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UNIFORM ASYMPTOTIC PROPERTIES
OF THE WKB METHOD
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ί 1. Introduction.

Suppose that the wave function ψ(χ, t) depends on time in oscillatory manner
such that

φ(x, t)=y(x)e'uυt,

and the function y(x) satisfies the second order ordinary differential equation of
the form

(1.1) —p. +λ2k\x, ω)y = 0,
dx2

where λ is a large parameter and k2{x, ω) is the local wave number depending
on a parameter ω. Usually the equation (1.1) is associated with certain boundary
conditions at infinity such that, for example,

(i) y(x) decays zero at * = ±oo
(ii) y{x) represents an outgoing wave at infinity, or

(iii) y(x) decays zero at x — — oo and represents an outgoing wave at x — co.
In general, these boundary conditions does not set up self adjoint boundary

value problems, and accordingly we can not apply the Hubert space technique.
Alternatively to solve these problems, the so-called WKB approximation of solu-
tion is effectively used. The existence of turning points physically plays signi-
ficant roles such as reflection, transmission or tunneling effects.

As we shall see from the examples given below, turning points may depend
on the parameter or eigenvalues so that it is impossible to know a priori the
location of these points. Since the boundary condition are complicated, so we
can expect neither real eigenvalues nor that turning points are on the real axis
even if k2{x, w) is real for x, w real.

Physicist may be possible to foresee the location of these points from the
physical consideration, but how can we mathematically overcome this difficulty?.
One of the answers to this question is to consider a dependence of the WKB
approximations of solutions on a parameter ω, and to construct uniformly valid
approximations with respect to ω. Not only in the physical applications, but also
in the asymptotic theory of ordinary differential equations, as pointed out by
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Olver [6], these uniform asymptotic expansions of solutions of the equations
having movable turning points have significant meanings and many challenging
problems.

The purpose of this note is to give a few theorem about the uniformity of
WKB type asymptotic expansions of solutions and their connection formulas.

There are many fields of physics in which the above sorts of mathematical
problems are encountered. We give here three examples of such problems.

(1) It is familiar in the inelastic scattering theory that the one-dim. Schro-
dinger equation

d2ψ . 2m

and the outgoing wave condition at infinity may give us a set of complex eigen-
values ω, the so-called quasi-stationary state of the wave functions. From the
physical reasonings, eigenvalues have to be of the form E—iΓ where E and Γ
are positive, and Γ small. The value Γ'1 represents the life time of the system,
Landau and Lifshitz [3], P440 ff.

(2) The anharmonic oscillator in quantum mechanics defined by the differen-
tial equation

d2φ

~dx2

and the boundary condition

or the generalized boundary condition for complex x

lim φ(χ)=Q, when arg(±x) + — arg β
iα;i-*°° I Ό

is of particular interest because it is a model of βφA field theory in one dim.
space time. There are deep investigations about the analytic and asymptotic
structure of the energy levels E as a function of complex β, Bender and Wu [1]
and Simon [8].

(3) In the linear dynamical theory of the density waves of spiral galaxies,
the problem is reduced in some circumstances to the investigation of the dif-
ferential equation

with the boundary condition that y{x) exponentially decays zero as x goes to
— oo and represents an outgoing wave as x tends to +oo. It is expected and
proved that there exist complex eigenvalues ω with negative imaginary part of
small absolute values and these correspond to unstable nomal modes of the density
waves, Lin and Lau [4] and Nishimoto [5].
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In section 2, we outline the so-called Fedoryuk theory of the WKB method,
Evgrafov and Fedoryuk [2]. In section 3, the continuous dependence of asymp-
totic formulas on ω are considered, and a set of singular point and singular
curves in the complex α>-plane are introduced. A few theorems on the uniform
asymptotic expansions of solutions and uniform connection formulas with respect
to ω are presented. It is proved that the region of ω where the uniform asymp-
totic formulas of WKB type are valid are open and their boundaries are singular
curves. In the last section, we consider relations between the singular curves
and asymptotic distributions of eigenvalues of certain boundary value problems.

§ 2. WKB method.

In this section, we give a summary of the Fedoryuk theory of the WKB
method. Throught this note, we assume that the function k2(x, ω) is a poly-
nomial of x and ω. Let ω be fixed. In the complex x-plane we plot turning
points dj(j = l, 2, •••,/) where k\aJy ω)=0. From each turning point ap we
describe the Stokes curves:

Ϊ x

ιk(x, ω)dx .Reξ(x

Here Re/ means the real part of / and Im/ the imaginary part of /. Then the
complex x-plane is divided by these Stokes curves into a finite number of simply
connected unbounded regions which we call Stokes regions. There are two
types of Stokes regions, one is the half-plane type and the other is the strip
type. The canonical domain introduced by Evegrafov and Fedoryuk [2] is a
union of an appropriate number of adjacent Stokes regions, bounded by Stokes
curves, containing no turning point in its interior, and is mapped by

Cx
ξ{x, x0, ω) = i\ k(x, ω)dx

J x0x0

onto the whole f-plane cut by a finite number of unbounded verticals. For each
canonical domain D, we can assign a turning point a which is on the boundary
of D, and a Stokes curve S issuing from a and contained in the interior of D.
Then there exists a fundamental system of solutions of (1.1) Y{a, S, D) = {ylf y2}
such that for every compact subregion of D yλ and y2 have asymptotic expan-
sions as Λ->oo of the form

3ΊU, λ, w) = ck(x, ω)- ( 1 / 2 ) exp{—λξ(x, a, ω)},
(2.1)

y2(x, λ, ω)^ck(x, ω)~α / 2 ) exptffU, α, ω)},

where

and the branch of ξ{x, a, ω) is determined by Ref(x, α, ω)>0 on 5. The solu-
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tions y^x, λ, ω) and y2(x, λy w) are entire functions of x, ω and λ. (Sibuya [7],
P. 15, ff.) The elementary connection matrix is the connection matrix between
two fundamental systems of solutions defined at neighboring canonical domains.
Then the connection matrix between any two thus defined fundamental systems
can be obtained by successive multiplications of the elementary connection
matrices.

§ 3. Parameter dependence.

For each parameter ω fixed, there corresponds a Stokes curve configuration
in the complex x-plane which we denote by SC{ω). The position of turning
points and Stokes curve configuration continuously change as the parameter ω
moves in the complex ω-plane.

DEFINITION 1. Two Stokes curve configurations SC(ω) and SC(ω') are topo-
logically equivalent if there exists a topological mapping, which transforms turn-
ing points to turning points, between two Stokes curve configurations.

DEFINITION 2. A parameter ω0 is regular if there exists a neighborhood
U(ω0) of ω0 such that for all ω in U(ωQ), SC(ω0) and SC(ώ) are topologically equi-
valent. If ω0 is not regular, we call that OJ0 is singular, and denote by Iω the
set of all singular points.

DEFINITION 3. A continuous rectifiable curve C in the ω-plane connecting
ωλ and ω2 is a equivalent connection between ωx and ω2 if all ω e C are regular.
Then the Stokes curve configuration SCiω^) and SC(ω2) are topologically equi-
valent. We say that α>i and ω2 are equivalent if there exists an equivalent con-
nection between ωx and ω2.

Let us assume that the function k2(x, ω) has a form

(3.1) k\x, ω)=am(ω)xmΛ-am-1{ω)xm+ιΛ- ••• ao(ω)

with polynominal coefficients of ω and has a factorization

k\x, ω)=am(ω)(x-b1(ω)Y1 - {x-

where bj{ω) are algebraic functions of ω and then b3(ω) are finitely many valued
analytic functions. Then, the set of singular points Iω consists of I^\i=lf 2, 3),
where /L1) is the set of zero of am(ω), /L2) is the set of points ω for which at
least two bk(ω) and bj{ω)(kΦj) coincide and /L3) is the set of point ω such that

ω: In\
- 1 J

/«>= [J \ ω : Im\ k{x, ω)dx=O

If ωQ^I{ω\ this means that the Stokes curve configuration of k2(x, ωQ) has at
least one Stokes curve which connects two turning points, and the algebraic
singularities of bi(ω) are contained in I™. By the difinition, Iω is a closed set.
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/^1} and /L2) consist of at most finite number of points and I™ defines curves in
the α>-plane, which we call singular curves.

PROPOSITION 3.1. The set of singular points Iω does not depend on the choice
of branches of bj(ω)(j — l, 2, •••, /) and k(x, ω).

Proof. This comes from the facts that the change of the choice of branch
of k{x, ω) induces a permutation of Stokes curves and does not change the
Stokes curve configuration in the whole x-plane, and the change of branch of
algebraic functions bo(ω) give us a permutation between some of bkWs.

Here we give a few properties of the set of singular points. The number
of points of /Lυ and 7L2) is finite. If ω0 does not belong to /(

ω

υ or I™, the func-
tion FtJ(ω) defined by

Ϊ
bjίω)

k{x, ώ)dx ,
6ι(ίe>)

where the integral path in the x-plane is to be taken such that it does not pass
through any point bk(ω)(k = l, 2, ••• , / kΦi, j) for all ω in a neighborhood of ωQ,
is an analytic function of ω in a neighborhood of ω0. Then if ω0 is in Γ*\ the
set I(^lj={ω: Im FtJ(ω)=Q} define curves passing through ω0. Next, let ω0 be in
7^υ or /^2). ω0 may be infinity. When ω approaches to ω0, each of the bk(co)'s
either goes to infinity or tends to some finite value.

Let i and be fixed (ι<j). Suppose at first that when ω tends ω0, there is
no bk(ω) which goes to infinity, and then we can assume that

(k = l, 2, •••, /, kΦϊ)

Here bkι are constant, and akι, δkι are nonnegative rational numbers. Then

= Vam(ω) \bj(ω'~bιCω)V(x + bx(w)-b^))^ ••• (x + bi(w)^bL(w))^ dx .
JO

Here we assume without loss of generality that the exponents aki(kΦϊ) satisfy

Then we have for ^^5 —

and for s^k^t,
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Here we used a substitution i = ( ί o -
Then Fιj(ω) becomes

where

0

)ιl\ω-ω,)p, ρ={aliγ1-

H(τ,ω)dτ,

X II {r-6*,(l+O[(a>-a>o)4*\]) */*

X Π {τ-^^(ω-ωo)
ί + l

Then we have

= c (const.)

If cφQ, then this means that when ω tends to ω0

Fτj(ω)~C am(ω)-σ/2Kω-ω0y, p rational,

and thus only a finite number of singular curves can start from ω0(or enter to
α>o). The cases that when ω->ω0 some of bk(ω)'s go to the infinity and that ω0

is infinity can be treated analogously. After all, from points in ΓJ,\ or /(J} a
number of singular curves start, and tend to the singular points or extend to
the infinity. The whole complex ω-plane is divided by the singular curves into
a finite or an infinite number of components of regular points.

Before going into the study of the roles of these singular points, we give a
few examples

EXAMPLE 1. k\x, ω)=ω—x2 (Harmonic oscillator. Fig. 1 (i))

Iω=I(^I(<ϊ\ /L2)={0}, I^^iω: Imω=0}.

EXAMPLE 2. k2(x, ω)—x{x—ω)2 (Density wave theory of spiral galaxy [5],
Fig. I, (ϋ)).
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EXAMPLE 3. k\x, ω) = a(ω)(x —bλ(ω))ri(x—b2(ω))r2 (Two turning point pro-
blem).

L υ = {ω : α(ω)=0}, /<? = {

Γ ( 3 ) _ : Im

(i) 2 (ii) k2(x,ω)=x(x-ω)2

Fig. 1. Singular curves

Now let us consider the parameter dependence of the fundamental systems
of solutions of the equation (1.1). As stated in the § 2, we can define several
canonical domains for each parameter and the union of these cannonical domains
cover the whole complex x-plane. For each canonical domain D(ω)> associated
with a turning point a(ω) and a Stokes curve S(ω), there exists a fundamental
system of solutions of (1.1) that have asymptotic expansions of the form (2.1).
Then we denote thus characterized fundamental system of solutions by
Y{a, S, D: ω} and its asymptotic expansion (2.1) by YWKB{CL, S, D: ω\, that is

(3.2) Y{a, S, D: ω} = YWKB {a, S, D : ω), tf->oo).

THEOREM 3.1. Let C be an equivalent connection between ω0 and ω. If

Y{a, S, D: ωo}^YWKB{a, S, D: ω,},

Then the analytic continuation of Y{a, 5, D: ω0} with respect to ω along C has

Y{a, S, D: ω}^YWKB{a, S,D: ω}.
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Proof. It is sufficient for us to prove this theorem under the condition that
ω is sufficiently close to ω0. Then D(ω0) and D(ω) have a sufficiently large com-
mon part. From the existence theorem, there exists a fundamental system of
solutions Ϋ{a, S, D \ ω] whose asymptotic expansion in D{ω) has a form
YWKBW, S, D\ ω). Let B be any compact set contained in every D(ω') for ω'
eC. Now we put 7 {a, S, D: ω} — {y^x, ω), y2{x, ω)}, and Y {a, S, D: ω} =
{yi(x, ω), y2(Xy ώ)} that is obtained from Y{a, S, D; ω0} by the analytic cont-
inuation with respect to ω. The asymptotic expression (2.1) for ω—ω0 means
that for x^B,

\k(x, ωo)exp{λξ(x, a, ωo)}Zyi(x, ωo) — ck(x, α>0)~α/2) exp{—λξ(x, a,

\k(x, α>o)exρ{—λξ(x, a, ωo)}ly2(x, ωo)—ck(x, ω o )" α / 2 ) exp{λξ(x, a, ωo)}']\<Kλ-1

for some positive constant K. But from the continuity of all the functions ap-
pearing in the above inequalities, the above inequalities are also true if ω0 is
replaced by ω in B. Since both of yt(x, ω) and y%(x, ω) ( ί=l , 2) are solutions of
the same equation (1.1) and D(ω0) is sufficiently close to D(ω), then yτ(x, ώ) must
have the same asymptotic expansion as yx{x, ω) in D(ω). Therefore we have
proved

Y{a, S, D\ ω} = YWKB{a, S, D; ω}.

THEOREM 3.2. Suppose that ω0 and ω are equivalent, and there exist two
fundamental systems of solutions such that

Y{au Slt Dλ ω0} = YWKBίalf S1} Du ω0},

Y{a2, S2, D2; ω0} =YWKB{O<2, S2, D2, OJ0}.

Let R(ω0) be the asymptotic expression of connection matrix between Y{au Slf

Dx] ω0} and Y{a2, S2, D2; ω0} :

YWKB{CI2, S2, D2; ω0} =R(ωo)YWKB{a1, Slt D1\ ω0}.

Then we have

(3.3) YWKB{CI2, S2, D2; ω} =R(ω)YWKB{a1, Slf Όx\ ω}.

Here we consider the fundamental system Y as a column vector.

Proof. This is obvious from the theorem 3.1.

From the above two theorem, we get the followings.

COROLLARY 3.1. Let Ω be a component of regular points in the ω-plane.
Then the asymptotic expansion (3.2) and the connection formula (3.3) uniformly
hold with respect to ω in every compact subregion of Ω.

We can extend the uniform validity of the above corollary across the boun-
dary of Ω in some cases. To do so, we introduce the term "preservation of the
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canonical domain". In general, a canonical domain D(ω) for a regular point ω
can not always become a canonical domain when ω tends to a singular point ω0.
This can be seen from a simple example in Fig. 2, a canonical domain D(ω) con-
taining S1WS5WS3 is splitted when ω tends to a positive real ω0. But we have
the followings. Suppose that the regular point ω tends to a singular point ω0 in
such a way that a canonical domain Z>(ω), associated turning point a(ω) and
Stokes curve S(ω), become a canonical domain D(ω0) associated turning point
a(ω0) and Stokes curve S(ω0), then we say that the canonical domain D(ώ) pre-
serves as ω tends to ω0. In this case, it is easy to see that the asymptotic ex-
pansion (3.2) is valid for ω=ω0.

Let / be a singular curve both sides of which are components of regular
points Ω and Ω'. Let ω0 be on /, but not a point of I™ or I™. If D(ω0), a(ω0),
S(ω0) are a canonical domain, associated turning point and Stokes curve respec-
tively, then there exists a triplet D(ω), a(ω) and S(ω) that becomes D(ω0), a(ω0)
and S(ωQ) as ω tends to ω0 from both sides of /. Thus we have a following
theorem.

&

ω : Real positive

ω\ Complex

Fig. 2. Canonical domain preservation

THEOREM 3.3. Let I be a singular curve which does not contain any points
of I{ω or I™ in its interior. If we have for
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Y{a, S, D; ω,} = YWKB{a, S, D ω0},

then this asymptotic expansion is uniformly valid in every compact svbset of
Ω'^Jl. Similarity if R(ω0) is the asymptotic expansion of the connection matrix
between two fundamental systems of solutions, that is

Y{a2, S2, D2; ωo}=R(ωo)Y{alf Slf D1\ ω0),

then this connection formula is uniformly valid in every compact subregion of
ΩVΩ'KJl.

Now it remains problems of constructing uniform asymptotic expansions with
respect to ω when ω moves in a neighborhood of ω0 which is in 7L1} or I^\ But
this is in general very difficult and have to find completely different forms of
asymptotic expansions from the WKB type expansions, [6].

§ 4. Distribution of eigenvalues.

In the previous section, we saw that the singular curves can be boundaries
of the domain of ω where the asymptotic expansions (2.1) are uniformly valid
with respect to ω. But these singular curves seem to play another special role
in certain boundary value problems, that is, the example of the eigenvalue pro-
blems of harmonic oscillator and of the density wave theory [5] strongly suggest
that the distributions of infinite sets of eigenvalues are asymptotic to some of
the singular curves. More precisely, we can conjecture that if there exists an
infinite set of discrete eigenvalues for a certain boundary value problem of the
equation (1.1), then these eigenvalues are on one of the singular curves or
asymptotic to it, and conversely, for each singular curve there corresponds a
boundary vaule problem whose eigenvalues are on or asymptotic to the singular
curve. This conjecture is partially true from a result of Evgrafov and Fedoryuk
[2], page 44.

THEOREM 4.1 (Evgrofov and Fedoryuk). Suppose that ω is not in the set of
singular points and that k2(x, ω) has all its zeros simple. Then if the solution
yι(x, λ, ω) has the asymptotic form (2.1) in some Stokes region So of the half
plane type where yλ(x, λ, ω) exponentially decreases as x~*oo m So, the asymptotic
formula (2.1) of yλ{x, 1, w) is valid in the whole complex x-plane except for arbi-
trarily small neighborhoods of certain Stokes curves that are uniquely defined by
So. Further this solution exponentially increases in all canonical domains other
than So.

Therefore this is rewritten by using the term of singular points as follows:

COROLLARY 4.1 (Evgrafov and Fedoryuk). Let the boundary value problem
be to find the solution y{x, ?,, ω) of (1.1) with the eigenvalue parameter ω such
that lim y(x, λ, ω)=0 along two rays that extend to infinity in different Stokes
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regions of half-plane type.

Then if ω dose not belong to the set of singular points, it can not be an eigen-

value of the problem for sufficiently large λ. And if there exists an infinite

number of discrete eigenvalues for this boundary value problem, they are on the

singular curves.
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