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A MARTINGALE PROBLEM ASSOCIATED WITH

DIFFUSION OPERATORS IN A DOMAIN

BY NORIO OKADA

§ 1. Introduction.

For a given diffusion operator with continuous coefficients, we consider the
solution PStX of the martingale problem such that all paths starting from x at
time s stay in a domain Z) in [0, oo)χRd for ever. That is, the support of Ps,x

is contained in C([0, oo)} D). Under some regularity conditions, we shall obtain a
necessary and sufficient condition for the existence of such a solution on D.
Results and precise formulations are stated in § 2. In § 3, the results of § 2 and
some lemmas for them will be proved. In §4, we shall consider some examples
such that the uniqueness of solutions of § 2 holds. In these examples sample
paths stay on the boundary after hitting the boundary. To discuss processes
with reflecting or entrance boundary, we need probably another approach.

I am grateful to Professors M. NAGASAWA and M. Motoo for their kind
comments and advice.

§ 2. Existence and related topics.

Let D be an open subset with the boundary 3D of [0, cχD)χRd and assume
that:

[A.2.1] There exists a φ(t, x)^M\[0, oo)χ Rd) such that D^ {(*, X)<Ξ[Q, OO)
xRd\φ(t, x)<0} and9D={(ί, * )e[0 , co)χ Rd : φ{t, χ)=Q} with an additional con-
dition | 7 ^ | ^ 0 on 3D, where M\[0, oo)χR*)={f(t, x):f<ΞCK[0, oo)χRd) and
df/dxι^C1

b{[β> ^)χRd) for all z = l , •••, d) and !x=(3/3xx, •••, d/dxd).

From [A.2.1], we have that Drλ{s^t<co} is not empty for any sΞ̂ O and
that φ(t, x)>Q on C/πίCO, ^)xRd—D] for some neighborhood U of 3D.

Let x(t, ω)=ω(t) for ωefl=C([0, ^)XRd), Ms and M? be the σ-fields gen-
erated by {x(u):u^s} and {x(u): s^u^t}, respectively, and put the following
assumption:

[A.2.2] a(t, x)=(aτj(t, x))tι ;s=1,.., d : [0, σo)x Rd->Rd®Rd is bounded, con-
tinuous, symmetric and nonnegative definite; b(ty x)—(bx(ty x))i=lt..,d: [0, oo)χRd

->Rd is bounded and continuous.
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We consider the following martingale problem (D, a, b, (s, x); s^t): Given
(s, x)efl, find a probability measure PSiX on (Ω, Ms) such that Ps,x\_x(s)—x~]—l
and, for any /eC£'2([0, cχD)χi?d), (M}(ί), MJ, Ps,x: s^t) is a martingale which
satisfies

(2.1) Ps,xl{t, x(t))^D for every ί^s] = l ,

where

rί/ 9/ i 3 γ d 3/ \Ms

f(t)=f(t, x(t))-\ (^- + ̂ r Σ ^ π — + Σ ^ - ^ - ) ( « , *(W))</M .
J Λ du 2 ι,j=ι όXidxj %=\ oxτ/

Here D denotes the closure of D and CJi2([O, ^)xRd) denotes the class of func-
tions on [0, oo)χRd which together with their first ί-derivative and first two x-
derivatives are bounded and continuous.

For fixed t, let Dt={x<=Rd : (t, x)^D) and dDt be the boundary of Dt in Rd

and define

ί dis(x, dDt) if x&Dt

pit, x)=\
[ d i U , dDt) if xt=Dt,

where dis(x, dDt) denotes the distance between x and dDt in Rd. Then, from
[A.2.1], p(t, x) belongs to the class of CJ 2 in some neighborhood U of 3D (see
Lemma 3.1).

Now, we put the following two conditions:

[C.2.1] ^ Σ χ atJpXιpXj(t, x)=0 on dD

[C.2.2] H(t, x)=jιΣLiaιjpXiXp, x)+ΣίbipXt(t, x)+pt(t, x)

^ 0 on dD,

where pXί~dp/dx%, pXίXj=
zd2p/dxίdxJ and pt—dρ/dt.

Our results are as follows.

THEOREM 2.1. Assume [A.2.1] αnrf [A.2.2]. Then the conditions [C.2.1] αnrf
[C.2.2] imply that there exists a solution PStX of the martingale problem
CD, a, b, (s, x); s^t) satisfying (2.1) for every (s, i ) e 5 . Conversely, the exist-
ence of the solution Ps>x of the martingale problem (D, a, b, (s, x) s^t) satisfy-
ing (2.1) for every (s, x)^dD implies the conditions [C.2.1] and [C.2.2].

Remark 2.1. It follows easily from Theorem 2.1 that, if the solution PSι x of
the martingale problem ([0, co)χRd

f a, b, (s, x); s^t) is unique for all (s, x)
e[0, oo)χRd, (2.1) holds for each (s,

If we replace the condition [C.2.2] by a stronger condition [C.2.3] :
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[C.2.3] H(t,x)=Q on 3D,

then we have the following theorem.

THEOREM 2.2. Assume [A.2.1] and [A.2.2]. Then the conditions [C.2.1] and
[C.2.3] imply that there exists a solution Ps,x of the martingale problem
{3D, a, b, {s, x); s^t) satisfying

(2.2) Ps.xKt, x(t))ELdD for every ί ^ s ] = l

for every {s, x)^3D. Conversely, the existence of the solution PStX of the mart-
ingale problem {3D, a, b, (s, x) st^t) satisfying (2.2) for every (s, x)^3D implies
the conditions [C.2.1] and [C.2.3].

Remark 2.2. The result of Theorem 2.2 contains those of Theorems 4.1 and
4.2 of Anderson [1] (see Remark 2.4).

Remark 2.3. It follows easily from Theorem 2.2 that, if the solution PStX of
the martingale problem ([0, &>)xRd, a, b, (s, x); s^t) is unique for every (s, x)
e[0, o o ) χ # d , (2.2) holds for each (s,

Remark 2.4. By simple calculations, it follows that

and

on 3D, where φt=dφ/όt, φXι=dφ/dxτ and φχίXj=d2φ/dxιdxJ (see Lemma 3.1).
Combining those with [C.2.1] and the nonnegative definiteness of a(t, x) on dD,
we can claim that the conditions [C.2.2] and [C.2.3] are equivalent to the follow-
ing conditions [C.2.2]7 and [C.2.3]', respectively:

[C.2.2]7 H\t, x)=\ Σ aτjφXiX(t, x)+llb4Xi(t, x)

+ φt(t, x)^0 on 3D;

[C.2.3]7 H\t, *)=0 on 3D.

Remark 2.5. We may replace 0e^f2([O, co)χRd) by the one piecewise in
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«#2([0, oo)χRd) with respect to ίe[0, oo). Indeed, if φ is not differentiate at
some T^(s, oo) with respect to t, we consider our problem on [s, T] and [T, oo),
respectively.

§ 3. Proofs of results in § 2.

To prove the theorems, we prepare the following three lemmas.

L E M M A 3.1. Suppose [A.2.1]. Denote the point (t, y) such that dis(x, dDt)

—dis(x, y), y^dDt, byψ(t, χ)=(φt(t, *))i=o,i,2,....d ( * = U i , ~-, Xd), y=(yi, ••• , yd)

<^Rd). That is, (t, y)=zφ(t> x). Then there is some neighborhood U of 3D such

that ψi(t, x), ι=0, 1, 2, ••• , d, belongs to the class of C\ on U. Moreover ρ{t, x)

belongs to the class of CJ'2 on U and

(3.1)

(3.2)

Pt(t, χ)=φt(ψ(t, x)){ΈφlL(ψ{t,
d

Σ
1 = 1

1=1**
x))}~1/2 on U.

Proof. From [A.2.1], we can choose ιo^{l, -••, d} such that = 0 for

each (t°, x°)^dD. Consider the following d + 1 equations of (t, x T, y), x=

(χi> •'•, Xd), y = ( y i , '••, yd)-

(3.3)

fit, x; T, y)=(yro-Xzo)φxί(T, y)-(yi-xι)φXι(T, y)=0 for l^ι^z 0 —1,

fι-i(t, x T, y)=i(yι0—Xι )φXi(T, y)—(yτ~Xι)φXι (T, y)=0 for ιo+l^ι^d ,

)fd(t, x T, y)=φ(T,y)=0,

Jd+i(t, x; T, y)=T-t=0.

The point (ί°, x° t°, x°) satisfies (3.3) and at the point the Jacobian

3Λ 3Λ 3Λ

fuU '-,fd+i
T, ylf -", yd

)r

dT

3/,
dT

dfi+1

dy,

3/.
3 *

a^d

3Λ

a ^

dfd+1

dT

d

1 = 1 '

2

H(t°, X°)}ΦO.

Then, by the implicit function theorem and dD={φ=0}, it is easily proved that
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we can choose some neighborhood U(t°, x°) of (ί°, x°) such that ψ(t, x) is uni-
quely determined and (ί, x;ψ(t, x)) satisfies (3.3) on U(t°, x°). Furthermore, we
have that the each component ψι(t, x), z=0, 1, 2, •••, d, of ψ(t, x) belongs to the
class of Cl(U(t°, x0)) and

(3.4)

/ / _ / - 1 ' J2' " > Jι> / ΐ + 1 > / ί + 2> ' " > _ / d + 1 λ

, _ J\Ύ, 3̂ 1, •••, 3\-i, x,, yχ+u - , id)

dt

X lJ-> f2' " > fd + i \
~ T , y 1 } . . . , y d J

— (ί, x ) = 0 for 7 = 1, 2, •••, d,

•(ί, x ψit, x))

for i, ; = 1, 2, - , d,

for z = l , 2, •-, d.

Next, using 0 X . ^ 0 on U(t°, x°) and (3.3), it is obvious that, for each (t,

dis(x, 3;) if (ί, x)ϊΞU(t\ x°)n{[0,

- d i s ( x , 3/) if (ί, x)^U{t\ x°)rλD

and

where y=(<£&, x), •••, 0 d ( ί , x)). But it follows from (3.4) and ^x ΐ o(ί 0, x°)^0 that

Σ φlt{t\ χ°)
K 0 ,

1=1

where h(t, x)=ψlQ(t, x)—xlQ. Hence, using the implicit function theorem and the
fact that φ<0 in D, φ>0 in [0, oo)χRd-D and h=Q on 3D, we have that

p{t, χ)==^ for every (t, x)<=U(t°, x°

and p(t, x) belongs to the class of C\(U(t\ x0)). Furthermore, using (3.4) again,
we have (3.1) and (3.2) on U(t°, x°). From the form of (3.2), we conclude that
p(t, x) belongs to the class of CJ 2(ί/(f°, x0)). At last, if we define U=



A MARTINGALE PROBLEM 87

U U(t°, x°), it is obvious that assertions of the lemma hold on U. Q. E. D.
O Ξ 3 D

Remark 3.1. We can consider the extended function of p(t, x) such that it
is equal to ρ(t, x) of Lemma 3.1 on U, nonnegative on D and belongs to the
class of Q'2([0, oo)χRd). We denote the extended one by the same letter p(t, x).

LEMMA 3.2. Assume [A.2.1]. For each (t± x)e[0, oo)χRd, let ψ(t, x) be the
(ί, y) such that dis(x, Dt)—ά\s{x, y) and y^Dt. Then there is some neighborhood
V of D such that ψ(t, x) is continuous. Moreover ψ is equal to ψ on V—D and
equal to (t, x) on D (i.e. identical mapping on D).

Proof. It is obvious that V=Ur\D satisfies our assertions, where U is of
Lemma 3.1. Q. E. D.

LEMMA 3.3. Let A be a closed subset of Rd+1. Let
d

g(x)=(gι(x))i=i. ',d- Rd+1—*Rd be bounded, continuous and satisfying Σ g\(x)

±?0 on A;
h{x): Rd+1^R1 be bounded and continuous and
f{x)—{fi{x))i=i,...,d'' A—*Rd be bounded, continuous and satisfying

(3.5) (Σ/i£t+Λ)U)^0 (=0) on A.
1 = 1

Then there is a neighborhood U of A and a bounded vector function F(x)=
(Fi(x))ι==1, ..,d, defined and continuous on Rd+1, taking values in Rd such that

(3.6) ( Σ ^ i + A ) U ) ^ 0 (=0) on U
1 = 1

and

F=f on A.

Proof. For each z^A, we can choose a number i(z)^ {1, •••, d) and a neigh-

borhood U{z) of z such that £<(*>(*) =£0 for any xeU(z). Let f(x)=(f1(x), ••• ,

fd(x)) be a continuous vector function defined on Rd+1, taking values in Rd such

that / = / on A and, for each z^A, define a continuous vector function fz{x)~

(/ίU), - , hW) on Π{z) such that

flW=?iW for ιΦι{z),

I -Kx

fiω=[

for ι—i{z) and ^zc2)>0 on U(z),
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/-λ(*)- Σ U

for z=z(z) and giω<0 on

for i=i(

Here a/\b (aVb) denotes the minimum (maximum) of a and b. Let {uz(x) z^A}
be a partition of unity over A, subordinate to the covering {U(z) z^A} of A.
Then F(x)= Σ uz(x)f\x) is defined and continuous on Rd+1 to i?d. Further, it

z<=A

is not difficult to show that the function F(x) is equal to f(x) on A and

Σ
( = - Λ W ) on U= U £7(z). Hence these F{x) and ί/ are our

seeking ones. Q. E. D.

Proof of Theorem 2.1 [Existence part]. From Lemma 3.2, a{ψ{t, x)) is de-
fined and continuous on some neighborhood V of D. Moreover, a(ψ(ί, x)) (de-
fined on V) can be extended to be a continuous, bounded, symmetric and non-
negative definite matrix on [0, co)χRd and we denote this by the same letter
a(ψ(t, x)). Then, by (3.2), Lemma 3.3 and [C.2.2], there is some neighborhood
W of 3D and a bounded, continuous Rd-vector function 5(t, x)—{bi{t, x))i=1,...,a

on [0, co)χRd such that

(3.7) H(t, Λ:)= Σ5i(ί, x)pXι(t, x)+\ Σ at0(t, x))pXχXβ, x)

+ pt(t, x)^0 on W-D
and

b(t, x)=b(t, x) on D .

Since a(ψ) and B are bounded and continuous on [0, co)χRd, there is a solution
PStX of the martingale problem ([0, oo)χRd

) a(ψ), 5, (s, x); s^t) corresponding
to (a(ψ), 5) by the result of Strook and Varadhan [6]. We shall show that this
Ps>x satisfies (2.1). Let f(z) be a nonnegative C2-function on R1 which is equal
to one on (—oo, 0], smaller than one on (0, co) and the first derivative of which
is nonnegative on R1. Further, let p(t, x) be the one of Remark 3.1. Then,

i , x))pXi{t, x)pXj{t, x)+f'(p(t, x))

y ΣLaιJ{ψ(.t, x))pXiXj{t, x)+ΈBXi(t, x)pXi(t, x)+pt(t,ΣLJ{ψ ))pXiXj{
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From (3.2), Lemma 3.2 and φ{φ{t, x))=φ(t, x)^dD on W, we have

d

ΊJ atJ(φ(t, x))pXi(t, x)pXj(t, x)

d _

= Σ aιj(ψ(t, x))-ρxXψ(t, x))ρx(φ{t, x)) on W—D.
ι,J = l J

Hence, by [C.2.1], we have

(3.9) jk^jfflt, x))pXι{t, x)pψ, x)=0 on W-D.

On the other hand, it follows easily that

(3.10) f'(p(t, x^j^^Mt, x))pXi(t, x)pψ, x)

+ Σ^U, χ)pXi(t, x)+pt(t, χ)\

=f'(p(t, x))H(t, x)^0 on W-D.

Further

(3.11) f'(p(t, x))=f"(p(t, *))=0 on D.

Hence it follows from (3.8)-(3.11) that

at 2 1,3=1 JΎ όXiOXj ι=i όx%

Let τs=inf {u^s;(u, x(u))^W^JD}. Then, by the martingale property and the
optional sampling theorem, we have

E,.xZf(p(tΛτ , x(tΛτsm=f(p(s, x))

2 1.3=1 j

s, x))=l for any (s, x)^D and any t^s.

This implies that

(3.12) Es,xlf(p(tΛτs, x(tΛτs)))]=l for any (s, X)(ΞD and any ί^s ,

because of 0^/(^)^l. If PS;α; has a positive measure on B—{{tAτs, x{tf\τs))
GW-D}, it contradicts (3.12) because of f(ρ(tΛτs, x(tAτs)))<l on B. Hence we
have

P*,χl(tΛτ', i ( ί Λ τ s ) ) e 5 ] = l for every t^s

and immediately

P*, xί(t, x(t))z=D for every f ^ s ] = l for each (s, x)εfl,
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which is (2.1). Noting that a(ψ(t, x))=a(t, x) and b(t, x)=b(t, x) on D, we have
that this PSiX is the solution of our problem.

[Converse part] For each (s, x)^dD, let Ps>x be the solution of the martin-
gale problem (D, a, b, (s, x); sSt) satisfying (2.1).

At first, assume that [C.2.2] is not satisfied. That is, there is a point (s, x)
^dD such that H(s, x)>0. Then, by the continuity of H(t, y), there are posi-
tive constants ε and δ such that H(t, y)^δ on the ε-neighborhood Uε of (s, x).
Let τ s=inf {u^s : (u, x(u))$Uε}. Then, by the optional sampling theorem,

^ — δEStX[_tAτs — s] for any t^s .
Hence it follows that

(3.13) £,> a.[fΛr s—s]=0 for every t^s.

Let t>s. Then, from (3.13), we have τs=s a.s in PSiX and it contradicts the
continuity of the path functions. Hence we get [C.2.2] on 3D.

Next, assume that [C.2.1] is not fulfilled. That is, there is a point (s, x)^3D
such that

(3.14) Σ atjpXipXj(s, x)>0.
ι.j=i

Define, for a positive constant a, b(t, y)=(hi(tt y))i=ι,...td such that

ht(t, y)=bt(t, y)JrahιaxjpXj{t, y).

Then, applying the transformation of the drift to the Ps,x, we have a solution
PStX of the martingale problem corresponding to (a, h) and satisfying (2.1) for
each (s, x)^3D. For sufficiently large a, we have by (3.14) that

H(s, *)={-£• Σ atJpXiXj+ϊtίχPzt+PtYs, x)(3.15) {£ p

r i d d

= |-2" Σ flιyiθaria;<?+ Σ

From previous result, (3.15) denies that this PSίX satisfies (2.1). Hence [C.2.1]
has to hold on dD and the proof is finished. Q. E. D.

Proof of Theorem 2.2 [Existence part]. From Lemma 3.1, a{φ(t, x)) is de-
fined on some neighborhood V of 3D. Then, by (3.2), Lemma 3.3 and [C.2.3],
there are a neighborhood U (contained in V) of 3D and a bounded and continuous
7^-vector function B(t, x)=(Bi(t, x))i=ι,..,d on [0, ̂ )xRd such that

(3.16) Σffi(f, x)pχβ, x)+pt(t, x)JrjιΈiaιj(ψ(t, x))pXiX=0 on U
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and
b(t, x)=b(t, x) on 3D.

Extend a(φ(t, x)) from U to [0, co)xRd so that there exists a solution PSιX

of the martingale problem corresponding to the extended a(φ(t, x)) and B(t, x)
for each (s, x)^dD. Let f*=inf{u^s: (w, x(u))&U} and i>(z) be a nonnegative
C2-function on R1 which is equal to one at {0} and smaller than one elsewhere.
Then, using v(ρ(t, x)), τs and (3.16) and arguing along the lines of the proof of
Theorem 2.1, we have

Ps.xίit, x(t))t=dD for every ί ^ s ] = l .

Consequently, PStX is the desired solution.
[Converse part] The next two facts are obvious. That is, both of the

boundaries of the open domains D and [0, co)xRd—D are 3D; and solutions
which satisfy (2.2) also satisfy (2.1) and the next equality :

Ps.xKt, *(O)e[0, oo)χ R*-D for every ί ^ s ] = l .

Hence, applying the converse part of Theorem 2.1 to domains D and [0, oo)χ
Rd—D respectively, we have the conditions [C.2.1] and [C.2.3] on 3D. Q. E. D.

Remark 3.2. In the above theorems, the assumption [A.2.2] guarantees the
existence of the solution corresponding to the extended coefficients. The bounded-
ness condition of the coefficients a(t, x) and b(t, x) in assumption may be replaced
by the following weaker condition: for each T>0, there is some positive con-
stant LT such that

Σ \aιj(t, x)|a+ΣIWf, *) l 2 ^rd+UI 2 )
l,J = l 1 = 1

for all (t, Λ:)e[0, oo)χRd (refer to [5]).

Remark 3.3. Under [A.2.1], the local existence of the solution PStX satisfying
(2.1) (or (2.2)) is obtained more easily than the global existence of the solution
satisfying (2.1) ((2.2)) which we get in the above theorems. Moreover, by a
general selection theorem, we can choose a family of solutions {Ps,x\ (s, x)^
[0, oo)χi?d} which is measurable with respect to (s, x) for any B^M\ Hence,
by Theorem Al.β in [1], we get the solution PSιX of the martingale problem
satisfying (2.1) ((2.2)) for each (s, x)^D (3D) under [A.2.2], which is another
proof of the existence part of above theorems. But, if we consider our problem
in terms of stochastic differential equation with continuous coefficients for an
arbitrary initial distribution (including the explosion time and, furthermore, with
boundary conditions), our approach in the above theorems is useful.
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§ 4. Some results for the uniqueness problem.

In this section, we consider the uniqueness problem of the solution of the
martingale problem on D. But, in practice, we treat only the case where the
general condition for the uniqueness fails on the boundary 3D and the path stays
on 3D after it hits 3D.

Let D be an open subset of [0, m)xRd with the boundary dD and put the
following assumptions.

[A.4.1] Assume that, for each (s, I ) E D , the solution of the martingale
problem (D, a, b, (s, x); s^t) satisfying (2.1) is uniquely determined on Mas/U for
any t^s, where a(t, x) is bounded, measurable, symmetric and nonnegative de-
finite on [0, ^)xRd, b(t, x) bounded and measurable on [0, ^y)xRd, σ

sz=
inf{u^s: (u, x(u))^3D} and M*SΛί is a σ-field associated with σsΛt.

[A.4.2] Assume that, for each (s, x)^3D, the solution of the martingale
problem {3D, a, b, (s, x); s^t) satisfying (2.2) is unique.

Remark 4.1. As is well known, it is a sufficient condition for [A.4.1] that
b(t, x) and a matrix σ(t, x) such that a(t, x)=σ(t, x)σ(t, x)* are local Lipschitz
continuous with respect to the space variables x on D or that a(t, x) is con-
tinuous and strictly elliptic on D. Here the local Lipschitz continuity means the
Lipschitz continuity on every compact set contained in D and σ{t, x)* denotes
the transpose of σ(t, x). On the other hand, it is a sufficient condition for
[A.4.2] that b(t, x) and a matrix σ(t, x) such that a{t, x)=σ(t, x)σ(t, x)* are
Lipschitz continuous on 3D with respect to the space variables x or that
a(t, x) is continuous on 3D and, for all (ί, x)^3D and Θ^Rd subject to
(^xφ(t, x), #>=0, there is a positive constant Cλ independent of (t, x) and θ such
that (aθ, ΘXt, x^C^θl2. (For the detailed proofs, refer, e.g., to Theorem 1 in
[3] and Theorem 3.2 in [1].)

Then we have the following theorem.

THEOREM 4.1. Assume [A.2.1], [A.4.1] and [A.4.2] and, furthermore, that
the condition [C.4.1] holds:

[C.4.1] There are a neighborhood U of 3D, a positive constant C2 and a
bounded vector function d(t, x)^Rd on D such that

\d d _ _

(4.1) -^^^tjpx^j+Σ^bip^+pt^Cip on Ur\D,

where b(t, x)=b(t, x)—ad(t, x).

Then there is at most one solution Ps, x of the martingale problem (D, a, b, (s, x)
s^t) satisfying (2.1) for each (s, x
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Proof. It follows from [A.4.1] and [A.4.2] that, if we see the fact that the
path starting from the boundary dD and staying in D never enters the interior D,
we get the uniqueness of the solution of the martingale problem {D, a, b, (s, x)
s^t) in the sense of (2.1) by the same way as that in Theorem 1 of [3]. Then
we shall show that [C.4.1] guarantees this fact. At first, assume d(t, x)=0.
Let σs=Ίnί{u^s: (u, x(u))^dUr\D} and, for each (s, x)^dD, PSιX be the solu-
tion of the martingale problem (D, a, b, (s, x); s^t) satisfying (2.1). From (4.1)

and the martingale property, we have

Es,xί-p(tΛσs, x(tΛσs))l

B tΛσS d d "I

{— Σ_ aXJpXiX— Σ bipXι—pt}(u, x{u))du\
s i, j — l z — l J

^C2^Es,x[-p{u/\σs, x(uΛσs))Ίdu for any t^s .

This implies that Es>xi~p(t Λσs, χ(^Λtfs))]=0 and, consequently, P8,xl(t, * ( 0 ) e

dD for every fΞ>s]=l for each (5, x)^dD. Next, by the transformation of the
drift, the case of the general d(t, x) is reduced to the case d(t, x)=0. Hence
the proof is completed. Q. E. D.

Remark 4.2. We can easily see that it is a sufficient condition (but not a
necessary one) for [C.4.1] that a(t, x) and b(t, x) are Lipschitz continuous with
respect to the space variables x on Ur\D for a neighborhood U of dD, φ belongs
to JCXIO, co)χRd) and [C.2.1] and [C.2.2] hold on dD. Here ^ 3 ([0, cπ)χRd)=
{fit, x ) : / e C J ([0, co)χRd) a n d df/dxit=Q'2(£0, co)χRd) for all ι = l , •••, d}.

Combining Theorem 2.1 and Theorem 4.1, we get the following corollary

immediately.

COROLLARY 4.1. Suppose that [A.2.1], [A.2.2], [A.4.1], [A.4.2], [C.2.1], [C.2.2]
and [C.4.1] hold. Then there uniquely exists the solution Ps>x of the martingale
problem (D, a, b, (s, x)\ s^t) satisfying (2.1) for each (s, I ) G D .

Remark 4.3. In Corollary 4.1, we have [C.2.3] inevitably.

Remark 4.4. From Corollary 4.1, we get the diffusion process (Ω, M°, Ms,
Ml, Ps.x', (s> x)^D) on D which has the Feller property on D (cf. [6]), where
Ω={ω: (ί, jc(ί))eΰ for every t^O}, Ms=Mslr\Ω^ and Ms

t=Ms

t[_r\Ω~].

At last, we state a result of the martingale problem on all space [0, co)χRd

which is similar to that of Corollary 4.1. But there is an essential difference
between the proofs of them.

Instead of [A.4.1], we put the following assumption:

[A.4.1]' Assume that the solution of the martingale problem ([0, co)χRd

}
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a, b, (s, x); s^t) is uniquely determined on Ms

aS/\t for every t^s.

PROPOSITION 4.1. Let D be an open subset of [0, oo)χRd which satisfies
[A.2.1] with the further condition φ^JC\Z0, oo)χ Rd) and assume [A.2.2], [A.4.1]',
[A.4.2], [C.2.1], [C.2.2], [C.4.1] for D and the following condition:

[C.4.2] There is some neighborhood W of 3D such that a(t, x) and b(ί, x)

are Lipschitz continuous with respect to the space variable x on W—D.

Then there uniquely exists the solution PSιX of the martingale problem ([0, oo)
χRd, a, b, (s, x); s^t) for each (s, x)^ίθy co)χRd.

Proof. It is sufficient to prove that the path starting from the boundary 3D
never leaves 3D. From [C.2.1], [C.2.2], [C.4.2] and φ^M\[β, oo)χRd), we have
easily that

Σ al3pXιpXj{t, x)^C3p(t, x)

and

I d d

H(t, x ) = — Σ CLτjpXipXj{t, x)-\- Σ bτρXi(t, x)Jrpt(t, x)^C4p(t, x)

for some positive constants C3 and C4 on W—D. Let PStX be the solution of the
martingale problem ([0, (χ>)xRd, a, b, (s, x); s^t) and τ s =inf{w^s: (w, x(u))<£
WϋD}. Choose nonnegative C2 functions λn(ξ) on R1 such that λn(ζ) increases to
Ovf as n^oo, ^Λ(^)=0 in a neighborhood of (—oo, 0], O^λ'n(ξ)^l on R1 and

f"1 on (0, oo) (see [7]). Then we have, for each (s, x)^dD,

Es,xlλn(p(tf\τs, x(tΛτs)))l=Uρ(s, x))

{-γi

iΣiα,,/),,/o^+-ί;(/o)iί}(M, x{u))du\

ΛTS~\P— Σ aιjPxiPxj(u, x(u))du]

, x{uf\τs))p-\uf\τs, x(uΛτs))

] Q
du^—^ >0 (n-*oo)

and

X s , x(uΛτs))\Jθ~]du,
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where 1A denotes the indicator function of the set A. Hence, letting n-^^, we
obtain

Es,xlp(tAτs, x(£Λτs))V0]^C4\ Es,x[_p(uAτs, x(uAτs))\y0~]du

for all t^s and each (s, x)t=dD. This implies Ps,xt(tAτs, x(tΛτs))eί)]=l and
consequently Ps,x[(t, x(t))^D for all ί ^ s ] = l for each (s, x)^dD. Then it fol-
lows from Corollary 4.1 that such a solution never leaves dD and is unique.
Hence our assertion is proved. Q. E. D.

Remark 4.5. From the proof of Proposition 4.1, we have that any solution
of the martingale problem ([0, <χ>)xRd, a, b, (s, x); s^t) starting in D satisfies
(2.1), provided that the conditions [C.2.1], [C.2.2], [C.4.2] and the assumption
[A.2.1] with φ<EΞM\tO, co)χRd) hold for dD. That is, D is an invarient set for
any solution. This result is more general than Friedman's one [2]. It is, how-
ever, narrower than Theorem 2.1 in the sense of the existence of the solution
on D.

Remark 4.6. It is easily seen that a sufficient condition for [C.4.1] and [C.4.2]
is that a{t, x) and b{t, x) are Lipschitz continuous with respect to the space
variables x on some neighborhood of dD and φ(t, x) belongs to c#3([0, oo)χRd).
Hence, under this sufficient condition and assumptions in Proposition 4.1 except
for [C.4.1] and [C.4.2], we get the result of Proposition 4.1. Especially, this case
contains the case where a(t, x) and b(t, x) are Lipschitz continuous with respect
to the space variables x on [0, co)χRd and a(t, x) degenerates only on dD so
that at least [C.2.1], [C.2.3] and [A.4.2] hold. Moreover, in this case, if d=2,
[A.4.2] is unnecessary because the uniqueness of the solution of the martingale
problem on dD is locally equivalent to the uniqueness of the solution of the one-
dimensional stochastic differential equation corresponding to the diffusion operator
with the Lipschitz continuous coefficients (cf. [7]).

The uniqueness problem for the case where the path may enter the interior
D after hitting the boundary dD is very difficult. Up to now, we have only
obtained special examples of it, which appears in population genetics (see [4] and
its references).
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