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QUASIHARMONIC Lp FUNCTIONS ON THE

POINCARE JV-BALL

BY LUNG OCK CHUNG, LEO SARIO AND CECILIA WANG

By definition, a function q on a Riemannian manifold R is quasiharmonic if
J # = l , with Δ—dδ+δd the Laplace-Beltrami operator. There is fairly extensive
literature on the existence of quasiharmonic functions in the classes P, B, D or C
of functions which are positive, bounded, Dirichlet finite, or bounded Dirichlet
finite, respectively. In contrast, very little is known about the existence of quasi-
harmonic functions in ZΛ

Let Q be the class of quasiharmonic functions and set QX—Qr\X for X— P,
B, D, C, Lp. For any function class F, denote by OF the class of Riemannian
manifolds which do not carry any nonconstant functions in F, and OF its com-
plement. The purpose of the present study is to give a criterion for R^OQLp
and to relate the class OQLp to some harmonic and quasiharmonic null classes.
We also discuss interrelations between the classes OQLp for various p. For
explicit results, we consider these problems on the Poincare TV-ball B%, that is,
the unit ball of TV-space, TV^2, endowed with the metric dsa=(l—r2)ads0, r— \x\,
with a^R and ds0 the Euclidean metric.

We start by stating, with or without proofs, some auxiliary results, mostly
known, to be called Propositions. The new results will be given in Lemmas 1-6
and Theorems 1-3.

§ 1. Preliminaries

Propositions 1 and 2 on the general behavior of quasiharmonic functions will
greatly simplify earlier proofs on characterizing quasiharmonic null classes. Let
(r, θ)=(r, θ\ •••, ΘN~1) be the polar coordinates in RN.

PROPOSITION 1. Every quasiharmonic function q(r, θ) on B% can be repre-
sented as

q(r, Θ)=q(r)+Kr, θ)=qo(r)+c+h(r, θ),

where h(r, θ) is a harmonic function, c a constant, and

-s2)NasN-1ds dt.
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Proof. By direct computation, dqo=l. Thus, qo(r)+c+h(r, θ) is a quasihar-
monic function. For any quasiharmonic function q^r, θ), the difference q^r, θ)
—qo(r) satisfies J(q1—qo)=Jq1—Jqo=0 and is, therefore, harmonic.

PROPOSITION 2. Let N>2.

(a) For a>0, as r-*l,

Jo

(b) For —l/N<a<Q, if c0 is a constant such that q0(r)+co^0 as r->l, then

qo(r)+co~ca-rΓ<N-2>a+1\

(c) For — l<a<— 1/N, and c0 as in (b),

(d) For a^-l, ko(r)|->co.
(e) For a=-l/N,

Proof. As an illustration, we compute (c):

We will also make use of the following well-known results in the classifica-
tion theory for quasiharmonic and harmonic functions.

PROPOSITION 3 (Nakai-Sario [2], Sario [3]). The quasiharmonic null classes

satisfy the strict inclusion relations

OQB

< <
OG<OQp OQc,

< <

OQD

whereas there is no inclusion between OQB and OQD.
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PROPOSITION 4 (Sario-Wang [4]). For X=P, C,

BN

a^Oqx if and only if α e ( - l , l/C/V-2)).

For Y=D, C,

BN

a<=ΞOqγ if and only if αe=(-3/(ΛH-2), 1/0V-2)).

P R O P O S I T I O N 5 (Hada-Sario-Wang [1]). B% e OHD if and only if \a\< 1/(ΛΓ—2).

§ 2. Characterization of quasiharmonic Lp null classes

In this section, we will give a criterion for B% e OQLp. Then we briefly
consider applications to harmonic and quasiharmonic classifications. On occasion,
we make the assumption iV>2, usually necessitated by the factor (N—2)~1.

LEMMA 1. For l^p<oof B% ̂ OQLp if and only if for each constant c, qo(r)
Lp, with qo(r) as in Proposition 1.

Proof The necessity is immediate. Since B% ̂ OQLp, it is clear that q^+c,
as a quasiharmonic function, cannot belong to ZΛ

To show the sufficiency, assume qo(r)+c is not in Lp for any constant c. By
Proposition 1, a general quasiharmonic function q(r, θ) can be represented as
<Jo(r)+c+h(r, θ) where h(r, θ) is a harmonic function of the form Σ / n S w with
the Sn spherical harmonics of degree n. We can absorb the constant term of
h(r, θ) into c and thus assume that h(r, θ) contains no constant term. Since by
assumption qo(r)-\-c is not in Lp, we choose g(r)^Lq such that p~1-\-q~1=l and

lίg(rXqo(r)+c)dV We have

\\g(r)ίqo(r)+c+h(r,

since h(r, θ) is assumed to be a sum of terms fn(r)Sn(θ), n>0, and since

\gfnSndV=0 for n>0 by a well-known property of spherical harmonics. Thus

q{r, Θ)&LP for any quasiharmonic function, as claimed.

Next we characterize the Bξ which belong to OQLP. We separate the cases
N>2 and N=2.

LEMMA 2. Suppose N>2.

(a) A necessary and sufficient condition for BN

a e OQLp is one of the following:
(i) l/OV-2) and al(N-2)p-Nl^p+l; or

(ii) -l<a<-l/N and 2p(a+l)+Na+l^0; or
(iii) a£-l.
(b) For -l/N£a^l/(N-2), BN

a^6QLp.
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Proof. First we prove (b). The case a=0 is immediate, because B% is the
Euclidean ball.

Suppose —l/N<a<0. By Proposition 2(b), there is a c0 such that as r—>1,
tfo(r)+co-*0 and | t f o (r)+c o p~c(l-r) [ - C A r - 2 ) t t + 1 ^.

In order to prove B%<ΞOQLP, it suffices to show that ( l - r p c i v r - 2 ) Λ + 1 ^ is inte-
grable. We have

< 2 c l Π r
"" JO

The last integral is finite if and only if [—(TV—2)a+Γ\p+Na>l. Since a> — 1/N
is negative, we obtain l—(N—2)a+l]p+Na>p+Na>p—1^0>—L Thus β j

Suppose 0<αgl/(iV—2). By Proposition 2(a),

r; I^ as
Jo

Thus,

= cf I log (1-r) I ^ l - r ^

and
Suppose α = —I/A7". By Proposition 2(e),

which is bounded. There is a constant c such that

which goes to 0 faster than (1—r)e as r->l for some ε>0. Thus qo(r)—c is a
<2Z/ function.

To prove (a), we consider three cases:

Case 1. α>l/(iV-2). By Lemma 1, BN

a^OQLV if and only if qo(r)+c&Lp

for any constant c. By Proposition 2(a),

VdV
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which is co if and only if [-(N-2)a+ϊ]p+Naύ-l, that is, al(N-2)p-N]

Case 2. - K α < - l / i V . By Proposition 2(c), there is a constant c0 such that,
as r->l, <7o(r)+c0->0 and | t fo(r)+c o | p ~c(l-r) 2 C « + 1 ^. Thus if B%ΪΞOQLP, then

or equivalently, 2p(aJrl)+Na+1^0. Conversely, since q^^ xQ&Lv implies
qo(r)+c$Lp for any c, we obtain (ii).

Case 3. a^-1.
By Proposition 2(d), koWlp-^°°. Hence, also \q0(r)+c\p-+oo for any c. Thus

^\d V=c\(l-r)Na(l+r)NarN'1dr= oo

as α ^ — 1 . This completes the proof of the lemma.
It remains to consider the case N=2. We omit the proof.

LEMMA 3. (a) Bl<^OQLΪ> if and only if
( i) - l < α < - l / 2 and 2 ( l 0

(i i) a S - h
( b )

§ 3. Application to harmonic classification

We will briefly indicate an application of the characterization of B%^OQLp
to the harmonic classification theory. The classes to be considered are OQLΊ>Γ\OHX)

OQLPΓ\OHX, OQLVΓ\OHX, and 0QLvΓ\0Hχ, where X=G, P, B, or D, with G the
class of Green's functions.

We start with OQLpΓ\0HX. By Proposition 5, \a\<l/(N—2) assures that
B%*ΞOHD. Lemma 2(a) entails that -l/(A^-2)<α:<-l/7Vand 2£(α:+l)+iVα:+1^0
are necessary and sufficient for B% to belong to OQLpΓ\OHD. Since 2p(a+l)Jr
Na+1^0 is equivalent to a^-(2p+l)/(2p+N)=l-(N-l)/(2p+n), we obtain
α^l-( iV-l)/(2+A0. In view of -\/{N-2)<a, we must have -l/(JV-2)<
1—(Λ̂ — 2)/(2+iV), which gives A^<4. Thus ^ = 3 is the only possible candidate.

To see that for Λf=3, the inequality has a solution with αe(-l/(iV— 2), —l/N)
for each p^l, let p be given. Then

Note that the range of a is (—l/(N—2), —l/iV)=(—1, —1/3). Choose α so close
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to —1 that α + 1 is very small, hence 2p(a+ΐ) also very small, and —3a very
close to 3. Clearly the condition is satisfied. Thus we have the rather unexpected
result that the dimension of a manifold plays here a crucial role.

Since harmonic classification serves only illustrative purposes in this work,
we will not consider other harmonic classes, but discuss only OHΏ in this section.

In view of the above phenomenon, one might expect its analogues concerning
the other three classes as well. However, all other classes are well behaved:

T H E O R E M 1. For each p^l and each N>2, the family & of the Poincare

N-balls decomposes into the following disjoint nonempty sets:

For N=3, $ = O Q 0 0 0

For N>3, $ = O Q L Q L

Proof. If suffices to show the nonemptiness of the other classes. For OQLP
Γ\OHD, choose α ^ - 1 . Then BN

a ^OQLPΓ\OHD. For OQLvr\OHD, take α=l/(iV-2).
For 0QLPΓλOHD, pick α=0. In each case we only have to use Lemma 2 and
Proposition 5.

§4. Application to quasiharmonic classification

We proceed to an application of our OQLp characterization to quasiharmonic
classification. Again, we will be brief and choose only the class OQD as an illu-
stration.

THEOREM 2. For p^l, N>2, the family & of the Poincare N-balls decom-
poses into the following three disjoint nonempty sets.

Proof. By Lemma 2 and Proposition 5, for each N>2, the values a= — 1,
1/(7V—2) and 0 furnish examples for OQLpΓ\OQD, 0QLPr\OQD, and 0QLpΓ\0QD>

respectively. To see that OQLpΓ\0QD is empty, assume that B% (=0QLpΓ\0QD. By
Proposition 4, -3/(ΛH-2)<α<l/C/V-2). By Lemma 2, -3/(Ar+2)<α<-l/iV.
Again by Lemma 2, 2£(α+l)+7Vα+l<;0. We want to show that for this a, there
is no solution for the last inequality of p^l and N>2. Again as in the preced-
ing section, we have a^-(2p+l)/(2p+N)^-3/(2+N), in violation of -3/OV+2)

§ 5. The classes QLP

We proceed to study relations between QLS and QU with l<s<t<co.

LEMMA 4. (a) B% ^OQLSΓ\OQLt if α ^ — 1 .
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(b) ΰ? tΞOQLSr\OQLt if -l/N^a^l/(N-2).

The proof is by Lemma 2.

LEMMA 5. (a) // N>2s/(s—l), then B%£ΞOQLsΓλ0QLt if and only if
l)/l(N-2)t-Nl£a<(s+l)/Z(N-2)s-N].
(b) // 2t/(t-l)<N^2s/(s-l), then B»ξ=0QLsΓ\OQLt if and only if 1/0V-2)
^(t+l)/l(N-2)t-Nl.
(c) If N^2t/(t-ϊ), then no B%^0QLsΓ\OQLt.

Proof. By Lemma 2, necessary and sufficient conditions for B Q

are either (i) a>l/(N-2), α[0V-2)s-iV]<s+l, and al(N-2)t-N]^t+l or (ii)
-Ka<-1/N, 2s(α+l)+iVα+l>0, and 2t(a+l)+Na-\-1^0. The case (ii), how-
ever, never occurs. In fact, the last two inequalities in (ii) imply (l+2s)/(ΛH-2s)
>a^(l+2t)/(N+2t), which is impossible for s<t. As to the case (i), we argue
as follows:

(a) If (N—2)s—N>0 or N>2s/(s—1), we may choose an a such that
(t+l)/ί(N-2)t-N^a<(s+l)/Z(N-2)s-NΊ. In view of (t+ϊ)/l(N-2)t-N]>
l/C/V-2) for (N-2)t-N>0, we have, by (i), B%EiOQLSr\OQLt if and only if a
is as claimed.

(b) If (N-2)s-N^0 and (N-2)ί-iV>0 or 2ί/(ί-l)<iVS2s/(s-l), then
(t+l)/ί(N-2)t-N2>l/(N-2) and α[(iV-2)s-Λ^]<s+l. By (i), we have B%<Ξ
0QLsίΛθQLt if and only if l/(N-2)<a^(t+l)/l(N-2)t-NΊ.

(c) If (N-2)t-N^0 or Ng*2t/(t-ϊ), then no α satisfies a>l/(N-2) and
^-2)ί-iV]^if+l. Again by (i), there exists no B^OQLsΓ\OQLt.

LEMMA 6. For each pair of real numbers s, ί^l , with s<ty there exists a
OQLsr\OQLt.

Proof The equation

>0

gives α=-(l+2s)/(iV+2s). Clearly, - K α . The relation

l+2s 1 N+2sN-N-2s 2s(N-l)

N+2s N N(N+2s) N(N+2s)

yields —l<a<—l/N. In view of s<t, we obviously have 2t(a+l)+Na+l>0.

Thus, by Lemma 2, Bξ^OQLsr\0QLt.
We have reached the following result:

THEOREM 3. The family £B of Poincare N-balls decomposes into the following
disjoint nonempty sets: If s and t do not satisfy conditions (a) or (b) of Lemma
5, then

For other s, t,
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The above results have implications to the general classification theory. These

questions, as well as applications of our QLP criterion to the biharmonic classi-

fication of B, will be discussed in other studies.
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