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UNICITY THEOREMS FOR MEROMORPHIC OR

ENTIRE FUNCTIONS

BY HIDEHARU UEDA

1. Let / and g be meromorphic functions. We denote the order of / by pf.
In what follows we use the notation f=a—^g—a in the following sense: Zn is a
.zero of g— a of order at least v(ri) whenever Zn is a zero of f—a of order v{ri).
If k is a positive integer or oo, let E(a, k, f)—{z^C: z is a zero of f—a of order
Sk.}, where C is the complex plane. If a belongs to C=C\J{oo}, we denote by
ήk(r> a, f) the number of distinct zeros of order^& of f—a in \z\^r (each zero
of order^& is counted only once irrespective of its multiplicity). And we set

Nk(r, a,f)=ln^'a'f)'t
n^'a'f)dt + nkφ, α,/)logr.

Further we denote by ntfXr, a /, g) the number of common zeros of order^k of
f—a and g— a in z\^r, and we set

NtfXr, a /, g)= \ — — - — - — - — - — dt + n^XQ* a f, g) log r .

In this paper we shall prove some unicity theorems for meromorphic or entire
functions.

2. Gopalakrishna and Bhoosnurmath have proved the following theorem in [1].

T H E O R E M A. Let f and g be transcendental meromorphic functions. Assume
that there exist distinct elements au •••, am in C such that E(alt k%, f)=E(at, kx, g)
for ι=l, •••, m; where each kt is a positive integer or oo with k^ ••• l^km, and
{kill1 satisfies

Til h Jp
yrΛ κ l κ l - ^ CΛ

X = 1 ki + 1 kχ+1

Then f= g.

From Theorem A several consequences including a theorem of Nevanlinna
[4] are deduced.

THEOREM AI. Let f and g be transcendental meromorphic functions. If there
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exist distinct seven elements alf •••, a7 in C such that E(alf 1, f)=E(att 1, g), then

THEOREM A2. Let f and g be transcendental meromorphic functions. If there

exist distinct six elements au •••, a6 in C such that E{aτ, 2, f)—E{aτ, 2, g), then

f=g-

THEOREM A3. Let f and g be transcendental meromorphic functions. If there

exist distinct five elements alf •- , a5 in C such that E(au p, f)=E(alf p, g), where

p is a positive ιnteger^3 or oo, then f=g.

We first remark that the assumption on the number of distinct elements
alr •••, am in C satisfying E(alf klf f)=E(alf klf g) cannot be improved in the
above each theorem A% ( i=l , 2, 3). This fact is clear in the case of Theorem A3.
In order to see this in the cases of Theorems A1 and A2 we may consider the
following examples. Set

o (l-tnY2lndt (n=3, 4).

Then φs(ιv) maps the unit disc onto an equilateral triangle zxz2z3, where z1=φ2>{l)y

z2—φ3(ω), and zs=φB(ω2), where ω is a cubic root of 1. And φi(w) maps the unit
disc onto a square zλz2zzz±, where z1=φ4(l), z2~φJS), zz=φ4(—1), and zά=φ±(—i).
The inverse function of z=φn(w) (n=3, 4) can be analytically continued over the
whole plane as a one-valued meromorphic function by Schwarz's reflection principle
and the resulting function w=fn{z) is doubly periodic. In the case of n~3, we
put α i = l , a2=ω, az=ω2> α 4 =0 and α5=oo. Then all the zeros of f—aτ (ι=l, 2, 3)
are taken with multiplicity 3. In the case of n—4, we put α ^ l , a2=i, a3=—l,
α4— — ιf a-o=0 and α6—oo. Then all the zeros of /— a% (ι=l, 2, 3, 4) are taken with
multiplicity 2. Therefore if we set gs=(of3 and gt=ι fA, we have E(alf 2, / 8 ) =
E(at, 2, g3) ( ι=l , •••, 5) and E(at, 1, fi)=E(aι, 1, ^4) ( ι=l , ••• 6). And it is clear

that Σ δ(aιy / 8 ) = Σ 3(α», ^ ) = 0 and Σ δ{ax, Λ ) = Σ δ(α», ^ ) = 0 .
1=1 t=l 1=1 1=1

Secondly we note that in Theorem A, the Nevanlinna deficiencies of / and g
are not taken into consideration. With respect to this point we shall prove

T H E O R E M 1. Let f and g be transcendental meromorphic functions. Assume
that there exist distinct elements alt •••, am in C such that E(al} k%, f)=E(aτ, kt, g)
for ι=l, ••• m\ where each kx is a positive integer or oo with k^ ••• ̂ km, and
the sequence {&J™ satisfies

m h h Λ

Then the inequality:

m

2lt f), δ(at,
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implies f=g. Especially, if the right hand side of (*) is equal to zero, "min" in
the condition (*) can be replaced by "max". Further if both ρf and pg are finite,
"δ" in the condition (*) can be replaced by "Δ" (Valiron deficiency).

From this, we deduce several consequences which include the following three
results.

1° Let / and g be transcendental meromorphic functions. Assume that there

exist distinct six elements alr •••, α6 in C such that E(alf 1, f)=E(atf 1, g) and

Σmax(3(fl., / ) , δ{au g))>0.
ι=i

Then f=g.

2° Let / and g be transcendental meromorphic functions. Assume that there

exist distinct five elements a1} •••, a5 in C such that E(aτ, 2, f)=E(alf 2, g) and

Then f=g.

3° Let / and g be transcendental meromorphic functions. Assume that there

exist distinct five elements alt •••, α5 in C such that E(at, 1, f)—E{aτ, 1, ^) and

Then f=g.

COROLLARY 1 {of 3°) Let f and g be transcendental entire functions. Assume
that there exist distinct four complex numbers alf •••, α4 such that E{al} 1, / ) =
E{aτ, 1, g) and

4

Σ max(δ(αt, /), δ{aτ, g))>0.

Then f=g. In the case of ρf, pg<<χ>, "δ" in the assumption can be replaced by
"Δ".

COROLLARY 2 {of 3°) Let f and g be transcendental entire functions of
order>l/2. Assume that there exist distinct four complex numbers aly •• α4 such
that E{ax, 1, f)=E(al} 1, g). Further assume that all the zeros of f—ax lie on the
negative real axis and that they have a finite exponent of convergence. Then f^g.

Proof of Theorem 1. First suppose that alf •••, am are all finite. By the
second fundamental theorem, we have

(2.1) (m-2){T(r, / )+T(r , ^ ) } ^ Σ { M r , at, f)+N{r, ax, g)}+S{r, f)+S(r, g),

where S{r, f)=o{T{r, /)), S{r, g)=o{T{r, g)) as r->co outside a set E of finite linear
measure. For brevity, we put S(r)=S(r, f)+S(r, g). Here we use the following
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obvious inequalities:

These inequalities hold also when we replace / by g. Substituting these into (2.1),
we have

m r k
(2.2) (m-2){T(r, f)+T(r, g)} ^ Σ [~^γ {Nki(r, a,, f)+Nk((r, a,, g)}

^ T T Γ Σ ^ t r , fl,;/, g)+ΈΊ-
!

ττ{N(r, a,, f)+N(r, α,, *)}+S(r),

where we used the fact that ^ I / ( A Ί + 1 ) ^ ••• ^km/(km+ί) and Nkl(r, a%, f)=
Nki(r, at,g)=N?*Kr, a f, g).

Now suppose that fΦg. For αεC, each common zero of f—a and g— a is a
zero of f—g. Since α^ •••, am are all distinct, we have

(2.3) Σ M*"(r, α.;/, ^)^Mr, 0, f-g)<T{r, f-

^T(r, f)+T(r,

From (2.2) and (2.3), we obtain

(2.4)

^ Σ -r\τ Wr, α,, /)+%, a,, *)} +S(r).

By the definition of the Nevanlinna deficiency, for any ε>0, there exists r0 (>0)
such that r ^ r 0 implies N(r, at, f)+N(r, at, g)<(X-δ(alf /)+e)T(r, / )+( l-δ(α ι , ^
+e)T(r, g) (z=l, •••, m). Hence we have from (2.4)

(2.5) ( m - 2 - ^ - - Σ τ^T){T(r, /) + T(r,

ε)Γ(r, g)^ f (3(a,, /)-e)T(r, /)+(3(α,, g)-ε)Γ(r, g) | ^
1 = 1 I ^z + 1 J ~~

Here we note that

and the second term of the left hand side of (2.5)^
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^ - Σ r a i n ^ α , /), δ(alf g))-mε){T{r, f) + T(r, g)).

Thus as r(Φ £)—>oo we have

This inequality contradicts the condition (*). Hence we have f=g.
Suppose now that some ax is oo. Then let a be a complex number different

from fli, •••, am. Then (αi —α)" 1, •••, (αm —α)" 1 are all distinct and finite. If we
put F=l/(/-α) and G=l/(g-a), we have £(α,, Au, f)=E(alf kt, g)<=)E((ai-a)-\
kx, F)=E((aι-a)-\ k%9 G), and δ(aιt f)=δ((ai-a)-\ F), δ(at, g)=δ((ai-a)-1

> G)
(i=l, •••, m). Hence / and g satisfy the assumptions in Theorem 1. <=̂  F and G
satisfy the assumptions in Theorem 1 when we replace a by (at —a)'1. Thus by
what we have proved above, F=G, that is, f=g.

Next, we consider the case of

In this case we have

1 ^ T(r, f)
K = T(r,

y r: large enough),

where if is a positive constant (>1) depending only on m. This is clear if f=g.
If f^g, we note that the following inequality holds: For any positive number
τ<l, there exists r0 (>0) such that r^r0 implies

m

(2.6) Σ N'^{r, at;f, g)>τ{T{r, f)+T(r, g)} (r€ E, r: large enough).
1 = 1

If this were not the case, we would have a positive constant τ o <l and a monotone
increasing sequence {rn} tending to oo as n^co such that{rjn£=^> and

m

Σ W(r«, α,;/, g)^τo{T(rn, f)+T(rn, g)} .
1 = 1

Substituting this into (2.2) we would have instead of (2.5),

t, /)-ε)T(rB, /)+(3(α,, g)-ε)T(rπ> g)

However, since m—2—2ro&i/(&i+l)— Σ (^i+l ί '^O in this case, the above in-
1 = 1

equality is absurd. Hence (2.6) holds. From this we obtain



462 HIDEHARU UEDA

mT(r, /), mT(r, ^ Σ f ^ r , a%;/, g)>τ- {T(r, f)+T(r,

This implies

• < Vf^A- < IL-Σ- (T* E> r : large enough).
m—τ T{r, g) τ

Now, in order to see that "min" in (*) can be replaced by "max" in this case,
we may prove that

Σ min (δ(at, f), δ(at> g))=0 -=> Σ max (δ(aτ, /), δ(at, g))=0 .
1 = 1 1 = 1

Assume that there occur both

fimm{δ{auf),δ{aι, g))=0
1 = 1

and
m

Σ max(δ(αt,/), δ(aτ, g))>0.
1=1

For example, we may assume that δ(alt f)>0=δ(alt g). In this case, we have
by (2.5),

(r&E, r: large enough).

Taking r (&E) large enough, { }>0 holds. Dividing the both hand sides by
T(r, g), we have

-S T{r, g) ~ δ(alr f)f) »
t = ! ki

Since sXis arbitrary, this implies

which is a contradiction.
Finally we consider the case of

h ki+i kx+i

and ρf, pg<co. In this case, we have E=φ, and
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Hence, if f^g, we have by (2.4),

( 2&i \ m l

m - 2 ~lΓXr) ί T ^ /)+?>> g)}^Σ-r±rWr, au f)+N(r, at, g)}+S(r)
m l / 2k-, \

^Έη-Wmr, f)+T(r, g)} +S(r)=(m-2-~^τ){T(r, f)+T(r, g)}
1 ktl \ #+1 /

Thus Mr, ax,f)~T(r9f) and Mr, flι, £)~7(r, #) (r-oo) (i=l, ..., m). These
imply J(α t, f)=d(aι, g)=0 ( ι=l, •••, m). This completes the proof.

Proof of Corollaries 1 and 2. From 3°, in this case,

Σ min(<5(αι,/), 5(α
1

implies / = £ . However, as in the proof of Theorem 1, we can replace "min" by
"max". And further if pf, pg<^, we can replace "<5" by " J " as in the proof of
Theorem 1. The details will be ommitted.

Now, we shall prove Corollary 2. If pf=oo} we have by the assumption
δ(fli, / ) = 1 . Hence from Corollary 1 we have f=g. Let p be the genus of the
canonical product formed with the sequence of zeros of /—a2. If Kpf<oo and
p^l, a well known theorem due to Edrei and Fuchs [2] implies δ(alf /)>0.
Hence from Corollary 1 we have f=g. If Kρf<oo and p=0, we have δ(a1} f)
= 1 . Hence we again have f=g. If l/2</> /^l, a theorem of Shea [8] yields
Δ(dι, /)=1—sin πpf>0. So if pg<co} Corollary 1 gives this proof. However if
pg=oof then δ(alf g)=l. This also yields f=g by Corollary 1. This completes
the proof.

3. Nevanlinna [4] proved the following result.

THEOREM B. Suppose that f and g are transcendental meromorpluc in the
plane and let {αjί be four distinct elements in C. Then if f~ax7^g—a% (z=
1, 2, 3, 4),f=g, or g=S(f), where S(z) is one of the linear transformations which
fix two elements in {αjl and permute the other two elements in {αjί.

In this section, we shall improve the above theorem in the case that / and g
are entire functions. Our results may be stated as follows.

THEOREM 2. Let f and g be non-constant entire functions such that f=0^
g=0 and f=l^lg=l. Further assume that there exists a complex number a
(Φθ, 1) satisfying E(a, k, f)=E(a, k, g), where k is a positive integer (^2) or oo.
Then f and g must satisfy one of the following four relations.

(i) f=g (ϋ) (f-j)(g-j)=J (Thιs occurs only for a = l/2.)

(iii) fg=l (This occurs only for a — — 1.)
(iv) (f—l)(g—1) = 1 (This occurs only for α=2.)
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THEOREM 3. Let f and g be non-constant entire functions such that f—^Z^
g=0 and f=l^g=l. Further suppose that there exists a complex number a (Φθ, 1)
satisfying f^a^g—a. Then f and g must satisfy one of the following four
relations.

(0 f=g
(ii) f=eajra, g—(l — a){l-\-ae~a} (a is a non-constant entire function.)

(iii) fg=l (This occurs only for α = —1.)
(iv) (f-l)(g-l) = l {This occurs only for α=2.)

We shall prove Theorems 2 and 3 from the following result.

LEMMA. Define f as (3.1) with two non-constant entire functions β and γ.

(3.1) / =
l - e β

l - e r

Then if f is a non-constant entire function, for any complex number a (Φθ, 1),

(3.2) lim j—'—— > 0 ,
r̂ oo m(r, f)

where E is the set of finite linear measure depending only on f.

Proof. The proof proceeds in two stages. In the first stage, we prove under
the assumptions of the lemma,

(3.3) IS >o -{0, 1}).

We assume (3.3) to be false for some a (ΦO, 1) and seek a contradiction. This
assumption implies that / has many zeros. And we note that the following in-
equalities hold:

(3.4)
mix, eβ) .77— mix, e

' ^ h m \X XXΛ.Λ. , v v — XΛ.Λ.Λ.Λ. ,

7^> m{ry er) z ^ m(r,

To prove the first inequality, we make use of the argument of the impossibility
of BoreΓs identity. The detail is as follows. In view of (3.1) we have eβ—fer

+ / = 1 . Put φ1 = eβ, φ2=-fer and φs=f. Then φ!+φ2+φs = h and φ{?:)Jrφψ:)Jrφ
=0 (n = l, 2). Further put

ψy

(3.5)

1

φϊ/ψ2 φ'ί/ψz

Assume that J=0. In this case, we have J'ΞΞO. This implies φ2=Cφ3+D (C, D:
constants), i.e., —fer—CfJrD. Since / is entire, C must vanish. Hence f——Der

(DΦO). This contradicts our assumption. So, we deduce J^O. In this case, we
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have from (3.5)

(3.6) φi=e?=Δ'/Δ.

Thus

(3.7) m(r, eβ)^rn(r, Δ')+m(r, Δ-^+OiDS-mίr, Δf)+rn{r, Δ)+N(χ, oo, Δ).

Here we estimate m(r, Δf) and m(r, Δ). From (3.1) we have N(r, 0, f)=N(r, 1, eβ)
-N(r, 1, eO^O. This yields m(r, ̂ )^(l-tf(l))m(r, eθ (r$=£, r->oo). Hence
m(r, φs)^m(r, eβ)+m(r, er)+0(1)^(2+o(l))m(r, ^ ) (r<££, r->oo), and
m(r, f)+m(r, er)+ 0(1)^(3+oQ))m(r, eβ) (r$E, r— oo). Thus m(r, J ) =
(r, eβ)) (r&E, r->oo) and m(r, Δ')=O(\ogrm(r, eβ)) (r$E, r->oo). Substituting
these into (3.7) we deduce

(3.8) Mr, oo, J)^(l-0(l))m(r, ê 3) ( r ^ £, r - oo).

However direct computation of Δ shows that N(r, oo, Δ)^2N(r, 0, / ) . It follows
from this and (3.8) that 2N(r, 1, eβ)^{l-o(l))m(r, eβ)+2N(r} 1, eO From this we
easily obtain

lim nr < r .

This proves the first inequality of (3.4). Next, to prove the last inequality of
(3.4), assume that this is not the case. Then there exists a sequence {rn}™a
(0, oo)—E tending to oo such that

n-oo m{rn, er

In view of (3.1) we have

(39)

Then using a result of Nevanlinna [3, p47], we have

m(rn, e^N(rn, 0, e?)+N(rn, oo, e»)+N{rn, 0,

=Λ(r,,, 0, F)+S(rn, e^{l+o{l))m{rn, e?). (n - oo)

This shows that ΛΓ(rB, 0, i ? )=( l + o(l))m(rn, e") (M —oo). Hence N(rn, a, f)=
N(rn, 0, F)—N(rn, 1, e r)=(l+c(l))w(rπ, e^) (w->oo). On the other hand, we easily
obtain m(rn, f)=(l+o(l))m(rn, e?) (w — oo) from (3.1). Thus

/) =

/)

a contradiction. This proves the last inequality of (3.4).
Next, we observe the following equality:
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By the second fundamental theorem, we have

m(r, /)ί£ \+N(r, a, f)+N{r, oo,

Hence by our assumption we deduce

Thus

,. N(r, 0, f)-N{r, 1, /) Λ. N(r, 1, eβ)-N(χ, 1,

However, since m(r, β^)+m(r, βr)+O(l)^(3/2+ί?(l))m(r, β'3) ( r ί £ , r-»oo), we have

jV(r 1 eβ)—N(r 1 e^~r)
lim — ; ~— =0 .

Therefore (3.10) follows.
Now, from our assumption, (3.9) and (3.4) we deduce (1—o(l))m(r, er)^N(r, 0, F)

^(l+o(l))m(r, er)+o(rn(r, /))=(
£, r-*oo). This implies

(3.11) Mr, 0, F)=(l + 0(l))m(r, er) (rΦ £, r - oo).

Then, in view of (3.9), (3.4), (3.10) and (3.11), we have

m(r, F)^N(χ, 0, F)+N(r, oo, F)+N(r, 1-a, F)-N(χ, 0, i^J+SCr, F)

r, er)+N(r, a, e^r)-N(r, 0, £ ^ - - ~ ^ - ) + S ( r , F)

Λ-o(rn(r, eβ)+jn(r, er))

r, eβ-r))+o(m(r, eβ)+m(r, er))

, r -> o o ) .

It follows from this and (3.11) that

(3.12) m{r, F)={l+o{l))?n{r, er).

On the other hand, we deduce from (3.10) and (3.4)

(3.13) m(r, F)^(l-o(l))m(r, aer-eβ)^(l-o(l))N(r, 0, α ^ - ^
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=(ί-o(l))N(χt α, g^-0=(l-o(l))m(r, ^~0

, r — oo).

(3.12) and (3.13) lead to a contradiction. This proves (3.3). In the second stage,
we prove (3.2). Assume first

ΓT— mix, eβ) ,. m{rn, eβ)

i r)r̂ oo mix, eτ) π-oo m(rΛ, e')

In this case, we have m(rn, f)—(l-\-o(l))m{rn, eβ) (n—>oo), and N(rn, a, f)—
(l+o(l))m(rn, eβ) (n->oo). This implies that

hm : — 7 ^ — — J-

Next, assume that

mir, eβ

hm

Let {zn} be all the roots of f=a with multiplicity^3. Then {zn} are the roots
of F'(z)=er{aγ'—β'eβ~r}=0 with multiplicity^2. Here note that we may assume

^^2m

If not, the above argument shows that J=0. This implies f=—Der (DφQ). In
this case, it is clear that (3.2) holds. Therefore we assume (3.4). This yields
w(r,^-0^wx(r,^)+m(r,e0+O(l)^(3/2+o(l))m(r,^) ( r€£, r-oo) and m(χ,e^r)
^m(r, eβ)-m(r, er)+0(1)^(1/2-o(l))m(r, eβ) (r&E, r->oo). Hence we have

(3.14) mix, γ')+m(r, β')=o(miχ, er)+m(r, eβ))=o(m(r, eβ~r)) (re E, r - oo).

Noting (3.14), and applying the second fundamental theorem to G=aγ/—β/eβ~r

f

we have

G)^N(r, 0, G)+N(r, oo, G)+N(r, 0, β'eP'r)+S(r, G),

which implies w(r, G)=(l+(?(l))iV(r, 0, G)=(l+o(l))iV(r, 0, G)iχ&E, r—oo). Hence

lim —T^r— =:lim — n— -̂ = l i m Λ— = 0 .
m ( r G ) ^ ^ ^ " )13* m ( r ' G ) I

Since m(r, f)^m(r, e^)-m(r, er)+0(l)S(l/2-o(l))m(r, e*5), we deduce

,,.„ Mr, 0, G)
hm — - — = 0 .

Thus we easily obtain

(3.15) N(r, a, m\{N(r, a, f)-NJr, 0, G)} = jN(r, a, f)-o{m(r, /))
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(rmE, r->co).

Substituting (3.15) into (3.3), (3.2) follows. This completes the proof of Lemma.

Proof of Theorem 2. By assumption, we have with two entire functions a
and β

(3.16) f=eag, f-l=eβ(g-l).

(A) Suppose that eβ = c (ΦQ). If / has a zero, e = l . Hence f=g. If / has
no zeros and cΦl, we have /— cg=l — c (ΦO). Using a result of Niino and
Ozawa [5], we obtain 2=5(0, f)+δ(O, g)Sl, a contradiction.

(B) Suppose that eβ~"==c (Φθ). If c=l , we have f=g. If cΦl, we have

w > i i y s~(l-c)f+c J~ l-c ' s~ l-c

(γ: a non-constant entire function).

Assume first that a=—c/(l—c). Then E(a, k, g)=E(a, k, f)=φ(k^2). Hence
by (3.17) we deduce a=l/(l—c). So, we obtain -c/(l-c)=l/(l-c), i.e., c=—1.
Substituting this into (3.17), we deduce

1\/ 1\ 1 1

Assume next that aφ — c/(l — c). In this case, f=a has infinitely many simple
roots. Hence we have a=a/{a(l — c)+c} i.e., a—I, a contradiction.

(C) Suppose neither eβ nor eβ~a are constants. In this case, we have by
(3.16)

λ—pβ l — Pβ

(3.18) /=T^Γ>

Using our lemma to /, we have

(3.19) ίίϊ

Now, let {wn} be all the common roots of f=a and g—a. From (3.18) we
have ββ<w»>:=g0ctι;n> = :L Hence

. =

This shows that {wn} are the roots of

(3.20) aa'(z)+a-a)β'(z)=0.

Also let {zn} be all the roots of f—a with multiplicity ^ 3 . The argument in
the above lemma shows
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(3.21) N{r, {zn})=o(m(r, /)) ( r ί £ , r-oo).

If / has a zero, we have

h m — 7Γ-— ̂ z .

This implies ra(r, eβ)=O(m(r, /)) and m(r, α')+w(r, βf)=o{m(r, eβ)) (r&E, r-*oo).
Hence unless (3.20) is an identity, we combine (3.20) with (3.21) to deduce N(r, a, f)
o(m(r> /)) (r$E, r^oo), which contradicts (3.19). If (3.20) is an identity, we have

(3.22) β(z)=a(β(z)-a(z))+C (C: a constant).

Since β—a is a non-constant entire function, it is easy to see that a is an
integer, and so, C is an integral multiple of 2πi. Further we note that aΦO, 1, —1
by our assumptions.

If α=2, we have from (3.1) and (3.22) f=l+eβ/2==l + eβ-a. On the other hand,
/2. Thus ( / - l ) ( g - l ) = l . If α^3,

If flS-2,

f— —
+gCiαi-DC/9-α)J. #

In these cases, / and g do not satisfy E(a, k, f)=E(a, k, g). Finally we consider
the case that / has no zeros. It follows from (3.1) that

- = eδ (δ: a non-constant entire function), i.e.,
l-eβ

(3.23) eδ-eβ-a+δ+eβΞΞl.

Using again the result due to Niino and Ozawa, we have eβ~a+δΞ=— 1. Hence
f=eδ=-ea-β=-eβ. On the other hand, g=fe-

a=-eβ-a=-e-β. Thus fg=l.
This can be occurred in the case of α =—1. This completes the proof of Theorem 2.

Remark 1. The proof of Theorem 3 are essentially contained by the above
proof. So, we omit the proof of Theorem 3.

Remark 2. Theorem 2 does not hold in the case of k=l. For instance, we
may put f=l + er+e2r and g=l+e~r+e~2r, where γ is a non-constant entire
function. Then if α=3/4, f-a=(er+l/2)2 and g-a=(e'7'+1/2)2. This shows
that /=0;^£=0, / = 1 ^ £ = 1 and E(a, 1, f)=E(a, 1, #) (=0), but it is clear that
/ and £ do not satisfy any relations (i)-(iv) in Theorem 2.

Remark 3. Combining Corollary 1 with the proof of Theorem 2, we have
the following result.
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THEOREM 2'. Let f and g be non-constant entire functions satisfying the

following conditions (i)-(iii)

(ii) /=0^^=0, /=1^^=1,

(iii) There exist two distinct complex numbers au a2 (ΦQ, 1) such that
E(alf 1, f)=E(alf 1, g) ( ι=l , 2).

Then fΞ=g.

4. Ozawa [7] has proved the following result.

THEOREM C. Let f and g be entire functions of finite non-integral order
such that f=0^g=0 and / = l - * £ = l . Then f=g.

In this section, we shall prove the following results.

THEOREM 4. Let f and g be entire functions of non-integral order such that
f=0^1g=0. Further assume that there exist two distinct complex numbers alf az

(Φθ) satisfying E(at, k, f)=E(alf k, g) (z=l, 2), where k is a positive integer
(^2) or oo. Then f=g.

THEOREM 5. Let f and g be entire functions of finite non-integral order
satisfying the following conditions (i)-(iii)

( i) /=0^£=0,

(ii) There exist two distinct complex numbers alf a2 (Φθ) such that E(aιy 1, /)
1, g),

(iii) 3(0, f)+δ{al9 f)+δ(at,

Then f=g.

First we remark that the condition (iii) of Theorem 5 cannot be dropped.
Example: /=cos(^) n / 2 , g——f, α i = l , a2——l. (n : an odd integer Ξ>3) Next we
remark that the assumption of non-integrity of pf cannot also be dropped. For
example, we may put / = ez and g—e~z (fli=l, α 2 = —1).

The method of proof of the above two theorems is essentially the same, so
we shall prove only Theorem 5.

Proof of Theorem 5. By the assumption (i), we have with a polynomial a

(4.1) f=eag.

Non-integrity of ρf, pg and (4.1) imply
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(4.2) pf=pg>dega (=p).

(A) Assume that p^l. Let {wn} be all the simple roots of f=a1. From

the condition (ii) we have a1=ea<Wn>a1, i.e., eaiWn> = l. Hence N(r, {wn})

SN{r, 1, ea)^{l+o{l))m{r, ea)=O(rp). On the other hand, a well known theorem

of Borel yields pNCr,a1,n = pf>P' Thus Θ(alf / ) ^ l / 2 . In the same way we have

Θ(a2, jO^l/2. Here we use the condition (iii). If δ(0,/)>0, then 0(0, / )>0.

Hence θ(alf f)+θ(a2, / ) + θ ( 0 , / ) > 1 . This is impossible. If δ(au f)>0, the

above argument implies

m(r, /) 2 r-

Hence Θ(alt f)+Θ(a2, / ) > 1 . This is impossible.
(B) Assume that p=0. If we put ea = c (Φΰ), f=cg. Suppose first that

E(au 1, f)=E(alf 1, g)Φφ for i=l or 2. In this case we have c—\. Hence
f=g. Suppose next E(alf 1, f)=E(at, 1, g " ) ^ for i = l , 2. In this case, the
same argument as (A) derives a contradiction. This completes the proof of
Theorem 5.
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