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PRECISE VARIATIONAL FORMULAS
FOR ABELIAN DIFFERENTIALS

BY AKIRA YAMADA

In the present paper, we shall study two basic types of degenerations of
compact Riemann surfaces considered by Schiffer-Spencer [10] and Fay [3].
According to the simple formalism of the degeneration considered here, the
precice variational formulas without error terms will be obtained for ω(x, y)
the fundamental normalized Abelian differentials of the second kind (Theorems
4 and 6), from which one may deduce similar formulas for any Abelian differ-
entials and period matrices in the usual way. It turns out, however, that all
the variational formulas found in the book by Fay [3] disagree with ours and
it seems to us that they are incorrect, which is, to some extent, seen from the
examples in the last section of this paper. In our formulas the coefficients βjk

of an expansion of ω(x, y) plays an important role. In this connection a variant
of Golusin's inequality will be obtained for βjk's (Theorem 5) which can be
viewed as the generalized Faber coefficients. Our method is completely element-
ary (c.f. Fay [3]) and yields some extension of the results in [3] and [6].

1. Pinching along a cycle homologous to zero and preliminary estimates.

On any Riemann surface, it is well-known that the following orthogonal
decomposition holds [1] :

(1) Γ=Γh®Γeo@Γ*o

where Γ is the Hubert space of square integrable differential forms, Γh its sub-
space of harmonic differentials, Γeo the closure of the subspace of smooth
differentials with compact supports, Γf0 the *-conjugate of Γeo. The above
decomposition easily gives a lemma concerning the "distance" between the
functions each defined on one of the boundary components of an annulus.

LEMMA. 1. Let D be an annulus r< \z\ <R and assume that φ(z) (resp. φ(z))
is holomorphic on \z\=r (resp. \z\=R), where they have the Laurent expansions

φ(z)= Σ anz\ φ(z)= Σ bnz
n.
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PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS 115

Then the Dinclet norm \\df—i*df\\D attains its minimum among the (non-void)
family

1(D); \\df\\D<oo,f=φ on ]z\=r,f=φ on \z\=R]

if and only if f is harmonic. Moreover, the minimum is given by:

notation Σ ' indicates that in the summation nΦO.)

Proof. First note that (c. f. Weyl [11] p. 105)

(3) du — dv^Γeo for any u,

The sketch of the proof of (3) goes as follows:
Choose a ξ^C°°(R) such that

1, x^2

0 x<l

and set up the following function for ε>0:

In order to conclude that

it is only necessary to use the inequality

Inp/r-

In R/p \\dw\\l<{zKR

with w=u—v (u, v^$), evaluating the norm of wdξe.
In view of (3) and the decomposition (1), the first assertion stated in Lemma

1 holds at once. It remains to compute the minimum. An easy calculation
shows that the extremal harmonic function h(z)^ΞF is given explicitly by:

p 2 n 2 n
2 n 2

By the identity dh~i*dh=2hϊdz, (2) is immediately obtained and the proof is
completed.

Let S1 and S2 be two compact Riemann surfaces of genus glf g2 each with
a point plt p2 fixed and let z1: U1-^A={z^C; UI<1} and z2: U2-*A be coor-
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dinates in neighborhoods Ulf U2 of these points with z3(p3)=0 0 = 1, 2). Set

(4) pU,= {ptΞU,\ \zj(P)\<p}> pC,= {p<ΞU,\ \z3{p)\=p) 0 = 1,2)

with 0<ρ<l. A family of compact Riemann surfaces {Sε ε^C, 0 < | ε | < l }
formed from Sj and S2 is constructed by defining

SMS1\\e\U1)KJ(S2\\e\U2)

where Λ: e £/Λ | ε | £/2 is identified with y^U2\\ε\U2 by the equation

(5) zλ{x)z2{x)=e.

The coordinates zλ and z2 are called the pinching coordinates for Sλ and S2 at
ί i and p2 respectively. Clearly, Sε is a compact Riemann surface of genus
g=giJrg2 Both the pinching coordinates map conformally the "pinched region"
Sβ\((SΛ£ΛMS2\ί/2)), denoted by Pβf onto the annulus | e | < | s | < l , so that 5 ε

may be regarded as the union of SΛ£/i, S2W2 and | ε | < \z\ < 1 under appropriate
identification.

From Lemma 1, we obtain the following theorem which is the basis for
the derivation of the variational formulas in this paper.

THEOREM 1. Let Ω3 be a meromorphic differential on S3 which is holomor-
phic on Uj except for a possible simple pole at p3 with residue (—l)Ja (j=l, 2).

IQ3 dzΛ in Uj and have a Taylor expansion in terms of
Pj\ Zj /

the coordinates z3 given by

)= Σ a^z\ \z\<l (7=1,2),Σ
1

Then there exists a meromorphic differential Ωε on Sε which is holomorphic on
Pε with the same singularities as Ω3 on S3\U3 0 = l > 2), satisfying, for any

n{\an \ -r\an \ ) ΠΠJ
71=1 p — I ε I

Proof. Let hε be the harmonic function on an annulus \ε\/ρt=k \z\ ̂ p such
that

oo

φi(z)= Σ α ^ 7 1 on \z\=p,
71 = 1

φ2{ε/z)= Σ α« 2 )εn^"n on [̂ r | -
71 = 1

Then, by Lemma 1, it is seen that

ht{z)=[
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m 1 \\dh i*dhP - ϊ "I*™*"!* 4 - v n | α L " 1 2

oo I n c I 271

n = l p4n— \ε\2n

By passing to the usual smoothing process, it is easy to find an hε

n) (n — 1 , 2, •••)
with the same boundary value as h£ satisfying

(i)

(ii) If we define Φ(

ε

n) on Sε by

then Φ^ }eΓj(5 ε), the space of closed C'-differentials eΓ(S£).

Here the coordinate zx is used to identify the pinched region with \ε\/ρ< \z\ <ρ.
Note that (*) is well-defined, because of (5) and the restriction imposed on the
residues of Ωλ and Ω2 at px and p2. Clearly,

ί 0 , z^(S1\pU1)^S2\PU2)
(8) φS«)-ΐ*Φί«)=J

1 dhr~ι*dhr, ztΞ{\e\/p<\z\<p} .

From the decomposition (1), it follows that

where ωίn)^Γh) ω^^Γeo, and ω* ( n ) eΓ*. Let ήn)=Φ(

ε

n)~ω(

e

n

0\ then τ^ } is closed
and co-closed. It is also square integrable off the poles of Ωx and β 2, so that
it is harmonic there by WeyΓs lemma. Noting the fact that any harmonic
differential with isolated singularities is never square integrable, we see that
τίn) is harmonic on Sε except for the same singularities as Ωx and Ω2 off the
pinched region. Now let us define Ωίn) by

Then Ωϊn) is meromorphic on Sε with the same singularities as τ{

ε

n) and the
following estimate holds:
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Here we used the orthogonal decomposition (1). Thus, from (8),

for n = l , 2, •••. By a normal family argument, a properly chosen subsequence
of {βen)}ϊ=i converges to a meromorphic differential Ωε on Sε uniformly off the
poles of Ωλ and Ω2. Letting n—*oo, we conclude that

(9) Σ \\ΩΛ-ΩjnfipUj^j\\dht-i*dhΛUP<ω<p

By combining (7) and (9), the proof is completed.
The above theorem is slightly stronger than what is needed for later

applications. Indeed, it is sufficient to obtain the estimate

(10) Σ \\Ω£-Ωj\\sjχpUj<Λe (e-0)

with some information about the bound for the constant A. If (10) is rewritten
in the form

(10)' Σ l | β . - β j ^ p ί o = 0 ( e ) ,

the constant A will be called an "implied constant" of the estimate (10)'. After
obtaining variational formulas, we will see that the estimate O(ε) in (10)'
cannot be replaced by o(ε) in general.

2. Derivation of variational formulas.

Let us fix, once and for all, a canonical homology basis (Au\ Bcn) for
S, where A™=(Alt - , Aβl), B™=(Blf - , Bβl), A™=(Agl+1, - , Ag) and
Bi2)=(Bgl+1, -" , Bg)} and assume that every cycle in (Au\ Bίn) is contained
in Sj\Uj (j=l, 2) without loss of generality. To choose some canonical homo-
logy basis for Sε, let ^i(ε), Bfe), ••• , Ag(ε), Bg(ε) simply be a canonical basis
Alf B1} •" , Ag, Bg for S1 and 52. Let v3,ε (j = l, 2, ••• , g) be the normalized
differential of the first kind on Sε such that

f vJ>ε=2πiδJk (j, k = l, ••• , g)

where δjk is the Kronecker δ. This normalization is used throughout the
present paper.
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Let O be a relatively compact region of a Riemann surface, and_ assume
that u is a nowhere-vanishing holomorphic differential on the closure O. Then
a differential v defined in O is said to be bounded if so is the function v/u.
This definition is clearly independent of the choice of u.

The uniform boundedness of vJt£ 0 = 1 , ••• , g) with respect to ε will now
be considered, which is crucial for the later development.

L E M M A 2. Let z^(S1\ρU1)^(S2\pϋ2) with 0<p<h Then, for j=l, ••• , g,

uniformly. (Here and hereafter estimates like fε(z)—O((ε—εϋ)
n) (ε-»ε0) are said

to be uniform if "implied constants" can be chosen independently of the variable

Proof. Choose the pairs of differentials Ω\j) and Ωψ on Sλ and S2 respec-
tively as follows:

v3, 0) if

0, vj) if

where v3 for j^gλ (resp. j>gλ) are a normalized basis for the holomorphic
differentials on S± (resp. S2). Then, by applying Theorem 1, there exists a
differential ΩJtε holomorphic on Sε such that, for ε->0,

Since this holds for any joe(0, 1), it follows immediately that

β,..(*)=O(l) ( e - 0 )

uniformly for ze.(S1\pU1){J(S2\pU2). Let Mε be the period matrix of ΩltS,
Ωg,s with respect to the cycles A^ε), •••, Ag(ε). Then one verifies that

Ω X =
/j, k = l

where Ig is the gX£ identity matrix, since the period along a fixed cycle is a
bounded linear functional on Γc, the space of closed square integrable differ-
entials (c. f. Ahlfors-Sario [1], p. 284). Therefore the inverse matrix Me1 exists
for ε sufficiently small and is of the form

Consequently,

(vJt tf^MTKΩ,. e)?=i=(β,, .)?=i+O(e)(β,. .)?=i=0(1) (ε - 0 ) .

This completes the proof.
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Let ωx(xy y) (resp. ω2(x, y)} ωε(x, y)) be the fundamental normalized differ-
ential of the second kind on Sx (resp. S2, Ss), that is, the bilinear meromorphic
differential with vanishing ^-periods which is holomorphic everywhere except
for a double pole along x=y, where, in terms of a coordinate, it has an ex-
pansion given by

dxdy . t-7 ~—hregular terms.
(x — v)

For x^S1\U1 (resp. x^S2\U2, x^Sε\Pε), let the following expansions, in terms
of the pinching coordinates, hold in Ux (resp. U2, Pε):

\ZJ\<1 0 = 1,2)
ju n=ι

(11)

j W * > ^ ) = n Σ β β f l n . . U > Γ , \e\<\zx\<l.

Here the constant term ao>ε(x) needs not to be determined. The coefficients
aψ(x) are easily seen to be extended so that these become normalized differ-
entials of the second kind on S, holomorphic everywhere except for a pole of
order n+1 at p3 where, in terms of the pinching coordinates,

(12)
a{j\zj)=dzj/z]+1+regular terms 0 = 1, 2; n = l , 2, •••).

L E M M A 3. The following uniform estimates hold with 0<p<l:

f ω£x,y)+CKG), x, yjXpj

, y)=\ 0 = 1 , 2)

I O ( e ) , xeS^pUj, y<ΞSj.\pUr

Here and hereafter we use the convention that

2, - l

1, 7=2.

Proof. SetΩ1=ω1(-, x), Ω2=0 and apply Theorem 1, assuming that xGS^pUΊ
without loss of generality. Then there exists a differential Ωε(- x) meromor-
phic on Sε satisfying, for positive p'<ρ,

= π

By Cauchy's estimate, it follows that

ω i ( ) x)\ \z\<p',
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Thus

» - 1 β|

uniformly in x^SjXpU^ Analogous to Lemma 2, the following uniform estimates
hold:

{ o>i(x, y)+O(ε) x,
Ωε(y; χ)=\

1 0(ε)

7ε(y; x)=0(e) (j=l,2, ••• g).

In order to conclude the proof, it is sufficient to note that

o>e(χ, y)=Ωε(y, x)— V1^2πΓ\\A-^Ωe^' x^)Vj'ε^

and that vJ>ε(y)=0(1) uniformly by Lemma 2.

For our later development, it will be useful to derive an identity which

comes from the method of contour integration. For simplicity, let us define

o>o(x, y) by:

f (θj(x, y), x, y^Sj
(13) ωo(x, y)=\ 0=1,2).

1 0 χt=S y<=Sr
0

L E M M A 4. Let ε, ε o e C and p^R satisfy Max {|ε|1/2, |ε o | 1 / 2 } < ^ < 1 . Then

the following identity holds: for x, y^(S1\pU1)
{J(S2\ρU2)

ω.(x, y)-ω.9(x, y)=^r\pCι+pCff°>4*. θ)ω.(>, z).

Proof. Case 1. x, y^Sj\ρUj (j—1, 2): Integration along the boundary of
Sj\ρUj canonically dissected yields

o>ε(x, y)-ωεo(x, y^-^rΓ) c \) ^ωε^x> 'ϊ~~ω^x> *)))ωε(j>, z).

Here the Riemann bilinear relation and the residue theorem were used. The
term

( ωε(x, ))ωε(y,

vanishes because the integrand is holomorphic on Sε\(Sj\ρUj) where Cauchy's
integral theorem can be applied. On the other hand, the same theorem again
shows
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since the integrand is holomorphic on Sy\pUf. This completes the proof of
Case 1.

Case 2. x^Sj\pUj and y<^Sj>\pUf 0 = 1 , 2 ) : Similar reasoning as above
gives

The residue theorem implies

Thus

By symmetry and Stokes' theorem, it is seen that

ωεo(x, y)=ωεo(y, χ)=-^-—^ ^ Q ωε(y, ))ωβ0(x, z)

This completes the proof of Case 2, so that Lemma 4 is proved.

We are now in position to obtain the variational formulas of arbitrary
order for ω^x, y) and ω2(x, y). To this end, however, it is important first to
recognize that ωε(x, y) is holomorphic in ε. Thus the first or second order
variational formulas for ωe(x, y) are needed in advance. Let Wj(x, y) have an
expansion near x—y — p3, in terms of the pinching coordinate, given by

(14) ωJ(x9y)= * + Σ βflx'y1 0 = 1.2).
\x—y) k,ι=o

THEOREM 2. ωε(x, y) has an expansion

( ^ ) + O ( 3 ) , x,
(15) ωt(x, y)=\

-ea)j(x, pj)a)j>(y,

near ε=0 with 0<p<l. Here the estimates 0(ε2) and O(ε3) are uniform and the
differentials ωs(x, y), ωj(x, pj) and ωj(y, pj) are all evaluated in terms of the
pinching coordinates.

Proof. Let us fix pf and p" with | ε | 1 / 2 < i o
/ < / o< / o / / <l and assume that

x^S\pΌλ without loss of generality. From Lemma 4 with εo=0, (11) and
Cauchy's integral theorem, it is seen that, for y^S2\pU2,
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oε(x, y)=-~— ( ωx(x, -))ωε(y, 2)
Zπi jp'CiKjpi /

= Σ α2'(*)-sM zfωs(y, zj

<oε

Σ
l

= - Σ e»α<?>(x)-=M ω.(y, z,)/zj .
71 = 1 ΔTCl Jp'C2

Thus Lemma 3 combined with the residue theorem and the equation (12) shows

^-εω^x, pύ-R—\Zπi Jp

= — εωί(x, Pi)ω2(y, p2)+O(ε2).

Here, the estimates O(ε2) are all uniform for x^S1\pU1 and y^S2\pU2.
When y^S^pUί, a similar reasoning shows

<oε(x, y)=<oi(x, y)-\--iy—\ (I λ ωx{x, -))ωβ(y, z)
Zπi jp'c1\jp1 /

=ω1(x, y)+ Σ α^M-o—\ z?ω£y, zλ)

=ωι(x, y)- Σ s"α«'(x)-^—( ωs{y, zj/z? •
n = l Δ7ΓI Jρ"C2

By definition y^SxXpUi and p"C2(ZS2\ρU2y so that the result already obtained
above can be applied to give

Zπi

=ω1(x, y)+ε2aϊ1\x)ω1(y, P

— ( ω.(y, z2)/<r2+O(ε3)
•πι jp'Co

9 ίi)+O(e8).

Again, the estimates O(ε3) are all uniform. This concludes the proof.

THEOREM 3. ωe(x, y) has an expansion near ε=ε0

(16) ωlx, y)=ωH{x, y)- ΣεQ 7l = -co

uniformly for x, ^^(S 1\ io/7 1)U(S 2\ ioί/ 2) with | e 0 | 1 / 2 < / o < l .

Proof. Now let us fix a pf with | e 0 | 1 / 2 </o / </o. From Lemma 4 it is seen
that
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If
<»e(x, y)~ωεo(x, y)=-i> 1 Σ an,βo(x)z?ωe(y, zλ)

ΔKl J ρ'C1n = -<χ>

Σ an..t<ίx)εn/zζωt(j,zt)

(17) = - Σ - ^ — ( an,εo(x)(εn/z«2)ωε(y,z2)
Λ Zπi Jp'c2

+ Σ - i f aπ,εo(x)(ε%/zZ)ωXy, zt)
n Zπi Jp'C2

= Σ (eS-e")arl,£0(x)-
Jp'C2

Lemma 3 shows that the estimate

holds uniformly. In addition, the identity

where

' 2πi
/?»=

1 r ^ ^
—r-\ "7 ^ 7 v - ,

πι j\z\=r1 {z—εo)\z—ε)

2πι Juι=r2M=r2 iz— εo)
2(z—ε)

with 0 < r 2 < |ε o | <r 2 , implies that

n<0

(18) Rn=\
n-> — oo .

Thus the estimate

(19) ωs(x, y)-ωεo(x, y)=O(ε-ε0)

holds uniformly for x, y^iSApU^iSApU^. Since /? is arbitrary, (19) also
holds for x, y^(S1\p/'U1)VJ(S2\p//U2) with | ε o | 1 / 2 < / ' < / . Therefore, if (19)
with p replaced by p" is substituted in (17), it follows easily that

ωε(x, y)—ωeo(x, y)

= Σ (eif-en)fln..0(x)-^—f ωεo(y, z2)/zn

2+O((ε-ε0)
2)

n Zπi Jp'C2

= Σ (ε"-εJK,εoW^p
ΔK



PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS 125

= Σ (εn-ε%)ε»nan,εo(xX-n)a-n,ε<>(y)+0((ε-εoγ)

Z £ ! L Σ π α (
ε 0 n

Here we used (18), (19) and Cauchy's integral theorem.

Theorems 2 and 3 clearly show that ω$(x, y) is holomorphic in ε at ε=0.
To obtain the Taylor expansions of ωε(x, y) with respect to ε, the following
observations are in order: let

(20) a<Sz=~kr\PcJ

anZ)Wl 0=1.2; έ,/=1,2,

with 0 < ; O < l and set, for | ε | < ρ 2 ,

(21) ωε(x,y)=± ε"Ωn{x,y), x, y^SApU^i
71=0

where Ω0(x, y)=ωo(x, y) defined before. From (11) and (14) it follows easily that

(22) aW=βΆ.ι-Jk 0 = 1, 2; ft, 1=1, 2, •••).

Thus the symmetry βV^βffl implies

(23) ka%=lalΐ 0 = 1 , 2 ; ft, Z=l, 2, ».).

Ωn(x> y) (n=l, 2, •••) are bilinear holomorphic differentials on (
since the singularities of ωε(x, y) are cancelled out by those of Ω0(x, y).

With the above preparation, the following theorem concerning the vari-
ational formulas of any order will now be demonstrated.

T H E O R E M 4. The n-th order variational coefficients, Ωn(x, y) (n = l, 2, •••) are
given by: for j=l, 2 and 0<ρ<l,

_ y x ,
(24) Ωn(x, y)=l ^

where

with summation taken over all integral vectors (tj) such that

n-h-k= Σ tj, tj^l
;=i
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and

respectively.

n-h-k=

AKIRA

2S+1

Σ t,,
3 = 1

YAMADA

Proof. From Lemma 4, (5), (21) and Cauchy's integral theorem, it is seen
that, for χζΞSj\p'Uj with 0< | ε11/2< io

/< io<l and /=1, 2,

Σ enΩn(x, y)= Σ aMx)z«)ωt(y, z)
n = i /

Compairing coefficients of like powers of e, we obtain

(26) Ωn(x, y)=- Σ aψ(x)-£— \ Ωn.h{y,Zj,)/zh

r

for n=l , 2, •••, χtΞSj\p'U3 0 = 1 , 2) and ^^(5ΛJo
/ί/1)W(52\lo

/ί72). Since
arbitrary, the repeated use of (26) gives

(27)
for x,yeS}\pU},

h,k=l p'Cf

for

z, w)/zhwk

z, w)/zhwk

'„ y<BSj.\pUr .

For it is easily seen that Ω0=ω0 satisfies

^Ωoiy^j yz^l
3 I nan \

b y d e f i n i t i o n s (11) a n d (13). O n s e t t i n g ( for n—1, 2, •••; h, k^l,

j=l, 2)

is

(28)

it remains only to show that the formulas (25) and (25/ hold. But this is
easy, if one notes the following recurrence formulas for Ω^j5 and Ω^jr obtained
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by substituting (24) in the integrand Ωn-h-k(z, w) on the right hand side of
(28): for n = l , 2, •••; h, k^l, h+k^n; j = l, 2,

- q £n~ ΪL — k
v \ (

p,q = l

αjsϊ'

(29)' i % ^ = P + β Σ " f t ~ * i ^
P, 3 = 1

By induction on n, it turns out that (25) and (25/ are the direct consequences
of (23), (29) and (29)'. This completes the proof of Theorem 4.

Clearly, (23), (25) and (25)' show that the important quantities Ω^k

Λj have
the symmetry:

Qhk Qkh Qhk — Qkh
**n,jj — **n,jj > **n,jf — **n,j'j

for w=l, 2, ... h, k^l, h+k^n ; = 1 , 2.

Remark. The coefficients βjj^ satisfy the following identity : for n=l , 2,
h, k=l, 2, .-, h + k^n; 7=1,2,

(31) ;* = Σ
To show (31) we calculate an,ε(x) (n=±l, ±2, •••) explicitly by using Theorem
4. For JCESI\I7I termwise integration gives

^ ε \ > •*/— COnSΓ.~Γ 21/ ̂ 72 V ̂ / ^ l "T~ 2-J 2-J & ^n.ll^h \X)\ Uk
71 = 1 71 = 1 h, k = l J

By (20) the integrals on the right hand side have expansions

Thus, from the definition (11), it is seen that an>ε(x) is given by: for
and n = l , 2, •••,

n m = l Λ, fe = l

Hence it follows from Theorems 3 and 4 that, for x, y^S^U^

71 = 1 71 = 1

+ Σ (Σ ε™β
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Compairing coefficients of εn in the above expansions, we find an expression
of Ωn(x, y) different from (24), which, together with (24), easily implies (31).
Similar identities will also be obtained by choosing x or y^S2\U2 in the above
calculations.

Now that Theorem 4 is obtained, it will be possible to derive variational
formulas for any meromorphic differentials on Sε which is holomorphic on Pe.
However, instead of computing complicated formulas for the general case, we
restrict ourselves to the case of the normalized differentials of the first and
the third kind.

Let ω(jlb (resp. ωa-b,s) be the normalized differential of the third kind on
Sj (resp. Sε) with simple poles of residue 1 and —1 at a, b^Sj (resp. Sε) re-
spectively. Then the Riemann bilinear relation gives

Vk(x)=

(32)

with the path of integration from b to a taken in Sj cut along its homology
basis. For notational convenience, let the following expansion holds in terms
of the pinching coordinates:

(33) [* 7=Σrt i)

where η is any differential holomorphic on U3 0 = 1, 2). Thus (11) may be
rewritten as

Furthermore, let us write for short

(34) r^Cv*]=rS5, rti)[^26]=rί/ ^

Analogous to (32), the Riemann bilinear relation again gives

(35)

If (21) is integrated term by term along the cycle Bk{e)—Bk, an expansion of
vk,ε will be obtained at once in view of (32) and (35). Indeed, this is legitimate
since Bk is contained in the region where Theorem 4 is valid.

COROLLARY 1. The normalized differentials of the first kind on Sε have

expansions near ε = 0 : for i=l, 2, •••, gi and 0<ρ<l,
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(36)

where βof is the constant defined by (14) and the estimates O(ε2) and O(ε3) are uniform.

More precisely for ι=l, •••, g and x^(S1\pU1)^J(S2\pU2)

(37) vt,e(x)= Έen(ViUx)
n=o

where, for i—1, ••• , gλ and n = l , 2, •••,

h, k = l

h+k^n

For i=g1+l, ••• , g, similar formulas are obtained by symmetry.

If (37) is integrated term by term along Bk once again, a variational
formula for the period matrix for Sε, denoted by τe, is obtained.

COROLLARY 2. The period matrix τε has an expansion near ε=0

/ τ i θ \ / 0 *J?A \
(38) τ . = - e +O(ε2)

\ 0 τ2 I \ tR.R, 0 /

where τx and τ2 are the period matrices for Sλ and S2 respectively, and

R2=(vgl+1(p2), - ,

More precisely:

(39) τs= Σ εn

where τn=(τn>ιj)f>J=1 and, for n = l , 2, •••,

(40)

h+kzn

h, k=l

h+k^n

h , j f e = l
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h+k£n

τn.vi=τn.n= Σ Ω^γtlfξ-nf»f£) for l^iSgu
h Σ

Here γ$ ( ; = 1 , 2) is the constant defined by (33) and (34).

Similarly, variational formulas for ωa-b,ε are obtained if both a and
pUj with 0</?<l 0"=l, 2). On the other hand, if a^Sj\ρUj and έ e S ; A

., 0 = 1 , 2), such a simple method as above fails immediately since the path
of integration must across the pinched region. In this case, however, we can
proceed as follows: analogous to Lemma 4, a)a-b,ε(x) is given in terms of
ωt(x, y) by

(41) oja-b,ε(x)-ωa-b,o(x)=-^^^ G ( j (ω(

a

jlPj+dZj/Zjγjωε(xf z)

where a^Sj\pUJ} beSj.\pUj., x^(S1\ρU1)yJ(S2\pU2) and

ω%lPl(x)

(41) follows from a similar reasoning as in the proof of Lemma 4, so that the
proof may be omitted. If the expansion (21) is substituted in the right hand
side of (41), the desired variational formula is obtained from Theorem 4 by
termwise integration. The results are summarized as follows.

COROLLARY 3. The normalized differential of the third kind ωa-b,ε(x) has an
expansion near ε = 0 :

(i) for a,bt=Sj\pUJ9

(42) ωa-b,ε(x)
-εwWb(pj)ωj,(x, pr)+O(ε2)

(ii) for x, a<=Sj\pUj and b^Sjt\pUj, ,

where, in terms of the pinching coordinates,

dj(a)== lim ΐo)a-pIz')-}-l/Zj(kzy2G=C 0 = 1 , 2)

and all the estimates O(ε2), O(ε3) are uniform.
More precisely:

(44) ωa-b,ε(x)= Σ en(ωa-bUx)
n-o
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where, for n = l , 2, •••,

(i)' for a,b^S3\pUJ}

ϊ\ί\a, b)aίj\x),

(45) (ωα.6)n(jc)=( 2 * "
)-nfi\a} b)a(/\x), x<ΞSj,\ρUjf ,

h, k — 1

(ii)' for x, a^SjXpUj and b<sSr\pUr ,

(46) ( ω α - 6 U f t + *( α 6 U ) Σ {
h, k = l

Here γψ(a, b) and T{d\a) are the constants defined by (33) and (34).

On account of the importance of the coefficients aΆ we make mention of
the close connection between the differentials a{j\x) ( n = l , 2, •••) and the Faber
polynomials.

For convenience, let us omit the letter " / ' m °^r notation and write

S=SJ9 U=U:> an(x)=aψ(x). etc.

The local coordinate z\ U-+Δ is, on the other hand, regarded as a univalent

mapping φ(t)=z~\l/t): {t \t\>l}->S. In the case where S=C (the Riemann

sphere) and p=&> ( E C ) , φ is a complex-valued function and the expansion (11)

reduces to

U7) ft n frV-n

(φ(s)-xY ~ x-φ(t) '
Recall that a generat ing function for the Faber polynomials pn ( n = l , 2, •••)
belonging to φ is given by

[2]. From (47) and (48) it is easily seen that

(49) PnW-pn(xo)=-n\X an(t)dt (n=l, 2,
J

In view of this identity, it is natural to call the Abelian integrals 3n{x)

ί x
andt the Faber integrals belonging to a local coordinate z, which agree,

up to a constant, the Faber polynomials if S=C and p—oo. From (20) 3n°φ
( n = l , 2, •••) has an expansion
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(50) ΞFn°φ(w)=wnjrconst.— Σ η-ankw~ \w\>l.

With this analogy, ank (n, k = l, 2, •••) may be called the generalized Faber
coefficients and the equation (23) corresponds to the classical Grunsky law of
symmetry [2]. Furthermore, a generalization of Golusin inequality is obtained
from a straightforward analog of area theorems as follows.

THEOREM 5. Let {xn} be an arbitrary sequence of complex numbers. Then
the coefficients ank satisfy

(51)
N

Σ
N λ

Σ ( 7 V = 1 , 2 , -••)

Equality holds for a non-zero sequence {xn} if and only if the complement of the
image of φ in S has areal measure zero.

N

Proof. Let us evaluate the norm of Σ xnan(x) on ,.S\pU with 0<ρ<l.
71 = 1

The Riemann bilinear relation and (50) give

2π

N

Σ:
71 = 1

S\pU

f f

S\pUn
Σ xnan(')A

l

1 r /[χ N \ N

= -9-^-\ ί\ Σ xnan( ))Έ xnan(x)
Zπi JpC\J 71 = 1 / 71 = 1

Zπi J\w\=i/pn=i n

N

l

N

Σ.
71 = 1

Letting ρ-+l, we have

1

2π

N

Σ:
71 = 1

ΛΓ 1

Σ

N x

7i=i n

2
~2k

71 = 1

which obviously implies Theorem 5. The equality statement is a direct con-
sequence of the linear independence of an(x)'s.

When S=C the inequality (51) has been already obtained by Jenkins [5],
Milin [7] and Pommerenke [9]. Applying the Cauchy inequality to (51), we
have at once a version of Grunsky inequality : let {xn} be an arbitrary sequence
of complex numbers. Then,

(52) Σ βn-l, k-lXnX k
N

' n = l
( Λ Γ = 1 , 2 , •..)
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where βnk (n, k=0, 1, •••) are the coefficients of the expansion (14). (Note the
identity (22).) Equality condition is the same as in Theorem 5.

In particular the important quantities β$ appearing in Theorem 2 and
Corollaries 3 and 4 satisfy

(53) \β$\^l (7 = 1,2).

Remark. Schiffer and Spencer have proved an inequality more general
than (52) in their book [10] where they generalized, to the case of finite
bordered Riemann surfaces, Grunsky's necessary and sufficient condition for
the univalence of an analytic function defined on the exterior of the unit
circle. Since (51) implies (52), their theorem 5.5.3. [10, p. 168] can be restated.
For the sake of completeness, we record this fact as a

COROLLARY. Let φ map a neighborhood of OeΔ conformally into a neigh-
borhood of p=φ(0)<BS. Using a local coordinate φ~ι around p, one may calculate
the series expansion (14). Then φ can be extended over Δ to give an analytic
imbedding of Δ into S if and only if the inequalities (51) hold for every sequence
{xn} of complex numbers.

3. Pinching along a non-zero homology cycle.

Here, the notation and the definitions in the previous sections are used
unless otherwise stated.

Let S be a compact Riemann surface of genus g and choose coordinates
zx\ Uχ-*Δ and z2\ U2-+Δ in disjoint neighborhoods Uλ and U2 of two points
Pu p2^S. Again, a family of compact Riemann surfaces {Sε; εeC, 0 < | ε | < l }
formed from S is constructed by identifying Uι and U2 under the condition (5).
Sε is a compact Riemann surface of genus g+1 while the pinched region
Pε=Sε\(S\(U1^J U2)) is usually identified by the pinching coordinates zx and z2

with the annulus | ε | < | z | < l as before. To choose some canonical homology
basis for S, let A^ε), B^ε), ••• , Ag(ε), Bg(ε) simply be a canonical basis
Alf Blf - , Ag, Bg for S lying in S\(U^U2). In addition let A8+1(ε)=pC2 with
any p satisfying | e | < p < l and let Bg+1(ε) be any path from zτιWε) to zϊKVε)
lying within S\(|ε| Ux^J\ε\ U2) cut along the homology basis for S.

Corresponding to Theorem 1, the following analogous theorem holds with
trivial modification, so that proof will be omitted.

THEOREM V. Let Ω be a meromorphic differential on S which is holomorphic
on Ux and U2 except for possible simple poles at px and p2 with residues —a
and a respectively, and let

for y = l , 2 and n = l , 2, •••. Then there exists a meromorphic differential Ωε on
Sε which is holomorphic on Pε with the same singularities as Ω on
satisfying
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(6)' \\Ω,-

with \e\1/2<p<l.

On applying Theorem 1' and using the identity analogous to Lemma 4

(54) ωe(x, y)-ω(x, y)=-f?—I (\*ω('> χ))ω&> JO
Zπi Jpc1+pc2\j /

for x, y^S\(pU1yJρU2) with \ε\1/2<p<l, it is now easy to deduce such vari-
ational formulas as in Theorems 2, 3 and 4 by a method similar to the one
used in section 2. For instance, the uniform boundedness of vJ>ε 0 = 1 , •••,
g+ΐ) will be shown immediately by choosing

f j if j = l , ••• , g
Ω—\

v^Vl if j=

and applying Theorem V. (This is the reason why simple poles at px and p2

must be permitted for the Ω in Theorem V as the singularity.)
Now the main results in this section will be summarized almost without

proof in the form of a theorem and corollaries. In order to state these, let us
define

(20)' « # = - * — ( aίKzj)/^ (s, j = l, 2; p, /=1, 2, •••)

which, corresponding to (20), are important to express the variational coefficients.
Again, it follows the symmetry:

(23/ lctίί=maiί ( , * = 1 , 2; /, m=l, 2, •••)

THEOREM 6. ωε(x, y) has an expansion near ε = 0 : for x, y^S/{pU^JpU2)
with 0 < i o < l ,

(15)' ωε(x, y)=ω{x, y)-ε\_ω{x, pMy, p2)Λ-ω{x, p2)ω(y,

where the estimate O(ε2) is uniform.
More precisely: for | ε | 1 / 2 < i o < l

(21)' ωε(x, y)= Σ enΩn(x, y) x,
no
Σ

n—o

where Ω0(x, y)=ω(x, y) and, for n — 1, 2, •••,

2 l + m^n

(24)' Ωn{x,y)=Έ Σ fl;-.tflF
1(i)fl2)W-Z4W(3)

j , k = l Z, m = l j = l

The coefficients Ωι

n

m

Jk are given by: for /, m, n = l , 2, ••• (l+m^ή) and j , k — l, 2,

Olm — / V (— 1^^' sl/T sl'S2/yS2' s3 . . . rvsd'k'



PRECISE VARIATIONAL FORMULAS FOR ABELIAN DIFFERENTIALS 135

with summation taken over all vectors (sp) and (tq)^Zd such that

n—l—m= Σ t3, tj^l, s ,=l , 2, d^O.

Instead of (29), the recurrence formula for Ωι

n

m

ik is given by

p+q^n-l-m ^ 2

(29)' Ωι

n

m

jk=
 p><2=1 n'ι'm'u pl qm .-i n'ι'm'1 *-l-m-m

if l+m—ny

xQ' if l+m<n.

By induction on n, (25)" is verified from (23)' and (29)' as before.
Integration of (21)' along the cycle Bj(ε) 0 = 1 , •••, g) immediately yields

COROLLARY 4. For i=l, •••, g, vi>ε(x) has an expansion near ε = 0 : for
x<ΞS\(pUx\JpUύ with 0<p<l,

(36)' Vi,e(x)=Vi(x)—εZvi(p2)<o(x,

where the estimate O(ε2) is uniform.
More precisely:

vi,£(x)=Σen(vi)n(x)
n=o

where (vi)0(kx)=vi(x) and, for n = l , 2, •••,

2 l + mύn 2
/., \ ( _\ V* V* OίW Ύ U) n(k){ v\ V*
\UiJn\X)— ΔJ ΔJ Mn,jki li am\^) ΔJ

On the other hand, Theorem 6 and the identity

(55) vg+1,lx)-ωP2-Vl{x)^-^τ-\^ c (j (ωpz-p^dzjzjjωeίz, x)

for χtΞS\{pUiSJpU2) with | ε | 1 / 2 < i o < l give

COROLLARY 5. vg+1>ε(x) has an expansion near ε=0: for

(56) vg+1,t(x)=ωP2-Pl(x)-eZrMx, Pi)+ϊMx,

where the estimate O(ε2) is uniform and the constants

(57) rj= limZωp^W-ί-lYdztxyzjWl 0 = 1, 2)

are evaluated in terms of the pinching coordinates.
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More precisely:

(58) vβ+Ux)= Σ en(vβ+1)n(x) xe
n=o

where (vg+1)0(x)=ωp2-Pl(x) and, for n = l,2,

(59) (vg+1)n(x)= Σ l+ffnΩ lnm

jkϊϊ
j )a^{x)- Σ nffaWK

J, k = l I, 771 = 1 .7 = 1

Let

1,C)

be the period matrix for Sε with respect to a canonical basis Axis), B^e), •••,
i4 ί+i(e), 5 ί + i(ε). From Corollaries 4 and 5, it is easy to calculate the Taylor
expansion of τ ε at ε=0 except for the (g+1, ^r+l)-element σε for which the
path of integration Bg+1(e) must across the pinched region. The next lemma
shows that σε can be expressed through the line integrals whose paths of
integration avoid the pinched region.

LEMMA 5. For ε^C and p^R satisfying 0< | ε | 1 / 2 < i o < l / 2 , the following
identity holds:

(60) ™^

{The proper choice of the logarithm depends on the path chosen to define the
cycle Bg+1{ε).)

Proof. Cauchy's integral theorem and the bilinear relation give

Hence
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2πz J/oc1\j2f1ci/2)\ zx Π

On the other hand, a change of parameter by using ZyZ?,—& yields

\ (Γ
Therefore

S2~1C2e) Γ2^"1

Note that the path of integration from zϊ\l/2) to z^1(2ε) can be identified with
Bg+1(e), so that the proof is completed.

From the above lemma, it is seen that the constant term in the expansion
(60) is given by:

S 2~1Ci/2)

^-\ (\ 1
πi Jioσ2\j2-1(i/

=ln4+
! \ , Γ^1(o) / dz2 \

x / j2-1Cl/2)\ 2 λ Z2 /

This, in turn, is seen to be equal to the constant

> _ l w Λ , - 1 , 1 - 2 1 n

Corollaries 4, 5 and Lemma 5 give immediately the expansion of j the period
matrix.

COROLLARY 6. Let γlf γ2, γc

n

J) and fH be defined as in Corollaries 4 and 5.
Then the period matrix for S, has an expansion
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/ τιj+εσιj ai + εσι \
(38)' τM +0(ε2)

CLjΛ-eσj In

Pi

B zp(χ) i

! ω P 2 -ίΊ~~ 2 l n x and ciz=—2yiΪ2

M # r £ precisely

( i ) r » J f . = Σ / ' W n 2,7 = 1 , 2 , •••,£

Γιj)o—τιj and, for n = l, 2, •••

(_ \ V 1 "V A ζ~)lΎϊl γ(S)γ(t) "V ̂  γ. y (S)γ(S' )

^ijjn Z-j Z-j ύάn,stl li I mj Z-j '^Inilnj

CO

V ϊ ϊ / Oχ e—— ^ j εn\Oχ)n l r = : \ y '** , ^

w /zere ( σ t ) 0 = \ ωP2-Pl—\ 2vt and, for n = l , 2, ••• ,

\S>6J \Vι)n~=~ 2LJ 2-i "^n,stfl Imi 2LJ n[n / n ι .
s,t = l l,m = l s = l

(iii) σ ε=ln ε+ Σ en(σ)n
71 = 0

w /z^rβ ( ί j ) 0 = c 0 flwύf, f o r n — \, 2, •••,

(63) (*)„= s Σ = i ^ g "flίI?.trί )r{ί)-2nrίί)r{f).

From Theorem 6, it is also possible to derive a variational formula for the
prime form E(x, y). For the basic properties of E(x, y) the reader may consult
[3, Chap. 2].

Since the multipliers of E(x, y) and E£(x, y) (the prime form for Se)
along the cycles pd and pC2 are both equal to 1 (c. f. [3]), we can choose a
single-valued branch of In(Eε(x, y)/E(x, y)) over S^pU^pU^) canonically
dissected so as to satisfy

(64) lim In (£.(*, y)/E(x, y))=0

for any q^S^pU^pUz) [3, Corollary 2.5]. From now on, all paths of inte-
gration are taken within a fixed canonical dissection containing pϋx and ρU2.
With this agreement we have
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COROLLARY 7. lnEε(x, y) has an expansion: for x, y^S\(ρU1^JρU2) with
\s\1/2<p<l,

(65) In £,(*, y)=ln E(x, j y ) - ε α v * ( ί i K - * (

where the estimate O(ε2) is uniform.
More precisely.

(66) In Et(x, y)=\n E(x, y)- Σ nεn\Vaΐ?af

1 °° 2 £+771^77, Γϊ/
I x V f « V V* O r̂a I stU

J, k =

Proof. First we note the identity [3, Corollary 2.6] : for x,

d2

(67) ω(x, y)= 3χ3 In E(x, y)dxdy .

To prove (66), set

F(x, y)=\n{E&{x, y)/E(x, y))+ Σ nen[Va™\Va™
n = l Jo; Jα;

1 °° 2 l + m^n Γy Cv

~ Σ s " Σ Σ" flίft* αί̂ l α<*J

Z Λ = 1 J, k = l I, 771 = 1 J j ; JΛ;

32

and consider -^-^—F(ΛΓ, V). (67) and Theorem 6 show

On account of the symmetry F(x, y)=F(y, x) (c. f. [3]), it is seen that F(x, y)
has the form

F(x, y)=h(x)+h(y)

where h(x) is single-valued and holomorphic on SMpU^pUz) canonίcally
dissected, since a(

n

j)(x) (j=l, 2 and n = l , 2, •••) has no residues at px and p2.
(64) implies that F(x, * )=0 or h(x)=Q, so that F(x, ^)=0. This gives (66)
while (65) is proved by recalling the identity (c. f. [3])

(68) ωa-b(x)=\aω('f x)
Jb

and the proof is completed.

Remark. Let g(x, y) be the Green's function on a planar regular region
D. Then it can be verified that

(69) g(x, y)=ln - | r ^ -
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where E(x, y) is the prime form for the double of D with respect to a suitable
canonical homology basis and y is the conjugate point of j e D , (69) shows
that Robin's constant c(x) is given by

(70) c(x)=ln \E(x, x)\ .

By using the representations (69) and (70), Corollary 7 will yield variational
formulas for g(x, y) and c(x), but we do not enter into these calculations.

4. Examples.

To guarantee the validity of our formulas, we consider here two cases
where ωε(x, y) can be calculated easily by other methods.

EXAMPLE 1. Let Sj and S2 be the extended complex plane C. Then the
fundamental normalized differential ω3{x, y) is given by

(71) *>/*, y)= (

d

χ

X_d

y

y

y 0 = 1,2).

If \tc3\<l, the function φj(z)=—\-κ3z maps conformally the unit disk Δ onto

with φ3(ΰ)—co (y=l, 2). Hence it is possible to take φj1 as a coordinate
z3: Uj-+Δ on Sj centered at P3=oo 0 = 1, 2). Since Sε has genus zero, it is
well-known that, for any fixed xGSi\Ulf there exists a conformal mapping
fs: Sε->C satisfying fε{x)=oo. To calculate ωε(x, y) on 5e, we shall first study
the mapping fε itself. Let f3 be the restriction of fε to Sj\\ε\Uj (j=l, 2), and
assume without loss of generality that f1 is holomorphic on SΛ | ε | ί/2 except
for a simple pole at x with residue 1. In view of the equation (5), fλ and f2

must satisfy

(72) Mφi(z))=Mφ*(e/z)) for | ε | < \z | < 1.

From the functional equations

(73) Φ,(*)=Φλ-rr) 0 = 1.2)

(for simplicity assume Λ J Λ ^ O here, as in the sequel), it follows that (1) is
extended meromorphically to the function F(z) which is now defined on
0 < | z | < o o . By (72) and (73) F(z) satisfies

so that
F(z)=F(fc1fc2ε

2z), 0< U|<oo .

Thus F(ez) becomes a doubly periodic function with periods 2πi and
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α^ln/Ci^s2) which is holomorphic except for simple poles at ZΞΞIΠ β and

z~—\nfc1β (mod periods) with residues \ιc1β—-A and —(fCiβ—x) respectively;

here β denotes a number satisfying φ1(β)=x. As is seen from the theory of
elliptic functions, F{ez) has an explicit representation:

(74) i'(ei)=(/Cii8-^-)"1CCU-lii j8)-ζ(*+ln

where ζ(z)=ζ(z; 2πι, a) is the Weierstrassian zeta-function. On the other hand,
it is well-known (see [4, p, 477]) that ζ(z) has a series expansion given by

where

h = ea=κ1κ2ε
2 and ^ = -Jri—(ζ(2r+2τrf)

Hence, if (75) is substituted in (74), we have

-1 A κλβz-hn ^ &i \-hnκλβz

^ T ^ ' + Σ Σ hndιc
φ(Z) X l d l

Observe that, for fixed x^S^U^ ω£(x, φλ{z)) is given by

ω£{x,φ1{z))=-Ff{z)/φ[{z).

Thus, if (76) is differentiated, it follows that

(77) a> (x ώ (z))- X yy^^Mlί
( 7 7 ) α » . U , ^ W ) - ( 0 ( z ) χ ) 2 - Σ Σ ώ . A ̂ ^ ^ - i

for x, Φ^Z^SAUL TO show that (77) agrees with the expansion given by
Theorem 4, let us determine the differentials an{x) and the coefficients β£*n.
By (71) and the definition (11), a%\x) (n = l, 2, •••) are given by the expansion

Σ aψ(x)z»= ί y ^ (;=1, 2),
n=i X — φjKZ)

and thus, after easy calculation, it is seen that

(78) W^^^fΞβ^' ^Φ^—^-
If (78) is substituted in (77), we conclude finally
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(79) ωε{x, y)= l - Σ/i 'Σ dtc^af^afiy)
(X — y) Λ = 1 dirt

with h=/c1κ2ε
2. On the other hand, one verifies that

(80) anm=-δnm/c] 0 = 1 , 2 )

with dWTO the Kronecker δ, since the expansion (14) has the form

φfωfa, y)= , l

 λ2

 Kj = λ — Σ
r j J (x—y) (1—Kjxy)2 (x—y) n^o

From (80) and (25) the variational coefficients Ω^n are easily calculated. The
result is that Ω™n's all vanish except when n is even and h = k. In the ex-
ceptional case, Ωin.n is given by

ί -dfc^Kϊ* if d\n,

[ 0 otherwise.

Hence (79) completely agrees with our Theorem 4.

EXAMPLE 2. With the same notation as in section 3, we set:

S=C,Uy={z\ \z\<r}, U2={z; \z\>R], p^O, pt=oo, Zl=z/r, z2=R/z

where r and R are numbers satisfying 0<r<R. Thus, by (5), ^ef/iand w^U2

are identified if and only if z=—=-w. Similar reasoning as in example 1 at
K

once shows

(81) ωt(x, jO=[<P(ln x/y^ηl-^-, x, y^S\(U^U2)

where &(z)=&(z; 2πi, In εr/R) is the Weierstrassian pe-function with

(ζ(+2i)—ζ(z)). Again, it is well-known (see [4, p. 477]) that &(z)

has an expansion given by

with h=εr/R. Thus (81) and (82) give

(83) ».(x, , )= 1 - i-

On the other hand, from (71) and (11) it is seen that

(n — 1 9 ..Λ
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and

o j i = a j i = 0 , α j i = α } i = - δ j k { r / R ) > , (j, k = l, 2, •••).

Hence, by (25)", Ωι™jk'$ all vanish except when l=m and j=k. In the ex-

ceptional case, we have

ί -d(r/R)n-d if d\n (d<n),
Qdd ndd J

I 0 otherwise,
concluding that (83) agrees with our Theorem 6.
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