H. URABE AND C.-C. YANG
KODAI MATH. J.
3 (1980), 253—236

ON A CHARACTERISTIC PROPERTY OF
PERIODIC ENTIRE FUNCTIONS

By HiroNnOBU URABE AND CHUNG-CHUN YANG

Introduction. We shall pursue an investigation on a certain functional
equation treated in [8] with some overmuch restrictions. The functional equa-
tion is related to the following problem: If two entire functions in a certain
class have the same zero-sets (including multiplicities), then what can be said
about these functions ?

Denoting by G(b) the class of all entire functions each of which is periodic
with period 0 (#0) mod a non-constant entire function of order less than one
(cf. Def. in §1), in this paper, we shall prove that if two entire functions
belonging to G(b,) (=1, 2) have the same zero-sets (essentially), then they must
coincide up to a non-zero multiplicative constant (Thecrem 1). In the proof, we
use the Borel-Nevanlinna type unicity theorem.

Note that, together with G(b), the class J(b), consisting of the entire func-
tions each of which is periodic mod a non-constant polynomial of degree one, is
significant in factorization theory (under composition) of transcendental entire
functions (cf. for example, [1] or [7]).

Now recall some of the results of Gross ([2]). Among others, he proved
that any non-constant, periodic, entire function H(z) has an infinite number of
fixed points, that is, the zeros of H(z)—z. Further the fixed points play an
important role especially in cases concerning periodic entire functions (in factor-
ization theory, etc.). So one might expect that periodic entire functions would
be uniquely determined by the sets of their fixed points. In this paper, we’ll
show that this is the case (Theorem 2).

Here, the first author wishes to express his gratitude to Professors Y. Kusu-
noki (Kyoto Univ.) and M. Ozawa (Tokyo Inst. of Technology) for their encour-
agement and suggestions.

1. Statement of results.

At first, we’ll give the definition of the class G(b) explicitly.

DEFINITION. For a non-zero constant b, we denote by &G(b) the class of
entire functions of the form;
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254 HIRONOBU URABE AND CHUNG-CHUN YANG

fZ)=h(z)+H(z),

where H(z) and h(z) are non-constant entire functions such that H(z) is periodic
with period b, H(z+b)=H(z), and that A(z) is of order less than one.

After we’'ve written a short summary [9], we get a generalization. Our
generalized results are stated as follows.

THEOREM 1. Let f(2)eG(by) and g(z)€G(b,) for some non-zero constanis b,
(3=1, 2). Assume that the sets of the zeros of f(z) and g(z) are identical (includ-
g multiplicities) except at most a (sequence) set whose exponent of convergence
1s less than one. Then we must have

€)) fz)=c-g(z)

for some non-zero constant ¢ and b,/b, 1s a rational number.

Remark. Let f(z)eG(b,) and g(z)=G(b,) be represented as
2 f2)=h(2)+H(z), gz)=k2)+Kz),

where H(z+b,)=H(z), K(z+b,)=K(z), h(z) and Fk(z) are non-constant entire
functions such that 2 and k are both of order less than one. Then the condi-
tion of Theorem 1 concerning the zero-sets of f and g means that the identical
relation

©) hz)+ H(2)=(k(2)+ K(2)) R(2)e™®

is valid for some meromorphic function R(z) (20) of order less than one and for
some entire function p(z).
The conclusion (1) is equivalent to show that R(z) and p(z) are both constant.
Also note that any meromorphic function R(z) (#0) of order less than one
can be represented as

4) R(z)=v(2)/u(2)

for some entire functions u(z) and v(z) (20 and without common zeros), both of
which are of order less than one.

Periodic entire functions have the following characteristic property, as is
mentioned in Introduction.

THEOREM 2. Let Hiz) ()=1, 2) be non-constant periodic entire functions with
period b, (resp.). Assume that the sets of the fixed pownts of H,(2) are identical
(including multiplicities) except at most a (sequence) set whose exponent of con-
vergence 1s less than one. Then we have necessarily that

®) H,(z)=Hy(2)

and b,/b, 15 a rational number.
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2. Lemmas.

For the proof of Theorem 1, we shall need the following unicity theorem of
Borel-Nevanlinna type due to Niino-Ozawa [5].

LEMMA A. Let Giz) be a transcendental entire function and c, be a non-zero
constant, and let g(z) be an entire function, £0 such that T(r, g@)=o(T(r, G;)) as
r tends lo wfimity for any ) with 1<j<n. Assume that there exists an identical
relation such as

2 cG=g(),
then we have necessarily

360, G)=n—L1.

7=1

Here T(r, *) and dé(a, *) denote the Nevanlinna characteristic function and defi-
ciency, respectively.

Remark. Compared with the original Niino-Ozawa’s lemma, the above
Lemma A will seem slightly general. But the proof is essentially same.

Also we use the following simple fact.

LEMMA B. Lel w(z) be a meromorphic function of order less than one and
assume that
(6) w(z+b)=et w(z)

for some constants b (#0) and ¢. Then w(z) must be constant.

For completeness, we prove this. Indeed, if we consider the function
@ F(z):w(z)-exp[——g-z] ,
then the assumption (6) implies
8 F(z+b)=F(z).

If w(z) is non-constant, then w(z) has at least one zero or one pole, since w(z)
is of order less than one by assumption. Then from (7) and (8), the exponent
of convergence of the zeros or poles of w(z) cannot be less than one, so that
the order of w(z) cannot be so. This is a contradiction. Hence w(z) must be
constant.

3. To prove Theorem 1, at the first step, we note here the following facts.

PROPOSITION 1. Let the identity (3) be valid. And assume that p(z) is con-
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stant. Then R(z) 1s constant (#0) and b,/b, 1s a rational number.

PROPOSITION 2. Let the identity (3) be valid. And assume that b,/b, 15 a
rational number. Then R(z) and p(z) are constants.

Proof of Prop. 1. In this case, the identity (3) may be written as

) h(2)+ H(z)=(k(2)+K(2))R(z) .
We shall introduce here the notations;
(10) hz2)=h(z+jb), kz)=k(z-};b)),

R(z)=R(z+jby),

for any natural number ;.
Since H(z-+b,)=H(z) by assumption, noting (10), from (9) we have

hi—h=(k;+K(z-+b,))R,—(k+K(z)R,

so that

an K(z+b)R,—K(z)R=(h,—h)—(k,R,—kR).
Setting

12) S(z)=R(z+b,), r(z2)=h(z-+by), s(z)=k(z+b,),
and noting K(z+0b,)=K(z), from (11) we obtain

13) K(z4b,)S:—K(2)S=(r;—7)—(5,S:—sS).
Here we put

(14) r D)=r(z+jb), s z)=s(z+ib),

S{z)=5S(z+jb)
for any natural number j as in (10). Note that
R1<Z+b2):R(2+b1+b2>:S(Z+b1):SI(Z)

etc., by (10), (12) and (14).
Cancelling K(z-+b,) from the identities (11) and (13), we get

(15) (RS, —R.S)K(2)=R,[(ri—7)—(5:S:—595)]
—S\[(h—h)—(kR,—kR)].

Now the right hand side of this identity is of order less than one, while if

(RS;—R,.S) is not identically zero, the left hand side is of order not less than

one, since K(z) is a non-constant periodic entire function (by assumption). There-

fore we conclude
RS,—R,S=0, or S/R—S,/R,=0.

Noting (10) and (14), this means that S/R is periodic with period b,. Since S/R
is a meromorphic function of order less than one, an application of Lemma B
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gives

(16) S/R=const.=c, or c¢R—S=0.
Setting R(z)=v(z)/u(z) as in (4), then (16) can be written as
a7 culz+b,)v(z)—ulz)v(z+b,)=0.

Assume that R(z) is non-constant. Then we may assume without loss of
generality that u(z) is non-constant. In this case, since u(z) is of order less
than one, u(z) has zeros. Assume u(z,)=0. From (17), dividing the relation by
u(z), we have the identity
(18) cu(z+b,)0(z)/u(z)=v(z+b,) .

Here the right hand side of (18) is entire, and since u(z) and v(z) have no
common zeros, 1(z,)=0 implies u(z,+b,)=0, and so again by (18), changing the
variable if necessary, u(z,+2b,)=0. Repeating this argument, we obtain that

(19) u(zo+mb,)=0, for any natural number m.

Then from (19) we conclude that the exponent of convergence of the zeros of
u(z) is not less than one, and hence the order of u(z) is so. This is a contra-
diction. Thus we have proved that R(z) is constant.

Putting R(z)=const.=c¢ (#0), from (11) we have (since R,(z)=const.=c¢ also)
(20) c(K(z+b,)—K(z))=(hy—h)—c(k,—Fk).
Here the left hand side of (20) is periodic with period b,, while the right hand
side is of order less than one, so that we conclude again that
(21) K(z+b,)— K(z)=const.

Then K(z+b,)=K(z) and (21) imply that K’(z) (the first derived function of K(z),
non-constant since K(z) is non-constant and periodic) is periodic with periods b,

3

and b,. Since non-constant entire function cannot be doubly periodic, ,/b, must
be a rational number, which is to be proved.
Proof of Prop. 2. By the assumption, we may put
b=mb,=nb,
for some non-zero integers m and n. In this case,
(22) H(z+jb)=H(z), K(z+jb)=K(z,

for any natural number ;.
Putting

(23) h(2)=h(z+jb), kfz)=Fk(z+jb),

R{z)=R(z+jb), plz)=p(z+jb),
from (3) we}have
hj—h=(k,+K(2)Re?s—(k+K(z))Re?,
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where j is a natural number. Hence
(24) (R,e?1—Re?)K(z)=(h;—h)—(k;R e?1—kRe?).
By using (24) for j=1, 2, and cancelling K(z), we obtain the following identity
Ry(hy—h)eP2+R,Ry(ky— ky)eP1*P2— R Ry(k,— k)eP+P2
+RR,(ky—Fk)eP*P1— R (hy,—h)e?14 R(hy,—h,)e?=0.
Dividing this relation by exp(p,), we deduce
(25) RiR(ky—Fky)e?1—RR,(ky—k)e?+RR,(k,— k)e?+P1=72

—Ri(hy—h)ePr P2 R(h,—hy)e? Pe=—R,(h,—h) (£0).
Assume

(26) p(2)#constant,
in which case, if we can prove
@7) b—pi, P—p., Dp+pi—p.Fconst.,

then, applying Lemma A to the identity (25)*, clearly we have a contradiction.
We wish to prove that

(28) when (26) holds, then p—p,#const,,
for any natural number ;. Assume
(29) p,—p=const.=c, or ePi=ee?,

then (24) can be rewritten as

(30) K(2)= —e;’?jgj—_hﬁ-e-p— ecfc%}gﬁ :

if

(31) e‘R;—R#*0.

Then from (22), (29) and (30), using the notations (23), we have
hy—h . hyj—h,

Rk Rk,
ek, R,—kR _ Ry — kiR,

eR,—R R, —R,
Hence by Lemma B, we have
h‘J—h‘ P -7
¢R,—R =const.=c¢’ (#0),
e’kyRi—kR o
¢ R—R =const.=c¢” (0),

*> we’d multiply a common (entire) denominator, if necessary.
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or

hj—h=c’(eR;—R), and
(32)

ek;R;—kR=c"(¢R,—R).
Putting R=v/u as in (4), and R,=v;/u, (u,(z)=u(z+;b), etc.), the upper relation
of (32) reduces to

c’(efuv;—u,v)y=uu,h,—h),
which is rewritten as

u;v
—c’ ———Z'l’—f—:uj(hj—h)—c’ecv,.

By using the quite similar argument around (18), we can conclude that wu(z) is
constant. Hence we may assume R(z)=wv(z) without loss of generality, since
R=w/u. Then the lower relation of (32) becomes

ekjv,—kv=c"(e‘v,—v),
or
(¢"—=Ryv=e‘(c"—Fk,)v,.

Again by Lemma B, we conclude
(¢”—k)v=const.,
which is impossible. Thus

(33) ¢°R,—R=0 identically

is the only possibility remained. In this case, by Lemma B, R(z) is constant.
Under (33), the identity (30) must reduce to

(h;—h)e ?—(e‘k;R;,—kR)=0.

But this will be clearly impossible, since p(z) is non-constant and others (h, k
and R, ---) are of order less than one (h;—h cannot be identically zero). Thus
we have proved the assertion (28).

Next assume

(34) p+pi—p,=const.=c.

Then
bi—ps=—p+c, p—p.=—p:itc,

hence (25) reduces to the following identity
R R,(ky—Fk)eP1—RR(ky—k)e? —e°Ri(hy—h)e™?
+e°R(hy—hy)e P14+-[e*RR (ky—k)+Ry(h,—h)]=0.
Deviding this by exp(p;), we obtain
(35 —RR(ky—Fk)e?P1+4-[e°RR (ky—Fk)+Ry(h,—h)]e P2
—e°Ry(hy—h)e P P14-¢°R(hy—hy)e *Pi=—R,Ry(k,—k1) .
Here, by (26) and (28)
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p—p1, —pi, —2p,#const,
and
"Rle(kz—kl)ﬂ_éo ’

since k(z) is a non-constant entire function of order less than one.

—p—p1=—(p+ p,)Fconst.

Indeed if

(36) p+p=const.=c,
then

37) p1+ p,=const.=c.

Hence, subtracting (37) from (36), we get
p—p.=const.=0,

which contradicts the fact noted in (28).

Therefore we can apply Lemma A to the identity (35), and derive a contra-

diction. Hence (34) is impossible.

Thus we have checked (27). Hence (26) is impossible,* which is to be

proved.

4. In order to complete the proof of Theorem 1, by noting Propositions 1
and 2, it is enough to show that the identity (3) is impossible to hold under the

additional assumptions
(38) p(z) is non-constant, and
b,/b, is not a rational number

(by/b, is a non-real complex number or
real and irrational number).

Here we’ll note the following fact, which is needed later.

PROPOSITION 3. Let the identity (3) be valid, and assume the condilion (38).

Then, for any natural number j, the functions
p(z+jb)—p(2) and  p(z+jbs)—p(2)

are both non-constant.

Proof. Without loss of generality, it is sufficient to show
39) p(z+jb,)— p(z)+#const.
Indeed, for the proof of the fact

* In this case, the fact that R(z) 1s constant follows easily from (24) (without

using Proposition 1).

Also



ON A CHARACTERISTIC PROPERTY OF PERIODIC ENTIRE FUNCTIONS
p(z+jb)— p(z)#const.,
we need only to start the subsequent argument from the identity
k(z)+K(z)=(h(z2)+H(2))-1/R(z)-e .
We use the notations (10), (12), (14) and further

(40) q2)=p(z+bs), q{2)=q(z+jby).
Assume (39) is not true, that is, for some natural number j,
41) p,(2)— p(z)=const.=c,

then also from (40) and (41)
g{z)—q(z)=const.=c.
Hence, noting H(z+ jb,)=H(z), from (3) we have
hj—h=[e*(k,+K(z+ jb))R;—(k+K(2))R]e?,
and noting A(z-+0,)=K(z),
7,—r=[e(s;4+ K(z+jb))S;—(s+K(2))S]e?,
Re?K(z)—e°R,e? K(z+jb,)=(eke;R;— kR)e?—(h;—h),
{ Se?K(z)—eS;e?K(z+ jb)=(e’s,S;—sS)e?—(r,—7).
From the above system of equations, we get
eP*(RS;—R,S)K(z)=S;e[(e°k;R;— kR)e?—(h;—h)]
(%) —R;eP[(e°s,S;—5S)e’—(r;—r)],
e?*9e*(RS;—R,S)K(z+ jb,)=Se [ (e°k;R;— kR)e? —(h;—h)]
—Re?[(e°s,S;—sS)e?—(r;—r)].

so that

Hence
eP*%e(RS;—R,S){S,;e%[ (e ky;Rzj— kiR ;)eP1—(hy;—h,)]
—Ry;ePi[(e°5,,S2;—5,S)et —(rq—r,)]}
=e?1*U(R,S,;— R,,S;){Se [ (e°k;R,— kR)e? —(h;—h)]
—Re?[(e°s,S;—sS)e?—(r;—r)]}.
Using

pF+g+pit+a,=2p+2q¢+2c,
p+q+q,=p+2¢+c,
p+qg+p;=2p+q+c,

P, +a;+q=p+2q+2c,

b+ pit+a,=2p4q-+2¢,

we have the following identical relation

261
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e*[(RS;—R,S)R;(r:;—7;)—(R,Ss;— R2,S;)R(r j—r)]e??*¢
—e*[(RS;—R,S)S;,(hyj—h,;)—(R,Ss;— R2,S;)S(h j—h)]eP**
+e*[e‘(RS,—R,S)S; (e ky;Roj—k;R,)—e(RS;—R,S)R,,(¢°s,,S:,
—5,;5)—(R,;Ss;— R2,S;)S(e°k;R;—kR)
F(R,S2,— R4,;S,)R(e’s,S,—sS)Je*?**1=()

Dividing the above identity by e??*? or ¢?*%, and applying Lemma A, we con-
clude that three [*****] are all identically zero, since now because p,=p+c and
bi/b, is not a rational number, p—¢ is non-constant.®:

From the fact that the first [***]=0 and the second [***]=0 we obtain

RS,—R,S _ R,Sy,;—R.,S,

42 — == 8
(42) R(r;—7) Ry i(ryy—r;)
and

“3) RS;—R,S _ R,S,;—R,,S,

S(hy—h) — Syhay—hy)
Multiplying 1/R, to the both side of (42), by Lemma B, we have

RS;,—R,S
44 et AL I —
(44) RR,(r1—1) const.=c .
Rewriting (44) as S;/R;—S/R=c(r;—r), we obtain

S;/R,—cr,=S/R—cr,
whence, using Lemma B, we conclude
(45) S/R—cr=const.=¢’, or S/R=cr+c’.
We note here that the constant ¢ in (44) is zero if and only if R(z) is constant.
Indeed if ¢=0, then from (44) we have S;/R,=S/R. Lemma B leads us S/R is
constant, and so again we know that R(z) is constant (cf. the notation (12)).
From (43), similarly we have

RS;—R,S

(46) —S—S;(hj—h) =const.=c¢”,
and hence R/S—R;/S,=c"(h;—h), so that as before we conclude
“7n R/S+c¢"h=const.=c¢”, or R/S=-—c"h+c".

Here also ¢”=0 if and only if R(z) is constant.
Now from (45) and (47), we know

(cr+c)—c"h+c"=1,

which is possible only when ¢=0 and ¢”=0. Hence R(z) must be constant.x),
Thus we may assume

*x)1 See the final remark (added in the proof).
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R(z)=1 and hence S(z)=R(z-+b,)=1.
In this case, the system of equations becomes
{ K(2)—e*K(z+ jb)=(e k;— k)—(h,—h)e™ ",

K(z)—e*K(z+ jby)=(e’s;—s)—(r;—r)e .
Hence
(hj—h)e ?—(r;—r)e '=(ek;—k)—(es;—s),

so that we have the identity
(48) (rj—r)e? 14-[(ek;—k)—(es,—s)Je?=h;—h .
Here h,—h=0 and p=*const. And also

p—qFconst.,x),

since now p;— p=const., and b,/b, is not a rational number (non-constant func-
tion p(z) cannot doubly periodic). So by Lemma A the identity (48) is impossible
to hold, a contradiction. Hence the assertion (39) follows, which completes the
proof of Prop. 3.

5. In this section, we wish to deduce the new identical relation starting
the identity (3). We assume the condition (38) from now on.
We use the former notations (10), (12), (14) and (40). For example,

hiz2)=h(z+jby), kiz)=Fk(z+jb,),

R{2)=R(z+jby), p,(2)=p(z+jby).
As H(z-+b,)=H(z), from (3);

h(2)+H(z)=(k(z)+ K(2)) R(z)e?* ,

we have

hy—h=(k+K(z+b,)Re?r—(k+ K(z))Re? .
Hence
(49) Re?K(z)—R,e? K(z+4-0,)=(k,Re?1— ERe?)—(h,—h) .
And, noting K(z+b,)=K(z) and r(z)=h(z+b,) etc., from (49) we have
(50) Se'K(z)—S1e"K(z+b,)=(5,S,e11—5Se))—(r,—7r).
Setting

R=v/u, and S=y/x
(x(2)=u(z4-b,), y(z2)=v(z+b,)) as in (4), the identities (49) and (50) can be
rewritten as
5D { wyve? K(z)—uv,eP K(z+4b,)=kuv,e? -~ kuve? —(h,—h)uu, ,

x1yeK(z)—x e K(z+b)=s,xy,e"'—sx,ye"—(r,—1r)xx; .

%), See the final remark (added in the proof).
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We solve this system of equations as follows:

(52) K(2)=D\(2)/D(z), Kz-+b)=Dx2)/D(z),
where
uve?, —uv,e?
(53) D(z)=det )
x1yet, —xy,eh
kiuvePr—kuve?—(h,—h)uu,, —uv,e’"
D,(z)=det ) ,
S1x Yyt —sx,yel—(r,—r)xxy, —xyelt
uve?, kuvePr—kuve?—(h,—h)uu,
D,(z)=det
x1ye%  sixyelt—sx,vel—(r,—r)xx,
We note here that D(z)Z0. Otherwise
(54) D(z)=x,yuv,e?*"—xyuve? =0
Then (p+q,)—(p.+qg)=const.=c¢ (say), or
(55) G=—p+pitg+c.
If D(z)=0, then from (52) D,(z)=0. This means
(56) kxyu,ve? T 4-(s,—ky)x yuv, et

—SxX1 YUV, H(hy—h)x yuu,e?t

—(ri—r)xxuv,e?r1=0.
From (55),
p+(11=1)1+q+c B ]‘)1“}“01:“]7"*‘2[71‘}“(]“{‘0 »

so that (56) becomes
(e®kxyuyv—sx,yuv,)eP1* e (s, — k) x y,uv e 201
+e'(hy—h)xyuu,e P21 —(pr —p)xxuv,e?'=0.
Dividing this by exp(—p+ p,+¢), we obtain
(57) (e®kxyuyv—sx,yuv,)eP+e(s,—kyjxyuv,e??
—(ri—r)xxuve? t=—e‘(h,—h)xyuu, (£0).

Here p, pi#const., and also p—qg=const. by Prop. 3 (cf. (38)). Then apply-
ing Lemma A to (57), we have a contradiction. Thus

(58) D(z)7#0.

From (52), we know
(59) D(z): Dy(z+b)=D(z+b,)-Dy(z).
Now

D(z)=x,yuv,eP*'—x yu,ve?f*
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D(z+by)=x:y111v,P2* 1 — X, YU, v 271722,
Dy(z+b)=kix1Y,usv P17 24-(S,— ko) X1 Y1, V00202

— 81X Y111V, 0 H-(hy—h ) X1 you u.e®
—(ry—r)x1x,u,v,e"2,
Dyz)=—(s—k)x,yu,veP s, x y,uve? 1
—kyx yuv, e —(r,—r)xx,u,ve?
+(hy—h)x yuue?.
Hence from (59), we have the following identity after arrangement
(60) (rs—71) X,eP1+P2% 94y, — ) X, P+ P10 (hy— h,) Xye P Hu+a:
—(ry— ) X, PPt —(h,— 1) X,eP1H 0 (), — ) X e P20t
L (s—B) X ePP1¥1+ (5 b) X oP¥P2t T U (5,— |,) X, @P+P2r01+02
___(Sl.._ kl)XloeD‘Fl’l*"IlHIz_.(sz_ /32)X“e731+712+€1+42
+ (51— k) X peP1¥P2+ 10,
Here we put
(61) Xi=x2xyuu,v,0,, X,=xX YU U0,
Xo=xx V1Y U0, X =xx2,0:U. 00,8,
Xo=xl2yyvauuu,vy, Xe=x1X,VyUu%v,,
Xo=x2yyusuyvvy, Xe=Xx1XY VU 00,
Xo=xX1919:u%0 05, X10=XX1Y1Y2U UV V1,
Xu=xyyuu, .0y, X=X XY Y1UU 0 Vs,

each of which is an entire function and not identically zero such that the order
is less than one.

Dividing the relation (60) by exp(p,+ p.+¢), we obtain
(62) (ro—r) Xy +(ri—r) Xoe? P20 02 (h,— k) X,eP ~P17 P20+
—(ry—r) X P P10 —(h,—R) X e P22 (h —h) Xe P1t0
+(s—R)X:eP P22 —(s— ) Xse? P11 U (5,— ky) XyeP ~PL0H 02
—(s1— k) Xe? P2ttt —(g,— ) X, 0%24(5,— k1) X1261=0.

This is the new identity which we mention at the beginning of this section. In
(62), we may transfer the term (r,—7r,)X, to the right hand side if necessary.

6. In (62), as r(z)=k(z-+b,) is a non-constant entire function of order less
than one and X, is not identically zero,
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(63) (ry—r)X,#0,

and as p(z) is non-constant by assumption,

(64) 9,(2)= p(z+ jbi+bs)#const.
Also by Proposition 3, noting (40) etc., we know

(65) —p2tq., —pit+qiFconst,
and further, for any natural numbers m and n (m#n),
(66) P—=bm, PtbPm, Pm—Dn, DPutha,

9—qdm, 9tqm, In—qn, qntdn,
p_q: p+q: pm_qm: pm+0m

are all non-constant by Proposition 3.
Indeed, for example if

(67) P+ pm=const.=c¢ (say),
then also
(68) Pm+ pam=const.=c,

since pj(z)=p(z+jb;). From (67) and (68), subtracting,

pam—p=const.=0,
or
p(z+4-2mb,)— p(z)=const.=0,

which contradicts the fact proved in Proposition 3.
Also note that

(69) p—pi—q+q#const, if p—p,—q-+q,#const.
Because, if

(70) p—pi1—q+g,=const.=c (say),

also, noting the notations,

(71) b1—p2—qi+g.,=const.=c,

so that, by adding (70) and (71), we have
p—p.—q-+g,=const.=2c¢.
Hence if we can prove the following six functions
(72) P=Pe=q+q:, P=Pr—De—q TG,
P=petqe, P—Pita,
P=P1—q+q1tqs, D—Pe—qF+qitq,
are non-constant, because of the facts (63), (64), (65) and (69), by applying Lemma
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A to the identity (62), we get a contradiction. Therefore the proof of Theorem
1 has become done.

In fact, in the following section, we’ll prove that the six functions in (72)
are all non-constant, one by one, applying Lemma A repeatedly.

7. The non-constancy of the six functions in (72).
[IJ Non-constancy of p—p,—qg—+g,.
Assume
(73) p—ps—q+g,=const.=c.
Then cancelling ¢,, we have
p=Pr=p2—qt @t G=—prtqitc,
—petq=—ptqtc, p—p.t=qtc,
p=D1—q+ @t g=—pit patagite,
p=p—qt =0t c, G=—ptp.tqgtc.
Hence the identity (62) can be written as
[(re—r) XiH(ri—1) Xoe T+ [(hs—h) Xye+(hy—h) X Je Pt
—(ry—r) X, e? P10 —(h,—h) X;eCe PH-F(s— k) X et
—(s— k) Xze? P10 (5,— ky) Xjele Prizta
—($;— k) X pe®— X )eU—(s,— k) X @0 PHPeta=(),
Dividing this relation by exp(— p,+ p,+¢,), we obtain the following identity.
(74) (55— ko) Xoe +[(ry—r) Xy 4 (ri—7) X, e¢Je? 17271
+L(he—h)Xsef+(h—h) X Je P2—(ry,—r) X, e? 7271
—(hy—h)Xsefe PHP1-Pett- i (s— k) XjeleP1 Pete-t1
—(s—Rk)Xse? P2—(5;— k1 )( X pe* — X ,)eP 1~ P2
—($y— k) Xy efe PHP10I=()
Here, noting the notations (12) etc.,
(sy,—ky)Xee¢£0, and
— P P—Ds, Pi—DP.7coOnst.
Further we shall prove that
Pr—P2—q1, P—Ps—q, —DPF+Dbi—p.tq—q,
pi—=Petq—qy, —ptpita—q

are non-constant, under (73). At first, we note that the former three are non-
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constant, and next we prove that the lower two are also non-constant.

Indeed if p;,—p,—g¢; is constant, then by the notations given before, p—p,—¢q
=p,—p,—q,=const.=c¢’ (say). Adding these, p—p,—q¢—q¢,=2¢’, which together
with (73) show us that ¢,+¢.,=const.=c—2¢’. But this is contrary to the fact
noted in (66).

If p—p,—q would be constant, then from (73) ¢, and hence p(z) must be
constant (q,(z)= p(z+2b,+0b,)), a contradiction.

If —p+p,—p,+q—g,=const.=c¢’, then —p,+p,—ps+¢—q,=c¢’ and so by
adding we get —p—ps+q—¢g,=const.=2¢’ as above. Hence, using (73), we have
Pyt py==const.=—(c-+2¢’). By (66) this is not valid, a contradiction.

[I. 17 Assume
(75) P1—Patqg—gi=const.=c’ .
Then, cancelling ¢,
PP =—qFc", —pFpi— Pt q=—prc,
—pt+pitg—q=—p+p.+c’.
Hence (74) can be written as
[(sy— ko) Xy+(s— k) Xqe® Je+[(ry—r) Xi H(ri—1) Xse¢Je e ¢
-=[(hy—hy) Xset+(h,—h) X Je P2—(r,—7) X,eP P20
—(h,—h)Xze e ?—(s— k) Xse? " P2—(s;— k1 )( X pe®— X p)eP1 P2
—(5y— ko) X1 e PTP2=(),
Dividing this relation by exp(p—p,), we obtain
(76) —(s—R)Xs+[(s2— ko) Xy+(s— k) X:e” Jete P02
+[(ry—r) X1+ —r) X e¢]e e Prred
+[(he—h)Xset+(h—h) X Je P —(r,—r)X,e™?
—(hy—h)Xse* e 204 P2— (5, — b )(X 00" — X,p)e P HP1

—(sy— ko) X et e 2P P =()

Here

a7 —~(s—hk)X,20, and

(78) —p+b., —P, —q, —p+p, —2(p—p,)+const.

Also we note that

(79 —p-+p,—q and -—2p+p, are non-constant.
Indeed if

(80) —p+py—g=const.=c¢” (say),

then from (75) and (80), by adding, we have



ON A CHARACTERISTIC PROPERTY OF PERIODIC ENTIRE FUNCTIONS 269
—p+p1—g,=const.=c’--¢”, and so

—p1+p2‘—Q2:C/+C”.
Again by adding
—p+p:—q,—g;=const.=2(c’+c”),

which together with (73) imply ¢-+g¢,=const., contrary to (66).
If

81) —2p+p,—const.=¢” (say),
then in this case from (75) and (81)
—=2p+pitq—q=—2p+ Pt i—p=c"+c”,
and hence, by adding,
—2p—pi+pytg—g,=const.=2(c’+c”).

Using (73), from this we deduce p-+ p,=const., a contradiction.
As we have checked the facts (77), (78) and (79), applying Lemma A to the
identity (76), a contradiction follows. Thus (75) is impossible.

[I. 2] Assume now

(82) —p+p+g—q,=const.=¢’ (say).

Then cancelling ¢,
Pr—pe—q@=p—ps—q+c’, —ptpi—p.tqg—q=—p,tc’,
pr—petg—q=p—potc’.

Hence (74) can be written as

(83) (59— ka)e(Xy—e® X1y)
+H{r,—r) X+ (ri—7r) X,e} e —(ry—r) X, Je? P20
+{(hy—h)Xse+(h—h)Xe—(hy,—h) Xset+e Je P2
(s —R)( Xett — Xg)e? Pr—(s,— by (Xypet — X e Pt~ P2=(0.

Here

(84) (sy—hky)e(Xy—e” X,1)#0.
If otherwise

(85) Xy—e" X, =0,

since s,—k,70. (Note that s,(z)— ky(2)=Fk(z-+2b,4b,)— k(z-+2),), by definition, and
that k(z) is a non-constant entire function of order less than one.)
Noting (82), (85) implies that

(86) Xoe?t—X oP171=(),
Recall
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Xo=XX1 515U °VV,, Xu=x2YV,UU,0,0,,

cf. (61). Then (86) reduces to

87) X1 Vol V(X Yy veP i —x yyv,e?119)=0,

Since x,y,u,v,%#0, (87) shows

(88) D(z)=0

(cf. (53)). However, in §5, we have ruled out the possibility (88). Thus (84)
must be valid.

Now, —p., p—pP., p1—p.#const., and noting (73)

P—Ps—q=c—q:

is also non-constant, since ¢, 1S SO.

Then, under (84), by applying Lemma A to (83), we obtain a contradiction.
Hence (82) is not valid.

Therefore, again, by applying Lemma A to the identity (74), we know that
it cannot hold. This contradiction shows us that (73) is impossible. Thus the
proof of the case [1] is complete.

[II]. Non-constancy of p—p,— ps—q+¢:+q..
Assume
(89) P—P1—P.—q+qit+g.=const.=c.
Then cancelling ¢,,
P=De—qt =@ ¢, —prt@=—ppitg—ate,
P—peT =P Hq—q:tc, p—Dbi—qt+qitg=p,+tc,
P—pe—q+ @t g=ptc, @=—p+pit+petq—qgitc.
Hence (62) can be written as
[(ry—=r) X4 (he—h ) Xae J+(r1— 1) X, eceP -0
—(ry—7) X e? Pt U—(h,—h) X ee PP UL (R —h) X e P11
(s — k) Xae e — (s — R) Xy P (5, o) X,ete?
—(s1— k)X peeP—(s,— ky) Xijee PHP1tPert=dig (5, — ) X ,e?1==0.
Dividing this relation by exp(p;—q,), we have
(90) (ri—r)Xee* +[(ro—r ) Xi+(hy—h,) X eJe P1t0
—(ry—1) X, eP PP —(hy— h) Xefe P4 (h,—h) Xe 2P
T(s—Rk)Xzete?—(s— k) Xye? "*P17 21 (5, — k,) X,ete " P1t P21

—(s1— k)X pee —(s,— ko) X1 1ete™PHP2 0 (5,— k) X e P1H01=0)
Here,
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(r1—7)X5ef=£0,
_P1+QJ, _p+Q) ‘“2(171_(]1), q, qliconSt-

Next, under (89), we shall prove the non-constancy of the following five func-
tions ;
p—2p—q+2q,, p—2p+2¢;, —pit+p.tqs,

—p+ptq, —pit2¢.
Then by Lemma A we have a contradiction from (90).
L 173, If
(91) p—2p,—q+2q,=const.=c’.

Then p,—2p,—q,-+2¢q,=c’ also, and hence by adding, p—p,—2p,—¢-+q,+2¢,=2¢".
This together with (89) imply that p,—g,=const., which is a contradiction (cf.
(66)).

[Il. 2]. Assume
(92) p—2p,+2q,=const.=c’.

Then, changing the variable and adding, we have as before p— p,—2p,+2¢,42q.
=2c¢’, whence by (89),

(93) p—pi—2¢=const.=2¢c—2c’.
Now (92) and (93) give us that

69 Pr—2q—2¢1=p,—2¢,—2q,=2c—3c’.
Also (93) and (94) give

(95) p—4q—2q,=4c—5¢".

Using (94) and (95), by cancelling p, py, and p,,

— Pt @=—29—q—@2c—=3c"), p—2p—q+2q=—q+c,
—p+qg=—3¢—2¢q,—(4c—5¢’"), —2p,+2¢,=—4q—2q,—2(2¢—3c’),
—bit bt =—2¢+q:+2¢:, —p+p.tg=—3¢+2¢,—(2c—2¢"),
—p1+2¢,:=—29q—(2c—3¢").

Hence (90) reduces to
[(ri—r)Xse®—(s— k) Xse® J+[(r,—r) X +(hy—h1) XsetJe™*c 732001
—(ry—1)X,e® e"1—(hy—h)Xsete 475 gm8020
F(hy—h)Xe 2R3 g0 201 (s — k) X 0%
+(sa—kp) Xyefe 2 01+ —(5, — ) X pee™t

— (S~ o) Xpefe P72t et (5 — o) X e~ P77 M=0).
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Dividing the above relation by exp(—g¢), we have

(96) —(ry—1) X +L(r1—r) Xet —(s— k) Xeet Je?
FLr—r )X+ (he—h) XzetJe~Fem8eDpm0-01
—(he—h)Xse™8+5¢ ¢ 20214 (h, — h) X e~ 8¢ g=3-2m
+(s— k) Xqefe*+(s,— ko) Xyefe 1t — (5, — k) X yefe?™ M
—(s55— ko) X1 702 @722 (5, — o) Xy~ 0730710

Now, from (92) and (93) (changing the variable), we have

97) p—D1—p:=(p—2p:1+2q)+(p1— p.—2q1)

=const.=2¢c—c’.

This together with (89) show

(98) g—q;—g,=const.=c—c’.
Using this fact, we can easily show that
(99) —3¢—2q,, —q-+q+2q,#const.

Indeed if —(3¢+2¢;)=const.=c” (say), then —(3¢;+2¢,)=c” so that by (98)
2+ q¢:=2(q—q,—q.)+(3¢:+2¢,) becomes constant, and hence ¢=2(2¢-+¢,)—(3¢+2¢,)

must be so, a contradiction.
Also, —q+q,+2¢,=—(q—q,—q.)+¢q, cannot be constant by (98).

Further,
—(TZ—T’)X,;QC' $0 )

g, —q—q1, —29—2q,, 2q, q+q., —2q+2q,, —g+const.

and, noting (99), by Lemma A, the identity (96) leads us to a contradiction. Thus
(92) is impossible.

(1. 31. Assume

(100) — p1+ p.t+q=const.=c’,
and so,
(101) —p+pitag=c.

Then by subtracting (101) from (100), we have p—2p,+ p,—q+q.=const.=0.
This and (89) give

—m+2p,—q,=—c and hence —p+2p,—qgi=—c.
Then this and (100) give, by adding, —p+p,+p.=—c+c’, so that by (89) we
have
(102) q—q,—g,=const.=—c".
While by (89) and (101),
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(103) pe—q—q=P1—q—g=const.=—c—c’.
Also by (101) and (103) we have
(104) p—2q—g,=const.=—c—2¢’.

By using (103) and (104), and cancelling p, p, and p,, from (90) we deduce
L —1)XoH(s,— ko) Xge® Je +[(ra—r) Xi+(hy—h ) Xset e+ 71
—[(re=1)X,— (51— k1) X1pe¢ Jefe 10
—(hy—h)Xse* 2 e 17U (h—h) Xe™+* 72
+(s—k)X.ee?—[(s— k) Xs+(s;— k) X1 lee?
(85— ky) Xyt @79 2=0),
Dividing this by exp(g), we have
(105) (s—= k)X, et +[(ri—r) X+ (s,— ko) Xye Jete?
F[(ro—r) X+ (hy—h) Xse et e~ 2
—[(ry—r) X, — (51— k1) X;,e% Jete~ 2001
—(hy—h) X% o2 U4 (h,—h) X e +2¢ =%

—[(s—=R)Xs+(s:— k1) XioJee U —(s,— kp) X, 05 020 02=() .

Here
(S_ k)X7ec—_720 )

—q, —2q, —3q, —q+q,#const.
Also, by using (102), we can easily show as before that
—2q+q¢;, —2¢g—q;, —2g+g,+const.
Hence, applying Lemma A to (105), we have that (100) is not valid.
[Il. 4. Assume
(106) —p+p.+g=const.=c¢".
Then, using (89), from (106) we have

P—G—@=p—q—q=—c—C’,
and hence by (106),

107) Pe—qi=p,—qg=const.=—c.
Again by (106) and (107)
(108) p—pi—p.=const.=c—c’.

Using (107), by cancelling ¢ and ¢;, from (90) we deduce
[(Tl—r)Xz*‘(Sz_kz)Xuec']ec+[(rz—7’1)X1+(h2"hx)Xsec:]ece_p”m

—(ry—r)X,e¢e?*P1+2P2—(h,— h) X;e*e " P+P14-(h,— h) Xse2C e 2P1+272
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F(s— k)X 0% eP1—(s— k) Xge?teP2P1+2P2
+[(se— k) Xy (51— k1) X o]0 e P1¥202
— (81— k) X0e%eP2=0.
Dividing this by exp(—p-+p,), we obtain
(109) —(hy—h) X;e*+[(r— 1) Xy—(sy— ky) Xy Jee? 1
FL(ry—r)Xi+(hy—h,) XseJete? 2P1 P2
—(ry—7)X,e%e* P 221 PO L (h,— h) X e*Ce? ~Pr1tiD:
+(s—k)X,0*e? —(s— k) Xgo*¢e®P~3P1+2P2
F(sa— ko) Xog+(51— k1) X 1o ]e* P ~2P14202

—(s;— k)X pe%eP~P1tP2=(),
Here
~(h2—h)X5e2”$O ,

p—p., pFconst.

Further, using (108), we can show arithmetically that

p—2pitps, 2p—2p1Fpo), DP—3pit+2ps,
2p—3p1+2ps, p—2p1+2p,, p—pi+p.+#const.
Indeed, for example, if
(110) p—2p,+ p,=const.=c¢” (say),

then, using (108), 2p—3p,=const.=c—c’+c¢”. Hence from (110) 2(p—2p,+ p.)—
2p—3p)=—p1+2p,=const., so that —p+2p,=const. Then p—p,=2p—3p.)+
(—p+2p,) must become constant, which is impossible by (66). Thus p—2p;,-+p
#const. Other cases are treated quite similarly.

Hence an application of Lemma A to (109) leads us to a contradiction
Therefore (106) is impossible.

[II. 5]. Assume that

(111) — p1+2g,=const.=c’,
which implies that
(112) —p+2¢=—p,+2¢g,=const.=c".

Then by these, we have —p-+pi+ p.+2¢—2¢,—2¢g,=const.=—c¢’, from which,
together with (89), we have

(113) q—q,—g,=const.=c—c’.
Using (111) and (112), by cancelling p, p; and p,, the identity (90) becomes
[(ri—r)Xeet+(s1— k) X10e® 1+ [(ro—r) X1+ (hy—h) Xsetle” e @
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—(ry—r) Xt et 1 —(h,—h)X;ete® e 94(h,—h) X e* e
+(s— k)X e —(s— k) Xge e* 1?1+ (5,— ky) Xyete 1+
—(s,— k)X et —(s,— ky) X11e%e 9722=() .
Dividing this identity by exp(—¢q), we deduce
(114) —(hs—h)X;e e - [(r1—1) X - (5,— k) X150 Je”
FL(ro—r) Xi+(hy—h) XeJe e t—(r,—7r) X e > 1710
F(hi—h)Xe? e 21 (s— k) X, e —(s— k) Xge 1720
(53— kg Xgetel t+2te— (5, — b ) X jecett 1

—(sg— ko) X 100 2=0 .
Here
—(ho—h)Xze7¢ 0,

¢, ¢—q, 2q—q0), 29, q+q., 2g,#const.
Further, noting (113), we can easily show that
q—2q:, 3q—2q:, q—q+2¢,#const.,

arithmetically, as before.
Hence, applying Lemma A to (114), we obtain that (111) is impossible.
Thus we’ve checked the assertion [II].

[III1 Non-constancy of p— p,-+qs,.
Assume
(115) p—pst+q,=const.=c.
Then cancelling ¢,,
P—D:—q+=—q+c, p—pi—po—qt@tg=—pi—qtatc,
—bPetge=—ptc, p—Di—qT @t ==t p—gtqtc,
P D=4t Q1T G=—q+q+c, g=—p+p.tc,
so that (62) can be rewritten as, after dividing the reduced relation by exp(—q),
(116) (r1—r)Xee® +[(ro—r) Xi+(s— k) Xse¢Je?+(hy—hi) Xsete P10
—(ry—1) Xe? P10 —(hy—h) Xsete P04 (hy—h) Xee PrHetar
—(s—Fk)Xse? P10+ (5, — f,) X oo P1iP2tq1
—(s1— k) Xete—(s,— ko) Xi1efe PHP2t04- (5, — k1) X 1,07t =0

Here, (r,—7)X:e°#£0, and that ¢, —p,+¢;, —p+q, ¢ and ¢+¢; are non-constant.
Also
p—D11+q1, —pit+pstqi, —p+pstg+const.
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Indeed if p—p,+q, is constant, then p,—p,+¢. is so, which together with (115)
give p—p,=const., a contradiction. If —p,+ p,+q, is constant, then —p,+ p;+¢.
is so. Then (115) shows p—p,=const., a contradiction. If —p+p,+¢ is con-
stant, then (115) means ¢-g,=const., also a contradiction (cf. (66)).

Further we wish to prove that the following two functions

—D1FgTq, P—Ditgta

are non-constant under (115).

[IIl. 17. Assume
(117) —p1+g+g,=const.=c¢".
Then — p,+q;+g,=c’ also and hence by (115) we have
(118) p—g,=const.=c—c’,
which together with (117) give
(119) p—p1+g=const.=c.

Using (118) and (119), by cancelling ¢ and ¢, from (116), and then dividing the
new identity by exp(p— p;), we deduce

(120) (he—h)Xse® +[(r1—r)Xset+(hy—h)Xse® Je P71
H(re—r)XiH(s— k) XeeJefe PPV —(r,—7) X 0™ e?
—(hy—h)Xse* e *P+2P1—[(s— k) Xs+(s,— k1) X1 Je® eP?

—(sg— ko) Xse® eP2—(s,—ky) X 11020 PH?P1 P2 (5, — |, ) X pe @™ PT2P1=() ,

Here (h,—h)X;e” 0, and that —p+p;,, —2(p—p,), b, p: and p, are non-constant.
Now, from (119), p,—p,+q,=c, which together with (118) give

(121) b+ p1—p.=const.=2c¢—c’.
Noting this fact (121), we can easily show that
—3p+2py, —3p+2pi+p., —p+2p,Fconst.

Then, applying Lemma A, the identity (120) leads us to a contradiction. Hence
(117) is impossible.

[II. 2]. Assume

(122) p—pi1+q-+g,=const.=c’.

Then p,— p,+q,+q,=c’ also, with which and (115) we have
123) p—p—gi=c—c.

Hence by (122)

(124) 2p—2pitg=c.

Using (123) and (124), by cancelling ¢ and ¢, from (116), and then dividing the
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rewritten identity by exp(—p+p,), we obtain

(125) (s1—= k)X 16 +[(r1— 1) X,e°—(s— k)Xot JeP~P1
FL(rs—r) X1+ (s— k) XzeJefe P P14-(hy—h,) Xyet 2P =521
—(ry=—1) X~ PPV —(h,— h) X020 Pt P1
F(hi—h)Xse® e P1-(s,— ky) Xoe® @?P~3P14 P2
—(s1— k)X 0e® e* PPV —(5,— ky) Xy 020 2P+ P1HP2=()

Now from (123) and (124), we have

(126) p+pi—2p,=const.=2c—c’,

since 2p,—2p,+g,=c also by (124). Using (126), we can easily show that
2p—3p:1, —2p+py, 2p—3pitp. and —2p-+p+p.

are non-constant, as before. Further (s;,—#k;)X;,¢e" =0, and that p—p, and —p,
are non-constant. Hence applying Lemma A to (125), we deduce a contradiction.
Thus (122) is not valid.

Therefore again applying Lemma A to the identity (116), we have a con-
tradiction. Hence (115) is impossible, which is to be proved.

[IV]. Non-constancy of p—p;+¢.
Assume
(127) p—pi+qg,=const.=c.

Then,
Di—bpet+g=c and p—p,tqirg.=2c.

Hence cancelling ¢, and ¢,, we have
p—pe—qt@=p—Dpi—q+c, p—pr—p—qtqtg=—pi—q+2c,
p—D1—q+G=—q+c, —Ditq=—pitc, —pita=—ptc,
p—pet@=p—pitc, p—p1—qt+a+e=—pi+p.—q+2c,
p—po—q+a:i+q=—q+2c, q=—p+p.tc, qg=—p+pitc.

Hence the identity (62) reduces to the following one, after dividing the rewritten
relation by exp(—pi—q),

(128) (he—h)X:e2+[(r,—7) X, —(s— k) XsetJeP1*?
+(r—1)Xpee? —[(r,— 1) X, (51— k1) XipeJefe??
—(hy—h)Xsefe?+(h,—h) XseCe PrP1rl(s— k) X 0P
+(sy— ko) Xee¥eP2—(s,— ky) X11e%eP2 - (s, — k) Xjpefe P PP14 =0,

Here, (h,—h,)X,;e**=0, and that
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b, P, ¢, —pt+pitq=—c+qtq, p+q, p.7const.

We must check the non-constancy of the following three functions

pitq, potq, —p+2pitg.
[IV. 17. Assume

(129) pi-+g=const.=¢’,

and hence p,+¢,=const.=¢’ also. Cancelling ¢ from (128) and then dividing the
new identity by exp(p), we obtain

(130) (ri—r)Xpe*+[(hy—h)Xpe* +(ry—r) X e —(s— k) X5t Je=?
—L(ry—r) X +(s,— k1) XppeJete P+P1—(hy,—h) X;ette o= 2711
A(hy—h)Xe ™ e 2P 4-(s— R) X7e°+% e Pi-(s,— ky) Xge* e+ 02
—($3— ko) X116t e PP Pe (g — P ) X et 0722 P1=()

Here, —(r;—7)X,e‘0, and that —p, —p+p;, —p—p1, —2p, —p, and —p-+p,
are non-constant.
Now from (127) and (129) (since p,+¢,=c’), we have

(131) p—pi— p,=const.=c—c’.

Using (131), we can easily show that —p—p,+p, and —2p- p, are non-constant.
Hence, applying Lemma A to (130), we get a contradiction. Thus (129) is
impossible.

[IV. 2]. Assume
(132) petg=const.=¢’.

In this case, cancelling ¢ from (128) and then dividing by exp(p), we deduce the
following identity.

(133) (ri—7r)X,e+L(h,—h)Xse®—(ss— ko) X119 Jete™P
+[(re—r)Xi—(s—k)XgetJe" = P*P1-P2
—[(re—r)XsH(s1— k1) XyeeJefe ¥ 1
—(hy—h)Xset e PPt (hy—h) Xge® ¢ @2 P iz
F(s—h) Xt e P24 (5,— ky) X oo 07 P2
4 (s,— k)X et e 2P 2P17P2=()

Now from (132), p;+g,=c’, from which and (127), we have

(134) p—p1— ps=const.=c—c".

Using (134), we can easily show that

—p+pi—ps, —2p+pi—p., —2p+2p—p,#const.

Indeed, for example, if
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(135) —2p+2p,— p,=const.,

then, using (134), by cancelling p—p,, we get p,+2p,=const. Hence p+4-2p, and
p1+2p, are constant, so that, by subtracting these, we have

b+ pi—2p,=const.

Then from (135), cancelling p, we have 5p—3p,=const. From this fact and
p+2p,=const., we conclude that p=const., which is a contradiction. Thus (135)
is impossible.

Further, clearly, (r,—7)X,e°#0, and that —p, —p+p;, —p—ps —ps and
—p-+p, are non-constant. Hence applying Lemma A to (133), we conclude as
before that (132) is not valid.

[IV. 3]. Assume

(136) —p+2p,+qg=const.=c’.
Then, cancelling ¢ from (128) and then dividing by exp(p), we obtain
(137) (r1i—r)Xeet+[(he—h) Xset (51— k) X e Jefe™?

F+L(ro—r)Xi—(s— k) Xge e e~ P1
—[(ry—1) X (51— k) XyeeJete P P1—(hy,—h) Xz ¢ 7201
F(hy—h)Xee® " e P~ P14 (s— k) X e+ gP 201
(5= ko) Xye* e PrP2—(s5,— k) X0t @201 P2=()
Now from (136), —p,+2p,+¢,=c’ and hence by (127)
p—2p,=const.=c—c’.

Using this, we can easily show that p—2p, and —2p,~+p, are non-constant.
Other conditions are clearly satisfied. Hence, applying Lemma A to (137), we
have that (136) is impossible.

Again applying Lemma A to (128), we obtain a contradiction. Hence (127)
is not valid, which is to be proved.

[V]. Non-constancy of p—p,—q+q,+q..
Assume
(138) p—pi—q+q+g,=const.=c.
Then, cancelling ¢,
P=Do—q+@:=pr—po—qitC, p—pi—p.—qF QT G=—Darc,
— Pt == p+ D= petq—qitc, Pt @e=pr— Dot q—qitc,
P=Po—qt it @=pr—pakc, @=—p+prtq—gitc.
Hence the identity (62) becomes, after dividing by exp(— p,)
(139) (he—h)Xse+[(ry—r) Xi+(s,— k) XoeJe??
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+(r—r)X,eePr~U—(r,—r) X,eP ~P1t P20t 0
—(hy—h)XseCe P+P1a-ti (h, — ) X e~ Preretal
4 (s— k)X efeP1* U —(s— k) XgeP~P1t P20y
—(s1— k) XpetePr—(sy— ky) X efe PrP1tPeta-q

F(s1— k)X e 1=0.

Here,
(ho—h1) X450,
P2y P1—q1, DP—pitPi—q+g=ct+p.—q., pP1,
—p+pitq—q=—ct+q., —p+pitpetq—q=—c+p.+g,#const.
Also

— p1+p.+q,#const.,

since otherwise — p+ p,+¢ is constant, which together with (138) give ¢,+-¢.=
const., a contradiction.
Further we must show that

prtq—aqi, p—pit+p.tqi, patqiFconst.
[V. 1]. Assume
(140) Pp1+g—q,=const.=¢’.

Then p,+q,—¢.=c’ also, and by adding these, p,+ p.+¢—¢.=2¢’, which together
with (138) give

(141) p+petqi=c+2c’.
Hence from (140) and (141), we have
(142) p+ D1+ p.+g=const.=c+3c¢’".

Using (141) and (142), by cancelling ¢ and ¢, from (139) and then dividing the
rewritten relation by exp(—p,), we obtain the following identity

(143) —(s— k) Xee " +-[(hy—h ) Xy +H(s— k) X7e¢ Jece?
FL(ry—r) Xy 4-(so— ko) XyetJeP 1 Pod-(r —7) Xy 2 @PF201 22
—(ry—1) X, P PP —[(hy,— h) X;—(5,— k) X 0% et e~ P71
F(hy—h)Xee ™ e™P—(s;— k) X et

—(Sy— k) X105t @~ PFP1FP2—() |
Here
—(s—B)Xet+2e =0,

P, DPitpe, —p+pi, —p, 2p,#const.
Now note that from (141) and (142) we get
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(144) p— pr— ps=const.=—c’.
Using this, we can show that
p+2pitpe, pt+pitpe, —p+tpitp.#const.
We check here the first case. Other two cases are quite easy. Assume
(145) p+2p,+ p.=const.=c¢” (say).
Then also p,+2p.+ ps=c”, which together with (144) give
p+2p,=const.=—c’4-¢”".

From this and (145), by cancelling p, we have

2p,—p,=2p— p,=const.=¢’".

Hence from the above two facts, we have that p+4p,=(p-+2p.)+22p,—p,) is
constant, so that 9p=4(2p— p,)+(p+4p,)=const., a contradiction.
Hence applying Lemma A to (143), we conclude that (140) is impossible.

[V. 2]. Assume
(146) p— P+ p.tg,=const.=c’".
Then p,— p.+ ps+¢.=c’ also and hence by adding these
P+ pst+q:+g.=const.=2¢".
From this and (138) we have
(147) b+ ps-Hg=const.=—c+2¢’.
Note that from (146) and (147) we get
(148) p—pi—p,=const.=c—c’,

since p,+ ps+q=—c+2c¢’ by (147).
Using (146) and (147), by cancelling ¢ and ¢, from (139) and then dividing
by exp(p,), we obtain

(149) —(s;— k)X e+ [(hy—h) Xset—(s— k) Xy Je 1
F[(re—r) Xi+(s,— ko) XgeJe 1t P2 () — 1) Xt =¢ gP = P1¥ 02
—(ry—1r) X2 ePs—(hy—h) X e - ¢ 271+ P2 Ps
F(hi—h)Xe" e P Pif-(s— k) X0 - @P 201+ P2 Dy
(53— ) Xpye® - 0721120 Ps (5, — o) X po® 0™ P==0).

Here —(s;—Fk)Xwe‘#=0 and that —p,, —p,+ps ps, —p—p, and —p are non-
constant. Further, using (148), we can easily prove that

p—bitpe, —2pitpi—ps, P—2pi-Fp.—ps and —2p,+2p.—py

are non-constant. Hence applying Lemma A to (149), we can conclude that (146)
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is impossible.
[V. 3]. Assume

(150) pstgq=const.=c’.
Then also
(151) p1+q=ps+g,=const.=c’.

From (150) and (151),

P1—DPa—Pps+q—qi—g,=const.=—c’,
and hence by (138) we have
(152) p—p2— ps=const.=c—c’.

Using (150) and (151), by cancelling ¢ and ¢, from (139) and then dividing by
exp(p), we deduce

(153) —(#e—1r) X AL he—h) Xse+(s,— k1) X152 Je?
H[(ry—r) X1+ (ss— ko) X +(s— k) XzeJe =27 P2
G (r—r)X,e® " e PPt Pe—(f1,— 1) Xeto 20T P2
+(hi—h)Xse e P Pr—(s— k) Xge“ e 1
— (51— k) Xpele PTP1—(s,— ky) X efe 20T =()

Here —(r,—7)X,#0 and that —p, —p+p,, —p—p1, —p1, —p+p, and —2(p—p,)
are non-constant. Further, using (152), we can easily show that

—p+pi+p. and —2p-Fp,

are non-constant. Hence applying Lemma A to (153) we get a contradiction,
which shows that (150) is impossible.

Therefore again applying Lemma A to the identity (139), we obtain a con-
tradiction. Thus (138) is not valid.

[VI]. Non-constancy of p—p,—q+q:1¢.
Assume
(154) p—bp:—q-+q,+g,=const.==c .
Then cancelling ¢,
p—P:—q+@=—qtc, p—pr—Pi—q TPt
—put@=—pF+q—qtc, p—p.ra=q—qtc,
P—Pr—q Tt =—pitpotc, @=—pFtptg—aqitc.

In this case, using the above facts and then dividing by exp(—g¢,), from (62) we
obtain the following identity

(155) (=) X+ [(rys—7 ) X, — (51— k) X 1yeJeh
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+(hy—h)Xsete 1 U —(r,—r) X, e 17120
—(hy—h)Xsete P 4-(hy—h) Xee P10 4-(s— k) Xsefe?
—(s—Fk)XgeP 212U (s,— fo,) Xqete V1T 02401
—(sy—ky) X1 et PP 4 (5, — k1) X 0?1 =0,
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Here (r;—7)X,e‘#=0, and that ¢, —p,+q, —p+q, ¢ and —p+ p.4-¢=q,-+q,—¢

are non-constant. Also
p— p1—q-+2¢,+#const.,
since otherwise

PP G+ @129, =(p— p1—q+2q)+(p1— po—q1+2¢,)

is constant, and hence from (154) ¢, becomes so, which is a contradiction.

Subsequently, we’ll prove that the following three functions

—]91+2(]1, p—hi+2¢:, —pit+patqy
are non-constant.

[VIL 1]. Assume

(156) — p,+2¢,=const.=¢’.

Then also

(157) — p-+2¢=—p,+2¢,=const.=c¢’".
From (157), p—p,—2q-+2¢g,=const.=0, and hence by (154),
(158) q+q,—q,=const.=c.

Using (156) and (157), by cancelling p, p, and p, from (I155), and then dividing

by exp(—g¢;), we obtain

(159) (hy—=h)Xse O +[(r1—7) Xpe 4 (hy— 1) X;e® Jent
+[(ry—r)Xi—(s;— k1) X pe“Je?n
—[(ry—r) Xy —(s— k) X, ]t —(h,— h)X;e ¢ g0t
—(s— k) Xge® " t-(s5,— k,) Xgef e —(s,— k) Xy 0o Tr 020
(51— k)X 2" 1=0.

Since, using (158), we can easily show that

2¢+q, and —q+q,+2¢,

are non-constant, by applying Lemma A to (159) we have a contradiction.
(156) is impossible.

[VIL 2]. Assume
(160) p—p1+2¢,=const.=¢’.
Then, p,— p.+2¢,=c¢’ also and hence

Hence
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(161) p—pe+2g,+2g,=const.=2c¢’".
Now from (154) and (161), we obtain
(162) q+q:+q.=const.=—c+2c¢’.

Then, from (161) and (162), cancelling ¢,+¢,, we have
p—p,—2g=const.=2c—2¢’,
and so

(163) bi— ps—2¢,=const.=2¢c—2¢’.
From (160) and (163), we get
p—ps=const.=2c—c’,
which is contrary to the fact noted in (66). Thus (160) is not valid.
[VL 3]. Assume

(164) — p1-+pe-tg=const.=c’".

Then also

(165) —p-+pi+g=const.=¢’

and so by adding (164) and (165)

(166) —p+ p.+g+q.=const.=2¢".

From (154) and (166), we conclude

(167) 2¢,+q9,=2q+q,=const.=c¢-+2¢’.

Also from (164) and (165) we have

(168) —2p+ it pot2q+=2A—pApib (= pit-patqr)
=const.=3c¢’.

Then by (167) and (168), we obtain
(169) —2p+p1+ p,=const.=—c+c’.

Using (164) and (165), by cancelling ¢ and ¢, from (155) and then dividing
by exp(—pi+ps), we have

(170) —(sy— ko) X110t +[(ri—r) X+ (s,— ky) X,e® JeteP1 2
F[(ry—r)Xi—(s1— k1) X106 ] e e P1-P2
F(hy—h) Xt P12 —[(r,— 1) X, —(5,— k) X100 Je¢ @2 P1-P2
—(hy—h) X6 e~ P24-(h—h) X;e* e2P1-3P2

+(s— k)X et e? P2 —(s— k)Xo P+2P173P2=()
Here,
—(5y—ky) X116 £0,
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Pr—p2, 2Apr—0p2), Api—p.), —p., p—p.7#const.
Further, using (169), we can easily show that
f)l—zf)z; 21)1—3Pz and P+2P1—*3Pz

are non-constant. Hence, by applying Lemma A to (170), we have a contradic-

tion. This implies that (164) is impossible.
Again, applying Lemma A to (155), we have a contradiction, so that (154) is

not valid.

We have checked the facts [I], [II], (I, (IV], [V] and [VI] as above.
Therefore the proof of Theorem 1 is now complete.

8. Proof of Theorem 2.

By assumption, we have the following identical relation
(171) z—H(2)=(2—H/2))R(2)e??,

where R(z) is a meromorphic function (%£0) of order less than one and p(z) is

an entire function as in (3).
By Theorem 1, R(z) and p(z) are constant and that b,/b, is a rational num-

ber. Hence (171) reduces to

(172) z—H\(z)=c-(z—H\2)),
where ¢ is a non-zero constant. We rewrite (172) as
173) (1—c)z=H(2)—c-Hz).

Since b,/b, is a rational number, mb,=nb, (=0b, say) for some non-zero integers
m and n, so that the right hand side of (173) is periodic with period 5. Hence
we conclude that ¢=1. Then the identity (173) implies that

H(z)=Hy2).

Thus the assertion of Theorem 2 follows.

9. Remark.

Our results can be generalized to the case of entire functions in several
complex variables. For example, for the non-zero constants 4 and 5/, we con-
sider the following class

G, b")={F(z, w)=f(2)+g(w); f(2)€G(b) and gz)eGO")}.
Then we obtain from Theorem 1 that, when F(z, w)eG(b,, by’) and E(z, w)e

G(b,, b)) for some non-zero constants b,, b, (;=1, 2), if further the following

identical relation
F(z, w)=E(z, w)e?*™’
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holds for some entire function p(z, w) in two complex variables z and u, then
p(z, w) must be constant and that b,/b, and b,’/b,’ are both rational numbers.
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Remark (added in the proof). About *,: Under p,=p+c, 1f n addition
p—q=const.=¢’, then using two relations (3%¢) in p. 261, we represent A(z) and
K(z+jby) as

K(z)=L,+L,e?, Kle+jb)=Ls+L,-e?,

where meromorphic functions L, (1=<:=4) are all of order less than one. Since
K(z) is periodic with period b,, by Lemma B, we know that L, must be constant
such that L,=L, and L,=L, (cf. around (30)). In view of these facts, by
applying Lemma B, we can conclude that (R(z) is constant or) e¢‘=1 and e¢“=1.
For instance, from L,=L,, if RS;—R,S#0 (otherwise R is constant), we deduce
(e°S;—S)e‘k;R,— kR)=(e°R,— R)(e’s,S;—sS) so that (e°k,R;—kR)/(e°R,—R)
=const.=c¢” (say), which is rewritten as e¢‘(k;—c”)R,=(k—c”)R (cf. the notations
(10), (12) and (14)). Hence (k—c¢”)R is constant (#0) so that we have e‘=1.
Similarly, from L,=L, we can conclude ¢“=1. Thus e?® becomes doubly
periodic, a contradiction.

About *,: More simply as above, we can show that p—g¢g7Zconst. In fact,
if otherwise, using (48), we get also ¢‘=e“=1 by Lemma B.





