that /'Λ=ΛΛ/2=0.

PROPOSITION 10.2. A Riemanman metric g on £2M is the prolongation of a
Riemannian metric g on Vπ2(<22M) along a connection Γ on M of type 1 if and
only if

1) g(hX,vY)=0
2) g{hX, hY)=g(J'X, JΎ)=g(J'X, f'Y), gU*X, UY)=g(J*X, J*Y)

for every X,

Proof. Let gΓ be the prolongation of g along a connection Γ of type 1.
Then,

gr(hX, vY)=g(J'hX, J'vY)=0

since Jfv—§. Moreover

gr(hX} hY)=gU'hX, J'hY)=gU'X, JΎ)

and

The converse is immediate.

PROPOSITION 10.3. Let Γ be a connection on M of type 1 and g a Riemannian
metric on the vertical bundle V*K&2M), such that g{fχX, Λ ^ ) = 0 , VZ, Y^2C(22M).
Then, the prolongation gΓ of g along Γ is a hor-ehresmannian metric with respect
to the f-structure F associated to Γ.

Proof. Let l= — F2, m—F2jrl be the projection operators of F. It is easily

verified that

grdX, mY)=Q, VZ, Y^2C(ST2M)

that is, the distribution L and M are mutually orthogonal with respect to gp.
Moreover,

gr(X, FX)=0,

and, thus, gp is hor-ehresmannian with respect to F. Note that there exist
Riemannian metrics on SΓ2M verifying
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In fact, given a Riemannian metric g on M, the second canonical lift gn of
g to Z2M, [20], makes mutually orthogonal Fπ2(H"2M) and Vπi2(22M).

Under the hypothesis of Proposition 10.3., gp permits to define the funda-
mental form KΓ by putting

KΓ(X,Y)=gr{FX,Y), VZ, F E J ( ^ M ) .

We then have

PROPOSITION 10.4. Under the hypothesis of Proposition 10.3., the fundamental
form KΓ verifies

KΓ(X, Y)=gΓ(X,JΎ)-grU'X, Y), VZ

Proof, From previous definitions, we have

KΓ(X, Y)=gp{FX, Y)=gΓ(FhX+FvX, hY+vY)

=gp{FhX, hY)+gΓ{FvX} hY)+gΓ{FhX, vY)+gΓ(FvX, vY)

= -grU'X, hY)+gp{FvX, hY)-grU'X, vY)+gΓ(FvXf vY)

for every X, YEΞ3C(3:2M).

On the other hand

gr(J'X,hY)=0

since v and h are mutually orthogonal with respect to gp. But Fv—hF, hence

gr(FvX, vY)=gΓ(hFX, vY)=0

and, therefore

KΓ(X, Y)^gp(hFX, hY)-grU'X, vY).

But

grihFX, hY)=g(J'FX, JΎ)=g(vX, JΎ)=gΓ(vX, JΎ)

and, consequently,

KΓ(X, Y)=gp(vX, JΎ)-grU'X, vY)=gp(hX+vX, JΎ)-gΓ(J'X, vY+hY)

=gAX,JΎ)-grU'X, Y).

We shall now consider the case of the vertical bundle V*12(32M). Let g be
a Riemannian metric on Vπi2(%2M); as before, for a fixed point ft>e£Γ2M, we can
define a metric gω on M by putting

gω(u, v)=g(h1(ω) u), hx{ω, v)), VM, v^Tπ2ίω-){M)

where hi is the canonical isomorphism introduced in § 1. Thus, a Riemannian
metric on the vertical bundle Vffl2(£Γ2M) can be considered as a Riemannian
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metric on M, the latter depending not only on the point but also on a previously
fixed point ω^T2M, with ω non belonging to the zero cross-section.

If Γ is a connection on M of type 2, we can extend g to the whole fibre
bundle T(22M), that is, to a Riemannian metric gr on 2*2M by putting

gΓ(X, Y)=SUiX, JiY)+g(vX, vY), VZ, FeX(£Γ 2M).

PROPOSITION 10.5. gr is a Riemannian metric on 32M, which will be called
the prolongation of g along the connection Γ.

We omit the proof, which is analogous to that of Proposition 10.1.
The following Propositions are all similar to those in the case of metrics on

PROPOSITION 10.6. A Riemannian metric g in %2M is the prolongation of a
Riemannian metric g on the vertical bundle Vπi2(SΓ2M) along a connection Γ on
M of type 2 if and only if

1) g(hX,vY)=0, 2) g(hX, hY)=g(JiX, JiY)=g(JιX, JiY)

for every X, Fe;3?(£r2M).

PROPOSITION 10.7. Let Γ be a connection on M of type 2 and g a Riemannian
metric on the vertical bundle F7Γl2(2"2M). Then, the prolongation gr of g along
Γ is a hor-ehresmannian metric with respect to the f-structure G associated to Γ.

Once more, under the hypothesis of Proposition 10.7., gr permits to define
the fundamental form Kp by putting

KΓ(X, Y)=gΓ(GX, Y), MX,

We then have

PROPOSITION 10.8. Under the hypothesis of Proposition 10.7, the fundamental
form Kp verifies

KΓ(X, Y)=gΓ(GhX, Y), VZ,

In particular,

KAh'X, Y)=-gΓ(JiX, Y), KrUiX, n = 0 .

Proof. It is proved by a similar calculation to that in the proof of Proposi-
tion 10.4.
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