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A MARTINGALE PROBLEM ASSOCIATED WITH
DIFFUSION OPERATORS IN A DOMAIN

By Norio OKADA

§1. Introduction.

For a given diffusion operator with continuous coefficients, we consider the
solution P; , of the martingale problem such that all paths starting from x at
time s stay in a domain D in [0, o0)X R¢ for ever. That is, the support of P ,
is contained in C([0, o), D). Under some regularity conditions, we shall obtain a
necessary and sufficient condition for the existence of such a solution on D.
Results and precise formulations are stated in §2. In §3, the results of §2 and
some lemmas for them will be proved. In §4, we shall consider some examples
such that the uniqueness of solutions of §2 holds. In these examples sample
paths stay on the boundary after hitting the boundary. To discuss processes
with reflecting or entrance boundary, we need probably another approach.

I am grateful to Professors M. NAGASAWA and M. Motoo for their kind
comments and advice.

§2. Existence and related topics.

Let D be an open subset with the boundary 9D of [0, o)X R¢ and assume
that :

[A.2.1] There exists a ¢(¢, x)=H*[0, o)X R?) such that D= {(t, x)[0, o)
X R%: ¢(t, x)<0} and D= {(t, x)=[0, 0) X R*: ¢(t, x)=0} with an additional con-
dition |V,41#0 on 0D, where H*([0, c0)X R*)={f(¢, x): f€C}[0, c0)x R?) and
0f/0x,€CH[L0, o)X R?) for all 1=1, -, d} and V,=(9/dx;, -, 0/0x4).

From [A.2.1], we have that DN\ {s<{<co} is not empty for any s=0 and
that ¢(¢, x)>0 on UN{[0, o)X R¢—D} for some neighborhood U of aD.

Let x(¢, w)=w(t) for ws 2=C([0, o)X R%), M* and M}{ be the o¢-fields gen-
erated by {x(u):u=s} and {x(u):s=u=t}, respectively, and put the following
assumption :

[A.2.2] a(t, x)=(a,,(¢, XDe o1, a: [0, )X R>R4Q®R* is bounded, con-
tinuous, symmetric and nonnegative definite; b(¢, x)=(b(t, x))iz1,...q : [0, ©0) X R¢
—R? is bounded and continuous.
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We consider the following martingale problem (D, a, b, (s, x); s<¢): Given
(s, x)€D, find a probability measure P, . on (£, M*®) such that P .[x(s)=x]=1
and, for any feC}*[0, o)X R%), (M5(t), M3, Ps »: s=t) is a martingale which
satisfies

2.1 P, J[(t, x())eD  for every t=s]=1,

where

My=1t )~ (Lot 80500+ 502w, 2.

2

Here D denotes the closure of D and C} %[0, o)X R%) denotes the class of func-
tions on [0, o)X R¢ which together with their first ¢-derivative and first two x-

derivatives are bounded and continuous.
For fixed ¢, let D,={x<=R%: (¢, x)eD} and 0D, be the boundary of D, in R¢

and define
dis(x, aDL) if XGEDt

p(t, x)Z{ ) _
—dis (x, 0D,) if xeD,,

where dis(x, 0D,) denotes the distance between x and 0D, in R? Then, from
[A.2.1], p(t, x) belongs to the class of C}? in some neighborhood U of 0D (see

Lemma 3.1).
Now, we put the following two conditions:

[C.2.1] éla”-pxlpxj(t, 0)=0 on aD;
1, 9=
1 ¢ 4
[C.2.2] H(t, X)=-2—1]2=1011p1izj(t, x)+§lbipxl(t, )+ (2, x)
<0 on oD,

where p,;=00/0x:, p2;2,=0°p/0x:0x, and p,=0dp/0t.
Our results are as follows.

THEOREM 2.1. Assume [A.2.1] and [A.2.2]. Then the conditions [C.2.1] and
[C22] imply that there exists a solution P . of the wmarhtingale problem
(D, a, b, (s, x); s=<t) satisfying 2.1) for every (s, x)€D. Conversely, the exist-
ence of the solution Ps . of the martingale problem (D, a, b, (s, x); s=<t) satisfy-
ing (2.1) for every (s, x)€adD implies the conditions [C.2.1] and [C.2.2].

Remark 2.1. It follows easily from Theorem 2.1 that, if the solution P; ., of
the martingale problem ([0, o)X R?, a, b,_(s, x); s=t) is unique for all (s, x)
€10, o)X R¢, (2.1) holds for each (s, x)D.

If we replace the condition [C.2.2] by a stronger condition [C.2.37:
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[C.2.3] H(t, x)=0 on oD,

then we have the following theorem.

THEOREM 2.2. Assume [A.2.1] and [A.2.2]. Then the conditions [C.2.1] and
[C.2.3] imply that there exists a solutwn P, of the martingale problem
0D, a, b, (s, x); s=t) satisfying

(2.2) P, [(t, x(t))€0D for every t=s]=1

for every (s, x)e0D. Conversely, the existence of the solution P , of the marit-
ingale problem (0D, a, b, (s, x); s=t) satisfying (2.2) for every (s, x)€0D wmplies
the conditions [C.2.17 and [C.2.3].

Remark 2.2. The result of Theorem 2.2 contains those of Theorems 4.1 and
4.2 of Anderson [1] (see Remark 2.4).

Remark 2.3. It follows easily from Theorem 2.2 that, if the solution P; , of
the martingale problem ([0, o)X R, a, b, (s, x); s=t) is unique for every (s, x)
€[0, c0)X R?, (2.2) holds for each (s, x)=0D.

Remark 2.4. By simple calculations, it follows that

d
P =el X 620,

d
=3 p2)

and

d d a
prix;:(ﬁél‘ix;l; ¢§L_¢I;l=21 P2, Pz Pa, gi ézjxl¢1l

d d
Fheie, D Porrieibe (B B0

on 0D, where ¢,=d¢/dt, ¢,,=0¢/0x, and Gzio,=0°¢/0x,0x, (see Lemma 3.1).
Combining those with [C.2.1] and the nonnegative definiteness of a(¢, x) on aD,
we can claim that the conditions [C.2.2] and [C.2.3] are equivalent to the follow-
ing conditions [C.2.2]" and [C.2.37, respectively :

[c2.2y D= 5 augue (6, 0+ B biget, 2
+¢.t, x)=<0 on dD;
[c23y H(t, )=0  on D).

Remark 25. We may replace ¢=#%[0, co)X R?) by the one piecewise in



A MARTINGALE PROBLEM 85

H2([0, co)X R%) with respect to t<[0, co). Indeed, if ¢ is not differentiable at
some T (s, co) with respect to ¢, we consider our problem on [s, 7] and [T, o),
respectively.

§3. Proofs of results in §2.
To prove the theorems, we prepare the following three lemmas.

LEMMA 3.1. Suppose [A.2.1]. Denote the pownt (¢, y) such that dis(x, 0D,)
=dis(x, y), y€0D,, by J(t, x)=(P(t, X))io, 1,2 ¢ (X=(x1, =, Xa), Y=(I1, =, Ya)
€R%). That is, (t, y)=¢(t, x). Then there 1s some neighborhood U of 0D such
that ¢i(t, x), 1=0, 1, 2, ---, d, belongs to the class of Cj on U. Moreover p(t, x)
belongs to the class of Cy® on U and

(3.1) olt, x)=¢.(¢(t, x)){é oz, (L, )} ~VE,
(32) 02t X)= s (P(t, ) LEzlng%l(g/)(t, O on U.

Proof. From [A.2.1], we can choose 1, {l, ---, d} such that ¢110;’¢O for
each (#° x°)=0D. Consider the following d-+1 equations of (¢, x; T, y), x=
(-xl’ Tty xd)) y:(yly Ty yd):

fit, x5 T, 9)=(yg=x2)92/(T, ¥)=(i—x)¢, (T, »)=0 for l1=1=1—1,
33) [fzq(t, T 0)=00— 2 )92(T, V)= (3= x)¢s, (T, y)=0 for 1,+1=1=d,

falt, x5 T, »)=¢(T, »)=0,

Ifd-i»](t, x; T, »)=T—1t=0.

The point (#°, x°; t° x°) satisfies (3.3) and at the point the Jacobian

o on | af
oT 01 04
o f p ofs 0f:  0fs
vJe s Jarr\ | 0T 0 0
]( T: Vi, YVa )o_ . e
furs 0 uss
oT 3yd 0

=(— Dot 20 3 g2, 1) £0.

Then, by the implicit function theorem and dD={¢=0}, it is easily proved that
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we can choose some neighborhood U(#°, x°) of (¢°, x°) such that ¢(¢, x) is uni-
quely determined and (¢, x; ¢(¢, x)) satisfies (3.3) on U(¢°, x°). Furthermore, we
have that the each component ¢,(t, x), 1=0, 1, 2, -+, d, of ¢(t, x) belongs to the
class of Cy(U(t° x°) and

j(]f!!_-ib ) fu fz+1, fz+2, ’J;H,L

a¢i T’ Y 'y V-1, X5 Vas, 75 Va

e . t’ = ty N tr

a?f;( X) ](ll;]:b ) fd+1> ( x (/)( X))
T’ Y 'y Va

for 1, =1, 2, -, d,

9o _ —19 ..
(34) 5 (b 0=0 for j=1,2, -, d,

0o _
at (t: X)—l,
j(l}) Sfoo oy Ju Joen fowns oo, fﬂ_j_l_

a¢i Ty Yy 5 Vo t Yty 5 Va
t» - - t) ; ty
at ( X) ](_-f‘l» f2; “'yfd+l) ( * 9[)( X))
T; Y s Va

for 1=1,2, ---, d.

Next, using ¢zi0i0 on U(t° x° and (3.3), it is obvious that, for each (¢, x)
e Ut x%,

¢ ) { dis (x, ¥) if (¢, x)eU1°, x*N\{[0, o) x R¢—D}
t, x)= —
o —dis (x, y) if (¢, x)eU1°, xN\D
and
dis (x, y):‘M_f‘L {éﬂﬁl@b(f: x))}l/z’

B (L, 1)

where y=(¢.(t, x), ==+, ¢a(t, x)). But it follows from (3.4) and ¢Ii0(t°, x%)#0 that

2 63,(t° x°
aih (0, x)="0""0 "0 g0,
‘o 20 61,(t% x°
=

where h(t, x)=¢,(t, x)—x,, Hence, using_the implicit function theorem and the
fact that ¢<0 in D, ¢>0 in [0, o)X R¢—D and h=0 on dD, we have that

i o3, (g(t, x))}”2 for every (¢, x)e U(t° x°)

=1

olt, x)= (xl"_gbio(t’ x)){

B, (1, )

and p(¢, x) belongs to the class of C}(U(t° x°). Furthermore, using (3.4) again,
we have (3.1) and (3.2) on U(¢° x°). From the form of (3.2), we conclude that
o(t, x) belongs to the class of Cy*(U(z°, x%). At last, if we define U=
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U Ut x°), it is obvious that assertions of the lemma hold on U. Q.E.D.

t9, z0yeaD

Remark 3.1. We can consider the extended function of (¢, x) such that it
is equal to p(¢, x) of Lemma 3.1 on U, nonnegative on D and belongs to the
class of Cy2([0, c0)X R%). We denote the extended one by the same letter p(¢, x).

LEMMA 3.2. Assume [A.2.1]. For each (t, x)[0, co)X R¢, let gZ(t, x) be the
(t, y) such that dis(x, D,)=dis (x, ») and yeD, Then there is some neighborhood
V of D such that §(t, x) 1s continuous. Moreover § 1s equal to ¢ on V—D and
equal to (¢, x) on D (i.e. identical mapping on D).

Proof. It is obvious that V=UnD satisfies our assertions, where U is of
Lemma 3.1. Q.E.D.

LEMMA 3.3. Let A be a closed subset of R%*'. Let

g(X)=(g(x))iz1,..q . R¥"'—R* be bounded, continuous and satisfying Zd‘, g%(x)
x0 on A; -

h(x): R**'—R' be bounded and continuous; and

F(O)=F(x))iz1,.. s : A—R® be bounded, continuous and satisfying

(35) (éfigwrh)(x)go (=0) on A.

Then there 1s a neighborhood U of A and a bounded vector function F(x)=
(Fx))=1, . 4, defined and continuous on R®*', taking values in R* such that

(3.6) (Edl Figit h)0)<0 (=0) on U

and
F=f on A.

Proof. For each z€ A, we can choose a number i(z)e {1, -+, d} and a neigh-

borhood U(z) of z such that gi.,(x)#0 for any x=U(z). Let f(x)=(fi(x), -,
Ja(x)) be a continuous vector function defined on R?*', taking values in R? such
that /=f on A and, for each zE A, define a continuous vector function f*(x)=

(fi(x), -+, fa(x)) on U(z) such that

fix)=Ff{x)  for 1#i(2),

—h(x)—léz)ﬁu)gxm) .

f%(x):( Zion () A Jr (%)

for 1=1(z) and gy, >0 on U(z),
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—h— 3 gl
()= J7LE) V fin (%)
Gi(x)

for 1=i(2) and g;,,<0 on U(z)

d
< h(x)+ S .
(fi(x)=— @+, 2 80

i (X) for l:l(Z)) ’

Here a/Ab (a\Vvb) denotes the minimum (maximum) of ¢ and b. Let {u*(x); z= A}
be a partition of un~ity over A, subordinate to the covering {U(z); z A} of A.
Then F(x)= éuz(x)fz(x) is defined and continuous on R¢*! to R¢ Further, it

is not difficult to show that the function F(x) is equal to f(x) on A and
ZiF,-(x)gi(x)é—h(x) (=—h(x)) on U= \EJAU(Z). Hence these F(x) and U are our

seeking ones. Q.E.D.

Proof of Theorem 2.1 [Existence part]. From Lemma 3.2, a(J(z, x)) is de-
fined and continuous on some neighborhood V of D. Moreover, a(J(t, x)) (de-
fined on V) can be extended to be a continuous, bounded, symmetric and non-
negative definite matrix on [0, co)x R* and we denote this by the same letter
a(f(t, x)). Then, by (3.2), Lemma 3.3 and [C.2.2], there is some neighborhood
W of 9D and a bounded, continuous R¢-vector function b6(t, x)=0(t, x)ier...a
on [0, o)X R? such that

d

(37) At 0= B6, Dpelt, D45 3 0@, Dparet, 2

+p(t, x)=0  on W—D

and
b(¢t, x)=b(t, x) on D.

Since a(J) and b are bounded and continuous on [0, o)X R¢, there is a solution
P, . of the martingale problem ([0, )X R¢, a({), b, (s, x); s=t) corresponding
to (a($), b) by the result of Strook and Varadhan [6]. We shall show that this
P, . satisfies (2.1). Let f(z) be a nonnegative C*-function on R' which is equal
to one on (—oo, 0], smaller than one on (0, o) and the first derivative of which
is nonnegative on R'. Further, let p(¢f, x) be the one of Remark 3.1. Then,

°f(p(t, x)) 0f(p(t, x)).

0x,

38) Aol D) 42 % 0t ) DO S5,

=5 PGkt ) 32 @i, Dpelts D t, Dol )

1 4 ~ d 1
'{7 ‘L%::lal](gb(t) x))lozix](t’ x)—}_l;lgxl(t) x)Pzi(t’ x)"l'Pc(t» x)J .
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From (3.2), Lemma 3.2 and ¢(¢(t, x)=¢(t, x)=6D on W, we have

d

3 an(@t, x)pat, x)pat, x)

2, 7=1

=3 an(@(t, 1)) pa(P(t, x)oa(@(t, x))  on W—D.

1, =1

Hence, by [C.2.1], we have
a - —_
3.9) szla”(g/;(z‘, ez, x)os(t, 1)=0 on W—D.

On the other hand, it follows easily that

(3.10) 7ot Mg, B, 0@, Dpet, Dpat, )

+ Bt Dpelt, O+ pdt, 0

=f(p(t, 2)H(t, x)=0 on W—D.
Further
(3.11) (ot )=f"(o(t, x))=0 on D.
Hence it follows from (3.8)-(3.11) that
01 (p) ) | &7 (o) _
T + Z ”(5//)8 o, +§bi"'ax1 >0 on WUD.

Let o*=inf{u=s;(u, x(u))e WID}. Then, by the martingale property and the
optional sampling theorem, we have

E; L7t AT, x(E AT ]=/p(s, x))

VE, [Sm{a];(fz—) ]i AP ng %‘2} + 36, of i”) b, x(u))du]

=f(p(s, x))=1  for any (s, x)D and any t=s.

This implies that
(3.12) Es Lf(p(t ATt x(tAT)))]=1  for any (s, x)€D and any t=s,

because of 0=f(z)<1. If P, ., has a positive measure on B={{tA7%, x(t A7)
€ W—D}, it contradicts (3.12) because of f(p(t Az%, x(t A7%)))<1 on B. Hence we

have
P, [(tATS, x(tnT))eD]=1  for every t=s

and immediately

P, J[(¢, x())eD for every t=s]=1  for each (s, x)eD,
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which is (2.1). Noting that a(d(t, x))=a(t, x) and b(t, x)=b(t, x) on D, we have
that this P, ., is the solution of our problem.

[Converse part] For each (s, x)€dD, let P, ., be the solution of the martin-
gale problem (D, a, b, (s, x); s=<t) satisfying (2.1).

At first, assume that [C.2.2] is not satisfied. That is, there is a point (s, x)
0D such that H(s, x)>0. Then, by the continuity of H(t, y), there are posi-
tive constants ¢ and ¢ such that H(¢, y)=0 on the e-neighborhood U. of (s, x).
Let #*=inf{u=s:(u, x(u))&U,}. Then, by the optional sampling theorem,

(eNTs
0= Eo L—p(t A2, 2t AEDI=Eu| || —Houw, xw)du]

=—0E; J[tNT—5] for any f=s.
Hence it follows that

(3.13) E; J[tNTF—5]=0 for every t=s.

Let t>s. Then, from (3.13), we have #*=s a.s in P, , and it contradicts the
continuity of the path functions. Hence we get [C.2.2] on 0D.
Next, assume that [C.2.1] is not fulfilled. That is, there is a point (s, x)€0D
such that
d
(3.14) 2 APz pz s, x)>0.

1, 7=1

<

Define, for a positive constant «, b(t, ¥)=(bt, ¥))i_.....« such that
a d
bl(ty y):bl(t) y)+a]§ asz‘z‘j(ty J’)
Then, applying the transformation of the drift to the P, ., we have a solution

P, . of the martingale problem corresponding to (a, ) and satisfying (2.1) for
each (s, x)edD. For sufficiently large «, we have by (3.14) that

A 1 & d .
315) A, 0={F 3, auoni+ Bbostos 0

d

1 4« d
:{_ > aszx,;r]"_ Elbipxl_,_‘ot}(sy x)—f_al;:laszzipxj(sy x)>0.

2 5%
From previous result, (3.15) denies that this P, , satisfies (2.1). Hence [C.2.1]
has to hold on 0D and the proof is finished. Q.E.D.

Proof of Theorem 2.2 [Existence part]. From Lemma 3.1, a(¢(¢, x)) is de-
fined on some neighborhood V of 9D. Then, by (3.2), Lemma 3.3 and [C.2.3],
there are a neighborhood U (contained in V) of 8D and a bounded and continuous
Re.vector function (¢, x)=(b(t, x))i=1...q on [0, o0) X R¢ such that

316 BB Doult, Dot D D 0@t Dpa, =0 on U
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and
b(t, x)=b(t, x) on aD.

Extend a(¢(¢, x)) from U to [0, c0)X R* so that there exists a solution P ,
of the martingale problem corresponding to the extended a(¢(¢, x)) and b(¢, x)
for each (s, x)€dD. Let #*=inf{u=s: (u, x(u))e U} and v(z) be a nonnegative
C%*function on R® which is equal to one at {0} and smaller than one elsewhere.
Then, using v(p(¢, x)), #* and (3.16) and arguing along the lines of the proof of
Theorem 2.1, we have

P, .[(t, x(t))=0D for every t=s]=1.

Consequently, P, , is the desired solution.

[Converse part] The next two facts are obvious. That is, both of the
boundaries of the open domains D and [0, )X R¢—D are 6D ; and solutions
which satisfy (2.2) also satisfy (2.1) and the next equality :

P, [(t, x(2))e[0, 00)X R¢—D for every t=s]=1.

Hence_:_, applying the converse part of Theorem 2.1 to domains D and [0, o)X
R¢—D respectively, we have the conditions [C.2.1] and [C.2.3] on 0D. Q.E.D.

Remark 3.2. In the above theorems, the assumption [A.2.27] guarantees the
existence of the solution corresponding to the extended coefficients. The bounded-
ness condition of the coefficients a(¢, x) and b(¢, x) in assumption may be replaced
by the following weaker condition: for each 7 >0, there is some positive con-
stant Lr such that

3 laut, O+ 2 16t DS Lo(1+ 2]

1, 7=1

for all (¢, x)€[0, c0) X R¢ (refer to [5]).

Remark 3.3. Under [A.2.1], the local existence of the solution P, , satisfying
(2.1) (or (2.2)) is obtained more easily than the global existence of the solution
satisfying (2.1) ((2.2)) which we get in the above theorems. Moreover, by a
general selection theorem, we can choose a family of solutions {P; ,; (s, x)=
[0, o)X R%} which is measurable with respect to (s, x) for any BEM?®. Hence,
by Theorem Al6 in [1], we get the solution P, , of the martingale problem
satisfying (2.1) ((2.2)) for each (s, x)€D (6D) under [A.2.2], which is another
proof of the existence part of above theorems. But, if we consider our problem
in terms of stochastic differential equation with continuous coefficients for an
arbitrary initial distribution (including the explosion time and, furthermore, with
boundary conditions), our approach in the above theorems is useful.
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§4. Some results for the uniqueness problem.

In this section, we consider the uniqueness problem of the solution of the
martingale problem on D. But, in practice, we treat only the case where the
general condition for the uniqueness fails on the boundary 0D and the path stays
on gD after it hits oD.

Let D be an open subset of [0, co)x R? with the boundary 0D and put the
following assumptions.

[A4.1] Assume that, for each (s, x)D, the solution of the martingale
problem (D, a, b, (s, x); s=t) satisfying (2.1) is uniquely determined on M3, for
any t=s, where a(¢, x) is bounded, measurable, symmetric and nonnegative de-
finite on [0, )X R%, b(¢, x) bounded and measurable on [0, c0)XR?, ¢°=
inf{u=s: (u, x(u))=0D} and M$sx, is a o-field associated with o°A¢.

[A.4.2] Assume that, for each (s, x)€0D, the solution of the martingale
problem (0D, a, b, (s, x); s=t) satisfying (2.2) is unique.

Remark 4.1. As is well known, it is a sufficient condition for [A.4.1] that
b(t, x) and a matrix o(¢, x) such that a(¢, x)=0o(¢, x)o(t, x)* are local Lipschitz
continuous with respect to the space variables x on D or that a(f, x) is con-
tinuous and strictly elliptic on D. Here the local Lipschitz continuity means the
Lipschitz continuity on every compact set contained in D and o(t, x)* denotes
the transpose of o(#, x). On the other hand, it is a sufficient condition for
[A.4.2] that b(t, x) and a matrix o(¢, x) such that a(¢, x)=0(¢, x)o(¢, x)* are
Lipschitz continuous on oD with respect to the space variables x or that
a(t, x) is continuous on 0D and, for all (¢, x)dD and #=R? subject to
(V.¢(t, x), 6>=0, there is a positive constant C; independent of (¢, x) and & such
that <af, 0>(t, x)=C,|0]% (For the detailed proofs, refer, e.g., to Theorem 1 in
[3] and Theorem 3.2 in [1].)

Then we have the following theorem.

THEOREM 4.1. Assume [A.2.17, [A4.1] and [A.4.2] and, furthermore, that
the condition [C.4.1] holds:

[(CA.1] There are a neighborhood U of 8D, a positwe constant C, and a
bounded vector function d(t, x)ER® on D such that

d

1 4 - —
4.1) 5.3, @upee,t BbipstpzCp  on UND,
where b(t, x)=b(t, x)—ad(t, x).
Then there 1s at most one solution Ps,_z of the martingale problem (D, a,b, (s, x);
s=t) satisfying (2.1) for each (s, x)eD.
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Proof. 1t follows from [A.4.1] and [A.4.2] that, if we see the fact that the
path starting from the boundary 9D and staying in D never enters the interior D,
we get the uniqueness of the solution of the martingale problem (D, a,b,(s, x);
s=<t) in the sense of (2.1) by the same way as that in Theorem 1 of [3]. Then
we shall show that [C.4.1] guarantees this fact. At first, assume d(¢, x)=0.
Let ¢*=inf{u=s: (u, x(u))€0UND} and, for each (s, x)€0D, P, . be the solu-
tion of the martingale problem (D, a, b, (s, x); s<t) satisfying (2.1). From (4.1)
and the martingale property, we have

Es, IE—P(f/\és, x(t/\as))]

tATS d d
=B |7 B upae,— B bipe—pb, xw)du]

1, =

t
§CZSsEs,x[—p(u/\63, x(uAG%)]du for any t=s.

This implies that E; [—p(tAd*% x(tAé%))]=0 and, consequently, P; ,[(¢, x(¢)€
0D for every t=s]=1 for each (s, x)€0D. Next, by the transformation of the
drift, the case of the general d(¢, x) is reduced to the case d(¢, x)=0. Hence
the proof is completed. Q.E.D.

Remark 4.2. We can easily see that it is a sufficient condition (but not a
necessary one) for [C.4.1] that a(¢, x) and b(¢, x) are Lipschitz continuous with
respect to the space variables x on UND for a neighborhood U of 8D, ¢ belongs
to ([0, o)X R?) and [C.2.1] and [C.2.2] hold on 0D. Here 430, OO)XRd)—
{f(t, x): fEC} ([0, 00)X R?) and df/dx;€Cy¥[0, o)X R?) for all 1=1, -+, d}.

Combining Theorem 2.1 and Theorem 4.1, we get the following corollary
immediately.

COROLLARY 4.1. Suppose that [A.2.17, [A.2.2], [A.4.17], [A.4.2], [C.2.1], [C.2.2]
and [C.4.1_]_ hold. Then there umiquely exists the solutwn P, . of the martingale
problem (D, a, b, (s, x); s=t) satisfying (2.1) for each (s, x)=D.

Remark 4.3. In Corollary 4.1, we have [C.2.3] inevitably.

Remark 44, From Corollary 4.1, we get the diffusion process (02, M 0 ]\71 s
s P, .:(s, x)eD) on D which has the Feller property on D (cf. [6]), where
O={w: (t, x(t))eD for every t=0}, M*=M[~2] and Mi=M[N2].

At last, we state a result of the martingale problem on all space [0, co)X R¢
which is similar to that of Corollary 4.1. But there is an essential difference
between the proofs of them.

Instead of [A.4.1], we put the following assumption :

[A.4.17 Assume that the solution of the martingale problem ([0, c0)X R,
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a, b, (s, x); s<t) is uniquely determined on M}s,, for every t=s.

PROPOSITION 4.1. Let D be an open subset of [0, co)X R* which satisfies
[A.2.1] with the further condition ¢E_J{3([0, 00)X R®) and assume [A.2.27, [A.4.17,
[A.4.2], [C.2.1], [C.2.2], [C.4.1] for D and the follouwng condition :

[C.4.2] There 1s some neighborhood W of 0D such that a(t, x) and b(1, x)
are Lipschitz continuous with respect to the space varwable x on W—D.

Then there umiquely exists the solution P , of the martingale problem ([0, o)
XR% a, b, (s, x); s<t) for each (s, x)E[0, oo0)X R4,

Proof. 1t is sufficient to prove that the path starting from the boundary oD
never leaves ¢D. From [C.2.1], [C.2.2], [C.4.2] and ¢=4*([0, co) X R%), we have
easily that

d
2 Aypz,0: (L, )=Csp(t, x)

1, 7=1

and
1 < d
H(t, x)=7”Z=)1a”pzipz,(t, x)+§b1pxi(t, x)+po(t, x)=Cipo(t, x)

for some positive constants C; and C, on W—D. Let P, , be the solution of the
martingale problem ([0, c0)X R¢, a, b, (s, x); s=t) and *=inf{u=s: (u, x(u))e
WUD}. Choose nonnegative C? functions 2,(§) on R! such that 1,(£) increases to
0VvE as n—oo, 2,(6)=0 in a neighborhood of (—oo, 07, 0=2,(§)<1 on R! and
0=25(8)=2n*"! on (0, o) (see [7]). Then we have, for each (s, x)€0D,

E; oJ[n(p(t AT?, x(ENT))]=2:(p(s, %))

d

+E I 3 a0pe0e, A0 @, 2]

s 2 1, 7=1

=B, (7T 5 e, 2@)iu]

s 2 1,9=1

+ B Ho e, xanau] =141,

1 Cs _
Ilg—s E8,1[7—p(uArs, xuNTNp (uNnt', x(uNt*))

s

Cs
'qums,z(u/\f8)>ew—f))]du§7 -0 (n—00)
and

I, §C4StE3,I[p(u/\rs, 2UA)VOIdu,
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where X, denotes the indicator function of the set A. Hence, letting n—oo, we
obtain

E; Lo NT, x(tAT°)VOI=C,y LES,I[ (unt®, x(uNnz®))V0ldu
. 14

for all t=s and each (s, x)€dD. This implies P, ,[(¢t A7, x(t Ar5)eD]=1 and
consequently P .[(Z, e D for all t=s]=1 for each (s, x)€dD. Then it fol-
lows from Corollary 4.1 that such a solution never leaves dD and is unique.
Hence our assertion is proved. Q.E.D.

Remark 4.5. From the proof of Proposition 4.1, we have that any solution
of the martingale problem ([0, )X R¢, a, b, (s, x); s=t) starting in D satisfies
(2.1), provided that the conditions [C.2.1], [C.2.2], [C.4.2] and the assumption
[A.2.1] with ¢g=H*[0, c0)X R?%) hold for 6D. That is, D is an invarient set for
any solution. This result is more general than Friedman’s one [2]. It is, how-
ever, narrower than Theorem 2.1 in the sense of the existence of the solution
on D.

Remark 4.6. It is easily seen that a sufficient condition for [C.4.1] and [C.4.2]
is that a(¢, x) and b(t, x) are Lipschitz continuous with respect to the space
variables x on some neighborhood of D and ¢(¢, x) belongs to ([0, o)X R%).
Hence, under this sufficient condition and assumptions in Proposition 4.1 except
for [C.4.1] and [C.4.2], we get the result of Proposition 4.1. Especially, this case
contains the case where a(t, x) and &(¢, x) are Lipschitz continuous with respect
to the space variables x on [0, o)X R? and a(¢, x) degenerates only on 0D so
that at least [C.2.1], [C.2.3] and [A.4.27] hold. Moreover, in this case, if d=2,
[A.4.2] is unnecessary because the uniqueness of the solution of the martingale
problem on oD is locally equivalent to the uniqueness of the solution of the one-
dimensional stochastic differential equation corresponding to the diffusion operator
with the Lipschitz continuous coefficients (cf. [7]).

The uniqueness problem for the case where the path may enter the interior
D after hitting the boundary oD is very difficult. Up to now, we have only
obtained special examples of it, which appears in population genetics (see [4] and
its references).
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