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LONG PERIODIC SOLUTIONS NEAR AN EQUILIBRIUM

IN GENERAL RESONANCE CASES

BY HIDEKAZU ITO

1. Introduction

In this paper, we study the existence of periodic solutions of a system of
ordinary differential equations

(1.1) * = / ( * )

near an equilibrium solution. Here x and f(x) are real m-dimensional column
vectors with entries xk and /*(#) (k = l, •••, m) respectively, and the dot indicates
differentiation with respect to the real independent variable t. We may take the
equilibrium solution to be the origin x=0, and then we assume that the fk(x)
(k=l, ••-, m) are C1 functions of xlf •••, xm in a neighborhood of the origin.

For the study of periodic solutions of (1.1) near the origin, the eigenvalues of
C=fx(0) are crucial. Here fx(0) denotes the Jacobian matrix of f(x) at x=0, and
throughout this paper we assume that C is non-singular. As is well known, the
presence of purely imaginary eigenvalues of C is necessary for (1.1) to have
periodic solutions near the origin, but not sufficient. Let C have eigenvalues
λu ••*, λm such that λ1 is purely imaginary and Λ2=?i. Then the well known
Liapunov's Theorem guarantees the existence of a one-parameter family of periodic
solutions with primitive periods near 2π/\λλ\ under two assumptions. One of
them is that none of the πι—2 quotients λk/λ1 (k=3, •••, m) is an integer (non-
resonance condition), and the other is that (1.1) possesses an integral whose Hes-
sian at x—0 restricted to E1 is nondegenerate, where Eλ is the real two-dimen-
sional (generalized) eigenspace corresponding to λ1 and λ2 (see [4]).

In this paper, we consider the cases when the above first assumption is vio-
lated, that is resonance cases. Then, we can assume that C has eigenvalues
λlf •••, λm satisfying the following conditions for an integer r ( ^ 2 ) :

' ( i ) λk=ισk and λk+r—λk = —ισk (k = l, ••• , r) are r pairs of purely
imaginary eigenvalues such that

[A.I] σk

where nk(k = l, •••, r) are positive integers.

k (ii) no λk+2r{k—l, •" , s) is an integer multiple of λlf where s=m—2r.
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Here, of course, the condition (ii) is eliminated if 2r=m.
We consider the resonance cases under this assumption [A.I], and the aim

of this paper is to establish the existence of periodic solutions of (1.1) near x~0
whose primitive periods are close to 2π/σ1. To this end, it is a fundamental
assumption that (1.1) possesses an integral. But simple examples show (see [2],
[3], [6]), such periodic solutions do not necessarily exist even if (1.1) possesses
an integral with nondegenerate Hessian at x=0. We wish to accomplish our
purpose by imposing the suitable conditions on nonlinear terms of f(x). In this
direction, several authors ([1], [4], [5]) have dealt with resonance cases when
r=2 in [A.I] mainly for Hamiltonian system

(1.2) %k — —z , #fe+m— Λ (& — 1 , ••• , m).
OXk+m OX

Here it is noted that Hamiltonian function H(x) is an integral for (1.2). The
results obtained there can be stated in terms of the coefficients in normalized
Hamiltonian function. Among their results, it is remarkable that if n 2 ^4, the
existence of such periodic solutions is guaranteed by adding a certain condition
on the coefficients of fourth order terms of Hamiltonian function in Birkhoff
normal form.

In the present paper, we generalize this result for the system (1.1) with an
integral in resonance cases for arbitrary r. To this end, we must bring the sys-
tem (1.1) into a certain normal form by means of a suitable change of variables.
In the next section, we will show that this is possible under the following assump-
tion on r—1 integers n*> (k=2, •••, r):

O for all integer valued vectors (jlf •••, jr)

[A.2]

with 1 ^ Σ 17* | S 4 .

We note here that this assumption means n 2 ^ 4 when r=2. This normal form
will be defined there without assuming that (1.1) possesses an integral, and then
we shall study this normal form under the existence of an integral. Through
the normal form, our result will be stated in section 3.

It is to be noted that, by the assumption [A.2], λly •••, λ2r are all distinct
from one another. Then, since non-resonance condition of Liapunov's Theorem
is fulfilled for Xr~I2r, there exist periodic solutions with primitive periods near
2π/σr provided that (1.1) possesses an available integral. In this sense, what is
discussed here is the existence of "long" periodic solutions near x=0.

The author would like to express his sincere gratitude to Professor Toshihiko
Nishimoto and Professor Yoshikazu Hirasawa for their constant encouragements
and valuable advices, and to Dr. Haruki Yamada for his helpful comments and
suggestions.
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2. Normal Form

This section is devoted to the study of a normal form for (1.1). The main
purpose is to show that the system (1.1) is taken into the normal form under the
assumptions [A.I] and [A.2]. This will be accomplished by proving the follow-
ing lemma, in which the normal form is defined by the system (2.2) with (2.3)
and (2.4).

LEMMA 1. Consider the system (1.1) near the equilibrium x=0. Let f{x) be
of class C4 in a neighborhood of x=0. Assume that the eigenvalues of C=fx(0)
satisfy the assumptions [A.I] and [A.2]. Then there exists a real analytic sub-
stitution

(2.1) x—φ{u, v), (u, v)=(ulf •••, u2r, vly " , vs)

which takes the system (1.1) into the following normal form:

Uk = GkUk+r^ Pk(u)Uk-JrQki^Uk+r^Ukiu, v) ,

(2.2) Uk+r:=z — &kuk— Qk(u)Uk~\~ Pk(u)uk+r~\~ Uk+r(u> ^) >

s

Vι— Σ bιvvv-\-VL(u, v ) , {k =l, --r\ 1 = 1 , •••, s)

with

1 r 1 r

where bίv, pkμ, quμ are real constants, and sXs matrix B=(btv) has no eigenvalue
that is an integer multiple of λlf and Uk(u, v) and VL(u, v) and C4 functions of
ulf •••, u2r, vlt •••, vs such that

Uk(u, v*)=O{{\u\ + \v\Y), Vt(u, v2)=
(2.4)

( A ? = l , •••, 2 r ; / = 1 , - , s ) .

Here, (u, v2)=(ulf •••, u2r, v\, •••, vf).

Proof At first, we note that a substitution x—φ(w), which is invertible near
the origin, takes the system (1.1) into

where φw denotes the Jacobian matrix of φ. Let f(x) be a vector whose com-
ponents ?k(x) (k=l, -•-, m) are cubic polynomials such that

Instead of (1.1), let us consider a system
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\6.Ό) X=J\X) .

If there exists a substitution which takes (2.5) into the normal form (2.2) with
the origin fixed, then the substitution also takes (1.1) into the normal form (2.2).
Therefore, it suffices to determine the substitution (2.1) so that the system (2.5)
is taken into the normal form (2.2).

By the assumptions, after a preliminary real linear substitution we may assume
that C=fx(0)=?x(O) has the form

\A 01
(2.6) C=

Lθ B\
with

(2.7) A=\ , Z ? = d i a g ( σ 1 , ••• , σ r ) ,

l - D OJ
where dia.g(σlf •••, σr) denotes an rXr diagonal matrix with diagonal components
σlt •" , σr, and B is an sXs invertible matrix of which no eigenvalue is an integer
multiple of λlΛ

Next we shall normalize the quadratic and cubic terms of fk(x) (k=l, •••, m)
by a nonlinear substitution. To this end, it is better to work with complex form.
At first we carry out a complex linear substitution

(2.8)

with

(2.9) T=
J 0

o /, Mr —llr.

where 13 {]—r, s) is the jxj identity matrix.
Then the system (2.5) is transformed into

(2.10) z=g(z)

with

(2.11) g(z)=

where

ra o
(2.12) 6 =

LO B

and gO) 0 = 2 , 3) are column vectors with entries g[j), •••, g% which are homo-
geneous polynomials in zlf •••, zm of degree j .

Now we neglect the reality requirement on f(x), and we will seek a complex
nonlinear substitution z=φ(ξ, rf) which takes (2.10) into the following complex
normal form:
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r

μ=i μ μ μ

(2.13)

ήι=ΈblvVv+Yι(ξ, η) d=l, •••, s),
v=l

where τkμ are complex constants, and Xk(ζ, rj) (k = l, •••, 2r) and YL(ξ, η) (1=1,
•••, s) are convergent power series in ξlf ••• , ζ2r, rj\, •••, ^ s such that Xk(ζ, rf)
contains terms of order ^ 4 only, and Yt(ξ, rf) contains terms of order ^ 3 only.

For this purpose, let us restrict ourselves to the substitution of the form

(2.14) z=φ(ζ)=ζ+φ^ + ^ ( 3 ) ,

w h e r e ζ is a column vector wi th m entr ies ζ * = f * (k=l, •••, 2r), ζι+2r^=yι (1=1,
•••, s), and φΦ O '=2, 3) are column vectors wi th entr ies φ{J), •••, φ% which are
homogeneous polynomials in ζlf •••, ζ m of degree j .

Our aim is to solve t h e sys tem of functional equations

(2.15) g(φ(ζ))=ψζh(ζ)

for cubic polynomials φ^Q^ζk+φ^+φ™ and power series hk(ζ) (k = l, •••, m) so
that the column vector h(ζ) has the form of the right-hand side of (2.13), in other
words hk(ζ) (k=l, •••, m) satisfy the following conditions:

[C.I] hk(ζ)—λkξk (k=l, ••-, 2r) contains no term ξaηβ with \a

besides the t e r m s of the form ξk(ζμξμ+r) (μ=l, * , r).

[C.2] hι+2r(ζ)— Σ bivηy (1=1, •••, s) contains no t e r m ξaηβ

v=l

with \a\+2\β\^2.

where the notation
2r s ΊΎ s

ξ « 7 } β = - \ J ξ < * μ μ l l v β v f \ a \ = Σ , a μ , \ β \ = Έ β v

is used for a=(alt •••, a2r) and β=(βi, •••, /5S) whose components are nonnegative
integers. Then the solution ^(ζ) will define our desired substitution.

Now we will solve the system (2.15) for ψk(O and hk(ζ) (k = l, ••• , m) by
comparison of coefficients in (2.15). In order that the solution is uniquely deter-
mined, we impose the following additional conditions on ψ(ζ):

[C.3] φk(Q (k=l, •••, 2r) contains terms ξaηβ with | α | + 2 | / 3 | ^ 3 only,

and contains no term of the form ξk(ζμζμ+r) (μ—1, '" , r)

[C.4] φι+2r(Q (1=1, - , s) contains t e r m s ζaηβ wi th \a\-\-2\β\S2 o n l y .

Comparing the linear terms in (2.15), h(ζ) must have the form
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.7 = 2

where /zO) 0*=2, 3, •••) are again column vectors with entries h[J\ •••, /ι^} which
are homogeneous polynomials in d , •••, ζTO of degree . In what follows, for
y(ξ, Ύ]) a polynomial (or a power series) mξu •••, f2r, 771, •••, ηs, the coefficient of
ξaηβ in 3>(£, 77) will be denoted by {y}aβ> We will determine {φk}aβ and {/ijJα/3
(fc=l, -.., m ) for | α | + | j 8 | ^ 2 .

T h e comparison of the quadratic terms in (2.15) leads us to the relation

, m)

which is represented in each component by

(2.16) Fk{hi2\ φ^)=gί2) (k

with

2r s

Σ v®Mi»+ Σ

(2.17)
ir

Σ

(k'=k-2r; k=2r+l, •••, m).

We compare the coefficients of ξaηβ in (2.16). First we consider the case when
| α | = 2 and \β\=0. In this case, since {hik)}aβ=O (k = l, ••• , m) by the conditions
[C.I] and [C.2], the comparison gives

where

and {̂ C2)}αig and {g™}aβ are column vectors with m entries {φψ} aβ and { l̂2)}Λi3
(&=1, •••, m) respectively, and / is the rnXm identity matrix. Here we have
det«α, λyi—®)^0 because <α, ^>—λkΦ0 for any jfe=l, •••, m by the assumptions
[A.I] and [A.2]. Therefore {φ(2)}aβ is uniquely determined. Next we consider
the case when | α | = | β | = l . In this case, we must have ξaηβ~ξμηv for some

μ, v (μ=l, •••, 2r; y = l , ••• , s), and then we write {g
place of {gl*>}aβ, {φΐ^aβ, {hϊ2)}aβ respectively. For k = l,
by the condition [C.I], the comparison gives

μv> { φ ί 2 ) } μ v , {h(

k

2)}
, 2r, since

in

or in vector form
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}μ={g^}μ {μ=l, . - , 2r),

where {φψ} μ and {gi2)} μ are column vectors with s entries {φ™} μv and {gi2)} μv

( v = l , •••, s) respectively, and / is the 2rX2r identity matrix and ιB is the trans-
posed matrix of B. Then these equations determine {φί2)}μ (μ=l, •••, 2r) uni-
quely. On the other hand, for k=2r+l, •••, m, we have {^i2)}/<1;=0 by the condi-
tion [C.4], and it follows that {hi2)} μv= {gί2)} μv (μ=l, •••, 2r v = l , •••, s). Finally,
in the case when | α | — 0 and \β\=2, we have {φ(ik)}aβ=0 (k = l, •••, m) by the
conditions [C.3] and [C.4], and it follows that {h[2)}aβ={gi2)}aβ> Thus the co-
efficients {φk}aβ and {hk}aβ (k = l, ••• , m) have been determined uniquely for
| α | + | j 8 | = 2 .

Next, similarly the comparison of the cubic terms in (2.15) leads us to the
relations

771

(2.18) Fk(h™, φ^)=g^- Σ pi^A^+cubic terms in gΐ\φ{ζ))
μ l μ

where the left-hand sides are cubic polynomials obtained by replacing hψ and
φf\ '" ,ψm in Fk(hi2\ φ™) with h(

k

B) and φ[z\ •••, φ™ respectively. We note that
the right-hand sides are the cubic polynomials in which coefficients have been
already known. If | / 3 | ^ 0 or k=2r+l, •••, m, we have {φί^}aβ^O by the condi-
tions [C.3] and [C.4], and then the corresponding coefficients {/ij?5}^ are uniquely
determined from (2.18). Therefore we consider the relations (2.18) for k = l, •••, 2r
only, and we will compare the coefficients of ξaηβ with | α | = 3 and \β\=0 in
the both sides. Noting that h[2) (k=l, •••, m) contains no term ζaηβ with \a\=2
and |/31=0, the comparison gives

(2.19) {hP}aβ + (<atλ>-λk){φΐ'}aβ={g^}aβ+{gΐKφ(ζ))}aβ (* = 1, - , 2 r ) .

Here we note that the right-hand sides are already known. By the assumption
[A.2] with [A.I], we have <α, λ}—λk = O if and only if ak—aμ — aμ+r—\ for some
μ (μΦk, μ+rΦk) l^μ^r), or ak=2 and ak+r=l (l^k^r), ak-r^l (r+l^β^2r).
In these cases, {h(

k

3)}aβ are uniquely determined from (2.19) and we have {φί3)}aβ
=0 by the condition [C.3]. Otherwise we have {hίs)}aβ=O by the condition [C.I]
and then {φί3)}aβ are uniquely determined from (2.19). Thus the coefficients
{ψk}aβ and {hk}aβ (k=l, •••, m) have been determined uniquely for | α | + | β | = 3 .

We have now uniquely determined φ(ζ) of the form (2.14), and then h(ζ) is
also uniquely determined so that (2.15) holds and the h(ζ) satisfies the conditions
[C.I] and [C.2]. Therefore this φ(ζ) defines a substitution taking the system
(2.10) into the complex normal form (2.13).

From now on, we shall take the reality of f(x) into account, and investigate
the effect of it on the above determined φ{Q and h(ζ). By complex conjugation
of coefficients in the system (2.15) satisfied by the above determined φ{ζ) and h(ζ),
and by setting K—T~1T, we have
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where T is the matrix obtained by complex conjugation of components of T, and
φ(ζ) and h(ζ) are column vectors whose entries are obtained by complex conjuga-
tion of coefficients in <pk(ζ) and hk{ζ) (k = l, ••• , m) respectively with the indeter-
minates ζlf •••, ζm remaining fixed. Since we have

Ό

Ir

0

Ir

0
0

it follows that K~ι—K—K. Therefore, if ζ is replaced by Kζ, we have an identity

where φ*(ζ)=Kφ(Kζ) and h*(ζ)=KΪi(Kζ). This means that φ*(ζ) and Λ*(ζ) also
satisfy (2.15). Furthermore, we can easily see that φ*(ζ) and /ι*(ζ) have the linear
terms of the form ζ and (£ζ respectively and fulfill our four conditions [C.I],
[C.2], [C.3] and [C.4]. Therefore it follows from the established uniqueness that

p(ζ)=p*(ζ), A(ζ)=Λ*(ζ).

From the first identity, we see that Tφ(ζ) is real if ζ=Kζ. Let us introduce a
substitution ζ=T~λw with wk — uk (k = l, ~ , 2r), Wι+2r=Vι (/=1, ••• , s), then
Tφ{T~1w) is real if w is real. Hence x—Tφ(T~1w) defines a real analytic sub-
stitution. Moreover, from the second identity we have

?k+r μ — ΐkμ (k, μ = l, '" , V)

in the complex normal form (2.13). Therefore, setting τkμ=pkμ

J

Γιqkμ, where pkμ

and qkμ are real constants, this substitution x=Tφ(T~1w) transforms the system
(2.5) with (2.6) and (2.7) into the real normal form (2.2). Thus we have obtained
the desired substitution (2.1) as the composition of the preliminary linear sub-
stitution and this nonlinear substitution x=Tφ(T~1w). This completes the proof.

The substitution (2.1) which takes the system (1.1) into the normal form does
not exist uniquely, that is to say, in the system (2.2) the coefficients pkμ, qkμ are
not uniquely determined. However, we can say that to some extent these co-
efficients are determined uniquely. This is due to the following lemma.

LEMMA 2. Consider the system (1.1) under the same assumptions of Lemma 1.
Let (2.1) be a substitution taking the system (1.1) into the normal form (2.2) with
(2.3) and (2.4). Suppose that another substitution

(2.20) x=ψ\u, v), (u, v)=(ulf ••• , u2r, v1} - , vs)

takes the system (1.1) into the normal form (2.2) with the coefficients b[v, pf

kμ, q'kμ

in place of blv, pkμ, Qkμ respectively. Then the coefficients pkμ, qkμ and p'kμ, q'kμ

satisfy the relations
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(2.21) (p'lμ, ••' , p ' r μ , q[μ, " , q'rμ) =pμ{plμ, ••• , Prμ, Qlμ, '" , Qrμ)

(μ=l, •••, r),
where pμ are positive scalars.

Proof. The substitution

w=φ~1oφ/(w'), w=(u, v), w'=(u', v')

takes the system (2.2) into another one of this normal form with the coefficients
b'iv, Pkμ, Qkμ in place of biv, pkμ, qkμ respectively. This can be regarded as the
composition of a linear change of variables w into w"=(u"y v") and a nonlinear
substitution of the form

(2.22) w"=φ{wf)=wfΛ-φv\w')+ψ^\w')-\-O{\wfV),

where ψφ(w') O"=2, 3) are column vectors whose entries are homogeneous poly-
nomials in uly -, u2r, vlt •••, vs of degree j . Then, by comparing the linear
terms in these two systems of the same form, this linear substitution must have
the form

(& = 1, — , r),

v=Lv",

where ak, dk are real constants such that a2

k+d2

kΦθ, and L is an sXs non-singular
matrix. Consequently, this linear substitution also takes the system (2.2) into the
system of the same form, and the coefficients pkμ, qkμ are replaced by

Pϊμ=(aμ+dμ)ph, qϊμ=(aμ + dμ)qkμ {k, μ=l, ••• , r )

respectively, and the matrix B=(bι») is replaced by B"—L~1BL. Furthermore, we
can see that these coefficients p'lμ and q'ίμ are not changed by the substitution of
the form (2.22). To this end, let us consider the system of functional equations
(2.15) under the assumption that not only h(ζ) but also g(ζ) has the right-hand
side of the complex normal form (2.13). If <p(ζ) has the form (2.14), one is again
led to the relations (2.19) by comparison of coefficients of ξaηβ with |αr| = 3 and
|j8 |=0. Since ^(ζ) satisfies the same condition as [C.I], we have {gk2\φ(O)}aβ
=0 (&=1, - , 2r). Therefore, we have {g^}aβ=W}aβ when <a, λ>-λk^Q
(k=l, •••, 2r). Then it has been already proved that if the substitution of the
form (2.14) takes the system (2.13) into another one of this complex normal form,
the coefficients τkμ (k—1, •••, 2r μ=l, •••, r) are not changed. This shows that
if the substitution of the form (2.22) takes the above system of the form (2.2)
into another one of this normal form, the coefficients p'lμ and q'{μ are not changed.
Hence we have pkμ—Pkμ, qΊμ^q'kμ- Therefore, setting pμ=al+d2

μ, we obtain the
relations (2.21).

Now we will study the normal form under the existence of an integral. Our
aim is to prove the following lemma.
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LEMMA 3. Assume that the normal form (2.2) {with (2.3) and (2.4)) possesses
an integral G(w) with Gw(0)=0 which is of class C5 near w—0, where w—{u, v)
and Gw(0) denotes the gradient vector at w—0. Then the Hessian matrix GWW{Q)
must have the form

11 0

(2.23) 0
0

0

5n=diag(s 1 , •••, sr),

where slf •••, sr are real constants and S2 is a (m—2r)X(m—2r) matrix. Further,
if Skφ0 in (2.23), then pkk=0 in (2.3) ( β = l , ••• , r).

Proof Let /(w/) denote the right-hand side of the normal form (2.2). Since
G(w) is an integral for (2.2), an identity

(2.24) <Gw(w), f(w)>=0

holds near the origin, where < , •> denotes the usual scalar product. This identity
includes (Sw, Cw>=0, where S—Gww(0) and C is the matrix (2.6) with (2.7).
Then we obtain the identity

(SCw, ι^>—0,

which implies that SC is alternating, namely

(2.25) t(SC)=tCS=-SC.

If we set

\S1 ,
S=\

where SΊ and S2 are 2rX2r and (m—2r)X(m—2r) symmetric matrices respectively,
and 5 3 is a 2rX(m—2r) matrix, then it follows from (2.25) that

Because any eigenvalue of A and that of B are distinct from each other, it fol-

lows from the second relation that S 3=0. Further, setting

ίς ς

where S1-7 (; = 1, 2, 3) are rXr matrices, then the above first relation is divided
into
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DSli=S11D.

Then we can easily see that S 1 3 =0 from the first and second relations, and not-
ing that Sn and 5 1 2 are symmetric, we can also see from the third relation that
Sn and 5i2 are diagonal and Sn=S12. Let the diagonal components of Sn be
Si, ••• , sr, then we obtain (2.23).

Again we consider the identity (2.24). Let us write G(w) and f(w) as follows :

w\A),

where G°\w) 0 = 2 , 3, 4) are homogeneous polynomials in uu •••, u2r, vu •••, vs

of degree , and fω(w) 0 = 1, 2, 3) are column vectors whose entries are homo-
geneous polynomials in ulf •••, u2r, vlf ••• , vs of degree j . Here we note that
G^\w)={l/2YwSw and fa\w)=Cw. From the identity (2.24), it follows that

In order to consider this identity in complex form, we carry out the substitution
w=Tζ with (2.9) a n d ζ , = f * (k = l, ••• , 2r), ζi+2r=Vι {1=1, ••• , s). Since

5

We note that

Σ

has the form of the right-hand side of complex normal form (2.13). Consequently,
<Gζ3)(Tζ), T~1fί2)(Tζ)} contains no product in powers of ξkζk+r (& = 1, •••, r) only.
Further, in order that

contains such a product, G(4)(Tζ) must contain such a product. However, since
λk+r=lk = -λk, it does not enter in the polynomial <G£4)(Tζ), T~ψι\TQy. There-
fore, noting that G'ζ

2\Tζ)=tTSTζ} the coefficient of (ξkξk+r)(ξμζμ+r) in <G(

ζ

2\Tζ),
T'ψ*\TQy is

5 k \ J k μ \ ~ ^ k + r μ ) \ $ μ \ ΐ μ k \ τ μ + r k ) — v

Thus, setting k=μ, if skΦQ then we have τkk — — τk+r k~— τkk, namely pkk = O.
This completes the proof.
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3. The Existence Theorem

In this section, we shall establish the existence of a one-parameter family of
long periodic solutions of (1.1) near the origin. This will be done by imposing
suitable conditions on the coefficients in Pk(u) and Qk(u) (k = l, ••• , r) in (2.3).
Before stating the existence theorem, we present a lemma due to D. S. Schmidt
Π4], which is fundamental for our discussions.

Let the system (1.1) possess an integral G{x) which is of class C2 near the
origin. We consider the one-parameter system

(3.1) *=λx)+rGx(x),

where γ is a real parameter. Then we have

LEMMA 4. // yΦO, the system (3.1) has no periodic solution x(t) such that

Proof. Let x(t) be any solution of (3.1) for γφO. Then

d

dt
-G{x{t))={Gx{x{t)), f(x

Since G{x) is an integral for (1.1), (Gx(x), f(x)}=0 is satisfied identically, and
then we have

A -G(x(t))=γ\Gx(x(t))\\
dt

Therefore, if YΦO, G(x(t)) is a monotone function of t unless Gx(x(t)) = 0. Then
x(t) can not be a periodic solution such that Gx(x(t))^Q. This proves the lemma.

Now we state our existence theorem.

THEOREM. Consider the system (1.1) near the equilibrium x=0. Let f(x) be
of class Cι (/^4) near x—0, and let the system (1.1) possess an integral G(x) with
Gx(0)=0 which is of class Cί+1 near x=0. Assume that the eigenvalues of C=
fx(0) satisfy the assumptions [A.I] and [A.2], and that the Hessian Gxx(0) restricted
to Ex is nondegenerate, where Eλ is the real two-dimensional eigenspace corre-
sponding to λι and λ1+r. Moreover, assume that

(3.2) Pli+(qki-nkqn)2Φ0 ( * = 2 , 3, ••• , r)

in the normal form (2.2) obtained by a suitable substitution (2.1). Then there exists
a family of periodic solutions of (1.1) which depends smoothly of class Cι~s on a
real parameter ε, with ε=0 corresponding to the equilibrium x—0, and whose
primitive period T(ε) is of class Cι~3 in ε with T(0)=2π/σί.

Remarks, (i) By Lemma 2, the assumption (3.2) is independent of the choice
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of the substitution taking (1.1) into the normal form (2.2).
(ii) If f(x) and G(x) are of class C°° or real analytic, the above family of

periodic solutions depends smoothly of class C°° or analytically on a parameter ε.

Proof. By Lemma 1 and Lemma 3, we can bring the system (1.1) into the
normal form (2.2) by a suitable substitution x—φ(w) with wk = uk {k — lt •••, 2r),
Wι+2r

=:Vι (I—lt •••, s), and the system (2.2) possesses an integral G{φ(w)) whose
Hessian at the origin has the form (2.23). Let f(w) denote the right-hand side of
(2.2) and G(w) denote the integral G(φ(w)). Consider the one-parameter system

(3.3) w=f(w)+γGw(w).

Our goal is to establish the existence of a family of periodic solutions of (3.3)
along which G(w) is not stationary. Then, by Lemma 4 we must have γ~0 for
these periodic solutions, and therefore they define a family of periodic solutions
of (2.2).

By replacing the independent variable t by σj, we may assume σk — nk

(&=1, •••, r) in (2.2), and then we seek periodic solutions of (3.3) with primitive
periods near 2π. Since the desired periodic solutions are expected to be near the
plane v=0, we introduce a stretching transformation u-^εu, v->ε2υ with a small
positive parameter ε. Further, introducing a stretching of the parameter γ by
T-*e2r, the system (3.3) is replaced by

(3.4)

Here we note that the right-hand sides of (3.4) can be considered as C1"1 functions
in m+1 variables ult •••, u2r, vlf •••, vs and ε in a neighborhood of the origin.

Our aim is to seek periodic solutions of (3.4) depending on the parameter ε
and corresponding values of γ. First we note that for ε=0 the system (3.4) has
periodic solutions (u(t), v(t))=(exp(tA)u(0), 0), where A is the matrix (2.7) with

σk = nk) and these periodic solutions have primitive period 2π if w1(0)^0 or u1+r(O)
Φθ. Since we have

for any solution (u(t), v(t)) of (3.4), it follows that

Then, by integrating (3.4) we have

Γ ί \Su 01 Γ P Q

L { LO Sj [-Q P
w(0)+O(ε8),
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v(0=exρ(ίB)v(0)+O(e),

where

P=diag{Λ(w(0)), - , Pr(u(0))} , ^ d i a g ί & M O ) ) , •••, ζ?r(w(0))} .

For (w(f)> ^(0) to be a periodic solution with period ω near 2π, it is necessary
and sufficient that u(ω)=u(ΰ) and v(ω)=v(Q). Setting ω=2π(lJrε2θ), this perio-
dicity condition leads to

Γί Γs» °1 Γ p o i l 1
2τrε2 ]&4 + r + Uθ)+O(e) =0 ,

LI L0 s\ lQ P\\ J
L0 sn\ l-Q P

{exp {2πB)-I}

Hence, replacing w(0), Z (O) by w, z;, we have only to solve the system of m equa-
tions

(3.5) Γk+r=

Γ= {exp (2πB)-I)

for θ, γ, uίf '•-, u2r, vlf •••, vs. Here Γk (k=l, •••, 2r) and Γ are C1'3 functions
in θ, γ, Uχf •••, w2r, &Ί, •••, vs and ε in a neighborhood of the origin. To this end,
we stipulate u1=u1+r=l and then we will solve the implicit system (3.5) for m
unknowns θ, γ, uk, uk+r (k=2, •••, r), vlf •••, vs. Since nondegeneracy of Gxx(0)
restricted to Ex implies Si^O, we have pn=0 by Lemma 3. Then, for ε=0 the
system (3.5) has a solution θ——qxl, ^=0, uk = uk+r=Vι—0 (k=2, •••, r 1=1, •••, s),
which corresponds to a periodic solution with primitive period 2ττ. With easy
computation, the Jacobian at this point is given by

d e t f 3(Γ l f Γ 1 + r , ,Γr,Γ2r,Γ)

d(θ, y , u2, u2+r, •••, w r, w2 r > &0

2}Xdet{exp(2τr5)-J

By the assumptions, this is a nonvanishing determinant. Then, by the implicit
function theorem, in a sufficiently small neighborhood of ε=0, there exist Cι~s

functions θ(ε), γ(ε), uk(ε), uk+r(ε), v{ε) (k=2, ••• , r) satisfying the system (3.5)
with Uχ=u1+r=l. Hence the system (3.3) has a family of periodic solutions with
primitive periods 2π(l + ε2#(ε)), which depends smoothly of class Cι~3 on the
parameter ε. Furthermore, these periodic solutions w{t ε) = (u(t ε), v(t ε))
satisfy
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for sufficiently small εΦO, and therefore it follows that f(e)=0. This proves the
existence of a desired family of periodic solutions of (2.2), i. e. of (1.1).

Remark. The periodic family whose existence has been established here
consists of periodic solutions w{t ε)=(u(t ε), v(t ε)) such that

u^t e)=O(e), u1+r(t ε)=O(e),

uk(t ε )=O(ε 2 ) , M j k + r(f ε)=O(ε 2) (fe=2, ••• , r ) ,

v ,( f ;e)=O(e 8 ) (1=1, ••• , s),

together with 2^(0 ε)=z/i+ r(0; ε )=e. Therefore, we have

This means that for sufficiently small δ>0, every integral surface G(x)=G(w)=

G(0)+S!δ contains one periodic orbit which belongs to the above periodic family.
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