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LONG PERIODIC SOLUTIONS NEAR AN EQUILIBRIUM
IN GENERAL RESONANCE CASES

By HIipEkAzU ITO

1. Introduction

In this paper, we study the existence of periodic solutions of a system of
ordinary differential equations

(1.1 x=f(x)
near an equilibrium solution. Here x and f(x) are real m-dimensional column
vectors with entries x, and f,(x) (=1, ---, m) respectively, and the dot indicates

differentiation with respect to the real independent variable t. We may take the
equilibrium solution to be the origin x=0, and then we assume that the f,(x)
(k=1, -+, m) are C* functions of x,, ---, x, in a neighborhood of the origin.

For the study of periodic solutions of (1.1) near the origin, the eigenvalues of
C=f,(0) are crucial. Here f,(0) denotes the Jacobian matrix of f(x) at x=0, and
throughout this paper we assume that C is non-singular. As is well known, the
presence of purely imaginary eigenvalues of C is necessary for (1.1) to have
periodic solutions near the origin, but not sufficient. Let C have eigenvalues
Ay, +, An such that 2, is purely imaginary and 1,=21,. Then the well known
Liapunov’s Theorem guarantees the existence of a one-parameter family of periodic
solutions with primitive periods near 2z/|4;] under two assumptions. One of
them is that none of the m—2 quotients A,/4, (k=3, ---, m) is an integer (non-
resonance condition), and the other is that (1.1) possesses an integral whose Hes-
sian at x=0 restricted to E, is nondegenerate, where E, is the real two-dimen-
sional (generalized) eigenspace corresponding to 4, and 2, (see [4]).

In this paper, we consider the cases when the above first assumption is vio-
lated, that is resonance cases. Then, we can assume that C has eigenvalues
A1, , An satisfying the following conditions for an integer 7(=2):

(1) 2z=10, and Apy,=A,=—10, (k=1, -, r) are r pairs of purely
imaginary eigenvalues such that

[A.1] or=n,0; (6,>0), 1=n,=n,< - =n,,
where n,(k=1, ---, r) are positive integers.
(i) no Az4e(k=1, -+, s) is an integer multiple of A,, where s=m—2r.
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Here, of course, the condition (ii) is eliminated if 2r=m.

We consider the resonance cases under this assumption [A.l], and the aim
of this paper is to establish the existence of periodic solutions of (1.1) near x=0
whose primitive periods are close to 2n/¢,. To this end, it is a fundamental
assumption that (1.1) possesses an integral. But simple examples show (see [2],
[3], [6]), such periodic solutions do not necessarily exist even if (1.1) possesses
an integral with nondegenerate Hessian at x=0. We wish to accomplish our
purpose by imposing the suitable conditions on nonlinear terms of f(x). In this
direction, several authors ([1], [4], [5]) have dealt with resonance cases when
r=2 in [A.1] mainly for Hamiltonian system

oH oH

(1.2) xkzr, Fpem=——5— (k=1, -+, m).

Xe+m axk
Here it is noted that Hamiltonian function H(x) is an integral for (1.2). The
results obtained there can be stated in terms of the coefficients in normalized
Hamiltonian function. Among their results, it is remarkable that if n,=4, the
existence of such periodic solutions is guaranteed by adding a certain condition
on the coefficients of fourth order terms of Hamiltonian function in Birkhoff
normal form.

In the present paper, we generalize this result for the system (1.1) with an
integral in resonance cases for arbitrary ». To this end, we must bring the sys-
tem (1.1) into a certain normal form by means of a suitable change of variables.
In the next section, we will show that this is possible under the following assump-
tion on r—1 integers n, (k=2, -+, ¥):

kﬁ‘, Jenr#0 for all integer valued vectors (jy, -+, Jr)
=1

[A.2]
with 1= 30 [/, [=4.

We note here that this assumption means n,=4 when »=2. This normal form
will be defined there without assuming that (1.1) possesses an integral, and then
we shall study this normal form under the existence of an integral. Through
the normal form, our result will be stated in section 3.

It is to be noted that, by the assumption [A.2], A, ---, Ay are all distinct
from one another. Then, since non-resonance condition of Liapunov’s Theorem
is fulfilled for 1,=1,, there exist periodic solutions with primitive periods near
2w /o, provided that (1.1) possesses an available integral. In this sense, what is
discussed here is the existence of “long” periodic solutions near x=0.

The author would like to express his sincere gratitude to Professor Toshihiko
Nishimoto and Professor Yoshikazu Hirasawa for their constant encouragements
and valuable advices, and to Dr. Haruki Yamada for his helpful comments and

suggestions.
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2. Normal Form

This section is devoted to the study of a normal form for (1.1). The main
purpose is to show that the system (1.1) is taken into the normal form under the
assumptions [A.1] and [A.2]. This will be accomplished by proving the follow-
ing lemma, in which the normal form is defined by the system (2.2) with (2.3)
and (2.4).

LEMMA 1. Consider the system (1.1) near the equilibrium x=0. Let f(x) be
of class C* in a neighborhood of x=0. Assume that the eigenvalues of C=f(0)
satisfy the assumptions [A.1] and [A.2]. Then there exists a real analytic sub-
stitution

(VAN x=¢(u, v),  (u, V)=(uy, =+, Uay, V1, =+, Vs)
which takes the system (1.1) wnto the following normal form:
Upr=0pUpsrt Pp(u)tp+Qr(upsrt+Ur(u, v),

(2.2) Uper=—0pUp— Q)+ P ()t prr+Upriu, v),

b= B buv A Vi, ), (k=1 s 1=1, )
with

1 = 2 2 1 o 2 2

(2.3) Pk(“)zflu;lpky(uﬂ_l—uyﬂ')’ Qk(u):7p§IQky(up+uy+r) »
where by, Dru Qrp ave real constants, and sXs matrix B=(by,) has no eigenvalue

that is an integer multiple of A, and U,(u, v) and V,(u, v) and C* functions of
Uy, =+, Ugry Vi, ==+, Vs SUCh that

Uy, v9)=0(ul+1v])), Vilu, v)=0ul+1v[)*),
(k=1, -, 2r; [=1, -+, s).

2.4)

Here, (u, v)=(uy, -+, Uy, V3, =+, V.

Proof. At first, we note that a substitution x=¢(w), which is invertible near
the origin, takes the system (1.1) into

w=¢u'fg(w)),

where ¢, denotes the Jacobian matrix of ¢. Let f(x) be a vector whose com-
ponents f,(x) (k=1, -+, m) are cubic polynomials such that

fk(x)—fk(x)zo(l x|,

Instead of (1.1), let us consider a system
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(2.5) x=f(x).

If there exists a substitution which takes (2.5) into the normal form (2.2) with
the origin fixed, then the substitution also takes (1.1) into the normal form (2.2).
Therefore, it suffices to determine the substitution (2.1) so that the system (2.5)
is taken into the normal form (2.2).

By the assumptions, after a preliminary real linear substitution we may assume
that C=£,(0)=F,(0) has the form

A 0
(2.6) C=
0 B
with
-0 D
2.7 A= ,  D=diag(ay, -+, a,),
—D 0
where diag (oy, -+, o,) denotes an rXr diagonal matrix with diagonal components
gy, -+, 0, and B is an sXs invertible matrix of which no eigenvalue is an integer

multiple of 2.

Next we shall normalize the quadratic and cubic terms of fk(x) (=1, - . m)
by a nonlinear substitution. To this end, it is better to work with complex form.
At first we carry out a complex linear substitution

(2.8) x=Tz

with

S e
' loonl T Yely, —inl’

where I, (j=r, s) is the jX; identity matrix.
Then the system (2.5) is transformed into

(2.10) 2=g(z2)
with
(2.11) gRD)=T(T2)=Cz+g»+g®,
where
oA 0 )
<2'12) @: ) 9’I:dlag <)‘ly R }‘27‘) ’
0 B
and g (;=2, 3) are column vectors with entries g, ---, g% which are homo-
geneous polynomials in z,, -+, z, of degree ;.

Now we neglect the reality requirement on j(x), and we will seek a complex
nonlinear substitution z=¢(&, %) which takes (2.10) into the following complex
normal form:
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E=EH (B ond it Xul ) (k=1 -, 20),
2.13)
S
7‘]1: Elblv"]v-ll. Yl(gr 7]) (l:]-’ ) S);
where 7, are complex constants, and X,(, ) (k=1, -+, 2r) and Y (&, ) (=1,
-+, s) are convergent power series in &, -+, &u, 3y, -+, 3 such that X, %%

contains terms of order =4 only, and Y,(§, »®) contains terms of order =3 only.
For this purpose, let us restrict ourselves to the substitution of the form

(2.14) 2=0(Q)=C+p®+p®,
where { is a column vector with m entries {,=&, (k=1, ---, 2r), {er=17; (I=1,
-, 8), and oY (j=2, 3) are column vectors with entries ¢{, :--, % which are

homogeneous polynomials in ,, .-+, {, of degree j.
Our aim is to solve the system of functional equations

(2.15) gle@)=p:h(Q)

for cubic polynomials ¢.(0)=C;+ ¢+ and power series 4,() (k=1, ---, m) so
that the column vector A({) has the form of the right-hand side of (2.13), in other
words h.({) (k=1, ---, m) satisfy the following conditions:

[C1]  hu(@)—2A:€s (k=1, -, 27) contains no term &%7® with |a|+2|8|=3
besides the terms of the form &,(§.£,..) (=1, -+, 7).

[C2]  husa®)— f_j,‘lbhm (=1, -, s) contains no term &£?
with |a|+2]8]=2.

where the notation
2r s 2r s
gopf=118e Il pf», lal=2a,, [Bl=25,
p=1 y=1 r=1 v=1

is used for a=(a,, -, as,) and f=(8;, ---, B;) whose components are nonnegative
integers. Then the solution ¢({) will define our desired substitution.

Now we will solve the system (2.15) for ¢,(0) and h,({) (k=1, ---, m) by
comparison of coefficients in (2.15). In order that the solution is uniquely deter-
mined, we impose the following additional conditions on ¢({):

[C.3] i) (k=1, -+, 2r) contains terms 5“7]5 with |a|42]| B8] =3 only,
and contains no term of the form &,(§,6,.,) (u=1, -+, 7).

[C4] @142/C) (I=1, -+, s) contains terms &%p? with |a|+2|8] =2 only.

Comparing the linear terms in (2.15), A({) must have the form
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hO=6L+ 5 h,

where A? (j=2, 3, ---) are again column vectors with entries A, ---, A% which
are homogeneous polynomials in &, -+, {, of degree j. In what follows, for
¥(&, 1) a polynomial (or a power series) in &, -+, &, 91, -, 75, the coefficient of
&*pf in y(&, ) will be denoted by {y}.s. We will determine {@0r}ap and {A.}ap
(k=1, ---, m) for |a|+|B|=2.

The comparison of the quadratic terms in (2.15) leads us to the relation

h®4pPCL—Cp®P=g® ,
which is represented in each component by
(2.16) Fu(h®, o®)=g  (k=1, -, m)
with
hP+ 3 o Akt 30,3 b= 2ag?
(k=1, -, 27),

@217)  Fyh®, p®)= 2 s s
h}f"f‘ﬂz:ll @fe?zt#/z‘ug,u_{_ #221505337#( Elbyyvu)‘glbk'p?fuzl-zr

(B'=k—27; k=2r+1, -, m).

We compare the coefficients of £%7# in (2.16). First we consider the case when
la|=2 and |B|=0. In this case, since {A{}.;=0 (k=1, ---, m) by the conditions
[C.1] and [C.2], the comparison gives

Ka, DI=C){p®}ap={g®} a3,
where

2r
la, =D auly,
©=1

and {p®}ap and {g®}.p are column vectors with m entries {pi”} .5 and {g{”}ap
(k=1, -+, m) respectively, and [ is the mXm identity matrix. Here we have
det(Ca, >I—C)#0 because <{a, A>—A,#0 for any k=1, ---, m by the assumptions
[A.l] and [A.2]. Therefore {¢p®},.5 is uniquely determined. Next we consider
the case when |a|=|B|=1. In this case, we must have &*»f=¢£,y, for some
o, v (p=1, ---, 2r; v=1, ---, s), and then we write {g{’} ., {0} w, {AP} in
place of {gP}as {02} s {hiP}ap respectively. For k=1, -, 27, since {h{?},,=0
by the condition [C.1], the comparison gives

8
(/zy_zk) {(p;eb} #v+ l—g {QD;}) ylbly: {gl(eZ)} 7y

or in vector form
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(A= 2+ B) {pfP} .= {8} . (p=1, -, 21),

where {¢@}, and {gf’}, are column vectors with s entries {¢p{},, and {g{} .
(v=1, ---, s) respectively, and [ is the 2rX2r identity matrix and ‘B is the trans-
posed matrix of B. Then these equations determine {¢f”}, (¢=1, ---, 2r) uni-
quely. On the other hand, for k=2r-+1, ---, m, we have {¢{’},,=0 by the condi-
tion [C.4], and it follows that {h{} ,,={g®} .. (=1, ---, 2r;v=1, ---, s). Finally,
in the case when |a|=0 and |S8|=2, we have {¢{}.s=0 (k=1, ---, m) by the
conditions [C.3] and [C.4], and it follows that {A{”}.;={gf}p. Thus the co-
efficients {¢:} o3 and {hs}as (=1, ---, m) have been determined uniquely for
el +18]=2.

Next, similarly the comparison of the cubic terms in (2.15) leads us to the
relations

(2.18) F(h®, gp“ﬁ:g}f’—ﬂ%l gpff)g#hif’—l—cubic terms in gf(p())

(=1, -, m),

where the left-hand sides are cubic polynomials obtained by replacing Af? and
o, -, o in Fp(h®, @) with A and ¢, -, ¢ respectively. We note that
the right-hand sides are the cubic polynomials in which coefficients have been
already known. If |B|+#0 or k=2r+1, ---, m, we have {pf’}.5=0 by the condi-
tions [C.3] and [C.4], and then the corresponding coefficients {4} .z are uniquely
determined from (2.18). Therefore we consider the relations (2.18) for k=1, .-+, 2¢
only, and we will compare the coefficients of £*5# with |a|=3 and |B]|=0 in
the both sides. Noting that A% (k=1, -+, m) contains no term £%»# with |a|=2
and | 8]=0, the comparison gives

(2.19) {1} ast+a, H—2) {0} ap= {8} ap+ {8} ap (k=1 -+, 27).

Here we note that the right-hand sides are already known. By the assumption
[A.2] with [A.1], we have <{a, 2>—2,=0 if and only if a,=a,=a,.,=1 for some
p(psk, ptr+k;1=sp=r), or ay=2and ay,=1(1=Z2k=7), ap-,=1 (+1=k=2r).
In these cases, {h{’},s are uniquely determined from (2.19) and we have {¢f®}.s
=0 by the condition [C.3]. Otherwise we have {A§’} .;=0 by the condition [C.1]
and then {pf}.s are uniquely determined from (2.19). Thus the coefficients
{pr}as and {h4}ap (=1, .-+, m) have been determined uniquely for |a|+4|pB|=3.

We have now uniquely determined ¢({) of the form (2.14), and then A({) is
also uniquely determined so that (2.15) holds and the h({) satisfies the conditions
[C.1] and [C.2]. Therefore this ¢({) defines a substitution taking the system
(2.10) into the complex normal form (2.13).

From now on, we shall take the reality of f(x) into account, and investigate
the effect of it on the above determined ¢({) and A({). By complex conjugation
of coefficients in the system (2.15) satisfied by the above determined ¢({) and A(0),
and by setting K=T"'T, we have

T HTKEQ)=Kg:h(Q),
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where 7T is the matrix obtained by complex conjugation of components of 7, and
(@) and 7(0) are column vectors whose entries are obtained by complex conjuga-
tion of coefficients in ¢.({) and h,(0) (k=1, ---, m) respectively with the indeter-
minates {;, -, {,, remaining fixed. Since we have

o I

it follows that K-'=K=K. Therefore, if { is replaced by K, we have an identity
ge*O)=eFh*Q),

where ¢*({)=K@(K{) and h*({)=Kh(K{). This means that ¢*{) and ~*) also
satisfy (2.15). Furthermore, we can easily see that ¢*() and A*({) have the linear
terms of the form { and @ respectively and fulfill our four conditions [C.1],
[C.2], [C.3] and [C.4]. Therefore it follows from the established uniqueness that

e Q=¢*Q), O=h*Q.

From the first identity, we see that T¢({) is real if E=K¢. Let us introduce a
substitution {=T"'w with w,=u, (k=1, -+, 2r), wi=v; (=1, -+, s), then
To(T-'w) is real if w is real. Hence x=T (T 'w) defines a real analytic sub-
stitution. Moreover, from the second identity we have

Th+r y:Eky (ky ,u:]-y ) 7')

in the complex normal form (2.13). Therefore, setting t,,=ps,+1q:, where pg,
and ¢, are real constants, this substitution x=T¢(T *w) transforms the system
(2.5) with (2.6) and (2.7) into the real normal form (2.2). Thus we have obtained
the desired substitution (2.1) as the composition of the preliminary linear sub-
stitution and this nonlinear substitution x=T¢(T'w). This completes the proof.

The substitution (2.1) which takes the system (1.1) into the normal form does
not exist uniquely, that is to say, in the system (2.2) the coefficients p,, ¢, are
not uniquely determined. However, we can say that to some extent these co-
efficients are determined uniquely. This is due to the following lemma.

LEMMA 2. Consider the system (1.1) under the same assumptions of Lemma 1.
Let (2.1) be a substitution taking the system (1.1) into the normal form (2.2) with
(2.3) and (2.4). Suppose that another substitution

(2'20) x:¢/<u) U), (u’ v):(ul) ty Ugyy Uttty Us)

takes the system (1.1) wnto the normal form (2.2) with the coefficrents bi,, Diy, Gin
in place of biy, Drp» qrp vespectwely. Then the coefficients Pru, qrp and Piys Qrp
satisfy the relations
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(221) (p;/n Ty p;/u qi,u,- Ty q'rp)pr(Puu Tty pr;n Qrpy > QT,M)

L. (ﬂ:]-: tty T),
where p, are positive scalars.

Proof. The substitution
w=¢ log’(w’), w=(u, v), w =, v')

takes the system (2.2) into another one of this normal form with the coefficients
bisy Drpr qhp in place of by, Prp, g, respectively. This can be regarded as the
composition of a linear change of variables w into w”=(u”, v”) and a nonlinear
substitution of the form

(2.22) w'=gw)=w'+¢* W)+ (w)+0(w'|Y,

where ¢ (w’) (j=2, 3) are column vectors whose entries are homogeneous poly-
nomials in u,, -+, Us,, vy, -+, vs Of degree j. Then, by comparing the linear
terms in these two systems of the same form, this linear substitution must have
the form

Up=a Uy +dpulsr, Uper=—d U+ 0 Uy (k=1, -, 1),

v=Lv",

where a;, d, are real constants such that a?+d:=+0, and L is an sX s non-singular
matrix. Consequently, this linear substitution also takes the system (2.2) into the
system of the same form, and the coefficients p;,, ¢, are replaced by

pip=(aitd)pe,  al=(itdDq,  (k, p=1, -, 1)

respectively, and the matrix B=(b,,) is replaced by B”=L"*BL. Furthermore, we
can see that these coefficients p#, and g7, are not changed by the substitution of
the form (2.22). To this end, let us consider the system of functional equations
(2.15) under the assumption that not only A({) but also g({) has the right-hand
side of the complex normal form (2.13). If ¢({) has the form (2.14), one is again
led to the relations (2.19) by comparison of coefficients of £%pf with |a|=3 and
[B]=0. Since g({) satisfies the same condition as [C.1], we have {g(o(O)}as
=0 (k=1, ---, 2r). Therefore, we have {g}.s={h{"}.p when <a, D—2,=0
(k=1, ---, 2r). Then it has been already proved that if the substitution of the
form (2.14) takes the system (2.13) into another one of this complex normal form,
the coefficients z,, (k=1, -, 2r; pu=1, ---, r) are not changed. This shows that
if the substitution of the form (2.22) takes the above system of the form (2.2)
into another one of this normal form, the coefficients pj, and g, are not changed.
Hence we have pi,=pPis q#,=qr.. Therefore, setting p,=a2-d}, we obtain the
relations (2.21).

Now we will study the normal form under the existence of an integral. Our
aim is to prove the following lemma.
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LEMMA 3. Assume that the normal form (2.2) (with (2.3) and (2.4)) possesses
an integral G(w) with G,(0)=0 which is of class C* near w=0, where w=(u, v)
and G,(0) denotes the gradient vector at w=0. Then the Hessian matrix Guw(0)
must have the form

Su 0! 0
(2.23) Guow®=|0 Sy [, Su=diag(s;, -, s,),
0 s,
where sy, -+, S, are veal constants and S, 1s a (n—2r)X (m-—-2r) matrix. Further,

if sp#0 in (2.23), then pr,=0 in (2.3) (k=1, ---, 7).

Proof. Let f(w) denote the right-hand side of the normal form (2.2). Since
G(w) is an integral for (2.2), an identity

(2.24) (G w(w), flw)>=0

holds near the origin, where <-, -> denotes the usual scalar product. This identity
includes <{Sw, Cw)=0, where S=G,,(0) and C is the matrix (2.6) with (2.7).
Then we obtain the identity

(SCw, wy>=0,
which implies that SC is alternating, namely

(2.25) HSC)=*CS=—-SC.

S, Ss
S= ,
tS, S,
where S; and S, are 2r X2r and (m—2r) X (im—2r) symmetric matrices respectively,
and S; is a 2r X (m—27) matrix, then it follows from (2.25) that

If we set

ASI':SIA )
A83:53B .

Because any eigenvalue of A and that of B are distinct from each other, it fol-
lows from the second relation that S;=0. Further, setting

S [su sm}
o tSl3 Sl2 ’

where S;, (=1, 2, 3) are rXr matrices, then the above first relation is divided

into
DtSm:—SmD s
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DSm: _2513D y
DS,,=S,.D.

Then we can easily see that S,;=0 from the first and second relations, and not-
ing that S;; and S,. are symmetric, we can also see from the third relation that
Si; and S;, are diagonal and S;;=S;,. Let the diagonal components of S,;; be
sy, -, S, then we obtain (2.23).

Again we consider the identity (2.24). Let us write G(w) and f(w) as follows :

Cw)=GO)+G®(w)+C®(w)+ GO w)+0(|w!?),
Fa)=FO )+ (w) -+ (w)+0(|w]*),

where G9(w) (j=2, 3, 4) are homogeneous polynomials in u,, ==, usy, vy, =, Vs
of degree 7, and fP(w) (7=1, 2, 3) are column vectors whose entries are homo-
geneous polynomials in uy, ---, 4, vy, =+, vs 0of degree ;. Here we note that
GC®(w)=01/2)wSw and f®(w)=Cw. From the identity (2.24), it follows that

GCPw), fe2(w)»=0.

ivs

J

In order to consider this identity in complex form, we carry out the substitution
w=TE with (2.9) and {, =&, (k=1, -, 27), Cieer=1 (I=1, -+, 5). Since GP(w)=
T HGP(TL), we have

3 (GE(TQ), T/ »(TO)»=0.
=2
We note that
i TfO(TE)
=1

has the form of the right-hand side of complex normal form (2.13). Consequently,
(GE(TQ), T-f®(TL)> contains no product in powers of &,6,,, (k=1, ---, r) only.
Further, in order that

GETY, THFNTOY= 5 GUTOLE+ 2 GRTO % b

contains such a product, G®(T¢) must contain such a product. However, since
Apsr=Ap=—2y, it does not enter in the polynomial <G¢(T), T-f(TE)>. There-
fore, noting that GP(T{)='TSTE, the coefficient of (£,6,:,)(E.Epsr) in <G(TY),
T-f(TQ)y is

Sk(Tk;rl‘Tkw p>+5;z(fpk+fy+r »=0.

Thus, setting k=y, if s,#0 then we have t,,=—7,4r r=—T4, namely p,,=0.
This completes the proof.



LONG PERIODIC SOLUTIONS NEAR AN EQUILIBRIUM 453

3. The Existence Theorem

In this section, we shall establish the existence of a one-parameter family of
long periodic solutions of (1.1) near the origin. This will be done by imposing
suitable conditions on the coefficients in P,(u) and Q.(u) (k=1, -+, ») in (2.3).
Before stating the existence theorem, we present a lemma due to D.S. Schmidt
[4], which is fundamental for our discussions.

Let the system (1.1) possess an integral G(x) which is of class C* near the
origin. We consider the one-parameter system

3.1 =) +rGi(x),

where 7 is a real parameter. Then we have

LEMMA 4. If 7+#0, the system (3.1) has no periodic solution x(t) such that
G (x(1)=0.

Proof. Let x(t) be any solution of (3.1) for y#0. Then
G =CGalx(D), S FTCala ()

Since G(x) is an integral for (1.1), <G.(x), f(x)>=0 1is satisfied identically, and
then we have

L G)=T| Gulx(D)]*.

Therefore, if y+0, G(x(t)) is a monotone function of ¢ unless G (x(#))=0. Then
x(t) can not be a periodic solution such that G,(x(¢))70. This proves the lemma.

Now we state our existence theorem.

THEOREM. Consider the system (1.1) near the equilibrium x=0. Let f(x) be
of class C* (1=4) near x=0, and let the system (1.1) possess an integral G(x) with
G(0)=0 which is of class C*** near x=0. Assume that the eigenvalues of C=
f(0) satisfy the assumptions [A.1] and [A.2], and that the Hessian G.(0) restricted
to E, 1s nondegenerate, wheve E, 1s the real two-dimensional eigenspace corre-
sponding to A, and Ai4r. Moreover, assume that

(3.2) Dat(qri—nrq:)*#0 (b=2,3, -, 7)

n the normal form (2.2) obtained by a suitable substitution (2.1). Then there exists
a family of periodic solutions of (1.1) which depends smoothly of class C'™® on a
real parameter e, with ¢=0 corresponding to the equilibrium x=0, and whose
primitive period T(e) 1s of class C*=* wn ¢ with T(0)=2x/0,.

Remarks. (i) By Lemma 2, the assumption (3.2) is independent of the choice
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of the substitution taking (1.1) into the normal form (2.2).
(i) If f(x) and G(x) are of class C* or real analytic, the above family of
periodic solutions depends smoothly of class C* or analytically on a parameter e.

Proof. By Lemma 1 and Lemma 3, we can bring the system (1.1) into the
normal form (2.2) by a suitable substitution x=¢(w) with w,=u, (k=1, -, 2r),
Wiger=v; ((=1, -+, s5), and the system (2.2) possesses an integral G(¢(w)) whose
Hessian at the origin has the form (2.23). Let f(w) denote the right-hand side of
(2.2) and G(w) denote the integral G(¢(w)). Consider the one-parameter system

3.3) w=f(w)+7Gu(w).

Our goal is to establish the existence of a family of pericdic solutions of (3.3)
along which G(w) is not stationary. Then, by Lemma 4 we must have 7=0 for
these periodic solutions, and therefore they define a family of periodic solutions
of (2.2).

By replacing the independent variable ¢ by o¢;f, we may assume ¢,=n,
(k=1, -+, r) in (2.2), and then we seek periodic solutions of (3.3) with primitive
periods near 2z. Since the desired periodic solutions are expected to be near the
plane v=0, we introduce a stretching transformation u—eu, v—¢?v with a small
positive parameter e¢. Further, introducing a stretching of the parameter 7 by
7—¢%r, the system (3.3) is replaced by

Up=10 3 Uper T3S, Pr(1)up+Qr(1)U 1) +O(e%),
(34) Uper=—N U+ (a7 Upsr— Qp(Wu+ P (1)1t 1)+ O0(e°),

1=Bv+0(e),
(k:]-) ) 7”) .

Here we note that the right-hand sides of (3.4) can be considered as C*~! functions
in m+1 variables uy, -+, s, vy, -+, vs and ¢ in a neighborhood of the origin.

QOur aim is to seek periodic solutions of (3.4) depending on the parameter ¢
and corresponding values of 7. First we note that for ¢=0 the system (3.4) has
periodic solutions (u(?), v(1))=(exp (tA)u(0), 0), where A is the matrix (2.7) with
o,=n;, and these periodic solutions have primitive period 2z if u,(0)#0 or u,,,(0)
+0. Since we have

S () uk (D) =0
for any solution (u(t), v(1)) of (3.4), it follows that
wi )+ ube )=ui(0)+ufr (0)+ 0 (k=1, -, 7).

Then, by integrating (3.4) we have
Su 0 P Q
u(t)=exp t{A—l—ezr +-¢ u(0)+0(e,
0 —-Q P

Su
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v(t)=exp (¢ B)v(0)+0(e),
where

P=diag{P,(u(0)), -+, P(w(0))},  Q=diag{Qu(u(0)), -, Qu(u(0)} .

For (u(t), v(t)) to be a periodic solution with period w near 2z, it is necessary
and sufficient that wu(w)=u(0) and v(w)=v(0). Setting w=2r(1+¢%), this perio-
dicity condition leads to

oy g olroroe)
2re?| {04 +7 + 1w(0)+0(e) | =0,
0 Sul l-@ Pl

{exp @z B)—I} v(0)+0(e)=0.

Hence, replacing u(0), v(0) by u, v, we have only to solve the system of m equa-
tions

Io=0nupsrtrseue+ Pr()us+Qu(1)t 1+ 0(e)=0,

(3.5 Fk+r=—0ﬂkuk+7’5kuk+r"‘Qk(u)uk+Pk(u)uk+r+0(€)=0,
I'={exp 2z B)—I}v+0(e)=0,
(k=1, -+, 1)

for 6, v, uy, =+, Yoy, vy, -+, V5. Here Iy (k=1, ---, 27) and [" are C'~? functions
in 6,7, uy, -+, Usr, Uy, -+, Us and ¢ in a neighborhood of the origin. To this end,
we stipulate #,=u,,,=1 and then we will solve the implicit system (3.5) for m
unknowns 0, 7, ug, Uper (R=2, -+, 7), vy, -+, vs. Since nondegeneracy of G,,(0)
restricted to E, implies s;#0, we have p,;=0 by Lemma 3. Then, for ¢=0 the
system (3.5) has a solution 0=—q,;, =0, ur=up,=v,=0 (=2, -, r; [=1, -+, 3),
which corresponds to a periodic solution with primitive period 2z. With easy
computation, the Jacobian at this point is given by

a(rlyrlﬂ" """ )rryrzr;r) }

8(07 T’ Ugy Uspr, ** 5 Upy Usy,y U)

det {

=25, IT {$h+(@n—n10:% X det {exp 2z B)—I}

By the assumptions, this is a nonvanishing determinant. Then, by the implicit
function theorem, in a sufficiently small neighborhood of ¢=0, there exist C' 3
functions 6(e), 7(e), ur(e), upsrle), vie) (k=2, -, r) satisfying the system (3.5)
with u,=u;.,=1. Hence the system (3.3) has a family of periodic solutions with
primitive periods 2z(1+¢?0(e)), which depends smoothly of class C!"® on the
parameter ¢. Furthermore, these periodic solutions w(t;e)=(u(t;e), v(t;e))
satisfy

G (w(t; e)=s,e+0(H)#0
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for sufficiently small ¢+#0, and therefore it follows that 7(¢)=0. This proves the
existence of a desired family of periodic solutions of (2.2), i.e. of (1.1).

Remark. The periodic family whose existence has been established here
consists of periodic solutions w(t; e)=(u(t; ¢), v(¢; ¢)) such that

u(t; e)=0(e),  unlt; e)=0(),
up(t; =00,  upelt; 0)=0(" (k=2 -, 1),
vt e)=0(e?) (=1, -, s),
together with %,(0; ¢)=u,+,(0; e)=e. Therefore, we have
G(w(t ; €)=G(0)+s:e2+0(e?).

This means that for sufficiently small §>0, every integral surface G(x)=G(w)=
G(0)+s,0 contains one periodic orbit which belongs to the above periodic family.
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