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ON THE INITIAL BOUNDARY-VALUE PROBLEM FOR
VISCOUS HEAT CONDUCTING COMPRESSIBLE FLUIDS

By Bul AN ToN

Abstract

The existence of a weak solution, local in time of an initial boundary-
value problem for the basic system of partial differential equations of the
theory of viscous, heat conducting compressible fluids 1s shown.

Introduction. The purpose of this paper is to show the existence of a weak
solution, local in time, of an initial boundary-value problem for viscous, heat con-
ducting compressible fluids.

Let u=(u,, us us) be the velocity of the fluid, p and ¢ be the density and
the absolute temperature of the fluid respectively. The motion of the fluidfis
described by the initial boundary-value problem :

ou .
——+u.Vu)—eAu—e grad (div w)+grad (o+60)=pf/  on(0, T)XG,
u(x, t)=00n (0, T)XaG, u(x, 0)=0 onG.

G is a bounded open subset of R?® with a smooth boundary oG.
The conservation of mass is expressed by the initial value problem :

‘g‘?-l—p div(u)+u. grad p=0, p>0 on (0, T)XG, p(x, 0)=p"(x) on G.

The conservation of energy is described by the initial boundary-value problem :

pﬁ(—@ﬁ— Fu.grad0—p div(u))——%dﬁ-—sBu:O, 0>0 on (0, TYXG,

ot
(0.3) 29
gv =0 on (0, T)X0G and 6(x, 0)=6%x) on G.
v is the unit exterior normal vector to 6G and B is the nonlinear operator Bu=
ou 0ur \2 . . . .
(—ﬁ—t‘fa—;) with the usual summation convention. For the derivations of
k 3
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(0.1)-(0.3), we shall refer to Tani [8].
In this paper we shall consider the case when the viscosity ¢ and the coef-

ficient of heat conduction X are both constants and for simplicity of notations we
shall set e=X=1.

There are few mathematical works on the theory of viscous compressible

fluids. The pioneering work was done by Nash [7] in 1962 who proved the
existence of a unique local solution of the Cauchy problem :

0.4) p(—gtlJru.w)—eAu—sgrad(divu)+grad<p+a):pf on (0, T)X R?,

u(x, 0)=0 on R3

and

(0.5) g—tp—f—p div (w)+u. grad p=0, p>0 on (0, T)X R?,
olx, 0)=p°%x) on R®

with

0.6) pﬁ(%‘%-l—u. grad 0—p div u)——XAﬁ—sBuZO. >0 on (0, T)X R?,
0(x, 0)=0"x) on R®.

He used a characteristic transformation, an iteration method and together with
estimates for fundamental solutions of parabolic equations solved a parabolic
system at each step. The validity of Nash’s proof is, however, in doubt. Cf
Tani [8].

Recently, mathematical works on compressible fluids have been done by Itaya,
Matsumura and Nishida and by Tani. In [2], Itaya has shown, independently of
Nash, the existence of a unique local solution of the Cauchy problem for (0.4)-
(0.6). Tani has in [8] proved the existence of a unique local solution of the
initial boundary value problem (0.1)-(0.3). In both works, as done earlier by Nash,
a characteristic transformation and estimstes for fundamental solutions of a
parabolic equation are used. The approaches taken by Itaya and by Tani involve
very delicate computations.

Using energy estimates and an iteration method, Matsumura and Nishida [6]
have proved the existence of a unique classical solution of the Cauchy problem
for (0.4)-(0.6), the solution is global in time if the data are “small”.

By a completely different approach, using equations of Sobolev-Galpern type
as approximants, the writer has in [9] shown the existence of a unique local
solution of the Cauchy problem for (0.4)-(0.6) and studied the convergence of the
solution as the viscosity tends to zero. In [10], the writer has established the
above results by a simpler argument using an iteration method and some simple
properties of the quasi-norms of Leray and Ohya.

For the initial boundary-value problem (0.1)-(0.3),- the only known result is
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due to Tani [8] who proved the existence of a unique local solution {u, p, 6} in
the space

C2+a, 1/2(2+a)(QT*) X C2+a, 1/2(2+a)(QT*) X C2+a, 1/2(2+a)(QT‘)

for 0<a<1 and where Qr.=(0, T*)XG. In this paper we shall show the exis-
tence of a weak local solution of (0.1)-(0.3) with minimum regularity hypothesis
on the data. The solution obtained is, in a sense reminiscent of the Hopf solu-
tion of the Navier-Stokes equations for incompressible fluids with constant density.
The solution {u, p, 6} is such that u belongs to L0, Ty ; L(G)NL*0, Tx; Hp),
e is in L0, Ty; L=(G)) with 6 in L=(0, Tw; L*(G)NL*0, Tx; H"). We shall
use standard techniques, the proof is rather simple although long and is com-
pletely different from the usual approach to compressible fluids.

The notations, the main result of the paper as well as a detailed outline of
the proof of the basic theorem are given in Section 1.

Section 1: Notations, Definitions and statement of the main result. Let G

be a bounded open subset of R® with a smooth boundary 0G. For each triple
a=(a,, a,, a;) of non-negative integers we write:

D= f’[lD;x; with |a|= 3 a, and D,=0/0x,.
= 7=

The inner product and the norm in H=L?*G) are denoted by (.,.) and by
II-1 respectively. The Sobolev space

W ?(G)={u: u in L?(G), D*u in L?(G) for |a|=<Fk}

is a reflexive separable Banach space with the norm
1/p
lule,={ S 10U} 5 25 p<co.

We shall write H* for W*2G) and H} is the closure in the H*-norm of the set
of all infinitely differentiable functions with compact support in G. We shall

identify H with its dual by the inner product (.,.).
H-* is the dual of H¥ and W-*%cIG) is the dual of W*?(G) with ¢ as the

conjugate exponent of p. By abuse of notations we shall also use (.,.) for the

various pairings.
The following results of the Sobolev imbedding theorem will be used throu-

ghout the paper.
H'CLYG); H*CL=(G); W*¥G)CL=(G).

The above natural injection mappings are all continuous and moreover H? is

algebra with respect to pointwise multiplication.
L*0, T ; HF¥) is the set of equivalence classes of functions u(., ¢) from (0, T)
to H* which are L’ integrable over (0, 7). It is a Hilbert space with the norm

T 1/2
lulsscr, mo={ |, luC., Dlf2dt}



100 BUI AN TON

and the usual inner product.
L=, T; H*) is similarly defined with the obvious modification. The deri-

. . . . ou . .
vative of u with respect to ¢ is written as FTE or simply as u’ when there is

no confusion possible.
For the convenience of the reader we shall state the following two basic
compactness theorems used in the paper.

THEOREM (Aubin [17). Let W, V and X be three real reflexive Banach spaces
with WCVCX. The natural njection mapping of W into V 1s assumed to be
compact and that of V wnto X 1s continuous. Suppose that:

luallLoeo,r, wrtlunlieoo m »=C, 2= p<co.

C 1s independent of n. Then there exists a subsequence denoted again by {u,}
such that: u,—u wn L?0, T; V).

THEOREM (Murat’s compensated compactness theorem. See [5] p. 72, rela-
tion (1.64)).
Suppose that: (i) lpnlzzo r a-vHlonlzor, -=C,

(ii) luallzeco,r, sy =C.

C wndependent of n. Then there exists a subsequence {u,, pa} such that u,p, —
up in the distribution sense on (0, T)XG.

DerINITION 1. Let v be a vector-valued function in L*0, T ; H}) and p° be
a scalar function with 0<a=p"(x), [grad p°|=b on G. Then a scalar function
p in L=(0, T; L=(G)) with 0<p(x, t) on (0, T)XG is said to be a weak solution
of the initial-value problem :

(1.1) o’+v. grad p+p div(v)=0, p>0 on (0, T)XG, p(x, 0)=p°(x) on G,
if
T T
{00, 972t (pv, grad prar=or, (., 0)

for all scalar functions ¢ in L*0, T, H') with ¢’ in L*0, T; H) and ¢(., T)=0.
Let v be as above and consider the initial boundary value problem

ou . | N
12 p( o +. Vu)——Au—grad (div u)-+grad (p+0)=pf on (0, T)XG,

u(x, t)=0 on (0, T)X0G, u(x, 0)=0 on G.

DEFINITION 2. Let v be as before, f be a vector-valued function in =0, T ; H)
and & be a scalar function in L=(0, T; L=(G)). Let u be a vector-valued func-
tion in L=0, T'; H)NL*0, T; Hi). Then {p, u} is said to be a weak solution
of (1.1)-(1.2) if:
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(i) p is a weak solution of (1.1) in the sense of Definition 1,

(ii)
T T T T ~

—So(pu, w’)dt-Jrgo(Vu, Vw)dtJrSo(diV u, div w)dt—go(eré’, div (w))dt

T T
—So(pv. Yw, u)dtzgo(pf, w)dt

for all vector-valued functions w in L*0, T ; HiNH?) with w’ in L*0, T, H)

and w(., T)=0.
Let v, p and 6 be as before and consider the initial boundary-value problem :

000’ +v. grad 6)—%V(0~"1V02)—p26~div(v)—Bv———O, 0>0 on (0, T)XG,

(1.3)
on G.

9 =0 on (0, T)X9G, 6(x, 0)=0"x)

oy
DEFINITION 3. Let v, p and # be as before with §>0 on (0, TYXG. Then

{p 6} is said to be a weak solution of (1.1)-(1.3) if:
(i) p is a weak solution of (1.1) in the sense of Definition I,
(ii) @ is a scalar function in L=(0, T ; L=(G)N\L*0, T ; H') with
0<é on (0, TYXG,
(iii)
T T o T
~{orr ¢’)a’t—|—go(0“V02, ng)dt—ZSo(Bv, $)d1

—2[ (i div (v), ¢)dt—g:(p02, v. grad ¢)dt=(0"63, (., 0)

for all scalar functions ¢ in CY0, T'; H?) with &(., T7)=0.
DEFINITION 4. Let f, p°% 6° be as before. Then {u, p, 0} in

{L=0, T ; H)NL¥0, T'5; H)} X L0, T'; L™G))
XAL=O, T'; LAGHNL*O, T; HY}

is a weak solution of (0.1)-(0.3) if:
(i) p is a weak solution of (1.1) in the sense of Definition 1 with v=wu in (1.1)
(ii) wu is a weak solution of (1.2) in the sense of Definition 2 with v=u, =60

in (1.2)
(iii) € is a weak solution of (1.3) in the sense of Definition 3 with
v=u, =0 in (1.1)-(1.3).

We shall now state the main result of the paper.
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THEOREM 1.1 Let f be a vector-valued function wn L0, T; H), p° be a
scalar function with 0<a=p%x), |grad p°|=b on G and 6, be a positwe constant
¢. Then there exist:

(1) a non-empty wnterval (0, T*),

@) Au, p, 6 wn {L=0, T*; H)NL*O0, T*; H{)} X L=, T*; L™(G))
XAL=0, T*; LAGHNL*O, T*; HY},
weak soluton of (0.1)-(0.3) 1n the sense of Defimition 4.
We now give a detailed outline of the proof of the theorem.

Step 1. It will be carried out in Section 2. Let v and p° be as in Definition
1. By a standard method we show the existence of a weak local solution of

(1.4) o’+v.grad p-+p div(v)=0, >0 on (0, T)XG, p(v, 0)=p°x) on G.
Moreover : 0<(1—n)a=p(x, t)=b+na on (0, T4)XG and
oIl z2co, ascriym T 1(0%) N z2co, 1 iy S C {1+ vl 2260, 70013} -

C is a constant independent of v, p and depends only on a, b.

Step 2. It will be carried out in Section 3. Using the Galerkin approxima-
tion method and estimates for the kinetic energy, we prove the existence of a
weak solution of (1.4)-(1.5) with

p(ﬂ+ v. Vu)—Au—grad (div u)+grad (p+G=pf  on (0, TL)XG,

(15) at

u(x, t)=0 on (0, T4)X0G, u(x, 0)=a on G.
Moreover
e O+ [, 182ds=Ct{1+1013mc, oo}, and
() Nz20, 2 -5 =C 1+l 306 i 1l 2oco rcom}

C is aconstant independent of v, p, #, u and depends only on f and on the
bounds of p°.

Step 3. It will be carried out in Section 4. Using, first a discretisation of
the time-variable, then a nonlinear elliptic perturbation of the discretised equation
we show the existence of a weak local solution of (1.4)-(1.6) with:

pa(%?—+ v. grad 0)——;—V(67‘1V02)—p2¢9~div (v)— Bu=0, 6>0
(1.6) a0 on (0, T4)XG,

~ay—=O on (0, T4)X0G, O(x, 0)=0(x) on G.
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The existence of a non-empty subinterval (0, 7*) where >0 is shown.
Moreover :

0<I—n)2e=0=(14+ 95" on (0, T*)XG; 0<9<1 and 0<c=6,.
Furthermore :
”0“L2(0,T*;H1)§C{1+”U”LZ(O.T‘;H(l))+l|0~||L°°(0, T LGN -

Let 6>0, then an estimate of Kajikov’s type holds:
T*-0 ~
So 16C., t+0)—0(., HI*Pdt=Co"* {1+lvlieco, romdry + 10l 1o, 7+, 2605}

C is independent of d, v, §, 6, o, u.
Step 4. It will be carried out in Section 5. We construct a sequence of
successive approximations. Consider the initial-value problem :

wn { ontun_1-grad pn+ p, div (u,-,)=0 on (0, T)XG,

0:.>0  on (0, T)XG, palx, 0)=p%x); u,=0, n=1, 2---
and the initial boundary-value problem
18 { On(Un+Un_y. Vun)—Au,—grad (div u,)+grad (o +60,-1)=pnf on(0, T)XG,
un(x, )=0 on (0, T)X0G, u,(x, 0)=0 on G.

together with the initial boundary-value problem

010Gyt 8720 B,)— Ul T02)— 0300 div (4 )~ B =0,

(1.9 20
ap" =0 on (0, T)XdG, Ox(x, 0)=0,(x) on G.

From steps 1—3, we show :
(i) there exists a non-empty interval (0, T*) independent of =,
(ii) {un, pn, 6}, solution of (1.7)-(1.9) in the sense of Definitions 1.3.

It is then not difficult to check that u,, p» and @, are all uniformly bounded
in the appropriate norms. Using then Aubin’s compactness theorem as well as
the compensated compactness arguments of Murat as applied by Lions, we get
the desired result.

Acknowledgment: The writer is indebted to the referee for his comments
and a careful reading of the paper.

Section 2: Initial-value problem (1.4).

We shall now carry out Step 1 of the proof of Theorem 1.1. The main
result of the section is the following theorem.
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THEOREM 2.1. Let v be a vector-valued function in L*0, T ; H) and let o°

be a scalar function with 0<a<p%x), |grad p°|=b on G. Then there exist:

(i) a non-empty wnterval (0, Ty),

(ii) a weak solution p wn L=(0, Ty; L(G)) of the wmtial-value problem (1.4).
Moreover: 0<(1—p)a=Zp(x, )=b+na on (0, Tx)XG for 0<y<1
Furthermore :

lo'l z2co, ruscariyn H1(0*) N 220, 7oscar iy SC{L+ vl 220, 72,135} -

C 1s a constant independent of p, v and depends only on the bounds of p° on G.
If x° 1s the x-coordinate of the intersection of y=x exp(x) with y=na, then
Tx 15 deternuned by CT{?|vlieco. rinh=x". C 15 a constant independent of v, o

0.

First we have the lemma.

LEMMA 2.1. Let v, be in CX0, T ; C3(G)) with vo,—v n L*0, T ; H}). Then
there exist:
1) pn wm CO, T; C(G)) such that

(2.2) PnTvargrad ppt 0, div(v,)=0 on (0, T)XG, pa(x, 0)=p%x) on G.

2) a non empty wnterval (0, Ty) independent of n, v, and asin Theorem 2.1,
such that:

0<1—nla=palx, )Eb+7a on (0, T)XG.
Furthermore:
lonllzeco, rs o T 1(02) 2o, 7o o SC{L+1Vall 2260, 7w} -
C 15 independent of n and depends only on the bounds of p° on G.

Proof. The existence of p, satisfying (2.2) is well-known. We shall now
determine the time-interval where p,>0 and establish some uniform estimates
for pn.

1) Set hp=p,—p° Then h, is in CY0, T; W*=(G)) and

29 { hat v grad hp+hy div (va)+p° div (v,)+v,-grad p°=0 on (0, T)XG,
ha(x, 0)=0 on G.

Let s be a large positive integer, then A% is also in CY0, T; W'=(G)).
Multiplying (2.3) by A5! and integrating over G, we obtain:

@O 5L, Dl grad bt b div (v, 857
+(p°div (va)+w,-grad p° hi1H=0.

An integration by parts yields:
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(vn-grad hn, h5)=—s"div (v,), h%).
Hence :

@5 Mhaler DI~ Il DS (mes G) Azt Gl ol 04l
+2b|vals, o
=Cl i 1+ hall 2w} Tvali ..

C is independent of n, s, t and v,. It depends on G and on the upper bound of
0°, grad p° on G.
Let
Gs={x: xin G, 27V VAl Lo < | halx)|}.
Then:

(2.6) 271D hy | ooy {mes G} U= | halls -

Using (2.6) in (2.5) we get:

d
My D5 SC (mes G vali L+ Anlimce)

Thus,
a ., O1ZC (mes G { oal., Ol a1l -, Ollieos) 4
Since A, is in L=(0, T ; L=(G)) we have by letting s— +co:
1aC.s Dllimear SC{ 10, Ol 1l ., Dllzmco} L.
It follows from the Gronwall lemma that:
@7 (e, Dl =C{ 1val., Ollsd-exp (€[ 10a(., Ol ed).
2) Consider the curve y=xexp(x) and the line y=xa with 0<y<l. We

know that they intersect at x,()>0 and clearly xexp (x)=%na for 0<x=ux,(7).
Thus, from (2.7) we obtain:

(28) [hal s Ollzmeer S0 if
Clllval., OllsdC=xuln).
The estimate (2.8) holds if in particular:
clvC., Ol xin.

Let T4 be such that
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CT¥ v L2, T;HYD =xoy).

Then (2.8) holds for all 0=¢=T4. Therefore:
0<d—n)a=pr=hptp°=Zb+na on (0, T)XG.

3) Let ¢ be a scalar function in H'. We have:

(pn, @)+ (va-grad pa+pn div(vy), ¢)=0.
Since v, is in C¥0, T ; C3(G)), an integration by parts gives
(o, §)=(va, on-grad @).
This,

[(or, DI =+na)|val gl .
Hence:

lonllzzco, ron =(0+na)lval 2o i p ZCI VI L2c0. 70t -

C is independent of n, v and depends only the bounds of p° on G.
Finally with ¢ as above, we have:

(8, $)+5(vapu-grad pay P+ {0} div (v2), PI=0.
An elementary computation gives:
(2) , §y=—1{p3 div (v), §)+1(ph vo-grad §).
So:
(o8, ) =~ (nat 0PIl aldls.
Therefore :

1Ce2) 2o, 7u;cryn =Cll vl 2200 ToHd -

C is as before independent of 7, v, p, and depends only on the bounds of 0°
on G.

LEMMA 2.2. Let {pa} be a sequence of scalar functions with

||pn“L°°(0, T.;L°°(G)>+||,OZHL2<0, T.;(Hl)'>§M~

M is a constant independent of n. Then there exists a subsequence denoted again
by pn such that:

@) pp—p wmn L0, Ty; (HY*); 2=s<c0 and wn the weak*-topology of L=(0,
Ty; L™G)),

(i) p%—p0® wn the weak*-topology of L0, Ty; L=(G)).
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Proof. It is clear that there exists a subsequence such that p,—p in the
weak*-topology of L=(0, Tyx; L(G)) and pp—p’ weakly in L*0, Ty ; (HY)*) with
p:—X in the weak*-topology of L0, Tx; L*(G)).

Since the natural injection mapping of H' into H is compact, that of H into
(HY* is also compact by Schauder’s theorem. From the above estimates and
from Aubin’s theorem [1] we obtain:

on—p in L0, Ty; (HY*)  for 2<s<c0.

We now prove the key assertion of the lemma, namely that X=p2
1) From the theory of linear elliptic boundary-value problems we have a
unique w, in H}"\H?, solution of:

—Aw,=p, on G, w,=0 on oG
Moreover :

lwallz2co, T.;(Hé)écnpn”m(o, rocv s [ Wal e, T.,H2>§C“Pn||L2<o, TwoH) »

C is independent of n. Hence: w,—w in L*0, Ty; H}) and weakly in
L¥0, Ty; H?) as n—-+oco. Moreover :

—Aw=p on G, w=0 on 0G .

2) Let ¢ be a C3(G)-function, then:
— [T @wn, puprat={"(3, par—{", pat
. ny On . Phns o o .

Since p, is in L0, Tyx; L*(G)), there exists {¢n,} in CF(0, Ty; C3(G)) such
that
Gni—pn i LXO, T; H), Dypus—D;pn in L0, Ty H).

Hence :
Tx . Ts
(" D3wn, gur)dt=—={ Dswa, Dign, ¢, Dpat
As k—-+o0, we obtain:
Tx T«
|03, pagrat=={ (D0, Dspu p+paDspat .
So:
3 Tx 3 Ts Tx
- J}ngo (D,wn, ¢D;pu)dt— ,‘“:150 (D jw, an]g[))dt—»So «, $)dt .
Since Dw,—D;w weakly in L¥0, Tsx; H"), pp—p in the weak*-topology of
L0, Tx; L=(G)) with pr—p’ weakly in L*0, Ty; (HY)*), it follows from the

compensated compactness argument of Murat as applied by Lions in [5], p. 72
relation 1.64 that:
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pnDjwn—>pD;w, Dywy-Djpn—>D,w-D;po
both in the distribution sense on (0, T4)XG.
Hence :

3 T 3 T« T«
-3 So (Dyw, $D,0)dt— ];3150 (D,w, ijng)di:So @, d)dt .

But D,w is in L*0, Tx; H') and ¢ is a testing function, thus ¢D;w is 1n
L¥0, Tx; H}) and hence:

T *
#So (D,w, g{)D,p)dt:S: (D2w-g+D,w Dy, 0)dt .
It follows that:
T« Tx
—SO (Aw, p¢)dl‘zso @, $)dt
i.e. —~0Aw=p*=%.

Proof of Theorem 2.1. Let v be in L*0, T; H}). Then there exists {vn.}
in CY0, T ; C3(G)) such that v,—v in L¥0, T; H3}).
Consider the initial-value problem :

0T Vargrad ppt 0, div(v,)=0, 0,>0 on (0, T)XG, pu(x, 0)=p%x) on G.

From Lemma 2.1, we have a non-empty interval (0, T) independent of n and p,,

solution of the above problem on (0, T4x)XG. With the estimates of Lemma 2.1,

we obtain by taking subsequences: p,—p in the weak*-topology of L0, Tx;

L=(G)), pr—p’ weakly in L0, Ty ; (H')*) and in view of Lemma 2.2, (p3%) —(p%)’

weakly in L*Q0, Ty ; (H)*). Moreover: 0<(I—n)a=p(x, t)=b4na on (0, Tx) XG.
Furthermore :

o'z, ricano (0% | 220, 1o SCA+H v L2co, 7oy dy) -

C is independent of p, v and depends only on the bounds of p° on Cs.
It is trivial to check that p is a solution of (1.4) in the sense of Definition 1.

Section 3. The wmitial boundary-value problem (1.5). We shall now carry
out Step 2 of the proof of Theorem 1.I. We now state the main result of the

section.

THEOREM 3.1. Let v, p, Ty be as in Theorem 2.1 and let § be a scalar Sunc-
tion in L0, Tx; L=(G)). Let f be win L0, Ty; H). Then there exists u 1n
L=, Tx; H)NL¥0, Ty ; H}) such that {p, u} 15 a weak solution of (1.4)-(1.5) in
the sense of Definition 2. Moreover:

luC., O[T, 9N ods=CHAH I =00 s}
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and
[Cow) Il 2o, rasmr-5 =C{l+1|v]l 2co, rempT ||5~|| L0, Ts. LG} -

C 1s a constant wndependent of t, p, v, G, w and depends only on f, the bounds of
0’ on G.

We shall use the standard Galerkin method and estimate the kinetic energy.
Let {w,} be a vector basis of H§ and set

k
uk=]§lc,k(t)w,.
Consider the system of linear ordinary differential equations in c;;(¢):

J (puk, w)+Nug, VYw,)+(div uy, div w,)+(pv- Vi, w,)
(3.1 —(p+0, divw,)=(pf, w,),
l c;»(0)=0, =)=k,

LEMMA 3.1. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then
there exists u, wn CO, TL; HY), solution of (3.1).

Proof. We have:
k
(o, w;):‘gcék(txpws; w,).

Since {w,} is linearly independent in H and 0<(1—7n)a=Zp=b-+ya on (0, T+x)XG,

it is clear the {p**w;} is also linearly independent in A and thus det(pw,, ws)
#0. The lemma is an immediate consequence of the Caratheodory theorem.

LEMMA 3.2. Let u, be as wn Lemma 3.1. Then:

(., t)ll2+g:|[uk< vy N3 2d SECH{LH 101300, 70,70}

for 0=t<T.
C 1s a constant wndependent of t, k, p, v, § and depends on the bounds of 0°
on G.

Proof. To show that the local solution u, of Lemma 3.1 is in fact a global
solution we shall estimate the kinetic energy.

1) Multiplying (3.1) by ¢,, and taking the summation with respect to y from
1 to k& we obtain:

(32)  (oub, up)FIVu|>+Idiv w2 +(pv-Vuy, u)—(p+0, divu)=(pf, u.).
On the other hand since p is a weak solution of (1.4) we have:

(33) (o/, $)—(v-grad 6, p)=0
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for all scalar functions ¢ in H™.
Since u, is in C0, T%; H3) and H2is an algebra, |u,|? is also in C(0, T%: 112

and thus by taking ¢=%luk|2 in (3.3) we get:

1 1
(3.4) 50" lusl)—5(v-grad|usl%, ©)=0.
Adding (3.4) to (3.2) we obtain:
(35 (o, w220 v |+ 2Apv T, w)
—(v-grad|u; %, p)—2p+0, divuy)=2(of, u,).
But:
2(pv-Vuy, up)=(v-grad|us|? o).
So:
d .
W(puk, )+ 2|V |2+2)div u, [P S2]Ju | oS
+-2l1div w1 {ll pll 2o, 7a; 200+ 1] oo, 27>} -
Hence :

d N
W(Puk; up)tcueli = C{1+160]7xc. TaLoGn T ||f|l2Lw<o, T‘;II)}

C is a constant independent of %, ¢, 6, p, f, v but depends on the bounds of p°
on G. Therefore:

t
(s s, 1) ey D+ T, DI s
SCt{1+1035c0, 70,2060+ 1 F 13000, 70000}
Since 0<(I1—n)a=p on (0, T4x)XG, the lemma is proved.

Proof of Theorem 3.1. 1) Let u, be as in Lemma 3.2. We have by taking
subsequences if necessary: u,—u weakly in L*0, T4«; H}) and in the weak*-
topology of L*(0, T«; H). Moreover:

t ~
I DI e, N8 eds SCt {1+ 10 ma, ramcon+1f T ram}.

C is independent of t, u, v, p, # and depends only on the bounds of o° on G.
2) We have:

(3.6) (puk, wF+(Tuy, Yw,)+div uy, divw)+(ov-Vue, w;)
—(p+0, divw)=(pf, w,).

With p as in Theorem 2.1, we get:
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(3'7) (ply ¢)—(v'grad ¢) P):O
for all ¢ in H.

Since u, and w, are in H§, u,. w, is also in Hj and hence by taking ¢=
ur. w, in (3.7) we obtain:

(3.8) (p’y up. wj)—(v.grad (u;. w,), p)=0.
It follows from (3.6) and (3.8) that

3.9 (puw), w)+Vug, Yw,)+(div u,, divw,)—(pv. Vw,, us)
—(p+0, divw,)=(of, w,).
Let ¢ be a C(0, Tx)-function with ¢(T4)=0. Then:

Tx T T
—So (ots, g/)'wj)dt—%-go (Vus, v<¢wj)>dt+§o (div uy, divigw,)dt

Ts T ~ Tx
—So (ov. Vpw)), uk)dt—go (0+6, div(gbwj))dt:go (of, w,)dt.
Keep j fixed and let k—-+4oc0. We get

T T Ts
~S0 (ou, g[)’wj)dt—l—go (Vu, V(gbwj))dt—l—go (div u, divigw,)d!

T« T ~ T
—So (ov.V(gw)), u)dt—go (o+6, div(gbw]-))dt:go (of, pw)dt.
By a standard argument, we have:

T. 7. Te .
(3.10) —So (ou, w’)dt-{—go (Vu, Vw)dt+go (div u, divw))dt

Tx T« ~ Tx
~"tov. Yw, war={ o+, diviw)dt=|"(of, widt

for all w in L¥%0, T«; H?) with w’ in L%0, Ty«; H) and w(., Tx)=0. From
(3.10) it is clear that:

ICou)  z2co, rua-»=C{lul 20, T*;Hé>+ug~“L°°(o, reLe@n b+ mna
+b+ 0l 20, 7 +OF 0DVl oo, 70 |2 2200, 705D} -
Applying (3.5) and Theorem 2.1 we get:
”(Pu)/"LZ(O,T‘,H*2)§C{1+”5”L°°(O, rozoen 10l e, T.;Hé)}

C is a constant independent of p, u, v, @ but depends on f and on the bounds
of p® on G.
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Section 4. The nonlinear imitial boundary-value problem (1.6). The proof of
Step 3 of Theorem 1.1 will now be given. The main result of the section is the
following theorem.

THEOREM 4.1. Let p, v, T be asin Theorem 2.1 and let G be a scalar func-
ton n L0, Tx; L(G)) with 0<(1—9»)2c=0(x, )=1A+9»)"2¢c on (0, Ts)XG.
Then for any 0°(x)=c>0 on G, there exist:
(i) a non-empty wnterval (0, T*) urth T*< Ty,
(if) a scalar function @ wn L=(0, T*; L™(G)NL*0, T*; H') such that {p, 0} 1s
a solution of (1.4) and (1.6) wn the sense of Defimtion 3.

Moreover: 0<(1—p*)2c<0(x, )1+ on (0, THXG;

161 L2co, 7o, 11y SCLLA NGl oo, s 2960+ 1V 220, 7m0} -
Furthermore for any 6>0,
T*-§ ~
SO 16C., t-+0)—06(., DIFdt=C"* {1+ 1lviiteco. 7+, my 101 teoco, 7o 2069} -

C 1s a constant independent of 8, 4, v, p. It depends only on f the bounds of p°
on G and on ¢. The interval (0, T*) 1s such that

T N
(Tt 181 de = 2ev/c.

The proof of the theorem is long and involved. We shall use a discretisa-
tion of the time-variable, then a nonlinear perturbation of the discretised equation
to show the existence of # and of a nonempty interval where 6>0.

Set w=6?—c? and consider the initial boundary-value problem :

wh [ pw' =G Vw)—2p" div(v)+pv. grad w—2Bv=0  on (0, Tx)XG,
WA

| Gw/6v=0 on (0, T)X3G, w(x,)=0 on G.
Let N\ be a large positive integer and let h=Tx«/N with T, as in Theorem
2.1. Set-

(4.2) pn(x)———h"s(nnhﬂ)h,o(x, tdt, 0=a<N-—-1.
Similariy for §, and for v,. Let A be the nonlinear elliptic operator
Ag=1916— 31D, ((D,D.g)
with
(Ag, P)=a(g, P=(161*6, $)+ 3 (D,$7Dsg, D.g)

for all ¢, ¢ in W**G). It is clear that A is a monotone, coercive operator map-
ping bounded sets of W*%G) into bounded sets of W-143(c[G)=(W:4G))*.
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LEMMA 4.1. For each ¢>0 and each n, there exists wi in Wh*G) which we
write as w,, solution of the nonlinear elliptic boundary value problem :

01— Pr@n-1+eh Al®n)— V(0 Vw,)—2h Bv,—2h 030, div(v,)
+hpava. grad (@,)=0 on G,

0 0 on 3G, wy=0, n<N.
oy

(4.3

Proof. The lemma is an immediate consequence of the well-known theory
of coercive pseudo-monotone operators mapping bounded sets of a reflexive
Banach space into bounded sets of the dual space. e.g.Cf. [4].

LEMMA 4.2, Let % be as in Lemma 4.1. Then there exists an integer Ny,
independent of e, p such that

sl ror S pc?; 0< <1, n=Ny.

Furthermore Ny is the largest integer with Nx+=T*/h and
T* ~
[ I 3o} dt = 77ct/C

for some C independent of e, v, p, d.

Proof. For simplicity of notations we shall write w, for w;. Since G is a
bounded open subset of R® W' 4(G) is contained in L®(G) and thus, |w,|* 2w, is
in Wt4G) for s=2. From (4.3) we have:

(44)  (02®n— Pn®n-1, |@n ] 200) Feha(wn, |wn|* " w0)+h (03 Vwn, V(|wn| " 0,))
+1(0nVn. grad ,—2Bv,—20%0, div (v,), |@a|*2wa)=0.
It is easy to check that:
(4.5) a(@n, @0 ]°02)Z0, (05 Vw,, V(| wa|*20.))Z(s— ey Jof ™2 *To, |
Taking (4.5) into account in (4.4) we obtain by an elementary computation :
o7 wnlli+h(s—Deilwi ™ Vanll* <(pn@n -1 [@n | *~*ws)
+ChloR ™ol |pava0 |
+Ch o} wall 3o U Bl Licos Hlvalls, ol fall oo} -

Thus,
o wnlicals— DhI6Y " T0l* = (0r0ams, |0al0n)
(4.6) +Chll p¥*wnll ko N vallt e 10l 3o}

+Chllval*l o wnll i@ (s—1)7*
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We note that:

4.7 [(00@n-1, |02 200)| S| 0% 0I5 05510015l pull Yool o= 24 -
Furthermore as done earlier in Section 2 (cf. relation 2.6)

(4.8) 0% °wnll 2o =(mes G)™/*- 21271 S, |5 -

So from (4.6)-(4.8), we have:

49 ¥l =1 0450l 0nll ¥l 0n -1l 24+ Ch v all? o+ 160 5o coo}

FChvall?l 0% @nl Loy /(s—1) .
Since

{I=n)a} #lloalls=] o wal s = {b-+7na} *lwalls
and w, is in L®(G) we obtain by letting s—-+oo in (4.9):

loallzo = lwn-1ll Lo +CRAl Un”f,z—l‘”gn”ZLW(G)}-
Therefore :

(4.10) l@almer SCh 33 {1, o102}, n=N.

The different constants C are all independent of ¢, n, v, §, p.
Let T* be such that:

T+ ~
(@11 [ o 1813ey desier/c.

Since & is in L=(0, Tx; L=(G)) and v is in L0, Tyx; H?), such T* exists and is
non-zero. It is clear that T* is independent of e, A.

With N, as the largest integer such that Nx<T*/h, then it follows from
(4.10)-(4.11) that:

lonllzo <n%c®  for n=Ni.

LEMMA 4.3. Let Ny be as in Lemma 4.2. Then for each n=Ny there exists

Wy in L(G)NHY, solution of the elliptic Neumann boundaryvalue problem :
w12 {pnwn——pnwn_l—hV(ﬁN;Ian)—Zthn—th%ﬁndiv(vn)-}—hpnvn.gradwn:O,
' Ow,/ov=0 on 0G, w,=0, n=1, -+, Nx«.

Moveover: |wal = =7n%* and

Na ~
leh“wn”iz§cﬂ+“U||i2<o,T*;H1>+||0||i°°(o, T*;L”(G))}-
T* is as in Lemma 4.2.

C 15 a constant independent of h, n, p, v, § and ..
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Proof. Since [l 1= =7n3c? it is not difficult to get from (4.3)
ehllwillt s+ hlws i .= K(h, n)

K(h, n) is independent of .

From the weak compactness of the unit ball in a reflexive Banach space we
get by taking subsequences: w—w, weakly in H! and in the weak*-topology of
L=(G), e'*w;—0 weakly in W'4G) as e—0. Moreover:

lonllzo <9%c®  for n=Ni.
It is easy to check that:
0200 —Pn@n—1— hVG7 V) —2h Bv,,—2h p20, div(v,)+hpav,. grad w,=0.
2) We now prove the crucial estimate of the lemma. From (4.12) we have:
(4.13) (Pr@n, @n)tc1h Vo IPS(0rwn-1, @2)+2R(Bvy, @r)
—i—2h(p§,0~n div(vs), @a)—h(prva. grad wn, o).

On the other hand, it is easy to see that:

1 1
(4.14) I(,onwn—l, wn)| é'z_(‘onwn; wn)“"?([)nwn—b Wn-1)

éé—(pnwn, wn)+%(pn_1wn_1, wn-1)+%((pn*Pn—l)‘”n'b ®n-1).
It follows from (4.13)-(4.14) that:
(020n, @) +hei |V, |*ZS(0n-10n-1, @n-)F(0n—0n-1)Wn-1, ®n_1)
+Chllwal i 1val3 o100 1o} -
With our estimate for w,, we get:
(4.15)  (pa®n, @) Fhe | Vor P S(0n-10n-1, @n-)+(Pr—Pr-1)On-1, @n-1)
FCh{l[vall? e+ 10500} -

C is a constant independent of n, &, p, v, 6.
On the other hand

(416)  [(pn—pa-1)On-y, On-)| Zl@r-ills 2l (@n—pon-Dl .

} On Pt |
h l

=CIVwr-llll(on—or-Dl = Ch|Vewn |l

(Hb*

2

s’
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In the above inequality we have used the estimate for w, in L*(G).
From (4.15)-(4.16) we obtain:

h
(Pn@a, wn)+clh||anH2—61§IIan_lllzé(pn_lwn-l, On-1)

+Ch{l(pn—pn-Dh et vallf o 10all o) -

Taking the summation from 1 to n and noting that w,=0, we have:
h 2 n N
(4.17) (Pn@n, wn)+61§§1HijIIZéChFZl‘,{Ilv;||§.2+llﬁjllim<a>+II(p,»—p]_l)h“ll%m»}.

Since v is in L¥0, T*; HY), § is in L0, T*; L~(G)) and o’ is in L¥0, T*;
(HY*), we obtain :

h & o
Ci ?Z}l IIVwJN2§C{II v “?.2(0, T-;Hl)‘l' Hﬁniwco, T*L®(G)) + “10’||%.2(0,T*;<H1>*)} .

It then follows from Theorem 2.1 that:
hjgl "wjll%,zéc{uv“%2<0,T*;H1)+ ||¢9~||i°°(o,r~;L°°<G))} for n=<Ns.

The different constants C are all independent of &, #n, p, v, é.

LEMMA 4.4. Suppose all the hypotheses of Theorem 4.1 are satisfied. Then
there exists @ in L0, T*; L*(G)NL*0, T*; H), solution of (1.6). Moreover:

D 0<A—9)"2c=g(x, HE1+95"2c  on (0, THXG,
2) 100 z2co. > C{H 0 220, rsmrny + 18] 2o, 72,600} -
C is independent of p, v, G, 6 and depends on o’ c.

Proof. 1) Set w,(x, t)=wy(x) for nh=t<(n+1)h; n=1, ---, N*. Similarly
for 8,, v,. Then from Lemma 4.3 we have:

lwa(., f)“L°°(G>§7]202 > HwhHLz(O'T*;Hl)éc{l_'—” U”LZ(O,T’;Hl)+”5”L°°(0.T‘;L°°(G))}-

By taking subsequences if necessary we get: w,—w weakly in L0, T*; HY)
and in the weak*-topology of L=(0, T*; L*(G)) as h—0. Furthermore

“ Wl oo, T*L®(G)) = 7726‘2 and
lolz2c. T HD =C{1+ ” vllz2co, T';H1)+ ”0”L°°(0, THLRG)) -

C is as in the lemma.

2) Let w be a vector-function in H} and let ¢ be a scalar function in
CY0, T*) with ¢(T*)=0. We have by a standard argument from (4.12) (e.g. cf
[4] Chapter 4, 433-436):
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418 3 {—(paon, wXP(nh)—P(nh—h)+h{ Twn, $(nh)Tw)
—2h(Bvy, ¢(nh)w)+h(prvs. grad ws, ¢(nh)w)
—2h(p38, div(vs), g(nh)w)+h(—(pr—pa-Dh™, or-1g(nh)w)} =0.
Since pn—p, G,—0, 070" in L=(0, T*; L™(G)),
va—v in L¥0, T*; HYNL=O0, T*; H), (pa—pa-Dh™'—p’ in LX0, T*; (H)¥),

w,—w weakly in L*0, T*; H') and the weak*-topology of L=(0, T*; L(G)) we
get:

(4.19) 5~ horon, W gnh) =gk —m)} ——{ (oo, gwat,
and
Na T*
(4.20) > 2By, ¢(nh)w)h—>—go 2Bv, gw)dt
with
N T+
4.21) $ h(on—pr-dh™, ansgnhy)—{ (o', wgudt

On the other hand we have:

lonve—pvlize rvm SN pa(va— )l L2, v+ 10— )V 1200, 24,2y —0
and

% — 0%l L0, 72 on SN P — 0l Lo, 72, 2262>2(b+ @) —0

1030 — %01 1=co. 2o = 1 (03— 0l 2oco. 20320+ | 0%Gn— ) | 2o, 72,y —0 .
Thus,

(4.22) gl{(ﬁleh, d(nh)Vw)+(prv,. grad wh—2p%0~,, div(vy), ¢(nh)w)} h

“S: (6" Yo, $)+(pv. grad o—20% div(v), pw)} dt .
From (4.18)-(4.22), we get:

—S:'(pw, ¢'w)dt+gf'<ﬁ-lvco, ¢Vw>dt+gj'(pv. grad o—20% div(v), ¢w)dt

o~ ~
:SO (o', wngw)dt—l—ZSo (Bv, gw)dt

Since p is a solution of (1.4), we have
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T* T*
So (p’¢ww)dt=—50 (div (v0), gow)dt .
Therefore by a standard argument we obtain:

- . : )
123 —{ (oo, wrdt+( @, Vw)dH—S: (ov. grad w—2p%0 div(v), w)d?

- .
—2| (B, gwidt+| @iv(vp), ww)ar=0

for all w in CX0, T*; H?*) with w(., T*)=0.
Set F*=w-+(6")? then: (1—9*)c* <0 =(1+7c* on (0, T*)XG and

101 2o, 7oy SCi(1— 922wl L2co, s 1
ZC{1+vll Leco, iy + ||0~H L0, T‘,L°°(G))} .

Replacing w by 6*—(6°)® in (4.23) we get after an elementary computaiion the
result stated it the lemma.

Proof of Theorem 4.1. In view of Lemma 4.4 it remains to show that:
T+-5 N
So 16C., t+0)—06(., HlIFdt=Co** {1+ vliiec, romv 101 iec, 751260}

for any small ¢>0.
C is a constant independent of 4, v, ¢, p. It is an estimate of the type in-

troduced by Kajikov [3] in the study of non-homogeneous incompressible fluids.
From Lemma 4.4 we get:

(6% —(O~N6%)—2Bv— p*d div(v)+7. (06°1)=0.
Let w be in L*(G)"\H* Then:
(p8*, w)+(G-19(0?), Yw)—2(Bv, w)—(p%?div(v), w)—(p&*v, grad w)=0.
Let F(., t) be defined by:
(F(., t), w)=2(Bv, w)—l—(pzﬁdiv(v), w)+(pf*v, grad w)— (@YY, Yw).
Then applying Theorem 2.1 and Lemma 4.4 we obtain :
[(FC., ), W SClwly ol 00 1o, 4206 | 011 0% 1oco, 240 | 91,2
16760 2oco, 742060 190N} +Cll VI3, ol 10 e -

SC{1+H| vl .+ ”5” L™, T‘;L”(G))} lwl, e +Cllvli llwll roce -

So:
(p0®, w)y=(F(., t), w).

Integrating with respect to ¢ from ¢ to {+0J we get:
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0., t+0)—(o0X ., ), w=({""FC., s)ds, w).
With w=6(., t+0)—6(., t), we have:
(4.25) ()., t+0)—(p@) ., 1), 6(., t+0)—06(., t))
:(Si+5F(., Sds, (., t+0)—6(., 1).
Consider the left hand side of (4.25). We may write it as:
(0B, t+0)—(o8?)., 1), 6., t-+3)—6(., 1))
=(p(., RO, 40—, D}, O, 1+0)~0C., D)+ E(D)
(4.26) with  E(6)=p(., t+0)—p(., (., 1), 0C., t+0)—0(., t)).
Therefore from (4.25) we obtain :
(4.27) (pC., t+0){6%(., t+0)—0*., t)}, 0C., t+0)—6(., 1)
:(Sj+5F(., $)ds, 0., t+3)—0(., D)—E(1).
) 2) We consider the expression E(#). Since p is a weak solution of (1.4) we
ave .

(o', §)=(vp, grad¢)  for ¢ in H*.
Thus,

t+0
(oC., t+3)=p(., ), H=(]2(., 9p(., 9ds, grad ¢).

Since 4 is in L=(0, T*; L(G)NL*0, T*; HY, 8*., D{G(., t+0)—0(., t)} is in
L*0, T*; H') and so with ¢=0%., ){0(., t+0)—0(., t)} we get:

E(t):(gi”u(., Se(., )ds, grad (6%, DXO(., t+3)—0(., 1)} ).

Applying the Sobolev imbedding theorem H'C L*G) and the Fubini theorem
we obtain :

[EOISG+700c] T, Olds 160, D10, Dl 00, t+0)—-0(, Dl

+10C., Oliell0C., t+0)—0C., ). .}.
Hence:

1EOI=C( 00, 9l ads 10C, Dl b 100, 43, L+ 725

t
Jit
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C is a constant independent of 4, ¢, 6, v, p.
Applying the Holder inequality we have:

|E(D)] =Co" 2 vl 2o, 2 {10C., Dl o+16C., t4+0)1,2}.
Therefore by taking into account Lemma 4.4 we get:
28) [T TIEWIdt=Co vl ol Ol ssco v
<C2 {[vll oo, ps 1y F 101800, 20200+ 0 R2co, 20w}
3) We now consider:
Il s 00, t+a=6c., b)) at.
From (4.24) we have:

[ R 0 00, )

T*-3(t+0 ~
=c[. 7T A1 I e Wl o) s

{loC., t+)llL+10C., DlnA16C., t+0)ee+100, Ol=w}dt.

Now exactly as in [5] p. 67, we have by taking into account Lemma 4.4 and
using a change of order of integration :

[ 5
(4.29) S: \(S? F(., s)ds, 6(., t+8)—6(., t))[dt
§C5”2{1+“U“'},Z(o.T';H1>+”0~“2°°(o, T';L°°(G))}-
It follows from (4.25)-(4.29) that:
T*-0
So (p(., t+0XG(., t+0)—0(., 1), O(., t+0)—0(., t)dt
=Co'* {1+"U“h(o,r';m)‘i‘||0~||4L°°(o. T‘;L°°(G))}-

The different constants C are all independent of §, v, §, o. But; p=(1—n)a
and 0=(1—7*"?%, thus:

745
2(1—77)0(1—772)”2650 loc, t+0)—6(., Hl*dt

=[7700, £ 00%, 100, ), 00, t+8)-6(, D)t

The theorem is proved.
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Section 5. Successive approximations and proof of the main result. We shall
now carry out the last step of the proof of Theorem 1.1. First we shall con-
struct a sequence of successive approximations to (0.1)-(0.3). Let u, be a fixed
an arbitrary element of L*0, T; H}) and consider the initial-value problem.

) { Pnttn-y grad o+ p, div(u,_1)=0, p, >0 on (0, T)XG,
(5.1

pn(xy O)ZPO(-X) on G; ]’l,:.l, 2;

together with the initial boundary-value problem :

(Pnun)/'Aun_grad (div uy)-+grad (Pn—l+0n—1)+Pnun—1'vun
5.2) Fn@iv(pattn-))=paf  on (0, TIXG,
u(x, 1)=0 on (0, TYX0G, un(x, 0)=0 on G.

and the initial boundary-value problem:

(020%) —V(0732.N05)—2Bun_1—2050,-1 div (Up-1)+V. (0, 05un-,)=0
on (0, THXG,
00,

6,>0 on (0, T)XG, TZO on (0, T)XaG, 6,(x, 0)=0%x)=c on G.
LeEMMA 5.1, Suppose all the hypotheses of Theorem 1.1 are satisfied. Then
for each n, there exist:
(1) a non-empty wnterval (0, T*) independent of n,

(5.3)

(i) A{pn, un, 0z} mn L0, T*; LGHXA{L=O, T*; H)NLX0, T*; Hp} X
{L=(0, T*; LYGHNLX0, T*; HY)},
solution of (5.1)-(5.3). Moreover:
1) 0<(—nla=p.(x, H)Sb+pa on (0, T*)XG,
2) Mpnllzeco, rescmnm +1(02) L z2co, oy crn =C,
3) Muallzow, v+ 1unll 2o, i +H1(0nun) | 2o, o -1+ 100l 200, 701y =C,

4) 0<(I—p)2c=0,(x, H=(1+9H"2c  on (0, T*)XG,
5) S:*—allﬁn(., t+0)—0.(, HI*dt=C6"*  for any 6>0.

C is a constant independent of n and of 0.

Proof. For n=1, the lemma follows from Theorems 2.1, 3.1 and 4.1. Suppose
the lemma holds for n—1 and we shall show for n. With our inductive hypo-
theses, we have:
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0<(l—naspp<btya; 0<(1—p? <0, <(1+7%"%c  on (0, THXG,

(5.4) lueC., t)l|2+S:||uk(., It eds=Ct{1+104-1lli0c0, vz}
=Ct{1+1+9?c%, and
(5.5 16:( s Olzco, romy SC{+ g -ill2c, 2o 0+ 105 -1l Z2oco, 702062}
<C{14+(1+9?c?.

The interval T* is such that:
Tt
(5.6) So {A+9)+Flupll? dt SCTH{14+2(1+ %)% < p%c?; k<n—1.

The constant C is independent of F<n—1.

2) We now show for n and show that the same T* as in (5.6) will hold.
Applying Theorems 2.1, 3.1 and 4.1 with v=wu,_;, §=6,., and we have from
Theorem 2.1:

I—=n)a=Zpalx, )Eb+ra on (0, T*)XG.
With Theorem 3.1 we get:

t >
&7 luale, t)||2+Soll Un(e, L ds=CH{I0n-iliec0, 7222}

=Ct{1+(1+9%c?
by the inductive hypothesis.
From Theorem 4.1 we obtain: (1—9*)"*c=0,=(1+%*"% on (0, T;)XG with
T, such that:

[Hearmriuizd arsyec.
In view of (5.7), T, may be choosen such that
CT {1+2(1+n*c* = p%c?; i.e. T,=T*  as in (5.6).
Furthermore:
10aleco, rosmn SC{LFNun-illico, rsmo+110n-illzoco, rorewn}
=C{I+(p*+1)c?

by the inductive hypothesis again.
3) It remains to prove the estimates for p7, (p%), (pau») and for

Te-3
[ 1000, t+0)=0aC, Dat.

A proof by induction as above gives the stated result without any difficulty.
We shall not reproduce the proof here.
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We need some technical convergence lemmas before going into the proof
of Theorem 1.1

LEMMA 5.2. Let {pa, us} be as in Lemma 5.1. Then therve exists a subse-
quence denoted again by {pn, u.} such that:

(i) pn—p n the weak*-topology of L0, T*; L™(G)) and wn L*0, T*; (H")*)
with 0<(1—n)a=p(x, )Sb+na on (0, T*)XG, pr—p’ and (p3) —(p®) both
weakly in L*0, T*; (H)*).

(i) up,—u weakly wn L*0, T*; H}) and wn the weak*-topology of L=, T*; H),

(i) prun—pu weakly in L¥0, T*; H) and wn L*0, T*; H™Y),
(iv) wu,—u wn L¥0, T*; H).

Proof. 1) It is clear that p,—p in the weak*-topology of L=(0, T*; L*(G))
with 0<(l—n)a=o(x, H=b+na on (0, T¥)XG and that p,—p’ weakly in
L*0, T*; (HY)*). Since G is bounded, the natural injection mapping of H*' into
H is compact and hence by Schauder’s theorem that of H into (H')* is also
compact. It follows from Aubin’s theorem [1] and from the estimates of Lemma
5.1 that p,—p in L*0, T*; (H")*). From Lemma 2.2 we know that pi—p? in
the weak*-topology of L>(0, T*; L=(G)) and it is easy to see that (p2)'—(p?’
weakly in L¥0, T*; (HY*).

2) The second assertion of the lemma is trivial. It is not difficult to check
that indeed p.u,—pu weakly in L*0, T*; H). On the other hand since (p,u,)’
—(pu)’ weakly in L*0, T*; H™*), the above argument of the first part yields:
pattn—pu in L¥0, T*; H™).

3) We now prove the key assertion of the lemma, namely that u,—u in
L*0, T*; H). Indeed we have:

(I=nallur—ull*=(on(tta—v), Un—u)=(0nlln—pU, Up—u)
+ou, un—u)—(ontn, u)+(oau, u).

Since pnu,—pu—0 in L*0, T*; H™') and weakly in L*0, T*; H) with u,—u—0
weakly in L*0, T*; H}), it is clear that u,—u in L¥0, T*; H).

LEMMA 5.3. Let 0, be as in Lemma 5.1. Then there exists a subsequence
denoted agan by 6, such that:

1) 6,—0 wm the weak*-topology of L0, T*; L*(G)) and weakly mn
L¥0, T*; HY) with 0<(1—9»)"2c S0 =1+ 9*"*c on (0, T*)XG,

2) 60,—0 wm L¥0, T*; H),

3) 60:1—0%wm L¥0, T*; H).

Proof. The first assertion is trivial. Since:

*

1Ballzz e =C; [ 10aC, 4+0)= 00, DI*dr=Co

with C independent of »n and of ¢, it follows from Lions [5] p. 68 that 6,—6
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in L¥0, T*; H).
We have:
16%—6%1*°=(0,—0), (0,+0))=|0,—0[*4c*(1+ 7).
Hence: 62—6*% in L*0, T*; H).

LEMMA 54. Let {un, pa, 02} be as in Lemma 5.1. Then by taking subse-

quences we have:
1) prUn-1"Up—pu-u n the distribution sense on (0, T*)XG,
2) pn0%i—p0* in the weak*-topology of L=, T*; L*(G))
3) piOn-1div(uy_)—p®0 div(u) weakly in L*0, T*; H),
4) pab0iun_1—p0%u weakly in L¥0, T*; H).

Proof. 1) Let ¢ be a C5(0, T ; C5(G))-function, then:
T+ T+
SO (pnun—l'um ¢)dt+go (pnun; un—1¢)dt .
It follows from Lemma 5.2 that:
S:'(Pnuny Un_1p)d 1 —>S:‘(pu, ug)dt
i.e. paln-1*U, — pu-u in the distribution sense on (0, T*)XG.
2) We have:
(0205— 08, @)=(02—0% p.d)+(pn—p, 0%P).

It is clear that §%*¢ is in L*0, T*; H}). It now follows from Lemmas 5.2-5.3
that p,03—p6@® in the distribution sense on (0, 7*)XG. On the other hand since
p.0%—g in the weak*-topology of L>(0, T*; L™(G)), g=p6".

3) We now show that p,0%u,_,—p6*u weakly in L*0, T*; H). First we
note that p,0%u,_,—h weakly in L*0, T*; H). Let ¢ be as before. Then:

(pn07tn-s, P)=(pntin-1, 050).

From Lemma 5.2, p,u,-;—pu weakly in L*0, T*; H) and from Lemma 5.3 we
have #%—0*% in L*0, T*; H). Therefore: h=p0%u.

4) It remains to show that p%60,-;div(u,-)— p*0 div(u) weakly in
L¥0, T*; H). Let ¢ be as above and consider

(0% div(iy-y), ¢)=— 2 {ttnos ;D,0% B)+(Phttn-s,» D,&)}.

A rigorous justification of the computations may be done in exactly the same
way as in Lemma 2.2 (part 2).
Since u,_,—u weakly in L%0, T*; H') and

I Dj(P?z)" L2, 7 -1t || Dj(p%z)I”LZ(O, T*H-2) =C
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with C independent of z, it follows from the compensated compactness agrument
of Murat as applied by Lions in [5] p. 72 relation 1.64 that u,_, ;-Djp%)—
u;-Dj(p? in the distribution sense on (0, T*)XG. So:

(p% div(uz-y), 925)—>—]§31 {(u;Dp*), $)+(p*u, D;¢)t =(p*div u, ¢)

by applying Lemmas 5.2-53. On the other hand p3% div(u,-,—g weakly in
L¥0, T*; H) and hence g=p®div u.
Applying now Lemma 5.3 we get:

0%07-1div(uy-y) —> p*div(u) 0 weakly in L*0, T*; H).

LEMMA 5.5. Let 6, be as in Lemma 5.1. Then there exists a subsequence
such that
0,1.N(0%) — 2V0 weakly in L0, T*; H).

Proof. We have:
1072 — 0N =N(0—600-1)/000 1| S(L—7")"c? 01— 01l

It follows from Lemma 5.3 that 6;1,—67! in L%*0, T*; H). On the other hand:
162l L2co. 7 r1><C. Since Lemma 5.3 gives: 0%—6% in L*0, T*; H), we get:
V(62)—N(6?) weakly in L*0, T*; H). It is now easy to check that 6,,Y(8%)—
0-1N(0?)=2Y0 weakly in L%0, T*; H).

LEMMA 5.6. Let u, be as wn Lemma 5.1. Then:
T* T*
[ Bun, prat — B, prar
for all ¢ wn C0, T*; CY(G)).
Proof. Let ¢ be a testing function on (0, T*)XG. We have to show that:
T+ T*
| (Dsttast Diteny, gD t-Daudt — | (Dyus+Dyty, §(Djus+Diu )it
Thus, it suffices to show that:
T* T*
SO (DjunDytin, $)dt —> SO (DuDyu, §)dt

for all ¢ in C*(0, T*; CYG)).
We have:

(D]unDkuny ¢):—(un¢; DjDkun)_(uny DkunDj¢)~
In view of Lemma 5.2, it is clear that:

_S:‘(un, DyunD,g)dt —> —S:*(u, DuD,$)dt .
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T* T*
It remains to show that: So (UnD;D iy, @) —> So (uD;Dyu, ¢)dt .

1) From Lemma 5.2 we know that u,—u—0 in L*0, T*; H). By taking
subsequences, we have:

lun(., t)—u., )I—0 a.e. on (0, T*) as n—+oo.
Let S be the set of all ¢ on (0, T*) such that
lun(., t)—ul., )]0  for all ¢ on S.
Then mes(S)=T*. For ¢>0 consider the sets:
E (e)={t: t in S, e=[(u(., )—ul., t), dD;Dp{u.(., t)—ul., H})!}.
Set Sn(e)sznEp(e). Then clearly: - CS,.,(6)CSa(e)C -+ and gﬂmes(sn(s)):

lim mes( U E,(¢))=mes (Sy) with
N0 p=n

Sy= nfjl Sa(e).

Suppose that (u.(., £)—u(., t), ¢D;Dy{un(., t)—u(., t)}) does not converge to 0
almost everywhere on S, then for any 5>0 there exists N(») such that mes(S;)
=7 for all n=N,. Hence:

0<n=mes (Sx), 0<e=[(ual., D—ul., 1), ¢D;Dp {ua(., H—ul., )}

on Sy for all n=N,,.
Since ||ur—ullz2c0, re. w1y =C, for almost all ¢ there exists a subsequence (de-

pending on t) such that:
lual, H—ul., Ol =C(1).

It follows that there exists t, in Sy with:
® lual., t)—ul., toll:=C(to)
(ii) e=|[(ual., t)—ul., to), @D;Di{ual., to)—ul., to})l.
From the Sobolev imbedding theorem, we have:
(., to)—u(., ty) —> g in H and weakly in H}.

Since #, is in Sy; g=0. Thus, D;D, {u,(., to)—u(., t,)} =0 weakly in H.
From the compensated compactness argument of Murat as applied by Lions
in [5] p. 72 relation 1.56 (but now with time independent functions) we obtain

(un(., to)—ul., to), ¢D;Dp{un(., to)—ul., t)}) —0

which is a contradiction.
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Hence (un(., t)—u(., t), ¢D,Dp{ua(., t)—ul., £)}) —>0

a.e. on (0, T*) and thus,
S:}un(., D—u(., 1), $D,Dy wnl., H—ul., )dt —> 0.

The lemma is proved.

Proof of Theovem 1.1. Let u,, 0., 6, be as in Lemma 5.1. Then from (5.1)
and from Lemma 5.2 it is clear that

=T, 9101w grad g, prar=(p", 4., 0)

for all ¢ in L%0, T*; H') with ¢’ in L*0, T*; H) and ¢(., T*)=0.
Again from (5.2) and Lemmas 5.2-5.3, we get:

T+ T T*
—SO (pu, w’)dt—l—go Vu, Vw)a’t+SO (div u, div w)dt

* T+ T+
—SO (046, div(w))—go (ou. T, u)dt:SO (of, w)dt

for all w in L0, T*; H}) with w’ in L¥0, T*; H) and w(., T*)=0.
Finally from (5.3) and Lemmas 5.4-5.6 we obtain :
T*
0

T* T*
—S (00”, ¢’)dt+2go 0, Vq))a’t~—2§0 (Bu, §)dt

T . T
—250 (0* div u, ¢)dt——SO (06%u, grad §)dt=(p03, ¢(., 0)

for all ¢ in L*0, T*; H? with ¢’ in L*0, T*; H) and ¢(., T*)=0.
Hence {u, p, 0} is a solution of (0.1)-(0.3) in the sense of Definition 4. The
theorem is proved.
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