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ON A CHARACTERISTIC PROPERTY OF

PERIODIC ENTIRE FUNCTIONS

BY HIRONOBU URABE AND CHUNG-CHUN YANG

Introduction. We shall pursue an investigation on a certain functional
equation treated in [8] with some overmuch restrictions. The functional equa-
tion is related to the following problem: If two entire functions in a certain
class have the same zero-sets (including multiplicities), then what can be said
about these functions ?

Denoting by Gφ) the class of all entire functions each of which is periodic
with period b (ΦO) mod a non-constant entire function of order less than one
(cf. Def. in § 1), in this paper, we shall prove that if two entire functions
belonging to Gφj) 0—1, 2) have the same zero-sets (essentially), then they must
coincide up to a non-zero multiplicative constant (Theorem 1). In the proof, we
use the Borel-Nevanlinna type unicity theorem.

Note that, together with Gφ), the class Jφ), consisting of the entire func-
tions each of which is periodic mod a non-constant polynomial of degree one, is
significant in factorization theory (under composition) of transcendental entire
functions (cf. for example, [1] or [7]).

Now recall some of the results of Gross ([2]). Among others, he proved
that any non-constant, periodic, entire function H(z) has an infinite number of
fixed points, that is, the zeros of H{z)—z. Further the fixed points play an
important role especially in cases concerning periodic entire functions (in factor-
ization theory, etc.). So one might expect that periodic entire functions would
be uniquely determined by the sets of their fixed points. In this paper, we'll
show that this is the case (Theorem 2).

Here, the first author wishes to express his gratitude to Professors Y. Kusu-
noki (Kyoto Univ.) and M. Ozawa (Tokyo Inst. of Technology) for their encour-
agement and suggestions.

1. Statement of results.

At first, we'll give the definition of the class Gφ) explicitly.

DEFINITION. For a non-zero constant b, we denote by Gφ) the class of
entire functions of the form
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f(z)=h(z)+H(z),

where H{z) and h{z) are non-constant entire functions such that H{z) is periodic
with period b, H(z+b)=H(z), and that h{z) is of order less than one.

After we've written a short summary [9], we get a generalization. Our
generalized results are stated as follows.

THEOREM 1. Let f{z)^G{bx) and g{z)^G{b2) for some non-zero constants b3

0 = 1, 2). Assume that the sets of the zeros of f{z) and g{z) are identical {includ-
ing multiplicities) except at most a {sequence) set whose exponent of convergence
is less than one. Then we must have

(1) f{z)=cg{z)

for some non-zero constant c and b1/b2 is a rational number.

Remark. Let f{z)^G{bλ) and g{z)^G{b2) be represented as

(2) f{z)=h(z)+H(z),

where H{zΛ~bι)^H{z), K{z-\-b2)=K{z), h{z) and k{z) are non-constant entire
functions such that h and k are both of order less than one. Then the condi-
tion of Theorem 1 concerning the zero-sets of / and g means that the identical
relation

(3) h(z)+H(z)=(k(z)+K(z))R(z)ep™

is valid for some meromorphic function R{z) (Ξ£0) of order less than one and for
some entire function p{z).

The conclusion (1) is equivalent to show that R{z) and p{z) are both constant.
Also note that any meromorphic function R{z) (^0) of order less than one

can be represented as

(4) R{z)=v{z)/u{z)

for some entire functions u{z) and v{z) (^0 and without common zeros), both of
which are of order less than one.

Periodic entire functions have the following characteristic property, as is
mentioned in Introduction.

THEOREM 2. Let H0(z) 0 = 1, 2) be non-constant periodic entire functions with
period bd {resp.). Assume that the sets of the fixed points of H3{z) are identical
{including multiplicities) except at most a {sequence) set whose exponent of con-
vergence is less than one. Then we have necessarily that

(5) Hlz^niz)

and bjb2 is a rational number.
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2. Lemmas.

For the proof of Theorem 1, we shall need the following unicity theorem of
Borel-Nevanlinna type due to Niino-Ozawa [5].

LEMMA A. Let G3(z) be a transcendental entire function and c3 be a non-zero
constant, and let g(z) be an entire function, Ξ£0 such that T(r, g)~o(T(r, Gj)) as
r tends lo infinity for any j with l^j^n. Assume that there exists an identical
relation such as

n
Σ CjGj(z) = g(z) ,

then we have necessarily

Σ δ(0, Gj)^n-1.

Here T(r, *) and δ(a, *) denote the Nevanlinna characteristic function and defi-
ciency, respectively.

Remark. Compared with the original Niino-Ozawa's lemma, the above
Lemma A will seem slightly general. But the proof is essentially same.

Also we use the following simple fact.

LEMMA B. Let w{z) be a meromorphic function of order less than one and
assume that

(6) w

for some constants b (Φθ) and c. Then w{z) must be constant.

For completeness, we prove this. Indeed, if we consider the function

(7) F(z)=w(z)-exp[-jz],

then the assumption (6) implies

(8) F(z+b)=F(z).

If w(z) is non-constant, then w(z) has at least one zero or one pole, since w(z)
is of order less than one by assumption. Then from (7) and (8), the exponent
of convergence of the zeros or poles of w(z) cannot be less than one, so that
the order of w{z) cannot be so. This is a contradiction. Hence w(z) must be
constant.

3. To prove Theorem 1, at the first step, we note here the following facts.

PROPOSITION 1. Let the identity (3) be valid. And assume that p{z) is con-
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stant. Then R(z) is constant (ΦO) and b1/b2 is a rational number.

PROPOSITION 2. Let the identity (3) be valid. And assume that bL/b2 is a
rational number. Then R(z) and p(z) are constants.

Proof of Prop. 1. In this case, the identity (3) may be written as

(9) h(z)+H{z)={Kz)+K{z))R{z).

We shall introduce here the notations;

(10) hJ(z)=h(z+jb1), kJ(z)=Kz+jb1),

RJ(z)=R(z+jb1),

for any natural number j .
Since H(z+bx)=H{z) by assumption, noting (10), from (9) we have

so that

(11) K(z+b1)R1-K(z)R-=(hi-h)-(k1R1-kR).

Setting

(12) S(z)^R(z+b2), r(z)=h(z+b2), s(z)=k{z+b2),

and noting K(z+b2)—K(z), from (11) we obtain

(13) K(z+bl)Sl-K(z)S=(r1-r)-(s1S1-sS).

Here we put

(14) r,(z)=r(*+7W, s,(2r)=sU+yW,

Sj(z)=S(z+jb1)

for any natural number j as in (10). Note that

Ri(z+b2)=R(z+b1+b2)=S(z+b1)=S1(<z)

etc., by (10), (12) and (14).
Cancelling K(z+bx) from the identities (11) and (13), we get

(15) (RSί-R1S)K(z)=^R1ί(r1-r)-(s1S1-sS)-]

Now the right hand side of this identity is of order less than one, while if
(RS1—R1S) is not identically zero, the left hand side is of order not less than
one, since K{z) is a non-constant periodic entire function (by assumption). There-
fore we conclude

RS1-R1S=0t or S/R-SJR^O.

Noting (10) and (14), this means that S/R is periodic with period bx. Since S/R
is a meromorphic function of order less than one, an application of Lemma B
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gives

(16) S/R=const.=c, or cR-S = 0.

Setting R(z)=v(z)/u(z) as in (4), then (16) can be written as

(17) cu(z+bMz)-u(z)v(z+b2)=0.

Assume that R(z) is non-constant. Then we may assume without loss of
generality that u(z) is non-constant. In this case, since u(z) is of order less
than one, u(z) has zeros. Assume u(zo)=O. From (17), dividing the relation by
u{z), we have the identity

(18) cu(z+b2)v(z)/u(z)=υ(z+b2).

Here the right hand side of (18) is entire, and since u{z) and v(z) have no
common zeros, u(zo)=O implies u(zo+b2)=O, and so again by (18), changing the
variable if necessary, u(zo+2b2)=O. Repeating this argument, we obtain that

(19) u(zo+mb2)=O, for any natural number m.

Then from (19) we conclude that the exponent of convergence of the zeros of
u(z) is not less than one, and hence the order of u(z) is so. This is a contra-
diction. Thus we have proved that R(z) is constant.

Putting R(z)=const.=c (ΦO), from (11) we have (since i?1(z)=const. = c also)

(20) dKiz+bJ-Kiz^i^-V-cik^k).

Here the left hand side of (20) is periodic with period b2i while the right hand
side is of order less than one, so that we conclude again that

(21) #(z+^)-#Cε)=const .

Then K(z+b2)=K(z) and (21) imply that K\z) (the first derived function of K(z),
non-constant since K(z) is non-constant and periodic) is periodic with periods bλ

and b2. Since non-constant entire function cannot be doubly periodic, bjb2 must
be a rational number, which is to be proved.

Proof of Prop. 2. By the assumption, we may pur

for some non-zero integers m and n. In this case,

(22) H(z+jb)=H(z), K(z+jb)=K(z)

for any natural number j .
Putting

(23) h^z)=h(z+jb)f kj(z)=k(z+jb),

Rj(z)=R(z+jb), p£z)=p
from (3) wepiave
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where j is a natural number. Hence

(24) (RjePj-ReVWiz^ihj-^-ikjRje^-kRe17).

By using (24) for j=l, 2, and cancelling K(z), we obtain the following identity

Dividing this relation by exp(p2), we deduce

(25) R1R2(k2-k1)ep^-RR2(k2-k)ep

Assume

(26) p(z)Φ constant,

in which case, if we can prove

(27) P—Pi, p—p2, p+Pi-p2Φ const.,

then, applying Lemma A to the identity (25)*}, clearly we have a contradiction.

We wish to prove that

(28) when (26) holds, then p — pjΦconst.,

for any natural number j. Assume

(29) pj—p=const.=c, or e

pi=ecep,

then (24) can be rewritten as

(30) K() h j ~ h e ° k R - k R

if

(31) j

Then from (22), (29) and (30), using the notations (23), we have

ec~Rj-R ecR2J-Rj '

e^kjRj-kR __ eck2jR2j-kjRj

ecRj-R ~ ecR2j-Rj

Hence by Lemma B, we have

t „ ...

*} we'd multiply a common (entire) denominator, if necessary.
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or
f hj-h = c'(ecRj-R), and

(32)
I eckjRj-kR=c"(ecRJ-R).

Putting R—v/n as in (4), and RJ=VJ/UJ (ιij(z)=u(z+jb), etc.), the upper relation
of (32) reduces to

c'(ecuVj—ιijV)=uUj(hj—h),

which is rewritten as

- c ' ^V-=uj(hj-h)-'C/eevJ.

By using the quite similar argument around (18), we can conclude that u{z) is
constant. Hence we may assume R(z)=v(z) without loss of generality, since
R~v/u. Then the lower relation of (32) becomes

or

Again by Lemma B, we conclude
(c"—k)v

which is impossible. Thus

(33) ecRj-R=0 identically

is the only possibility remained. In this case, by Lemma B, R{z) is constant.
Under (33), the identity (30) must reduce to

But this will be clearly impossible, since p(z) is non-constant and others (h, k
and R, •••) are of order less than one (hj—h cannot be identically zero). Thus
we have proved the assertion (28).

Next assume

(34) p+p!—p2=const.=c .

Then

hence (25) reduces to the following identity

R1R2(k2-k1)epi-RR2(k2-k)ep-ecR1(h2-h)e-p

Deviding this by exp(ίi), we obtain

(35)

Here, by (26) and (28)
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P — Pi> —Pi> - 2 ^ !
and

since k(z) is a non-constant entire function of order less than one. Also

-p-pι=-(P+Pi)Φconst.
Indeed if

(36) p + ρ1=const.=c,

then

(37) pλ+p2~const.—c .

Hence, subtracting (37) from (36), we get

p—£2=const.=0,

which contradicts the fact noted in (28).
Therefore we can apply Lemma A to the identity (35), and derive a contra-

diction. Hence (34) is impossible.
Thus we have checked (27). Hence (26) is impossible,510 which is to be

proved.

4. In order to complete the proof of Theorem 1, by noting Propositions 1
and 2, it is enough to show that the identity (3) is impossible to hold under the
additional assumptions

(38) p(z) is non-constant, and

bjbz is not a rational number

{bjb2 is a non-real complex number or
real and irrational number).

Here we'll note the following fact, which is needed later.

PROPOSITION 3. Let the identity (3) be valid, and assume the condition (38).
Then, for any natural number j , the functions

piz+jbO-piz) and p(z+jb2)-p(z)

are both non-constant.

Proof. Without loss of generality, it is sufficient to show

(39) p{z+jbx)-p{z) Φ const.

Indeed, for the proof of the fact

# ) In this case, the fact that R{z) is constant follows easily from (24) (without
using Proposition 1).
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p(z+jb2)—p(z)Φ const.,

we need only to start the subsequent argument from the identity

k(z)+K(z)=(h(z)+H(z)) l/R(z) e-p™ .

We use the notations (10), (12), (14) and further

(40) q(z)=p(z+bΛ), q/,z)=q(z+jbl).

Assume (39) is not true, that is, for some natural number j,

(41) £/z)—ίU)

then also from (40) and (41)

Hence, noting H(z+jb1)=H(z), from (3) we have

hj-h=Zec(kJ+K(z+jb1))RJ--(<k+K(z))R']ep,

and noting K(z+b2)=K(z),

rJ-r=Zee(sJ+K(z+jb1))Sj-(s+K{z))S'2eq

r
so that

RepK(z)-ecRJe
pK{z+jb1)^{eckjRj-kR)ep-{hj-h))

SeqK(z)-ecSje
qK(z+jb1)=(ecsJSJ—sS)eq-(rJ-r).

From the above system of equations, we get

ep+q(RSj-RJS)K(z)=Sje
q[_(eckjRj-kR)ep-(hj-h)'2

Hence

ep+qe%RSj-RJS)K(z+jb1)=Seqt(eckjRj-kR)ep-(hj-h)Ί

-Rep[_{ecsJSj-sS)eq-{rj-r)~] .

-Rep[iecsJSj-sS)eq-{rj-r)-]}.
Using

P+q+Pj=2p+q+c,

we have the following identical relation
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e2cί(RSJ-RJS)R2j(r2j-rJ)-(RJS2j-R2jSj)R(rj~-r^e2p+q

+e2cίec(RSJ-RJS)S2J(eck2jR2j-kjRJ)-ec(RSj~RJS)R2J(ecs2JS2J

+(RJS2j~R2JSJ)R(ecsJSJ-sS)Jie
2p+2q=0

Dividing the above identity by e2p+q or ep+2q, and applying Lemma A, we con-
clude that three [*****] are all identically zero, since now because pj=p-{-c and
b1/b2 is not a rational number, p—q is non-constant.*):L

From the fact that the first [***]=0 and the second [***] —0 we obtain

(42) ]^>λ~l3j>S_ _ 3jSli~J^*&-
R{rj—r) R2j{r2j—Tj)

and

S(hj-h) S2j{h2j-h3) '

Multiplying l/Rj to the both side of (42), by Lemma B, we have

/ A Λ\ RSj—R 7S

(44) -—^-—^—=const. = c .

Rewriting (44) as Sj/Rj—S/R=c(rj—r), we obtain

Sj/Rj-crj=S/R-cr,

whence, using Lemma B, we conclude

(45) S/Ή-cr^const .^c ' , or S/R=cr+c'.

We note here that the constant c in (44) is zero if and only if R(z) is constant.
Indeed if c=0, then from (44) we have Sj/Rj=S/R. Lemma B leads us S/R is
constant, and so again we know that R(z) is constant (cf. the notation (12)).

From (43), similarly we have

(46) - ^ r / τ — ^ τ -
SS(hh)

and hence R/S—Rj/Sj=c"(hj—h), so that as before we conclude

(47) R/S+c"h=const=cw, or R/S=-c*h+cm.

Here also c"=0 if and only if R{z) is constant.
Now from (45) and (47), we know

which is possible only when c=0 and c/ /=0. Hence R{z) must be constant.*)!
Thus we may assume

*)i See the final remark (added in the proof).
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R(z) = l and hence S(z)=R(z+b2)=l.

In this case, the system of equations becomes

K(z)-eeK(z+jb1)=(eekj-k)-(hJ-h)e-p,

Hence

(hj-h)e-p-(rj-r)e-q=(eckj—k)-(ecSj-s),

so that we have the identity

(48) (rj-r)ep'q+ί(eckj-k)-(eesJ-s)'2ep=hj-lι.

Here hj—h^O and /)^const. And also

p—^const.,*)2

since now pj—p=const., and bjb2 is not a rational number (non-constant func-
tion p(z) cannot doubly periodic). So by Lemma A the identity (48) is impossible
to hold, a contradiction. Hence the assertion (39) follows, which completes the
proof of Prop. 3.

5. In this section, we wish to deduce the new identical relation starting
the identity (3). We assume the condition (38) from now on.

We use the former notations (10), (12), (14) and (40). For example,

R/<z)=R(z+jb1)t pJ(z)=p(z+jb1).

As Hiz+b^Hίz), from (3);

h(z)+H(z)=(k(z)+K(z))R(z)epc*> ,
we have

Hence

(49) )

And, noting K(z+b2)=K(z) and r(z)~h(z+b2) etc., from (49) we have

(50) Se*K(z)-S1e
qiK(z+b1)==(s1S1e

qi--sSeq)-(r1--r).

Setting

R—v/u, and S=y/x

(x(z)=u(z+b2), y(z)=v(z+b2)) as in (4), the identities (49) and (50) can be
rewritten as

u1vepK(z)-uv1e
p'K(z+b1)=k1uv1e^-ku1vep-(h1-li)uu1,

*) 2 See the final remark (added in the proof).
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We solve this system of equations as follows:

(52) K(z)=D1(z)/D(z)f Kiz+b^D^/Diz),

where
luγvβp, -uvxe

pA
(53) D(z)=άet[

\

k1uvίe
Pl—ku1vep—(h1 — h)uui, —uvxe

Vi

s1xy1e
qi — sx1yeq—(r1—r)xx1, —xyxe

q{

luχV ep, k1uv1e
Pί—ku1vep—(h1—h)uιiι

D2(z)=άet[
\Xiyeq, sίxy1e

qi-sx1yeq~(r1—r)xx1

We note here that D(z)3=0. Otherwise

(54) D(z)=x1yuv1e
Pl+q-xy1u1vep+qi = Q.

Then (p+qi)—(pi+q)~const—c (say), or

(55) qi=-p+pi+q+c.

If J9(^)ΞO, then from (52) D ^ Ξ O . This means

(56)

—(r1—r)xXιuυίe
Pl—O.

From (55),

so that (56) becomes

+ec(h1--h)xy1uu1e-p+Pl+q-(r1-r)xx1uvίe
pl=O.

Dividing this by exp(—p+pι+q)f we obtain

(57) (eckxy1u1v — sx1yuv1)ep-\-ec(s1 — k1)xy1uv1

~(r1-r)xx1uv1e
p-q^=-ec(hi~h)xy1uui

Here p, pxφconst., and also p—qΦconst, by Prop. 3 (cf. (38)). Then apply-
ing Lemma A to (57), we have a contradiction. Thus

(58)

From (52), we know

(59) D(z)'D1(z+b1)=D(zJrlh)'D2(z).

Now

D(z)=x1yuv1e
Pl+q—xy1u1vep+qi,
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D(z+b1)=x2y1u1v2e
P2+qi-x1y2u2v1e

Pl+q2,

— s1x2y1u1v2e
P2+qiJr(h2~h1)x1y2u1u2e

q2

—{r2—r1)xιx2uιv2e
p<ί

}

D2(z)=-(s-k)x1yu1vep+qjrs1xy1u1vep+qί

— k1x1yuv1e
Pl+q—(r1~r)xx1u1vep

+(h1—h)xίyuu1e
q.

Hence from (59), we have the following identity after arrangement

(60) (r 2 ~ri)Z 1 e p i + p

q^-(s2~ k2)Xne
Pl+p*+q+q*

Here we put

(61) X1—x1

2x2yuuιv1v2, X2—xx2y2uiu2vvXy

Xs=xx1y1y2Uι2u2v , Xί

z=xxίx2y1u1

2vv2,

X5—Xι2yy2uu1u2v1, X6=x1x2yy1uu1

2v2,

X1=x1

2yy2u1u2vv1, X%~XiX2yy\UχW2,

Xs—xxιyιy2uχvv2y X10=xx1y1y2uιu2vv1,

1v2, X1.>=x1x2yy1uu1v1v2,

each of which is an entire function and not identically zero such that the order
is less than one.

Dividing the relation (60) by exp(^i+^2+q), we obtain

(62) ( r 2 - r 1 )

This is the new identity which we mention at the beginning of this section. In
(62), we may transfer the term {r2—rι)Xι to the right hand side if necessary.

6. In (62), as r(z)=k(z+b2) is a non-constant entire function of order less
than one and X1 is not identically zero,
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(63) ( r a - r 0 * i = £ 0 ,

and as p(z) is non-constant by assumption,

(64) qJ(z)=p(z+jb1+b

Also by Proposition 3, noting (40) etc., we know

(65) —pz+qz, — ί i +

and further, for any natural numbers m and n (mΦn),

(66) P-Pm, P + Pm, Pm-Pn, pm + Pn>

are all non-constant by Proposition 3.
Indeed, for example if

(67) P+Pm—const.=c (say),

then also

(68) pm

Jrp2m:=zonst.=c,

since pj(z)=p(z+jb!). From (67) and (68), subtracting,

p2m—ί=const—0,
or

p(z+2mb1)—p(z)=const.=0,

which contradicts the fact proved in Proposition 3.
Also note that

(69) p — p1 — q+q1φconst.f if p — pt—q+q^const.

Because, if

(70) p — p1—qJ

Γq1—con^t.=^c (say),

also, noting the notations,

(71) ί i—£ 2 —tfi+0 2 =

so that, by adding (70) and (71), we have

p — p2—gJrq2=c

Hence if we can prove the following six functions

(72) p — pi—q+q2, p —

p — p2

Jrq2, p — pi

are non-constant, because of the facts (63), (64), (65) and (69), by applying Lemma
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A to the identity (62), we get a contradiction. Therefore the proof of Theorem
1 has become done.

In fact, in the following section, we'll prove that the six functions in (72)
are all non-constant, one by one, applying Lemma A repeatedly.

7. The non-constancy of the six functions in (72).

[I] Non-constancy of p — pt—

Assume

(73) p — p 2 —

Then cancelling q2, we have

Hence the identity (62) can be written as

- ( s -

Dividing this relation by exp(—p1

Jrp2Jrqi), we obtain the following identity.

(74) (s2-k2)Xd

- ( s 2 - k2)Xne
ce'p+pi+q-qi=0.

Here, noting the notations (12) etc.,

(s2-k2)X9e
cΞ£Q, and

— P2, p — p2, pi —P2Φ const.

Further we shall prove that

Pi — pt—qi, p-p2~q, -p+pi-p-z+q-qi,

Pi-p2+q~qi, —p + pi+q-qi

are non-constant, under (73). At first, we note that the former three are non-
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constant, and next we prove that the lower two are also non-constant.
Indeed if p1~p2—q1 is constant, then by the notations given before, p—pi—q

— pi—p2~q 1=const—c' (say). Adding these, p—p2—q—q1=2c\ which together
with (73) show us that q1+q2—const=c—2c/. But this is contrary to the fact
noted in (66).

If p—p2—q would be constant, then from (73) q2 and hence p(z) must be
constant {qΊz)ΞΞ ρ{zJ

r2b1

Jrb2))) a contradiction.
If — p-rpι—p2+q—#i=const.=c', then —p1+p2—pa+qi—q2=c' and so by

adding we get — p — ps+q—q2~const.=2c' as above. Hence, using (73), we have
/>2+ί3—const.=—(c+2c') By (66) this is not valid, a contradiction.

[I. 1] Assume

(75) p1 — p2+q—qι

Then, cancelling qίf

Hence (74) can be written as

Dividing this relation by exp(p—p2), we obtain

(76) -(s

Here

(77) -(s-k)X8Ξ£0, and

(78) -~P + p2, -P, -q, -P+Pu ~2(p-p2)Φconst.

Also we note that

(79) —p+p2—q and —2pJ

rp2 are non-constant.

Indeed if

(80) - ^ + /? 2-^=const.=c / / (say),

then from (75) and (80), by adding, we have
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—P+Pι~qi=const.=c/Jrc", and so

Again by adding

which together with (73) imply g + ^ i ^ const., contrary to (66).
If

(81) -2p+p2=const.=c" (say),

then in this case from (75) and (81)

and hence, by adding,

Using (73), from this we deduce p-\-pι—const, a contradiction.
As we have checked the facts (77), (78) and (79), applying Lemma A to the

identity (76), a contradiction follows. Thus (75) is impossible.

[I. 2] Assume now

(82) ~-p \ pι-\ q~-q\—zwΩSX.. — cr (say).

Then cancelling qlf

Hence (74) can be written as

(83) (s2-k2)ec(X9~ec'Xn)

Here

(84) (s2-k2)e%Xd-e<'

If otherwise

(85) Xd-ec'Xn~0,

since s2— &2Ξέ0. (Note that s2(z)~k2(z)=k(z+2b1+b2)—k(z+2b1), by definition, and
that k(z) is a non-constant entire function of order less than one.)

Noting (82), (85) implies that

(86) X,ep+^~XnePl+q^0.

Recall
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cf. (61). Then (86) reduces to

(87) x1y2u1v2(xy1u1vep+qi-x1yuv1e
Pl+q) = O.

Since x1y2u1v2^0f (87) shows

(88)

(cf. (53)). However, in § 5, we have ruled out the possibility (88). Thus (84)
must be valid.

Now, —p2, p—p2, P\ — p2^const., and noting (73)

p—Pi—q=c—q2

is also non-constant, since q2 is so.
Then, under (84), by applying Lemma A to (83), we obtain a contradiction.

Hence (82) is not valid.
Therefore, again, by applying Lemma A to the identity (74), we know that

it cannot hold. This contradiction shows us that (73) is impossible. Thus the
proof of the case [I] is complete.

[II]. Non-constancy of p — pi—p2—qJrqiJrq2>

Assume

(89) p — p1~-p2—q+q1+q2—const. = c.

Then cancelling q2,

Pi — qi + c , —p2-\-q2— —

Hence (62) can be written as

Dividing this relation by exp(j/)1—qλ), we have

(90) {r1-r)X2

- ( S i - k1)X1,e
ceq^-(s2~

Here,
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— pi+Qi, —p+q, —2(p1—q1), q, ^ const.

Next, under (89), we shall prove the non-constancy of the following five func-
tions

p-2p1-q+2q1, p-2p1+2qlί -p^+pΛqi,

Then by Lemma A we have a contradiction from (90).

[II. 1]. If

(91) p-2p1

Then p1—2p2—q1

J

Γ2q2=c/ also, and hence by adding, p — pί—2p2—qJrqiJr2q2~2c/.
This together with (89) imply that p2—q2=const, which is a contradiction (cf.
(66)).

[II. 2]. Assume

(92) p-2p1+2q1=const = c/.

Then, changing the variable and adding, we have as before p — pί—2p2+2q1

J

Γ2q2

=2c', whence by (89),

(93) ί-^ 1-2^=const.=2c-2ί: / .

Now (92) and (93) give us that

(94) ί 1 - 2 ^ - 2 ^ 1 = ^ 2 - 2 ^ - 2 ^ 2 = 2 c - 3 c / .

Also (93) and (94) give

(95) p-Aq-2q1=Ac-5c/.

Using (94) and (95), by cancelling p, p1} and p2,

-Pjrq=-3q-2q1-(4c-5c/), -2p1+2q1=-4q-2q1-2(2c-3c/),

-p1

Jrp2+qi=--2q+q1+2q2, -p+p2+q=-3q-\-2q2-(2c-2c'),

-P1+2q1=-2q-(2c-3c/).

Hence (90) reduces to

+ ( s 2 -
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Dividing the above relation by exp(—q), we have

(96) -{r2~r)X

- k)XΊe
ce2q+(s2-

Now, from (92) and (93) (changing the variable), we have

(97) p-pi-p2-=(p-2piJr2qi)Jr(Pi~~p2-2q1)

=const. =2c — c'.

This together with (89) show

(98) q—q1—q2=const. = c — c/.

Using this fact, we can easily show that

(99) —3q—2qly -q+qί

J

r2q2Φ const.

Indeed if ~(3^+2^ 1)=const.=c / / (say), then —(3q1+2q2)=c// so that by (98)
2qJrqι—2{q—qι—q2)+{3q1-\-2q2) becomes constant, and hence q=2(2qJ

rq1)—(3q+2q1)
must be so, a contradiction.

Also, —q+qί

Jr2q2=—(q—q1—q2)
Jrq2 cannot be constant by (98).

Further,

q, —q—qi, —2q—2qί> 2q, q+ql9 —2q+2q2, —

and, noting (99), by Lemma A, the identity (96) leads us to a contradiction. Thus
(92) is impossible.

[II. 3]. Assume

(100) - ί 1

and so,

(101)

Then by subtracting (101) from (100), we have p—2p1+p2— q-τqι—const.^0.
This and (89) give

— pi+2p2—q2= — c and hence —pJ

Γ2p1—q1— — c.

Then this and (100) give, by adding, -p+p1+p2=-c+c', so that by (89) we
have

(102) q—

While by (89) and (101),
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(103) p2—q1—q2=p1—

Also by (101) and (103) we have

(104) p—2q—ς1

By using (103) and (104), and cancelling p, pλ and p2, from (90) we deduce

(h2-h)X5e
2c+2c>

~2q

-(s2-k2)Xne
c+c'e-q+q*=0.

Dividing this by exp(q), we have

(105) (s

-(h2-h)X5e
2c+2ct

Here

—q, —2q, —3q, —q

Also, by using (102), we can easily show as before that

—2q+qlf -~2q—q1} — 2g+#2^const.

Hence, applying Lemma A to (105), we have that (100) is not valid.

[II. 4]. Assume

(106) - j f r + ^

Then, using (89), from (106) we have

Pi-qi-Q2"=

and hence by (106),

(107) p2—q1z=p1

Again by (106) and (107)

(108) p-pi-p^

Using (107), by cancelling q and qlt from (90) we deduce

- ( ^
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Dividing this by exρ(—p+px), we obtain

(109) -(h2

+(s-k)X7e
2cep-(s-

Here

p—pi,

Further, using (108), we can show arithmetically that

p-2pλ+p2, 2(p-2p1+p2), p-

2p-3pλ+2p2, p-2pxΛ-2p2, p-pλ +

Indeed, for example, if

(110) ^ - 2 ί 1 + ^ 2 = c o n s t . = c / / (say),

then, using (108), 2 £ - 3 ί 1 = c o n s t . = c - c / + c / / . Hence from (110) 2(p-2p1

J

Γp2)-
(2p-3p1)=-p1+2p2=const) so that —ί+2ί!=const. Then ρ—p1=(2p—3p1)+
(—p+2p!) must become constant, which is impossible by (66). Thus p—2p1

Jrp2

Φ const. Other cases are treated quite similarly.
Hence an application of Lemma A to (109) leads us to a contradiction

Therefore (106) is impossible.

[II. 5]. Assume that

(111)

which implies that

(112)

Then by these, we have — pJrpι

Jrp2

Jr2q~2q1—2#2=
rconst. = — cf, from which,

together with (89), we have

(113) q—qx—^2=const.=c — cr.

Using (111) and (112), by cancelling p, px and p2, the identity (90) becomes
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k)X7e
ceq-(s-k)X8e

c>

Dividing this identity by exp(—q), we deduce

(114) -(hi

+ ( s 2 - ^ 2 ) Z 9 g ^ - ^ + 2 ^ - ( S l - /e

- ( s 2 - ^ ) Z π e V 5 2 = 0 .
Here

-(h2-h1)X6e

q, q—qίf 2(q—q1), 2q,

Further, noting (113), we can easily show that

q—2qlf 3q—2q1} q—q1

Jr

arithmetically, as before.

Hence, applying Lemma A to (114), we obtain that (111) is impossible.
Thus we've checked the assertion [II].

[Ill] Non-constancy of p — p2+q2

Assume

(115) p — p2

J

Γq2=const.~c.

Then cancelling q2,

so that (62) can be rewritten as, after dividing the reduced relation by exp(—q),

(116) (r1

- ( s -

-(Sί- k1)Xloe
ce^-

Here, (r2—r)X2e
c^0, and that q, —pi+qi, —p+q, qi and q+qi are non-constant.

Also

P — Pi+Qi, -
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Indeed if p—pi+qi is constant, then pι—p2

Jrq2 is so, which together with (115)
give p—p!=const, a contradiction. If — pi+p2+qi is constant, then — p2+P-3+q2

is so. Then (115) shows p—pz—const, a contradiction. If —p+p2+q is con-
stant, then (115) means q+q2=const, also a contradiction (cf. (66)).

Further we wish to prove that the following two functions

-pi+q+qi, p-

are non-constant under (115).

[III. 1]. Assume

(117) —p1+q+q1

Then —p2+qi+q2=:c' also and hence by (115) we have

(118) p—q1=const=c—c\

which together with (117) give

(119) p — p1+q=const = c.

Using (118) and (119), by cancelling q and qx from (116), and then dividing the
new identity by expip—pi), we deduce

(120) (h2-h1)X,ec'Jrί(r1-r)X2e
c+(h1-h)X6e

c"]e"p+Pl

- ( s 2 - & 2 ) Z 9 e c ' e ^ s 2 - £ 2 ) X n Λ ^

Here (h2—h1)XBe
c'^0, and that — p+pi, —2(p—p1), p, pλ and p2 are non-constant.

Now, from (119), pi—p2+qi=c, which together with (118) give

(121)

Noting this fact (121), we can easily show that

Then, applying Lemma A, the identity (120) leads us to a contradiction. Hence
(117) is impossible.

[III. 2]. Assume

(122) p—p1+q+q1=const = c\

Then pi — p2

JrqiJrq2

:=c' also, with which and (115) we have

(123) p-pi-qi=c-c'.

Hence by (122)

(124) 2p-2pλ+q=c

Using (123) and (124), by cancelling q and qx from (116), and then dividing the
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rewritten identity by exρ(—p+pλ), we obtain

(125) (s1-k1)Xlt

+(h1-h)X6e
c' e-pi+(s2- k2)X9e

c'

Now from (123) and (124), we have

(126) p+pί-2p2=const=2c-c/,

since 2p1—2p2+q1=c also by (124). Using (126), we can easily show that

2p-3ρlf -2p+plt 2p-3ρ1+p2 and -2p+px+p2

are non-constant, as before. Further (sj— k^X^'^O, and that p—pi and — px

are non-constant. Hence applying Lemma A to (125), we deduce a contradiction.
Thus (122) is not valid.

Therefore again applying Lemma A to the identity (116), we have a con-
tradiction. Hence (115) is impossible, which is to be proved.

[IV]. Non-constancy of p — pi+q^

Assume

(127) ί — ί i + ^ = c o n s t . = c .

Then,
pι—p2.Λ-q<L~c and p~p2-\

Hence cancelling qx and q2, we have

— pι—q+qι—~-q+c , —

q2= — P1 + P2+C , q1= —

Hence the identity (62) reduces to the following one, after dividing the rewritten
relation by exρ(—p!~q),

(128) {h2-h1)X,

+ ( s 2 - k2)X,e2ce^-(

Here, (h2-h1)Xie
2cmf and that
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p, pi, q, —p + pi+q^ — c+q+qi, p+q,

We must check the non-constancy of the following three functions

Pi+q, p2+q, —p+2p!+q.

[IV. 1]. Assume

(129) p1+q=const.=c/,

and hence p2+qi=const. = c' also. Cancelling q from (128) and then dividing the
new identity by exp(p), we obtain

(130) {r1

+(h1-h)X6e
c+c' e~2p+(s~ k)XΊe

c+c> e~

Here, — (rλ—r)X2e
cξέ0, and that ~~p, —p+pif —p—pi, —2p, —pί and —p + p2

are non-constant.
Now from (127) and (129) (since pΛqx~c'), we have

(131) ρ — ρ1—p2z= const.=c — c'.

Using (131), we can easily show that —p — pi+p2 and — 2p-rpx are non-constant.
Hence, applying Lemma A to (130), we get a contradiction. Thus (129) is
impossible.

[IV. 2]. Assume

(132) ί 2 +^=const . = c/.

In this case, cancelling q from (128) and then dividing by exp(ί), we deduce the
following identity.

(133) (r1-r)X2e
c-hί(h2~-h1)X3e

c-(s2-k2)X11e
c'3ece-p

-(h2-h)X6e
c+ct

Now from (132), ρz-\-q1=c

/, from which and (127), we have

(134) £—ίi—£ 8 =const.=c—c r .

Using (134), we can easily show that

-P+P1-P2, ~2pΛ-pι-p2, -2p+2pλ~-p2φconst.

Indeed, for example, if
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(135) —2p+2p1—p2=const.,

then, using (134), by cancelling p—pi, we get p2+2ps=^const. Hence pJ

Γ2p1 and
pi+2p2 are constant, so that, by subtracting these, we have

Then from (135), cancelling p2, we have 5p—3p1~const. From this fact and
p+2p!~const., we conclude that £=const., which is a contradiction. Thus (135)
is impossible.

Further, clearly, {rλ—r)X2e
c^0, and that —p, —p+pi, ~p—p2, —p2 and

— pJrp2 are non-constant. Hence applying Lemma A to (133), we conclude as
before that (132) is not valid.

[IV. 3]. Assume

(136) -^+2^ 1 +ί/=:const .=c / .

Then, cancelling q from (128) and then dividing by exp(jfr), we obtain

(137) {rι-r)X2

+(hi-h)X6e
c+c'

Now from (136), ~pί+2p2+q1=c/ and hence by (127)

p—2p2~zomt.—c—c'.

Using this, we can easily show that p—2px and —2p1

J

Γp2 are non-constant.
Other conditions are clearly satisfied. Hence, applying Lemma A to (137), we
have that (136) is impossible.

Again applying Lemma A to (128), we obtain a contradiction. Hence (127)
is not valid, which is to be proved.

[V]. Non-constancy of p — pi—

Assume

(138) p — p 1 —

Then, cancelling q2,

Pι — p2—qiJrc , p — pi — pi—

Hence the identity (62) becomes, after dividing by exp(—p2)

(139) (A 2-
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Here,

P2, Pi~Qi, p—pι+p2—q+qi=:c+p2—q2, plf

i+q—qi= — c+q2, — p + p i + ί 2+q—qi=~ c + p2+q2φ const.

Also

since otherwise —p+pi+q is constant, which together with (138) give
const, a contradiction.

Further we must show that

[V. 1]. Assume

(140) Pi+q—qi

Then p2Λ-qι—q2~cf also, and by adding these, pι + p2+q—q2=2c'f which together
with (138) give

(141)

Hence from (140) and (141), we have

(142)

Using (141) and (142), by cancelling q and qλ from (139) and then dividing the
rewritten relation by exp(—pj), we obtain the following identity

(143) ^ s

+(hί-h)X6e
c+2c'e-p-(s1-k1)Xlϋe

ce2pi

- ( s 2 - k2)Xne
c+c' e-p+pi+p*=0.

Here
-(s-k)X8e

c+2c'3Ξθ,

piy P1+P2, -P+Pi, -P, 2/>1^const.

Now note that from (141) and (142) we get
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(144) p—px—ί8=const.= — c'.

Using this, we can show that

p+2p1

Jrp2, p + p1

Jrp2, -pJrpiJrp2^ const.

We check here the first case. Other two cases are quite easy. Assume

(145) ρ+2pι+p*=const.=c" (say).

Then also p1+2p2+pz—c", which together with (144) give

From this and (145), by cancelling p, we have

2pi—p2z=2p—ίi=const.=c'.

Hence from the above two facts, we have that p+4p1=(p+2p2)-{-2(2p1—p2) is
constant, so that 9p=4(2p—/>1)+(j&+4j&1)=const., a contradiction.

Hence applying Lemma A to (143), we conclude that (140) is impossible.

[V. 2]. Assume

(146) p—^)1+jf>2+g1=:const.=c/.

Then pi — p2JrpΆJrq2=zc' also and hence by adding these

From this and (138) we have

(147) £1+£3+<?

Note that from (146) and (147) we get

(148) p—pί — p4

since p2-i-p4-j~q1=—c+2c/ by (147).
Using (146) and (147), by cancelling q and qx from (139) and then dividing

by expipi), we obtain

(149) -(s1-k1)Xlo

Here — (sj — k^X^e^O and that —pu —p!+p2, pa, —p—pi and —p are non-
constant. Further, using (148), we can easily prove that

P-P1 + P2, -2p1 + p2-ps, p-2p1 + pi-p8 and -2p1+2p2-pΆ

are non-constant Hence applying Lemma A to (149), we can conclude that (146)
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is impossible.

[V. 3]. Assume

(150) p2+q1=const.=c/.

Then also

(151) p1+q=:pz+q2

From (150) and (151),

and hence by (138) we have

(152) p—p2—p3—const.=c—c'.

Using (150) and (151), by cancelling q and qx from (139) and then dividing by
), we deduce

(153) -{rz-r)

2 - k2)X9e
c+(s~

Here -(r 2-r)X 4Ξ£0 and that —p, —p + p2, — p — pu —pi, —p+Pi and -2(p — p2)
are non-constant. Further, using (152), we can easily show that

-P+P1+P2 and -2p+p2

are non-constant. Hence applying Lemma A to (153) we get a contradiction,
which shows that (150) is impossible.

Therefore again applying Lemma A to the identity (139), we obtain a con-
tradiction. Thus (138) is not valid.

[VI]. Non-constancy of p — p z—

Assume

(154) p — p 2

Then cancelling q2,

In this case, using the above facts and then dividing by exp( — qλ), from (62) we
obtain the following identity

(155) (r1-r)X2
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Here (r1~r)X2e
cΞβ0) and that qlf — pi+qu —pΛ-q, q and — p\-p ι:\-q~(hvqt—

are non-constant. Also
p—pλ—qJ

r2q1Φ const.,
since otherwise

p-p2-q+qi+2q2=(p-p1-q+2q1)+(<p1-p2-q1 + 2q2)

is constant, and hence from (154) q2 becomes so, which is a contradiction.
Subsequently, we'll prove that the following three functions

-p!+2qlf p-p1+2q1, ~pi + p2Jrqί

are non-constant.

[VI. 1]. Assume

(156) —p1+2q1=consL = c/.

Then also

(157) — p+2q= — p2+2q2=const. = c'.

From (157), p~p2—2^+2g2=const.=0, and hence by (154),

(158)

Using (156) and (157), by cancelling p, p1 and p2 from (155), and then dividing
by exp(—#i), we obtain

(159) (h2-h1)X,ee"e' + ί(r1-r)X2

Since, using (158), we can easily show that

2qJ

rq1 and —q-{-qi + 2q2

are non-constant, by applying Lemma A to (159) we have a contradiction. Hence
(156) is impossible.

[VI. 2]. Assume

(160) ί —j&1+2^1=const.=6 /.

Then, pi — p2Jr2q2=c/ also and hence
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(161) p — p2+2q1+2qi=const.=2c/.

Now from (154) and (161), we obtain

(162) q+q1+q2=const.=-c+2c'.

Then, from (161) and (162), cancelling qi+q*, we have

p—p2—2g=const.=2c—2c',
and so

(163) p1—

From (160) and (163), we get

p—p.s=

which is contrary to the fact noted in (66). Thus (160) is not valid.

[VI. 3]. Assume

(164)

Then also

(165)

and so by adding (164) and (165)

(166) — p+p

From (154) and (166), we conclude

(167)

Also from (164) and (165) we have

(168)

Then by (167) and (168), we obtain

(169) -2p+pλ+p2=const.=-c+c\

Using (164) and (165), by cancelling q and qλ from (155) and then dividing
by exp(—pi+p2), we have

(170) - ( s 2 - Λ a ) Z 1 1 e c + c f + [ ( r 1 - r ) Z 2 + ( s a - ^ ϊ ) ^ 9 e c ' ] ^ P i - P «

(h2-h)Xδe
c+ct e-

- k)X7e
c+c'e

p-p*-(s- k)X8e
2c>

Here,
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/>i-/>2, 2(p1-pi), 3(pί-p2), ~p2, p-pzΦconst.

Further, using (169), we can easily show that

pλ-2p2, 2p1-3p2 and p-\-2pι-3p2

are non-constant. Hence, by applying Lemma A to (170), we have a contradic-
tion. This implies that (164) is impossible.

Again, applying Lemma A to (155), we have a contradiction, so that (154) is
not valid.

We have checked the facts [I], [II], [III], [IV], [V] and [VI] as above.
Therefore the proof of Theorem 1 is now complete.

8. Proof of Theorem 2.

By assumption, we have the following identical relation

(171) z-H1(z)=(z-

where R{z) is a meromorphic function (^0) of order less than one and p(z) is
an entire function as in (3).

By Theorem 1, R(z) and p(z) are constant and that bι/b2. is a rational num-
ber. Hence (171) reduces to

(172) z-H&^c^z-Hlz)),

where c is a non-zero constant. We rewrite (172) as

(173) a-c)z=H1(z)-cΉi(z).

Since b1/b2 is a rational number, mb1=nb2 (=b, say) for some non-zero integers
m and n, so that the right hand side of (173) is periodic with period b. Hence
we conclude that c = l . Then the identity (173) implies that

Thus the assertion of Theorem 2 follows.

9. Remark.

Our results can be generalized to the case of entire functions in several
complex variables. For example, for the non-zero constants b and b\ we con-
sider the following class

and g{z)

Then we obtain from Theorem 1 that, when F(z, w)^G(blf b/) and E(z, w)^
G(b2, b2') for some non-zero constants bJ} b/ 0 = 1 , 2), if further the following
identical relation

F(z, w)=E(
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holds for some entire function p(z, w) in two complex variables z and w, then

p(z, w) must be constant and that bjb2 and b1'/b2' are both rational numbers.
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Remark (added in the proof). About *\: Under pj—p-^c, if m addition
p—q=const, — c', then using two relations Q%) in p. 261, we represent K(z) and
Kiz+jb,) as

where meromorphic functions Lι ( l ^ ι ^ 4 ) are all of order less than one. Since
K(z) is periodic with period b2, by Lemma B, we know that Lt must be constant
such that L1=LS and L2=L± (cf. around (30)). In view of these facts, by
applying Lemma B, we can conclude that (R(z) is constant or) ec=l and ec' = l.

For instance, from L1=L3f if RSj—RjS^O (otherwise R is constant), we deduce
(ecSJ-SXeckjRJ-kR)=(ecRj-RXeeSjSj-sS) so that (eckJRj-kR)/(ecRJ-R)
=const.=c / / (say), which is rewritten as ec{kj—c")Rj—(k — c")R (cf. the notations
(10), (12) and (14)). Hence (k-c")R is constant (=£0) so that we have ec=L

Similarly, from L 2 = L 4 we can conclude ec' = l. Thus epCΌ becomes doubly
periodic, a contradiction.

About * }2: More simply as above, we can show that p — g^const. In fact,
if otherwise, using (48), we get also ec=ec' = l by Lemma B.




