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ON A SOLUTION OF w”+e *w +(az+b)w=0
By MITSURU OzAWA

§1. Introduction.

It is well-known that the general solution of the following differential
equation

(1) w”+P(z)w'+Q(z)w=0

with a transcendental entire function P and a polynomial @ is an entire function
of infinite order. In spite of this fact a particular solution may be an entire
function of finite order. This is shown by w”-+e*w’—w=0. Our main interest
lies in the following problem: When does (1) have an entire solution of finite
order ? This problem seems to be very important but very hard. So far as we
know there are only few results concerning the above problem.

In §2 we shall give a general negative criterion. In §3 we shall prove a
theorem which guarantees the existence of a non-zero asymptotic value of an
entire solution of finite order of the given differential equation (1). In §4 by
making use of the above theorem we shall give two applications. One is a
negative result and the other is a positive result. In §5 we shall prove a
theorem concerning the boundedness of the solution of

V' +F(z)y=0

along a ray. Applying these results in §6 we shall consider the differential

equation
w”+e*w' +(az+bh)w=0.

§2. We shall prove the following.

THEOREM 1. FEvery entire solution of (1) is of wnfimte order, 1f P(z) is of
order less than 1/2.

Proof. In order to prove this theorem we need the following Besicovitch
theorem: Let f(z) be an entire function of order p less than 1/2. Let m(r) and
M(r) be the minimum and maximum modulus of f(z) on |z|=r respectively. Let
X be the set of » for which log m(r)>(cos 7 p")log M(r), where p’ is any number
satisfying p<p’<1/2. Then the upper density of X is greater than 1—p/p’.
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See [11.
Further we need the following fact: Let n(r) be the central index of an
entire transcendental function w(z). Then the order of w is equal to

m log n(r)

e logr
Further let { be the point at which |w({)|=M(r, w)= max |w(z)|. Then for
12i=151=1

r—oo, reEA A
wP@=( ”(”) (L0,
_ hy(©)
»= nf 7o 1QI<K, 0<r<1/2.

Here A has finite logarithmic measure. See [3], [7], [8].
By the above fact the given differential equation (1) gives

()

4
for r=|{|&A. Hence with m(r):lmin]P(z)l, M(r)=max| P(z)|
zZ\=1 |zi=r

Y+ PO a0 00=0

(" Y@tz 12O 0 - 1)

=m(r) n(rr)'(l— [7:)—Ar&

2 My "0 (1 - A
for r€XNA°. Since P is transcendental entire, M(r)=#° for any arbitrarily
large number S. Hence
"(T), 7,5 cos o' _ |7]1| A__. _,ﬁl,, —
r 1+l772] I GVEN PR

St

k+1

%

[\%

7
for re XNA® with an arbitrarily large number S’. This implies that

Tim log n(r)

ros g

=S'+1.

Thus every solution of (1) is of infinite order. Thus we have the desired result.

§3. Existence of an asymptotic value in a sector.

THEOREM 2. Suppose that w(z) is an entire solution of (1) and of finite
order. Let P(z) be an entire function such that |P(z)| > Ae®, p>0 in 0<argz<a
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with a positwe constant A and |z|=r. Then
(i) w'(2) ts bounded in D: 0Zarg z=Za,
(i) w'(2)—0, w”—0 as z—oo in D,: eSargz<a—e for an arbitrary posi-
twe e,
(iii) w(z)—B as z— n D,,
(iv) B=+0.

Proof. We need the following Lemma: Let f(z) be a meromorphic function

of order p<co. Then
/(@)
J/(z)

holds excepting a set of |z| of finite measure. See Hille’s excellent book [4]
p. 123. We shall denote the above exceptional set by A for simplicity’s sake.
(i) By (1) and by the above Lemma for |z|eA

[ P(2)| |w'(2)| £18] 2|7 w'(2)| +Q(|z]) | w(2)],
where Q(z2)=X|a;|2’ with Q(z)=Xa,z’. On the other hand

|<18]2)7, 7>143p

| w(2)| < | w(0)] +[§:w'<t>dti
< |w©)|+rMUr), |z|=r,

where M%r)= max |w’(|z|e?’)|. Hence for |z|€A°, arg z=80,
os|zIsT

(1P(2)|—18]2]") | w'(2)| Q| z)(| w(0) [+ | 2| MI(| 2])) .
If 0 satisfies 0<0=<q, then
(Ae™—18r") | w'(2)| Q(r)(| w(0)| +rMi(r)).

Assume that M9(r) is unbounded for r—oo. Since MY(r) is evidently monotone
non-decreasing, there is a sequence {rn}, rn<A° such that |w'(z,)|=M{(r,),
m=|2n|, arg z,=0. Therefore

(Aen—18r7)MI(r n)—Q(rp)rm MU(rn) < Q(ru)| w(0)].

This is a contradiction. Hence MY(r) is bounded for r—oo. In this case M)
ts continuous for #. Therefore w’(z) is uniformly bounded in 0<arg z=a.
(ii) We may assume that |w/(z)| =K for 0<arg z<a. Then

) 1 2= |w'(ret?—+se?)|
” LAY L PR
[w”(re )[:27[50 s2[e®9 | sd¢
<K
s

Here {=re'’+se**=D. Hence the above estimation holds for 0<e<f<a—e.
Thus
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| P(2)| “"llég(lzl)lwl—{—%

<010 +rK)+ .
This implies that

/ QUrXrK+|w(0))+K/s
lw'(2)| =- Aexpr*

tends to zero as z—oo, z&D,. Hence making use of this estimation for ’(z)
we have w”(z)—0 in D, by the Cauchy integral formula.
(iii) Let a, be

S:w’(te‘”)e“’dt

for esf=a—e¢, ¢>0. It is very easy to prove the existence of a, and the inde-
pendence of 6. For z=|z|e*, eZgp=a—e¢, ¢>0

w(z)—w(())—aozszw'(z)dt«S‘:w'(se”’)eiﬂds
:S:‘ w’(se“f‘)e““ds—-S: w'(se*")et?d s

0 o
:S'w’(lzle“?)lzle”’zclnAS Iw’(z‘e‘”)e“’dt.
P iz
Since
’ iy < A AV
fw'(lzle'")| = Aexpr? {QN(r K+ [w(0) )+ K}

for |z|e*"D,,

0

I&w’(lzle’”)lz]e”’zdr; —0

é
as |z|—oo. Similarly

rlw’(tei”)e"”dtﬁo
as |z|—oo. Hence w(z)—w(0)+a, as z—o, z&D.. Thus B=w(0)+a,.

(iv) Suppose B=0. Then for ze D,

w(2)= w(OH—SZ Ww(1)dt

:B—S w'(t)dt
z
Hence we may start from

w'(se*?)e’ds .
2|

w(z)= ——r
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Let |w(0)] be less than K. Then
Qr)(r+1)+1

Aexpr? K, lzl=r

lw'(2)| =

for ze D.. Therefore
o QUt)t+1)+1
| w(z)] éKSr _QM~

Aexpt? di

Q(r)(r—l—l)-{-l S to-t it

P B re 9 ptfr

5 rf=1Aexp 2

_ 2K o {Qn(r+ 1)+l (_f_’j)
T pA re & 2

expf

_ 2K P Q)+
 pA expr’

Further by the Cauchy integral formula
4 w, Z+e 10
w5 g [ D o ag

< QUolretD+1 o
Aexprt

with 7;=|{|=]z+e¢*|. Therefore for a sufficiently large r and for re'’ =D,

lwr et?)| <e, |w"(ret?)|<e.

Then by (1) )
[P(2)] |w(2)| =Q(r) | w(r e*?)|+ | w"(r e'’)]
and
Qn+1
’ 10 <e o2
[w'(re”)| = Aexp ré <e
In this case
oy < € (= Q)+L
[w(r ') = i ST oxp 1 dt
25 yi=e
P/T E;ZP‘F’(Q(”) D<e?.
and
Q(ro+1
” 10y < _
[w”(re*?)| = - A exp 7l <e?
Repeating this process we have
w'(r et?)=0

for r=r,. This is a contradiction. Hence B=+0.

299
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In this theorem we may replace |P(z)|>Aexpr® by |P(z)|>AexplCr")
with positive C.

§4. Applications of Theorem 2.

THEOREM 3. Let ay<fi<a,<B,< - <ap<f, 0=a, Bp<a+2r. Let D,
be the sector a,<arg z=<p,. Suppose that X(a,,—B,)<e for an arbitrary posi-
twe number e. (Here ay,=a,+2x). Suppose that |P(z)|>A,exp(C;r??) with
positive constants A,, C,, p, in D,. Then every solution of (1) is of infinite order.

Proof. Assume that w(z) is an entire solution of (1) and of finite order.
By Theorem 2 w’(z) is uniformly bounded in each D, Let |w’(z)| be less than
K, in D,. Let K be max K,. Let D be an unbounded domain in which |w’(2)|
>K. Then D lies in one of the remaining sectors (D,\JD,\J ---\UD,)’, say the
sector f§,<arg z<a, Let rf@(r) be the arc length of {|z|=r}\D. Let M(») be
max|w'(z)/K| on {|z|=r} \D. Then there is a constant K(0<K<1) such that

~

log log M(r)==n Kr_di —const
g log MNZr| "y, '
See Tsuji’s book [6] p. 117. (The formulation in [6] is more complicated than

the above.) Here 6(1)<e. Hence
log log M(r)= glog l:r —const.
0

This implies that

Tim log log M(r) _ =
Too log r 3
Here ¢ is arbitrary. Thus the order of w(z) is infinite. This is absurd.
By this theorem (1) does not admit any entire solution of finite order if
P(z):H(l—;) or if P(z):?Rr—sin z"? R: polynomial, 0= p=n. There are lots

12 p/2

of such examples. Expecially we can construct such an example for which P
has the given order by making use of the Mittag-Leffler function.
Another application is a positive result. Frei [2] had proved the following

THEOREM 4. If there 1s an entire function w(z) of finite order satis/ying
the differential equation
w”+e*w'4+cw=0, c=const,,
then ¢=—n"
Wittich [9] had also given another proof. The following proof is due to T.
Kobayashi.

Proof. Let w; and w, be two independent solutions of the given equation.
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We may assume that w,(z) is of finite order. Evidently w,(z+2xi) satisfies the
equation. Hence
wi(z+2r1)=a,w,(2)Fasw,(2) .

Since w,(z--2zi) is of finite order too, a, should be equal to zero. Further by
Theorem 2 w,(z)—B+#0, w,(z+2zx1)—B+0 if z—oco in n/2+eZargz=3n/2—¢,
¢>0. Hence a,=1, that is, w,(z+2r1)=w,(z). This implies that there is a one-
valued regular function f(x) in 0<|x|<oco such that w,(z)=f(e*). If f(x) has an
essential singularity at x=0, then f(e¢*) does not have any finite asymptotic
value in 7/2+ec=<arg z=3rn/2—e. If f(x) has a pole at x==0, then f(¢°) tends to
co as z—oo in 7/2+e<arg z=3n/2—e. Hence

fx)= 2 a,x’.
7=0
Substituting this into the given equation, we have
o ” oo ’/ oo
pl? plZ -z 3l 12 ) —
(]20 aje ) +(,Z‘L aje )e ‘H(]% a,e ) 0.
This gives
(n*4c)a,=—m+1Day, (n=1)
a,=ca.
Firstly a,=B=0. If ¢#-—n® for all integers n, then

laal

|@ns1l
as n—oo. This shows that the radius of convergence of f(x)=2la,x’ is equal
to zero. This is absurd. Hence ¢=—n® for some integer n>0. Then a,,,=0,
k=1, 2, ---. Thus f(x)=2X7ra,x’. It is very easy to determine all the «,. This
gives the desired result.

§5. Boundedness criterion along a ray. In the real case there are lots of
boundedness criteria. We know very few such criteria in the complex case.

THEOREM 5. Suppose that F(2)=g(r)e™ along the ray re'’ (0: fixed) such
that

g(r) cos(7(r)+20)=S(r)-+ ()( ex;l);ﬂ’ﬂ)

1s monotone wcreasing for r=r,, where S 1s a non-constant polynomial and p>0,
and

. A B
ewysinGr+2n= o, +0( (o)

with p’>p for r=r,, where A, B are polynomials of v or functions of r admitting
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polynomial majorants. Suppose further that F(z) is transcendental entire. Then
every solution of y”+F(2)y=0 is bounded along the ray re'’.

Proof. Let us put the solution y=R(r)e!’™ along the ray re'”. Then the
differential equation gives™’

(2) R"(r)+ {g(r) cos(y(r)+20)—0'(r)*} R(r)=0,
{O'(r)R(r)*} + g(r) sin(y(r)+20) R(r)*=0.
For simplicity’s sake we put

X(r)y=g(r) cos(r(r)+20), Y(r)=g(r)sin(y(r)+20).
Let U be

S’ O"RR'dt .
T1
Then
1 1 ’ 2 T 207 ()"
U:—Z-R(r)z@'(r)z———z—R(n)z@ (13)“——& R*@’'O7d1 .
71
By the second equation of (2)
O"R+20'R'+YR=0.

Hence
~S:1R2@’@”dt=5:lR@’(Z@’R/—% )*Ie)dtszUJrS; YRO'd1 .
Thus
U= %R(r)z@’(r)z— %R(rl)z@’(rl)“-i—ZU+S; YR*®'dt .
Therefore

U:—%R(r)z@’(r)“r-;—R(r,)z@’(r,)z—sr YO'R*dt .
1
On the other hand by the first equation of (2)

U:Sr @'ZRR'dt:ST R”R’d[q‘—gr XRR'dt

T1 T1 Ty

Z%R%Y—%wa+%xmmw

1 , 1,
— 5 XOREY 5| RaX(1).

Thus we have

¢ With respect to the equation (2) it is necessary to pay attention to its meaning
at each zero of y. See C.-T. Taam. Oscillation theorems. Amer. J. Math. 74 (1952),
317-324. See also Hille [4].
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1., 1 , 1
5 R+ 5 Ry 0'(r)*+ 5 X(R@)?

1 1 1
=5 RI(r)*+ 5 R0 (r)*+ 5 X(r) R(ro)*

+%S;waa)—§; YO’ R .

Now we shall estimate the last integral. By the second equation of (2)
~| YRat=0 0 R(—0" )R
ri
Hence

—S Y(z‘)@’(z‘)R(l)'zdf:—S: O/ (r)R(r Y (t)dt

+S’ Y(t)gt Y($)R(s)*dsd1 .
T1 T1
Therefore,

=" vo'reat| =10 G0RG I V)14t

+[ o rera vwlar.
T1 71
On the other hand

S’ |Y(t)|dt§§°° | V()| dt=C,< oo .

T1 T
Hence

[ Y@'chul§00|@'<n>|R<n>2+coS’ | V(1) R(t)dt .
1 T1

Now we take r; sufficiently large such that

|Y(OIR(Y _ | Blexp(—t?)

1. = 1

5 X (OR®) S<t>(1+0<7))

for t=r,. Therefore
e 1vwlrurar=<{ Reraxw.
71 T1
Thus we have

1+§_ST

%X(@R(r)‘é‘gcl(rlw-? " RAAX).

By the similar process of proof of the Gronwall inequality we have
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—X(7)R(r)2<Cl+ 1+SS RA6)X(1) ))(('((;)) It
X(r)ree
=G Xy
Therefore
RPS20(r) 550 v

Using this intermediate estimation we again estimate
T
S YO' Rt .
T1

Similarly

10" (PR — O (r) R(rp)? | = } —S YRt i

1 “ 7 € —
<20y |, 1 VIO XD dt=C..

Thus
|0 (NR(1)?| =Cot 10" (r) | R(r1)*=C;5..
This implies that

(" ve'Riat| = |¥dt=C,.
i 1

JT1
Therefore
X'(t)

X(t')rdt'

%X(r)R(rYéC—F%S; R(2X(8)

By Gronwall’s inequality
1

R(?’)2§2C X'(’rlj ’

which gives the desired result.

§6. The differential equation w”-+e¢ *w’+(az+h)w=0.

Our problem is whether this equation admits an entire solution of finite
order. By Frei’s theorem we may assume that a+0. By a suitable translation
we may consider

3 w”+e*w +azw=0.
By the well-known transformation

o)

W=Yy———" 7 >

exp(% ec>
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we have
1 1
" -z+c¢ —-2z+2¢ J—
¥+ (az+—2 e 7 e )y—O.

We denote this by y”—+F(z)y=0. Let a be |a|e'® and z=re'’ (§: fixed). Then
we put F(z)=g(r)e* ™. In this case

gir)=|a| r—‘r—;—e'f cos 0+¢1 cos(r sin §—C,+6+a)+higher order terms,

-7 cos O+c
7’(7’):0—1—0(——;— msin(r sin —C,+60+a)+higher order terms,
where C=C,+iC,. In order to apply Theorem 5 we need to examine the
assumptions. g(7) cos(7(r)+260) should be monotone increasing for r=#, and
hence cos(y(r)+26)>0. Further g(r)sin(y(r)+26) tends to zero very rapidly as
r—oo, Hence sin(7(r)-+260) tends to zero very rapidly as r—oo. This gives that
a+36=2prx. Thus

Further cos@ should be positive. Hence —z/2<6<=x/2. One of three rays
re i3, peTraldizA/s gp-ta/stun/s Jies ip the right half-plane. We can apply
Theorem 5 along this ray. In the first place we assume that there is only one
ray re!’ along which the assumptions of Theorem 5 are satisfied. Then

IA

Ve T

5=0=%

In this case we may assume that 0=0=<r/6. By Theorem 5 y is bounded along
this ray »e??. Now we assume that w is an entire solution, being of finite
order, of (3). Then by Theorem 2 w tends to a non-zero constant B when
z—oo in w/24e<arg z<3mw/2—e. w is also bounded along the ray r¢*’. Suppose
that w is unbounded in the sector S: §<¢<m/2+4e. Then there is an unbounded
domain, contained in S, in which w is unbounded. In this case

log lo M(r)>7rSKT'dt —const
g 10g . =T, o) .

= ;—ﬁ—log{g7T —const.
7‘!—6 —6 ’
Hence

lip 08 log M) .z
THeo log T,
——rs—ﬁ

2
¢ is arbitrary. Thus the lower order of w is greater than 2r/(x—20)=2. Let {
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be a point such that |{|=r7, lw(C)I:rlnlgxIw(z)l. By the Wiman-Valiron method

(r)
(ncr

holds excepting a set A of finite logarithmic measure. Assume that there is a
sequence {I,} such that R{,=0, |{,|=A° Then along [{n|=7"n

Jlff) —la| 1/2r1/2(1+o(—717)) :

since e >»*¢ is bounded. This implies that

) ttp+ e B )+ ag=0

Jim 108 log n(r) §_
s logr = 2
It is known that
lim log log M(r, w) —lim log n(r) ‘
Too log r e logr

Hence we have a contradiction. Therefore there is a sequence {{,} such that
Iml€A®, R(<0. Let us put {p=rnpe**m. We may assume that n/2<¢,<m/2
+e. ¢n—n/2 as rn,—o0. Now we shall omit the index m, since this does not
make any confusion. Then

( n(cr)> (1+T2)+Q_C+c ”(C ) (1+771>+0/V:0 .
Let us put ¢=c;+1c,, a=|ale**. Then
(1_*_772)8—19_}__() —rcos ¢+cle—1rsm ,)+162<1 7/.1)+ }E(!]); 21i+m:0.

Since n(r)=3*"%, §'>0,
1
_  p-Tcosgtey— I
e +eg 1‘{"0(71—5' )
Thus
(71(7>) {141 +e,) cos(—r sin g+ c,+¢)—i(1-+e,) sin(—r sin ¢4-c,+@)}

=—lal|rcosBp+a)—ilalrsin(B3d+a), e, e,—0 (r—o0).
Therefore by n(r)=r*?%
7172 {14+(1+¢,) cos(—r sin ¢+c,+ @) =—|a|cos(3g+a),
7172 (1+4¢,) | sin(—7sin ¢+Co+@) | < | a| |sin(3g+a)|.
Let us put ¢g=/2+¢. Then

7 COS p—¢p—cCy=2pT— % +o(1).
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Which implies that
r=2p7r——%—f—cz+o(l).

Let A, be [r,—o(1)<r<r,+o)], r,=2pr-+c,—n/2. Then

pr—o(1l) Ap+Drtcy—m/2—0(l)
log " o) =% oprte,—n/2tol)

Cz
7’—4+2n
Hence
rpa—o(l) 1 1
Zlog= "o —zzp_iJrcz =0
4 2r

This shows that the logarithmic measure of (\JA,) is infinite. Thus (\JA,)° is
not contained in A. Therefore there is a set F of r of infinite logarithmic
measure such that for reF, |{|=r, RE=0, M(r, w)=max|w(re?)|=|w)|. We
have, then, that the lower order of w is not greater than 3/2. This is a con-
tradiction. Hence w(z) should be bounded in S. This shows that w(z) is bounded
in the sector T': 0=¢=<3r/2—e. We now make use of the classical Lindelof-
Iversen-Gross theorem [5] and have the existence of the asymptotic value B#0
of w in
Ti: 0+e=p=3n/2—2¢.

Therefore y—Bexp(e/2) as z—oo in S’: f+e=<argz=<n/2—e. Then by the
Cauchy integral formula y’—0 in the same sector S’. Now the so-called Green’s
transform [4] is useful. Let us consider y”+F(z)y=0 with F(z)=az+e **°/2—
e~¥*2¢ /4 Green’s transform gives

F(re'?)y'(re*?)—3(ree*?) y'(roe*?)

:ST ly’(te”ﬁ)Idee’”j—Sr F(te*?)| y(te?)|*dte*? .
7o 70

Hence
e {F(re*?)y (re*?)—5(roe'®) v (r,e?)}
=" Iyttetyat—ersre] (XHiv)lsite) 2ar
) 70
=],—e¥9 " ([ ,-1i],).
Thus

| 3(ret?)y’ (re*?)—3(ree'?) y'(roe*?)|?
=(I; cos(3p+a)—1,)*+(I, sin(3p-+a)+15)° .

Here 0+e=¢=n/2—e¢,
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X=la| t—l—%e" cos $+¢1 cos(—¢ sin g+c,—a—g)

—%e'“ cos §+2¢1 cog(—2¢ sin +2c,—a—¢)
and
V= %e" cos 6*e1 gin(—¢ sin g+ c,—a—g)
L et cos geres g 9f & e
) e sin(—2¢ sin ¢+2¢c,—~a—¢).
Hence

1=|" Yl ste?)Hat

is bounded as r—oo, since y— B exp(e®/2) as r—oo and |Y(t)| Sexp(c,—1t cos @)
for any sufficiently large t. We now rewrite the above formula

(R(NR'(r)—R(ro)R'(ro))*+(0"(r)R(r)* — 0’ (ro) R(ro)*)*
=(I, cos(3p+a)—1.)*+(I, sin(3¢-+a)-+1:)?.

By the above observation
R()—| Blexp %ef +0,

R'(ry—0, O'(nR(r)—0

as r—oo. Thus ([, cos(3¢+a)—1:)"+(I,;sin(3¢+a)+1;)* is bounded for r—oo.
However

12=S: (tla|+0(-)R(t)1dt

tends to infinity as r—oo. We can take ¢ such that cos(3¢-+a)=0, sin(3¢-+a)+0.
Hence the boundedness of (/;cos(3¢+a)—1;)* implies that 7, is unbounded and
hence (/; sin(3¢+a)+-15)* is unbounded. This is a contradiction.

In the second place we assume that there are two rays re'’1, re*’2 along
which the assumptions of Theorem 5 are satisfied. Then

2z

5 <0< =

— = <O,=0,— :

The same reasoning does work in this case too. We finally arrive at the same
contradiction.
We have the following

THEOREM 6. There 1s no entire function of fimite orvder satisfying the differ-
ential equation



if a+0.
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w”+e*w' +(az+b)w=0,
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