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ANTI-INVARIANT SUBMANIFOLDS SATISFYING A CERTAIN
CONDITION ON NORMAL CONNECTION

By IKUuO ISHIHARA

§1. Introduction.

In a previous paper [3] the present author studied anti-invariant submanifolds
of a (2m+1)-dimensional Sasakian manifold M with structure (6, & 5, 8) when
the structure vector field & is tangent to the submanifolds everywhere.

An n-dimensional Riemannian manifold M isometrically immersed in M is
said to be anti-invariant in M if ¢T,(M)CT(M)* for each point x of M, where
T.(M) and T.(M)* denote respectively the tangent and the normal spaces to
M at x. Thus, for any vector X tangent to M, ¢.X is normal to A because of
the definition given above. ¢ is necessarily of rank 2m and hence n=m--1.

The purpose of the present paper is to study n-dimensional anti-invariant
submanifolds normal to the structure vector field & of a (2m+1)-dimensional
Sasakian manifold M. If a submanifold M of M is normal to the structure
vector field & then M is anti-invariant in M as a consequence of Lemma 3.1.
So, in this paper, we mean, by an anti-invariant submanifold M of a Sasakian
manifold M, a submanifold M normal to the structure vector field & of a Sasa-
kian manifold M.

§ 2. Sasakian manifolds.

First, we would like to recall definitions and some fundamental properties
of Sasakian manifolds. Let M be a (2m--1)-dimensional differentiable manifold
of class C* and ¢, &, 1 be a tensor field of type (1,1), a vector field, a I-form
on M respectively such that

¢AY) P=—I+7RQ¢, $&=0, 7(¢X)=0, 7E)=1

for any vector field X on M, where I denotes the identity tensor of type (1, 1).
Then M is said to admit an almost contact structure (¢, &, ») and called an
almost contact manifold. The almost contact structure is said to be normal if

(2.2) N+dn®é=0,
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where N denotes the Nijenhuis tensor formed with ¢. If there is given in M
a Riemannian metric g satisfying

(2.3) &(pX, pY)=8(X, Y)—n(X)n(Y), (X)=2&X, &

for any vector fields X and Y on M, then the set (4, & 7, 2) is called a almost
contact metric structure and M an almost contact metric manifold. If

(2.4) dyp(X, Y)=8(¢X, Y)

for any vector fields X and Y on M, then the almost contact metric structure
is called a contact metric structure. If the structure is moreover normal, then
the contact metric structure is called a Sasakian structure and M a Sasakian
manifold. As is well known, in a Sasakian manifold M with structure ($,6,9,8
the equations

(2.5) V=¢X, (Uxp)V=—2(X, V)+(Y)X

are established for any vector fields X and Y on M, where ¥ denotes the opera-
tor of covariant differentiation with respect to g.

A plane section ¢ in the tangent space T.(M) of a Sasakian manifold M at
x is called a ¢-section if it is spanned by vectors X and ¢X, where X is as-
sumed to be orthogonal to & The sectional curvature K(¢) with respect to a
¢-section o is called a ¢-sectional curvature. When the ¢-sectional curvature
K(o) is independent of the ¢-section o at each point of M, as is well known,
the function K(o) defined in M is necessarily a constant ¢. A Sasakian manifold
M is called a Sasakian space form and denoted by M(c) if it has constant -
sectional curvature ¢ (see [4]). The curvature tensor K of a Sasakian space
form M(c) is given by

K(X, V)Z= (e 1@V, DX~EX, D))= =DV (DX

— (X 2D)Y+&(Y, Z)n(X)E—8(X, Z)7n(Y )¢
—8(9Y, 2)pX+8(pX, Z)§pY +28(¢X, Y)$Z).
ExaMPLE 1. Let S***! be a (2n-+1)-dimensional unit sphere, i.e.,
Sttl={zeC"*': |z|=1},

where C"™ is a complex (n-+1)-space. For any point zeS5***!, we put &=Jz, J
being the complex structure of C**!. Considering the orthogonal projection

T TZ(Cn+l> > T2(52n+1) s

at each point z in S***! and putting ¢=m-J/, we have a Sasakian structure
(@, & 5, g on S?**!, where 5 is a 1-form dual to & and g the standard metric
tensor field on S***!. Obviously, S*"*' is of constant ¢-sectional curvature 1.
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ExaMPLE 2. Let E?**! be a Euclidean space with cartesian coordinates

(xt) «e ) x™ %, -+, ™ 2). Then a Sasakian structure on FE***! is defined by
¢, & 1 and g such that
E:(O’ Tt 0’ 2)’ 27]:(_3}1: T ,«yn, 0: Ty O; 1)7
1 1
J— 1y A
70ty 0 77
]' N
(gan)= 0 70w 0 ,
1 1
YY) L
77 0 7
0 o 0
(p2)—| —0, 0 0
0 0

Then E***! with such a structure (¢, &, », g) is of constant ¢-sectional curvature
—3 and denoted by E***1(—3).

§ 3. Fundamental properties.

Let M®™*!' be a Sasakian manifold of dimension 2m-+1 with structure
(¢, & 71, 8). An n-dimensional Riemannian manifold M isometrically immerssed
in M*™+1 is said to be anti-invariant in M®*™*' if ¢T (M)CT(M)* for each point
x of M. Throughout the paper, we now restrict ourselves only to anti-invariant
submanifolds of a Sasakian manifold such that the structure vector field & of
the ambient manifold is normal to the submanifolds.

Let g be the induced metric tensor field of M. We denote by V (resp. V)
the operator of covariant differentiation with respect to g (resp. g). Then the
Gauss and Weingarten formulas are given respectively by

VxY=VyY+BX, Y), TyN=—Ay(X)+DxN

for any vector fields X, Y tangent to M and any vector field N normal to M,
where D is the operator of covariant differentiation with respect to the liner
connection induced in the normal bundle. Both A and B are called the second
fundamental form of M. They satisfy 2(B(X, Y), N)=g(Axy(X), Y).

First of all, we prove

LEMMA 3.1. ([2,5]) Let M be an n-dimensiwonal submanifold of a Sasakian
manifold M*™*', If the structure vector field & of the ambient manifold 1s normal
to M everywhere, then M is an anti-invariant submanifold of M*™* and n<m.
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Proof. Since the structure vector field & is normal to M everywhere, we
have

2(@X, Y)=8(VxE, V)=g(—AdX), Y)+E(DxE, ¥)=—g(A«(X), Y)

for any vector fields X and Y tangent to M. Since Ag is symmetric and ¢ is
skew-symmetric, we have A,=0 and ¢X is normal to M. Thus M is anti-
invariant and n=<m.

Throughout the paper, by an anti-invariant submanifold M of a Sasakian
manifold M?™+!, we mean a submanifold M such that the structure vector field
& of the ambient manifold is normal to M.

We choose a local field of orthonormal frames e, -+, €, €ps1, ***, €m ; Cor=
& en=dey, -, en=0@tn; s =0@Cns1, "+, emr=0@ey in M?*™+! in such a way that
e,, -, e, are along M tangent to M. Taking such a field of frames of M2™+,
we denote the dual coframes by o', -+, @®; 0™, -, 0™; "=y, &, -+, ®™;
o™ . @™, Unless otherwise stated, let the range of indices be as follows:

A, B, C, D=1, -+, m, 0%, 1%, -« 'm*,

1, 7, k, 1,8, t=1, -, n,

a, b, ¢, d=n+1, -+, m, 0%, 1%, --- | m*,
b, @, r=n+1, -, m, 1%, - m*,

A p, v=n+1, -, m, 0%, (n4+1)%, -, m*,
x, ¥, z=n+1, -+, m, (n4+1)% -, m*,

a, B, r=n+1, ---m,

and use the so-called summation convention for these systems of indices. Then
the structure equations of the Riemannian manifold M?™*! are given by

3.1 do*=—wiNw?, wit+wi=0,
(3.2) dot=—wi NS+ D%, @éz—;—]ﬁ%wwc/\wb,

where K4cp are components of the curvature tensor of M?™+! with respect to
{e4} and w3 satisfy

w}:w}:, (,05*:(1){‘, (07':(1)6:, @ -—w3*;
(3.3) wi=o0f, oi=of, =i, 0 =—of,
wi=wi, wi=of.
Thus we have along M
(34) w*=0,

which implies 0=dw®=—w{ Aw" along M. Thus, by Cartan’s lemma, we obtain
along M
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(3.5 w¢=h%e’, hG=h%,

which imply the following structure equations of the submanifold M;

(3.6) dot=—w'Ae’, w+o/=0,

3.7 do'=—w) Awt+ 27, .Qj:%l?}klwk/\wl,
(3.8 R}kL:K;‘kL‘F; (hglzhﬁ_ ?Lh?k) »

(3.9) dop=—wt Nwi+ 2%, Qg:%R%“wk/\wl ,
(3.10) R%HZK%H“"; (& hby—hghly),

where R!,, are components of the curvature tensor of M with respect to {e,}
and R%;, components of the curvature tensor of the normal bundle with respect
to {e;} and {e,}. The equations (3.8) and (3.10) are called respectively the equa-
tions of Gauss and those of Ricci for the submanifold M. The forms (w}) define
the Riemannian connection of M and the forms (w%) define the connection in-
duced in the normal bundle of M.

From (3.3), (3.4) and (3.5) we have along M

(3.11) Riv=h}i=ht,,  h5=0,

where we donote A%, simply by hl,.

The second fundamental form Aj,w'w’e, is sometimes denoted by its com-
ponents Af,. If the second fundamental form vanishes identically, i.e., 47;=0
for all indices, then the submanifold is as usual said to be fotally geodesic. If

h{, have the form h?j:—i—(g h$)0s, for a fixed index a, then the submanifold

is said to be umbilical with respect to the normal vector e,. If the submanifold
M is umbical with respect to all e¢,, then M is said to be totally umbilical. The

1 .
vector field 7(2}2 h%,eq.) normal to M is called the mean curvature vector of M.

The submanifold M is said to be munimal if its mean curvature vector vanishes
identically, i.e., ;‘, h$¢,=0 for all a. We define the covariant derivative i, of
hy, by

(3.12) h ot =dh,— hiot— hiwh-+hl o .

If h%,=0 for all indices, the second fundamental form of M is said to be
parallel. If the mean curvature vector of M is parallel with respect to the con-

nection in the normal bundle, then the mean curvature vector of M is said to
be parallel. From (3.3), (3.4), (3.11) and (3.12), we obtain

(3.13) Y y=—ht, .
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Thus, we have

LEMMA 3.2. ([6]_) Let M be an n-dimensional anti-invariant submanifold of a
Sasakian manifold M***. If the second fundamental form of M is parallel, then
M 1s totally geodesic.

Using (3.13), we obtain
(3.14) 2 hl=—2 hie.

Thus, we have

LEMMA 3.3. ([7]_) Let M be an n-dimensional anti-invariant submanifold of a
Sasakian manifold M****. If the mean curvature vector of M 1s parallel, then M
1s nunumal.

Because of Lemmas 3.2 and 3.3, the conditions that the second fundamental
form is parallel and that the mean curvature vector is parallel are not interest-
ing for anti-invariant submanifolds, when m=n. Therefore we shall now in-
troduce some new notions as follows. On an anti-invariant submanifold M of
a Sasakian manifold AM®™*!, if h?,,=0 for all indices, then we say that the
second fundamental form of M is n-parallel. 1f Ek h% =0 for all indices 1 and

p, then the mean curvature vector said to be y-parallel.
We now define the Laplacian AhY, of hY, by

(3.15) Ah?f:; hlzljkk s
where we have defined Ay;,, by
(316) h?jklwIZdllfjk—h{’jkwé——h;‘lkwé—- hfﬂ(ui—l-h?,kw% .

We shall establish a formula containing the Laplacian of 4%,. In the sequel
the second fundamental form of M is assumed to satisfy the equation of Codazzi
type, i.e.,

(3.17) h%e—hi,=0.

Then, from (3.16), we have

(3.18) him—hln=hE Ry +hE Ry — 1O R,
On the other hand, (3.15) and (3.17) imply

(3.19) Ah?j:Zk) hi‘,-kk=%3 hiasn -

From (3.17), (3.18) and (3.19), we obtain

(3.20) Ah;‘,:Zk) (R psthE R+ hE Ry ja—h% Rise) .
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Therefore for any submanifold M satisfying the equation (3.17) of Codazzi type
we have the formula

(3.21) > h?jAh?j:a z,zj),k(h‘:j GryThhe R,

a7
P
+hEhE R je—hiih% Rize) .

If the ambient manifold A2m+! is_of constant ¢-sectional curvature ¢, then
the Riemannian curvature tensor of M?*™*! has the form

1 1

(3.22) K§ep= T (¢+3)(04c08p—04p0pc)+ T (c—1)(180cl4p
- 7737]D5Ac+ 7]A7]z)530— WA770530+ ¢AC¢BD
—@apPrct+2Padcp)

and the second fundamental form of M satisfies the equation (3.17) of Codazzi
type.

§4. Normal connection.

In this section we study the normal connection of an n-dimensional anti-
invariant submanifold M of a (2m+1)-dimensional Sasakian space form M2™+Y(c)
when the structure vector field £ is normal to M. The curvature tensor of the
normal connection of M is assumed to have the form

4.1) Riyi=—(0ar0s1+— 00103 4°) -

LEMMA 4.1. Let M be an n-dimensional anti-invariant submanifold of a Sa-
sakian manifold M*™*'. If the curvature tensor of the normal connnection of M
1s of the form (4.1), then

42) =3 (W eh—hiuhsy).

Proof. (3.2) and (3.3) imply
4.3) Kin=Ki+(0:40,—040;1) .
Moreover, from (3.8), (3.10) and (3.11), we obtain
(4.4 Ryu=Kju+Z (hichji—hihf)
=K§~u+; (hikh{z—hhhh)-i-§(h‘ikh?’z—hﬁ e
:R{Ikl—f—(ﬁikéjl—éuﬁjk)—k; (R uh5—h% RS,

which proves Lemma 4.1.
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By (3.22) we obtain
(4-5) K}MZO, kaz—_—oy Kﬁkzzoy

1 <
—(c—=1)(0,40,,—04:0;4)

Kiip= i

If the curvature tensor of the normal connection of M is of the form (4.1), then
(3.10) and (4.5) imply

(4.6) Zt) (hixhiy—hfhi)=0, Z;) (hfhY i — iy ,)=0,
1 JO
4.7 ; (hikhfz—hfth{k):-Z(C‘*‘s)@ikﬁﬂ—“ouojk) .

PROPOSITION 4.2. Let A_/I be an n-dimensional (n>1) anti-invariant submanifold
of a Sasakian space form M*™*'(c). If the curvature tensor of the normal con-
nection of M has the form (4.1) and M s umbilical with respect to some e, then
c=-—3.

Proof. 1f M is umbilical with respect to e, then the second fundamental

form A, is of the form hf]:%(g h4 )0, Thus we have
E(hikhgl_ L hi)=0.

From this and (4.7) we find ¢=-3.
For each fixed index a, we consider a symmetric (n, n)-matrix A,=(h¥)
composed of components of the second fundamental form.

LEMMA 4.3. Let M be an n-dimensional anti-invariant submanifold of a Sasa-
kwan space form M*™¥(c) (c#—3). If the curvature tensor of the normal connec-
twon of M 1s of the form (4.1), then M 1s umbilical with respect to all e,.

Proof. From (4.6) we obtain A,A,=A,A,; and A, A,=A,A, for all x and y.
Therefore we can choose a local field of orthonormal frames with respect to
which A, and all A, are diagonal, i.e.,

hi;, 0 i 0
(4.8) A= . , A= - .
0 h}zn 0 h—;n

Putting 1=/ and k=I[ in the first equation of (4.6) and using (3.11) and (4.8),
we find

(4.9 (hfi—h$)hi=0.

On the other hand, putting :=k=1 and ;=I[#1 in (4.7) and using (3.11) and
(4.8), we have
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1
(4.10) (h}l—/zﬁj)h}Jz—Z(c—l—S).

Since ¢#—3, (4.10) implies that 4};#0 (;=2, ---, n). From this fact and (4.9)
we find that hfi=h%; for all x. Thus M is umbilical with respect to all e,.
This proves Lemma 4.3.

LEMMA 4.4. Let M be an n-dimensional anti-invariant submanifold of a Sasa-
kian space from M*™*(c) (c#—3). If the curvature tensor of the normal connec-
tion of M 1s of the form (4.1), then

1 N N
(4.11) R}uzn—zle (Tr Az)z(azkajl—oilajk) .

Proof. Lemma 4.3 implies hfj:ni(’l‘r A.)d,, for all x. Therefore (4.2) im-
plies (4.11).
In the Lemma 4.4, if n=3, then > (Tr A,)* is constant. Therefore we have

ProprosITION 4.5 Let_M be an n-dimensional (n=3) anti-invariant submanifold
of a Sasakian space form M?*™*X(c) (c#—3). If the curvature tensor of the normal
connection of M has the form (4.1), then M 1s of constant curvature.

If M is minimal, then Tr A,=0 for all x. Thus Lemma 4.4 implies im-
mediately

PROPOSITION 4.6. Let M be_an n-dimensional anti-invariant munvmal submani-
fold of a Sasakian space form M*™*(c) (c#—3). If the curvature tensor of the
normal connection of M has the form (4.1), then M is flat.

§5. 7-parallel mean curvature vector.
Using the results obtain in the previous section, we have

THEOREM 1. Let M be an n-dimensional (n=3) anti-invariant submanifold of
a Sasakwan space form M*™'(c) (c#—3) with y-parallel mean curvature veclor.
If the curvature tensor of the normal connection of M 1s of the form (4.1), then
there 15 in M*™+(c) a totally geodesic and invariant submamifold M***'(c) of
dimension 2n+1 wm such a way that M s immersed i M*"*(c) as a flat anti-
wmvaniant minimal submanifold.

Proof. First of all, > (Tr A,)? is constant because the mean curvature
a
vector is 7-parallel. Since n=3, 3 (Tr A,)? is constant. On the other hand, from
x

(3.8), (3.22) and (4.11), we have
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n—1

(5.1) "

g(’l‘r AI)ZZ%n(n—l)(c—FS)—l—ZG‘,(Tr Ag)t— ZL) (hg)?.

a,,J

Therefore the square of the length of the second fundamental form of M is
constant, i.e, 2 (hy)? is constant. From this we have
a,t,]

4 3 (hy)?=0.

) 1
5.2) (Rt + 3 htdhty=-
a1, a, )

@a,2, 7, k
By assumption, (3.11) and (3.21), we have
(5.3 h?j/jhfj: > (hfj gtRijk_"h?jhgz Iszk)

a1, a7,k

+ ; (hfz:hfj“(hfj)z)-

1,7, k

Moreover substituting (4.11) into (5.3) and using (5.2), we obtain

(5.4) 123 (hp)P=— !

a k n?

; (Tr A,)? GEH (n(h&)*—hih)
- z,;k (REhl—(hE)?) .
From Lemma 4.3 and (3.13), we have

G5 T, (== D (Tr Ay

P10,k

;k (n(ht)*—hishi)— 2 hEhjs

1,7, 1,9, k

1

nz

_Zk) (Tr Akv>2 .

%,“ (Tr Ax)zg( KZ] (hk—hk)*+n Z% (h#)?)

Since ¢#—3 by assumption, Proposition 4.2 implies ; (ht;—h%)?>0. Thus
1<y

(6.5) implies Tr A,=0, Tr A,.=0 and h?;,=0, that is, the second fundamental
form is y-parallel. Lemma 4.4, Tr A,=0, Tr A,»=0 and (3.11) mean that M is
flat and minimal. On the other hand, by Lemma 4.3, Tr A,=0 implies A,=0
for all x. From (3.5) and A,=0, we obtain wf=0 and hence w%=0 along M,
by (3.3). Moreover, (3.3) and (3.4) imply wi=0 along M. From the arguments
above, taking account of a fundamental theorem in the theory of submanifolds,
we see that M is an anti-invariant submanifold immersed in some totally
geodesic and (2n+1)-dimensional submanifold M?"+'(c) of M®™*'(¢) (see §6 in
[3]). And the submanifold M?"*(¢) is invariant (see § 6 in [3]). Thus Theorem
1 is proved.

In Theorem 1, the case where n=2, i.e., where M is 2-dimensional, is ex-
cluded. However, the same conclusions will be established even if n=2, provided
that M is compact. To establish this fact, we now prove
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THEOREM 2. Let M be an n-dimensional anti-invariant submanifold of a
Sasakian space form M*™*'(c) (c#—3) with n-parallel mean curvature vector and
assumed to be compact. If the curvature tensor of the novmal connection of M s
of the form (4.1), then M 1s a flat anti-nvariant mnvmal submanifold of a certain
(2n+1)-dimensional totally geodesic submanifold M?*™+'(c) of M?™*'(c).

Proof. Since M is compact, we have

[, .2, (rra=={

M a,yk
L J I

2 hydhixl,

a J

where *1 denotes the volume element of M (see (5.2)). Using this formula, we
can prove Theorem 2 by a same way as taken to prove Theorem 1.
We shall now consider the case where ¢c=—3.

PROPOSITION 5.1. Let M be an n-dimensional (n=3) anti-invariant submani-
fold of a Sasakian space form M*™+(—3) with y-parallel mean curvature vector
and the curvature tensor of the normal connection of M be of the form (4.1). If
M 1s umbilical with respect to all e, then M 1s a totally umbilical anti-invariant
submantfold.

Proof. From (3.10), (3.22) and (4.1), we obtain
Zt: (h?k h?t_h(hh?k)zo .

Therefore we can choose a local field of orthonormal frames with respect to
which all A, are simultaneously diagonal, i.e.,

5.0
Aa:( .‘ )
0 g,

Moreover, (3.11) implies that A!,=0 unless 1=j;=%k. On the other hand, from
the assumption and (4.2) we have the equation (4.11). Therefore the equation
(5.5) holds and hence we have

n

—1
PN k)2 2
(56) L3, (== b T—3 (Tr A +1).
Therefore we have h%,=0, that is, A,.=0 for all .. Thus M is totally um-
bilical.

Remark. In Proposition 5.1, the case where n=2, that is, where M is 2-
dimensional, is excluded. However, the same conclusions are established even
if n=2, provided that M is compact.

ExXAMPLE 5.2. Let J be the almost complex structure of the complex (n-+1)-
space C"*! given by
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Let S***! be a (2n-+1)-dimensional unit sphere in C"™* with standard Sasakian
structure (@, &, », 8). Let S* be a circle of radius 1. Let us consider

Tr=8'X -+ XS'.

Then we construct an isometric minimal immersion of 7™ into S?**! which is
anti-invariant in the following way. Let X: T™—S?"*! be a minimal immersion
represented by

(cos u!, sin u!, ---, cos u™, sin u®, cos u™*!, sin u™*t),

«/+1

where we have put u*'=—(u'+ --- +u"). We may regard X as a position
vector of S?**! in C"*!. The structure vector field & of S?**!, restricted to
T™, is then given by

1
S=IX= vn+1

Putting X;=0X/ou*, we have

———(—sin u?, cos u!, ---, —sin u”, cos u™®, —sin u™*!, cos u™*l).

X,= 0, —sin u*, cosu®, 0, -+, 0, sin u™*!, —cos u™*?),
=7 )

where i=1, -+, n. Thus X,, 1=1, -+, n, are linearly independent and 7(X,)=0
for 1=1, -+, n. Therefore the immersion X is anti-invariant.

The integral curves of the structure vector field & are great circles S! in
S?**1 which are the fibres of the standard fibration =: S***'-CP", where CP"
is a complex projective space of complex dimension n and of constant holo-
morphic sectional curvature 4. Now we consider the following diagram:

Tn X 527L+1

T

CP™.
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We easily see that m|xrny is one to one. Consequently 7" is imbedded in
CP™ by moX.
By Theorems 1, 2 and Example 5.2, we have

THEOREM 3. Let M be an n-dimensional compact orientable anti-invariant
submanifold of a Sasakian space form S*™*' with y-parallel mean curvature vector.
If the curvature tensor of the mormal connection of M 1s of the form (4.1), then
M is a torus S*X .-+ XS in some S***! in SPmH,

(1]
[2]
£3]
[4]
[5]
(6]
£7]
L8]
[9]
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