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ON A SOLUTION OF to" + e~'w

BY MITSURU OZΛWΛ

§ 1. Introduction.

It is well-known that the general solution of the following differential
equation

(1) w"+P(z)w'+Q(z)w=0

with a transcendental entire function P and a polynomial Q is an entire function
of infinite order. In spite of this fact a particular solution may be an entire
function of finite order. This is shown by w"+e~zιυ'—w=0. Our main interest
lies in the following problem: When does (1) have an entire solution of finite
order ? This problem seems to be very important but very hard. So far as we
know there are only few results concerning the above problem.

In §2 we shall give a general negative criterion. In §3 we shall prove a
theorem which guarantees the existence of a non-zero asymptotic value of an
entire solution of finite order of the given differential equation (1). In §4 by
making use of the above theorem we shall give two applications. One is a
negative result and the other is a positive result. In § 5 we shall prove a
theorem concerning the boundedness of the solution of

along a ray. Applying these results in § 6 we shall consider the differential
equation

§ 2. We shall prove the following.

THEOREM 1. Every entire solution of (1) is of infinite order, if P(z) is of
order less than 1/2.

Proof. In order to prove this theorem we need the following Besicovitch
theorem: Let f(z) be an entire function of order p less than 1/2. Let m(r) and
M{r) be the minimum and maximum modulus of f(z) on | z | — r respectively. Let
X be the set of r for which log m{r)>(cos πρ')\ogM(r), where p' is any number
satisfying ρ<p'<l/2. Then the upper density of X is greater than 1 — p/p'.
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See [1].
Further we need the following fact: Let n(r) be the central index of an

entire transcendental function w(z). Then the order of w is equal to

r-oo log T

Further let ζ be the point at which \w(ζ)\=M(r, ιv)= max \w(z)\. Then for
| 2 | = l ζ l = - r

W^\L) =

, o<r<i/2.

Here Δ has finite logarithmic measure. See [3], [7], [8].
By the above fact the given differential equation (1) gives

for r=|ζ|eEΔ. Hence with m(r)=mίn|P(z)|, M(r)=max|P<»|
| z | -=r \z\-=r

( n (

r

r ) ) 2 ( i+l 7.1)^ 1^(01-^(1-17il)-10(01

for 7'e^Y^Δc. Since P is transcendental entire, M(r)^rs for any arbitrarily
large number 5. Hence

r -

for r e Z π Δ c with an arbitrarily large number S'. This implies that

LLLLL E = O I -J-

r-oo log r

Thus every solution of (1) is of infinite order. Thus we have the desired result.

§3. Existence of an asymptotic value in a sector.

THEOREM 2. Suppose that w(z) is an entire solution of (1) and of finite
order. Let P(z) be an entire function such that \P(z)\ >Aer!\ p>0 in O ĉ
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with a positive constant A and \z\~r. Then
( i ) w'(z) is bounded in D: ΰ^&vg z^a,
(ii) w'(z)-+0, w"-*0 as z->oo in Dε: ε ^ a r g z ^ α — ε for an arbitrary posi-

tive ε,
(iii) ιv(z)-*B as z^oo in Dε,
(iv) BΦO.

Proof. We need the following Lemma: Let f(z) be a meromorphic function
of order io<oo. Then

f\z)
f(z)

holds excepting a set of \z\ of finite measure. See Hille's excellent book [4]
p. 123. We shall denote the above exceptional set by Δ for simplicity's sake.

( i ) By (1) and by the above Lemma for | z | ^ Δ

\P(z)\\w'(z)\SWz\?\w'(z)\+Q(\z\)\w(z)\,

where Q(z)=yΣ\aj\zJ with Q{z)=Σ,aμ3. On the other hand

'w\t)dt

, \z\=r,

where Λ/?(r)= max \w'(\z\ei0)\. Hence for U | e Δ c , arg z=θ,
O ^ i z i ^ r

(\P(z)\-18\z\>)\w'(z)\^Q(\z\)(\ιv(0)\ + \

If θ satisfies O^θ^a, then

(Aerp-18r)\ w\z)\ SQ(r)(\ w(0)\+rMf(r)).

Assume that M\(r) is unbounded for r-^oo. Since M\{r) is evidently monotone
non-decreasing, there is a sequence {rm}, r m e A c such that \w\zm)\~M\{rm),
rT O=|zml, argzm=6>. Therefore

This is a contradiction. Hence Mf(r) is bounded for r-^oo. In this case
is continuous for θ. Therefore w'{z) is uniformly bounded in O^

(ii) We may assume that \w'{z)\^K for O^arg^^α. Then

Here ζ—re ί θ jrseu?^D. Hence the above estimation holds for Q<ε^θ^a—ε.
Thus
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\P(z)\\w'\^Q(\z\)\ιv\+-
o

K
SQ( \zI)(I wifi) I +rK)+ —

This implies that

tends to zero as z—>oot z^Dε. Hence making use of this estimation for w\z)
we have w"(z)-*ΰ in Dε by the Cauchy integral formula.

(iii) Let a0 be

[°°w\teιθ)ei

Jo

0dt

for ε^θ^a—ε, ε>0. It is very easy to prove the existence of a0 and the inde-
pendence of θ. For z—\z\βxφ

y e^kφ^oL—s, ε>0

-*\ w\seι0)eίθds
Jo

* w\seι*)ext>ds-^° w'(seιβ)eιθds
o Jo

v\\z\eιr')\z\eXΎ1ιdη~\ w\teι0)ei0dt.

Since

I "'(I*!*1*)! ^ - τ 4 r ~ ίθ(r)(r/f+ I M/(0)|)+/f}/i exp r

for \z\el7iίΞDε,

->0
i J^>

as \z\-*oo. Similarly

Γ w'(tei0)eί0dt->0
J\z\

as \z\—>oo. Hence w(z)—>w(0)+α0

 a s ^"^^^ z^Dε. Thus #—ι^(O)+ίzo

(iv) Suppose Z?—0. Then for

Hence we may start from

Π w'(seιθ)etOds.
i
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Let |u/(0)| be less than K. Then

for z^Ds. Therefore

Aexpt?

^ O ( r X r + l ) + l j Π , d ι

pA rp

expy

= 2K_ ri-ojQjrXr+D+l}
pA exp r?

Further by the Cauchy integral formula

\w\z+e*)\ ̂

expi(-¥)

~~ yl exp r£

with r̂ == ICI = I^+ e1*-51- Therefore for a sufficiently large r and for

\w(rei0)\<ε, \ w'\r eί0)\<ε .

Then by (1)

\P{z)\\w\z)\ύQ{r)\w{rei9)\ + \w"{reι0)\
and

In this case

pA exp *

and

V Λ K ; ι = ^ A exp

Repeating this process we have

w'(reiθ)=0

for r ^ r 0 . This is a contradiction. Hence
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In this theorem we may replace | P(z) | > A exp r ° by | P(z) \ > A exp(C rp)
with positive C.

§4. Applications of Theorem 2.

THEOREM 3. Let a1<β1<a2<β2< ••• <ap<βp, 0^alf βp<aί+2π. Let D3

be the sector aj^argz^βj. Suppose that Σ(α,+i — βj)<ε for an arbitrary posi-
tive number ε. (Here ap+1==a1+2π). Suppose that \P(z)\>Ajexp(CjrpJ) with
positive constants AJf CJf p3 in D3. Then every solution of (1) is of infinite order.

Proof. Assume that w(z) is an entire solution of (1) and of finite order.
By Theorem 2 w\z) is uniformly bounded in each D3. Let \w\z)\ be less than
Kj in Dj. Let K be max K3. Let D be an unbounded domain in which \w'(z)\
>K. Then D lies in one of the remaining sectors {D^JDJJ ••• ̂ Dp)

c, say the
sector /3i<arg z<a2. Let rθ(r) be the arc length of {\z\-=r} r\D. Let M(r) be
max\w'(z)/K\ on {\z\=r)r\D. Then there is a constant K(O<K<1) such that

„. - c o n s t .
ro ϋ\t)t

See Tsuji's book [6] p. 117. (The formulation in [6] is more complicated than
the above.) Here θ(t)<ε. Hence

This implies that

log log M(r)^ — log —const .

TT— log log M(r) π
lim ^ —
r-oo log r ε

Here ε is arbitrary. Thus the order of w(z) is infinite. This is absurd.
By this theorem (1) does not admit any entire solution of finite order if

P(z)^n(l-—^ or if P(z)=~τsinzn/2

t R: polynomial, O^p^n. There are lots

of such examples. Expecially we can construct such an example for which P
has the given order by making use of the Mittag-Leffler function.

Another application is a positive result. Frei [2] had proved the following

THEOREM 4. // there is an entire function w(z) of finite order satisfying
the differential equation

w"-\-e~zw' + cw=z§, c = const.,
then c= — n2.

Wittich [9] had also given another proof. The following proof is due to T.
Kobayashi.

Proof. Let wλ and ιv2 be two independent solutions of the given equation.
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We may assume that wx(z) is of finite order. Evidently w^z+^πi) satisfies the
equation. Hence

ιv1(zJr2πi)=a1w1(z)+a2w2(z).

Since w1(zJr2πi) is of finite order too, a2 should be equal to zero. Further by
Theorem 2 w^z^BΦΰ, w1(z+2πi)-^BφQ if z^oo in τr/2+ε^arg z^3π/2-ε,
ε>0. Hence a1=l, that is, Wi(z+2πi)=w1(z). This implies that there is a one-
valued regular function f(x) in 0< \x\ <oo such that Wι(z)=f(ez). If f(x) has an
essential singularity at x=0, then f(ez) does not have any finite asymptotic
value in ^ / 2 + ε ^ a r g z^3π/2—ε. If f(x) has a pole at *—0, then f{ez) tends to
oo as z->oo in π /2+ε^arg2:^37r/2—ε. Hence

Substituting this into the given equation, we have

This gives

Firstly aQ~BΨΰ. If cΦ — n2 for all integers n, then

as n-^oo. This shows that the radius of convergence of f(x):=ΎΣcijXJ is equal
to zero. This is absurd. Hence c~~n2 for some integer ?ι>0. Then α n + A = 0 ,
k—1, 2, •••. Thus /(x) r =Σoβ;^ 7 It is very easy to determine all the ar This
gives the desired result.

§ 5. Boundedness criterion along a ray. In the real case there are lots of
boundedness criteria. We know very few such criteria in the complex case.

THEOREM 5. Suppose that F(z)=g(r)einr) along the ray reί0 (θ: fixed) such
that

g(r)

is monotone increasing for r^r0, where S is a non-constant polynomial and p>0,
and

with ρ'> p for r^r0, where A, B are polynomials of r or functions of r admitting
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polynomial major ants. Suppose further that F(z) is transcendental entire. Then
every solution of y"+F(z)y~0 is bounded along the ray reiθ.

Proof. Let us put the solution y—R(?')eίθίΌ along the ray reιl). Then the
differential equation gi

(2) R"(r)+ {g{r) cos(r(r)+2#)-(9'(r)2

For simplicity's sake we put

X(r)=g(r) cos(γ(r)+2θ), Y(r)=g(r) sin(r(r)+20).
Let U be

Γ θ'2RR'dt.
Jr1

Then

) / W 2 ~4^(n) 2 θ ' ( r i ) 2 - l ' RιΘrΘ"di.

By the second equation of (2)

Θ*'R+2Θ''R'' + Y~R=Q.
Hence

- Γ ^2θ /θΛ frfί = Γ /?θ/(2θ//?/ + r/?)rfί=2i7+Γ YR*θ'dt .
Jri 3rχ JT!

Thus

Λ r YR'θ'dt .

Therefore

y l YΘ'R*dt.

On the other hand by the first equation of (2)

ί/=Γ θ'2RR'dt = \r R"R'dt + [ XRR'dt
Jr1 Jn Jri

- ~ R'{ry- \ R'iny+j X(r)R{rY

y - ^ R*dX(t).
Δ Jrx

Thus we have

<*) With respect to the equation (2) it is necessary to pay attention to its meaning
at each zero of y. See C.-T. Taam. Oscillation theorems. Amer. J. Math. 74 (1952),
317-324. See also Hille [4].
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±R'(y + R(yθ'(y +

j RW+~

+ —[ R2dX(t)-\r YΘfR2dt.

Now we shall estimate the last integral. By the second equation of (2)

Hence

- Γ Y(
Jr1

Γ Y(t)[ Y(s)R(s)2dsdi .

Therefore,

\Y(t)\dt

Γ \Y(t)\R(tYdt[ \Y(t)\dt.

On the other hand

Γ
Jri

Y(t)\dt=C0<co.

Hence

- Γ Yθ' R*dt

Now we bake rx sufficiently large such that

\nt)\R(tγ ^

\Y{t)\R{t)2dt .

•<ε

for ί ^ n . Therefore

Thus we have

•~γ-\r

riR\t)dX(t).

By the similar process of proof of the Gronwall inequality we have

303
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dt

Therefore

Using this intermediate estimation we again estimate

Γ YθfR2dt.

Similarly

\θ'(r)R(r)2—θ'(r1)R(r1)
2\= — Γ YR2dt

^2C1^-^^rmt)\\X{t)\'dt^C2.

Thus
\θ/(r)R(r)2\^C2+\θ\r1)

This implies that

[r YΘ'R2dt

Therefore

By GronwalΓs inequality

which gives the desired result.

§ 6. The differential equation w

Our problem is whether this equation admits an entire solution of finite
order. By Frei's theorem we may assume that aΦQ. By a suitable translation
we may consider

(3) w»+e-

By the well-known transformation

expl-ίΓ
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we have

We denote this by yff+F(z)y=0. Let a be \a\eίa and z=reiθ (β: fixed). Then
we put F(z)=g(r)eιnr\ In this case

g - r c o s ^ i C o s ( r s i n # - C 2 + # + α ) + h i g h e r order terms,

g-r cos 0 + C!

sinθsinff—C2+ff+α)+higher order terms,j j

where C=C1

J

ΓiC2. In order to apply Theorem 5 we need to examine the
assumptions. g(r) co$(γ(r)+2θ) should be monotone increasing for r^rQ and
hence cos(7'(r)+20)>O. Further g(r) sin(r(r)+26>) tends to zero very rapidly as
r-»oo. Hence sin(^(r)+2^) tends to zero very rapidly as r^oo. This gives that
a+3θ=2pπ. Thus

Further cosθ should be positive. Hence —π/2<θ<π/2. One of three rays
re-χal\ re^«/*+a*/*t re-ιa/s+tiχ/s l i e s i n t h e r i g h t half-plane. We can apply
Theorem 5 along this ray. In the first place we assume that there is only one
ray reiθ along which the assumptions of Theorem 5 are satisfied. Then

_ π

6

In this case we may assume that O^#^ττ/β. By Theorem 5 y is bounded along
this ray reiθ. Now we assume that w is an entire solution, being of finite
order, of (3). Then by Theorem 2 w tends to a non-zero constant B when
£-+oo in 7r/2+ε^argz^37r/2—ε. w is also bounded along the ray reι°. Suppose
that w is unbounded in the sector S : θ<φ<π/2+ε. Then there is an unbounded
domain, contained in 5, in which w is unbounded. In this case

._, . ^ [Kr dt
log log M{r)^π\ n,•••- —const.

Jr0 tϋ{t)

^ log- —cons t .

Hence

.. loglogM(r) . π
r+~ lθgr 7Γ

Y + ε—/7

ε is arbitrary. Thus the lower order of w is greater than 2πl{π—2θ)^2. Let ζ
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be a point such that | ζ | = r , \ιv(ζ)\=max\w(z)\. By the Wiman-Valiron method
| 2 | r

holds excepting a set Δ of finite logarithmic measure. Assume that there is a
sequence {ζm} such that .&ζm^0, | ζ m | e Δ c . Then along \ζm\=rm

n{r) 1 / v

r

since e<Ώl+c is bounded. This implies that

It is known that

Γ log n(r) 3
lim—. ^ - 7 7 .

r= -̂ log r 2

log log Mir, w) log n(?̂ )
l im = l i m —Λ .
F= "̂ log r T^^ log r

Hence we have a contradiction. Therefore there is a sequence {ζm} such that
| ζ m | e Δ c , J?ζm<0. Let us put ζm—rmeιφm. We may assume that π/2<φm<π/2
+ε. φm—>π/2 as rm-^co. Now we shall omit the index m, since this does not
make any confusion. Then

Let us put c=c1+ιc2, a = \a\eιa. Then

' ' n(r)

Since n(r)^r2~δ', δf>§,

(r)2

Thus

— — I a \r

Therefore by n

O cos(—rsin 2)sin( —r sin

0̂ (r—>oo).

c o s ( - r sin

Let us put φ=π/2Jrψ. Then

r cos φ—ψ—c2~2pπ— — +o(l).



ON A SOLUTION OF ιv" + e"w'+(az+b)w=O 307

Which implies that

r=2pπ-j+ct+<Kl).

Let Ap be [_rp—o{l)<r<rv+o(l)~], rp=2pπ+c2-π/2. Then

° g rp+o(l) = 1 O g

Hence

This shows that the logarithmic measure of i}JAp)
c is infinite. Thus (WΔ3,)

C is
not contained in Δ. Therefore there is a set F of r of infinite logarithmic
measure such that for r e F , | ζ | = r , ^ ζ ^ O , M(r, w)=ma.x\w(rett)\ = \w(Q\. We
have, then, that the lower order of w is not greater than 3/2. This is a con-
tradiction. Hence w{z) should be bounded in S. This shows that w(z) is bounded
in the sector T : θ^φSSπ/2—ε. We now make use of the classical Lindelof-
Iversen-Gross theorem [5] and have the existence of the asymptotic value BΦO
of w in

Therefore y-^B exp(ec/2) as z->co in S 7 : # + ε ^ a r g ^ τ r / 2 - ε . Then by the
Cauchy integral formula y'—>0 in the same sector S'. Now the so-called Green's
transform [4] is useful. Let us consider y//+F(z)y=0 with F(z)=αz-\-e~z+c/2—
e~2z+2c/4. Green's transform gives

y\te^)\2dte-ιφ-[r F(teι^)\y(teιφ)\2dteιφ.

Hence
e%φ{y{reιφ)yf(rexφ)-y(roe

ιό)yf{roe
%φ)}

yVeιφ)\2dt-euφ+ια\T (X+iY)\y(teιφ)\2dt
Jr0

Thus
I y(rexφ)y'(rexφ)-y(rQexφ)y'(rQex*) \2

Here θ+ε^φ^π/2-ε,
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X= I a it^Γ — e''cos φ+ci cos(—f sin φJ

Γc2-a-φ)

-~e-2t c o s ^+2ci cos(-2ί sin φ+2c2-a-φ)

and

y - ί c o s

^ + c i sin(—ί sin

_ _ λ e - 2 t cos c5

Hence

Jr

is bounded as r—>co, since j - ^ 5 exp(gc/2) as r—>oo and | F(ί)l ^exp(Ci — t cos
for any sufficiently large t. We now rewrite the above formula

By the above observation

as r—oo. Thus (I, cos(3φ+a)-I2)
2+(Ii sin(3^+α)+/ 3) 2 is bounded for r->oo.

However

tends to infinity as r—>oo. We can take φ such that cos(30-rtf)^O, sin(3^-f
Hence the boundedness of (^ cos(3^+α)—/2)

2 implies that /x is unbounded and
hence (/isin(30+α)+/ 3) 2 is unbounded. This is a contradiction.

In the second place we assume that there are two rays reιθl, reι°2 along
which the assumptions of Theorem 5 are satisfied. Then

The same reasoning does work in this case too. We finally arrive at the same
contradiction.

We have the following

THEOREM 6. There is no entire function of finite order satisfying the differ-
ential equation
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wΛf+e"zw''
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