
I. ISHIHARA
KODAI MATH. J.
2 (1979), 371—383

ANTI-INVARIANT SUBMANIFOLDS SATISFYING A CERTAIN
CONDITION ON NORMAL CONNECTION

BY IKUO ISHIHARA

§ 1. Introduction.

In a previous paper [3] the present author studied anti-invariant submanifolds
of a (2m+l)-dimensional Sasakian manifold M with structure (φ, ξ, η, g) when
the structure vector field ξ is tangent to the submanifolds everywhere.

An n-dimensional Riemannian manifold M isometrically immersed in M is
said to be anti-invariant in M if φTx(M)dTX(M)L for each point x of M, where
TX(M) and TX(M)L denote respectively the tangent and the normal spaces to
M at x. Thus, for any vector X tangent to M, φX is normal to M because of
the definition given above, φ is necessarily of rank 2m and hence n^m-\-l.

The purpose of the present paper is to study n-dimensional anti-invariant
submanifolds normal to the structure vector field ξ of a (2m+l)-dimensional
Sasakian manifold M. If a submanifold M of M is normal to the structure
vector field ξ, then M is anti-invariant in M as a consequence of Lemma 3.1.
So, in this paper, we mean, by an anti-invariant submanifold M of a Sasakian
manifold M, a submanifold M normal to the structure vector field ζ of a Sasa-
kian manifold M.

§ 2. Sasakian manifolds.

First, we would like to recall definitions and some fundamental properties
of Sasakian manifolds. Let M be a (2m+l)-dimensional differentiate manifold
of class C°° and φ, ζ, η be a tensor field of type (1,1), a vector field, a 1-form
on M respectively such that

(2.1) 0 β = - / + ? ® £ , φξ=Q, y(φX)=0, ?(f)=l

for any vector field X on M, where I denotes the identity tensor of type (1,1).
Then M is said to admit an almost contact structure (φ, ξ, rj) and called an
almost contact manifold. The almost contact structure is said to be normal if

(2.2) N+dV®ξ=Q,
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wτhere N denotes the Nijenhuis tensor formed with φ. If there is given in M
a Riemannian metric g satisfying

(2.3) g{φX, φY)=g{X, Y)-V{X)V(Y), η{X)=g{X, ξ)

for any vector fields X and Y on M, then the set (φ, ξ, η, g) is called a almost
contact metric structure and M an almost contact metric manifold. If

(2.4) dη(X, Y)=g(φX, Y)

for any vector fields X and Y on M, then the almost contact metric structure
is called a contact metric structure. If the structure is moreover normal, then
the contact metric structure is called a Sasakian structure and M a Sasakian
manifold. As is well known, in a Sasakian manifold M with structure (φ,ζ, rj,g)
the equations

(2.5) Vxξ=φX, Cϊxφ)Y=-g(X, Y)+τ]{Y)X

are established for any vector fields X and Y on M, where 7 denotes the opera-
tor of covariant differentiation with respect to g.

A plane section σ in the tangent space TX(M) of a Sasakian manifold M at
x is called a φ-sechon if it is spanned by vectors X and 0Z, where X is as-
sumed to be orthogonal to ξ. The sectional curvature K(σ) with respect to a
^-section σ is called a φ-sectional curvature. When the ^-sectional curvature
/f(σ) is independent of the ̂ -section σ at each point of M, as is well known,
the function K(σ) defined in M is necessarily a constant c. A Sasakian manifold
M is called a Sasakian space form and denoted by M(c) if it has constant φ-
sectional curvature c (see [4]). The curvature tensor A" of a Sasakian space
form M(c) is given by

, Y)ψz).

EXAMPLE 1. Let S2n+1 be a (2n+l)-dimensional unit sphere, i.e.,

S2n+1={zeΞCn+1:

where Cn+1 is a complex (n + l)-space. For any point z<^S2n+1, we put ξ=Jz, J
being the complex structure of Cn+1. Considering the orthogonal projection

π:Tz(Cn+1)—>T2(S2n+1),

at each point z in S2n+ί and putting φ—π°J, we have a Sasakian structure
(φ, ξ, Ύ], g) on S2n+1, where η is a 1-form dual to ξ and g the standard metric
tensor field on S2n+1. Obviously, S2n+1 is of constant ^-sectional curvature 1.
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EXAMPLE 2. Let E2n+1 be a Euclidean space with cartesian coordinates
(x1, •••, xn, y\ •••, yn, z). Then a Sasakian structure on E2n+1 is defined by
φ, ξ, η and g such that

£=(0, - , 0, 2), , - y n , 0, ..., 0, 1),

o τδx

—rr

(Φi)-

0

0 - T

o

0 4

0

-δ) 0 0

0 y3 0

Then £ 2 n + 1 with such a structure (0, £, η, g) is of constant ^-sectional curvature
- 3 and denoted by £ 2 n + 1(-3).

§ 3. Fundamental properties.

Let M2m+1 be a Sasakian manifold of dimension 2m+l with structure
(φ, ξ, 7], g). An n-dimensional Riemannian manifold M isometrically immerssed
in M2m+1 is said to be anti-invariant in M2 m + 1 if φTx(M)dTX(M)L for each point
x of M. Throughout the paper, we now restrict ourselves only to anti-invariant
submanifolds of a Sasakian manifold such that the structure vector field ξ of
the ambient manifold is normal to the submanifolds.

Let g be the induced metric tensor field of M. We denote by ϊ (resp. 7)
the operator of covariant differentiation with respect to g (resp. g). Then the
Gauss and Weingarten formulas are given respectively by

1XY=ΊXY+B{X, Y), ΪXN=-ΛN(X)+DXN

for any vector fields X, Y tangent to M and any vector field N normal to M,
where D is the operator of covariant differentiation with respect to the liner
connection induced in the normal bundle. Both A and B are called the second
fundamental form of M. They satisfy g(B(X, Y\ N)=g(AN(X), Y).

First of all, we prove

LEMMA 3.1. ([2,5]) Let M be an n-dimensional submanifold of a Sasakian
manifold M2m+1. If the structure vector field ξ of the ambient manifold is normal
to M everywhere, then M is an anti-invariant submanifold of M2m+1 and
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Proof. Since the structure vector field ξ is normal to M everywhere, we
have

g(φX, Y)=g(lxξ, Y)=g(-A£X), Y)+g(Dxζ, Y)=-g(Aξ(X), Y)

for any vector fields X and Y tangent to M. Since Aξ is symmetric and φ is
skew-symmetric, we have Aξ=0 and φX is normal to M. Thus M is anti-
invariant and wrgm.

Throughout the paper, by an anti-invariant submanifold M of a Sasakian
manifold M2m+1, we mean a submanifold M such that the structure vector field
ξ of the ambient manifold is normal to M.

We choose a local field of orthonormal frames elf •••, en;en+1, •••, em eo*~
ξ, e1*=φe1, ••• , en*=φen eu+Ώ*=φen+1, •••, em*=φem in M2m+1 in such a way t h a t
#!, •••, en are along M t a n g e n t to M. T a k i n g such a field of frames of M2m+1,
w e denote the dual coframes by ω\ •••, ω71 ω n + 1 , •••, ωm;ω°*=η, ωι\ •••, ω71*;
ω ( n + 1 ) * , •••, ωm*. Unless otherwise stated, let the range of indices be as fol lows:

A, B, C, D^l, »., m, 0*, 1*, •••, m * ,

z, j , k, I, s, t = l, -" , n ,

α, 6, c, d — n+1, •••, m, 0*, 1*, •••, m * ,

jί?, g, r=n+l, •" , m, 1*, •••, m * ,

••, m, 0*,

x, j , z=n + l, — , m,

and use the so-called summation convention for these systems of indices. Then
the structure equations of the Riemannian manifold M2m+1 are given by

(3.1) dωΛ=-ωiΛωB,

(3.2) dωi=-ωέΛω<h+Φi, Φί=~KiCDωc AωD,

where KBCD are components of the curvature tensor of M2m+1 with respect to
{eA} and ωi satisfy

(3.3)

Thus

(3.4)

we have

ω«β=ωf,

ωa=ωί*,

along M

ω)

ωf

= 0)1* ,

=ωf.

ωa

ωa =

- 0 ,

which implies 0=ύ(ωα=-(yfΛω ι along M. Thus, by Cartan's lemma, we obtain
along M
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(3.5) ωΐ = hΐjω>, hfj=hji9

which imply the following structure equations of the submanifold M;

(3.6) dωι = -

(3.7) dωιj=-ω'kΛωkj + Ωι

Jf Ω) = ~R)kιω
k/\ωι,

(3.8) R)ki = K

(3.9) dωl=-ωa

c/\ωl+Ωl, Ωa

b = ^-Ra

bkιω
k Λωι,

(3.10) Riki=K%

where Rι

Jkι are components of the curvature tensor of M with respect to {eτ}
and R%kι components of the curvature tensor of the normal bundle with respect
to {βi} and {ea}. The equations (3.8) and (3.10) are called respectively the equa-
tions of Gauss and those of Ricci for the submanifold M. The forms (ω)) define
the Riemannian connection of M and the forms (ωa

b) define the connection in-
duced in the normal bundle of M.

From (3.3), (3.4) and (3.5) we have along M

(3.11) λJ* = Aίi = Λί,, hΐj=O,

where we donote h% simply by h)k.
The second fundamental form hΐjωιωJea is sometimes denoted by its com-

ponents hfj. If the second fundamental form vanishes identically, i. e., h?j=O
for all indices, then the submanifold is as usual said to be totally geodesic. If

hfj have the form hfj=— ( Σ htk)δij for a fixed index a, then the submanifold

is said to be umbilical with respect to the normal vector ea. If the submanifold
M is umbical with respect to all ea, then M is said to be totally umbilical. The

vector field — ( Σ hϊkea) normal to M is called the mean curvature vector of M.
n k

The submanifold M is said to be minimal if its mean curvature vector vanishes

identically, i.e., Σ ha

kk=0 for all a. We define the covariant derivative hfJk of

K3 by

(3.12) hfJkω
k = dhΐJ-hΐJωl-h%ωιjJ

Γh
b

ιJω^.

If h?jk=0 for all indices, the second fundamental form of M is said to be
parallel. If the mean curvature vector of M is parallel with respect to the con-
nection in the normal bundle, then the mean curvature vector of M is said to
be parallel. From (3.3), (3.4), (3.11) and (3.12), we obtain

(3.13) hTjk = -h^.
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Thus, we have

LEMMA 3.2. ([6]) Let M be an n-dimensional anti-invariant submanifold of a
Sasakian manifold M2n+1. If the second fundamental form of M is parallel, then
M is totally geodesic.

Using (3.13), we obtain

(3.14) Σ Λ & » = - Σ Λ J * .

Thus, we have

LEMMA 3.3. ([7]) Let M be an n-dimenswnal anti-invariant submanifold of a
Sasakian manifold M2n+1. If the mean curvature vector of M is parallel, then M
is minimal.

Because of Lemmas 3.2 and 3.3, the conditions that the second fundamental
form is parallel and that the mean curvature vector is parallel are not interest-
ing for anti-invariant submanifolds, when m=n. Therefore we shall now in-
troduce some new notions as follows. On an anti-invariant submanifold M of
a Sasakian manifold M2m+1, if hfjk=O for all indices, then we say that the
second fundamental form of M is rj-parallel. If Σ hp

kkι—0 for all indices i and
p, then the mean curvature vector said to be -η-parallel.

We now define the Laplacian Ah?j of ht3 by

(3.15) Ah^Έhfjkkf

where we have defined ha

ιjkι by

(3.16) hfjklw
l^dh?Jk-h?jM-h?lkw

lj-hfjM + hb

ljkwt.

We shall establish a formula containing the Laplacian of hfj. In the sequel
the second fundamental form of M is assumed to satisfy the equation of Codazzi
type, i. e.,

(3.17) λίy*-λ<V=0.

Then, from (3.16), we have

(3.18) hΐjkι-h?jkl = hΐjRlkl + httRUι-h*JRgkl.

On the other hand, (3.15) and (3.17) imply

(3.19) Ahfj=WJkk=j:ha

ktJk.
k k

From (3.17), (3.18) and (3.19), we obtain

(3.20) ΔA,βy=Σ (hUrj+KtRίjk+h^Rij.-hURίj,).
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Therefore for any submanifold M satisfying the equation (3.17) of Codazzi type
we have the formula

(3.21) Σ hfjAhfj= Σ WjhΐkιJ+h?jhα

ktR'Jk
α, ι,j α, ι,3, k

If the ambient manifold M 2 m + 1 is of constant ^-sectional curvature c, then
the Riemannian curvature tensor of M2m+1 has the form

(3.22) KicD=j(c+3Xδδδδ)+

and the second fundamental form of M satisfies the equation (3.17) of Codazzi
type.

§4. Normal connection.

In this section we study the normal connection of an ?2-dimensional anti-
invariant submanifold M of a (2m+l)-dimensional Sasakian space form M2m+\c)
when the structure vector field ξ is normal to M. The curvature tensor of the
normal connection of M is assumed to have the form

LEMMA 4.1. Let M be an n-dimensional anh-invanant submanifold of a Sa-
sakian manifold M2m+1. If the curvature tensor of the normal connnection of M
is of the form (4.1), then

\fχ.Δ) Ivjfil 2LJ \ft I kft jl ft il'^ jk)
X

Proof. (3.2) and (3.3) imply

(A fX\ \ζ\ , , — Tζi *, . _l_ (Ά . Ά — Ά . ^ λ
\ Ί *-v Ji-j«i •ι*-j*kl I \uιkujl viiujkj .

Moreover, from (3.8), (3.10) and (3.11), we obtain

(4.4) Rιm=Kjkι+Σi (hfkh%-hUfk)

(.h*thh'iι-h*ιh'jk),

which proves Lemma 4.1.
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By (3.22) we obtain

(4.5) /$«=<), KUι=0, Hkl=0,

If the curvature tensor of the normal connection of M is of the form (4.1), then
(3.10) and (4.5) imply

(4.6) Σ(Λ?AΛh-A5Λί*)=0,
ί

(4.7) Έ(hlkhlι-hlJιik)==-j

PROPOSITION 4.2. Let M be an n-dimensional (n>l) anti-invariant submanifold
of a Sasakian space form M2m+\c). If the curvature tensor of the normal con-
nection of M has the form (4.1) and M is umbilical with respect to some et*> then

Proof. If M is umbilical with respect to et*, then the second fundamental

form h[j is of the form h\3——(Σ ht

kk)διj. Thus we have
n k

Σ(Af*AJι-AίιAϊ*)=O.

From this and (4.7) we find c =—3.
For each fixed index a, we consider a symmetric (n, n)-matrix Aa=(hfj)

composed of components of the second fundamental form.

LEMMA 4.3. Let M be an n-dimenswnal anti-invariant submanifold of a Sasa-
kian space form M2m+1(c) (cΦ—3). If the curvature tensor of the normal connec-
tion of M is of the form (4.1), then M is umbilical with respect to all ex.

Proof. From (4.6) we obtain AxAy—AyAx and AXA1=A1AX for all x and y.
Therefore we can choose a local field of orthonormal frames with respect to
which Ax and all Ax are diagonal, i. e.,

/ Ali 0 \ / hflm 0
(4.8) AM ' . , AM

\ 0 h\ιn I \ 0 h*n

Putting ι=l and k=l in the first equation of (4.6) and using (3.11) and (4.8),
we find

(4.9) (AJi-AίOΛί^O.

On the other hand, putting ι—k — \ and j=lΦl in (4.7) and using (3.11) and
(4.8), we have
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(4.10) (Λ}i-λJ,)λJ, = - ^ - ( c + 3 ) .

Since cΦ—3, (4.10) implies that h)5φQ (j=2, •••, n). From this fact and (4.9)
we find that hu—hx

3j for all x. Thus M is umbilical with respect to all ex.
This proves Lemma 4.3.

LEMMA 4.4. Let M be an n-dimensional anti-in variant submamfold of a Sasa-
kian space from M2m+1(c) (cΦ—2>). If the curvature tensor of the normal connec-
tion of M is of the form (4.1), then

(4.11) Rhi = \n{Tr A^δ^t-δuδπ).
n %

Proof. Lemma 4.3 implies hfj——(Tr Ax)δτj for all x. Therefore (4.2) im-

plies (4.11).

In the Lemma 4.4, if n^3, then Σ (Tr Ax)
2 is constant. Therefore we have

PROPOSITION 4.5 Let M be an n-dimensional (n^3) anti-invariant submamfold
of a Sasakian space form M2m+\c) (cΦ—3). If the curvature tensor of the normal
connection of M has the form (4.1), then M is of constant curvature.

If M i s minimal, then Ύτ Ax—§ for all x. Thus Lemma 4.4 implies im-
mediately

PROPOSITION 4.6. Let M be an n-dimensional anti-invariant minimal submanί-
fold of a Sasakian space form AI2m+1(c) (cφ~ 3). // the curvature tensor of the
normal connection of M has the form (4.1), then M is flat.

§5. ^-parallel mean curvature vector.

Using the results obtain in the previous section, we have

THEOREM 1. Let M be an n-dimensional (n^3) anti-invariant submamfold of
a Sasakian space form M2m+1(c) (cΦ—3) with η-parallel mean curvature vector.
If the curvature tensor of the normal connection of M is of the form (4.1), then
there is in M2m+\c) a totally geodesic and invariant submamfold M2n+\c) of
dimension 2 n + l in such a way that M is immersed in M2n+1(c) as a flat anti-
invanant minimal submamfold.

Proof. First of all, Σ (Tr Λa)
2 is constant because the mean curvature

a

vector is ^-parallel. Since ?2^3, Σ (Tr Λx)
2 is constant. On the other hand, from

(3.8), (3.22) and (4.11), we have
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(5.1) J i = L Σ ( T r / i , ) 2 = - ί n ( n - l ) ( c + 3 ) + Σ ( T r ^ α ) 2 - Σ (h^Y.

Therefore the square of the length of the second fundamental form of M is
constant, i. e., Σ (h?,)2 is constant. From this we have

a,ι,3

(5.2) Σ (hΐJky+ Σ hfjJhίj=^A Σ (A?,)4=0.
α, z. 7, * a, ι, j Δ a,ι,3

By assumption, (3.11) and (3.21), we have

(5.3) Σ hfjdh?j= Σ WjhitRljt + hfjhZRljt)
a. i, 3 a, i, 3, k

+ Σ (hWj-W,)*).
t.J, k

Moreover substituting (4.11) into (5.3) and using (5.2), we obtain

(5.4) Σ Wjkγ= ί-Σ(Tr^)2 Σ (nWy-hbhfj)
a, ι,3, k n x a, i, 3

- Σ (Ai«A*,-(A.W.
ι,3, k

From Lemma 4.3 and (3.13), we have

(5.5) Σ (A&*)2= V Σ ( T r ^ ) 2 Σ (nWjY-hiihij)- Σ λ**,λfc
P,ι,3 k Π x ι,3,k i,3,k

= V Σ (Tr AX)*Σ( Σ (Aίi-A^+n Σ (A,»,)»)
72 ar k ι<3 x*3

Since c=^—3 by assumption, Proposition 4.2 implies Σ (hh—h^y>0. Thus

(5.5) implies Tr^l^—0, T r ^ * — 0 and hΐjk=θ, that is, the second fundamental
form is ^-parallel. Lemma 4.4, T r ^ ^ O , Tr^U^O and (3.11) mean that M is
flat and minimal. On the other hand, by Lemma 4.3, T r . 4 ^ 0 implies ^U=0
for all x. From (3.5) and Λx=0, we obtain ω£=0 and hence ωϊ*=0 along M,
by (3.3). Moreover, (3.3) and (3.4) imply ωo*=O along M. From the arguments
above, taking account of a fundamental theorem in the theory of submanifolds,
we see that M is an anti-invariant submanifold immersed in some totally
geodesic and (2n+l)-dimensional submanifold M2n+\c) of M2m+\c) (see §6 in
[3]). And the submanifold M2n+1(c) is invariant (see § 6 in [3]). Thus Theorem
1 is proved.

In Theorem 1, the case where n=2, i.e., where M is 2-dimensional, is ex-
cluded. However, the same conclusions will be established even if n=2, provided
that M is compact. To establish this fact, we now prove
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THEOREM 2. Let M be an n-dimensional anti-invariant submamfold of a
Sasakian space form M2m+1(c) (cΦ — 3) with η-parallel mean curvature vector and
assumed to be compact. If the curvature tensor of the normal connection of M is
of the form (4.1), then M is a flat anti-invariant minimal submamfold of a certain
(2nJrl)-dimensιonal totally geodesic submamfold M2n+\c) of M2m+\c).

Proof. Since M is compact, we have

JM a, ι,j, k J a, ι,j

where *1 denotes the volume element of M (see (5.2)). Using this formula, we
can prove Theorem 2 by a same way as taken to prove Theorem 1.

We shall now consider the case where c=—3.

PROPOSITION 5.1. Let M be an n-dimensional (n^3) anti-invariant submam-
fold of a Sasakian space form M2m+1(—3) with η-parallel mean curvature vector
and the curvature tensor of the normal connection of M be of the form (4.1). //
M is umbilical with respect to all ex, then M is a totally umbilical anti-invarlant
submamfold.

Proof. From (3.10), (3.22) and (4.1), we obtain

ΈWkh
b

tι-h*tιh
b

tk)={).
t

Therefore we can choose a local field of orthonormal frames with respect to
which all Aa are simultaneously diagonal, i. e.,

Aίi . 0

0 h*n

Moreover, (3.11) implies that hι

jk=0 unless ι=j = k. On the other hand, from
the assumption and (4.2) we have the equation (4.11). Therefore the equation
(5.5) holds and hence we have

(5.6) Σ wJkγ=-ΣW
p,ι,j,k k

Therefore we have hk

kk=0, that is, Λk*=0 for all k. Thus M is totally um-
bilical.

Remark. In Proposition 5.1, the case where n=2, that is, where M is 2-
dimensional, is excluded. However, the same conclusions are established even
if 7i=2, provided that M is compact.

EXAMPLE 5.2. Let / be the almost complex structure of the complex (n + 1)-
space Cn+1 given by
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0 - 1

1 0

0 - 1

1 0

Let S2n+1 be a (2?2+l)-dimensional unit sphere in Cn+1 with standard Sasakian
structure (φ, ξ, η, g). Let S1 be a circle of radius 1. Let us consider

Tn=S1x - xS1.

Then we construct an isometric minimal immersion of Tn into S2n+1 which is
anti-invariant in the following way. Let X: Tn-^S2n+1 be a minimal immersion
represented by

X=
Vn + 1

u1. sin u1, •••, cos un, sin un, cos un+1, sin un+1),

where we have put un+1=—(u1Jr ••• +un). We may regard X as a position
vector of S2n+1 in Cn+\ The structure vector field ξ of S2n+1, restricted to
Tn, is then given by

ζ=JX= , (—s inu 1 , cosw1, •••, — s'mu71, cosu71, —sinun+1, cosun+1).

Putting Xi=dX/duι, we have

Xt=- /——r(0, -" , 0, - s i n u\ cos u\ 0, — , 0, sin un+1, -cos un+1),
Vn-f-l

where i=l, •••, w. Thus Z z , ι=l, •••, ?2, are linearly independent and Ύ]{Xτ)—^
for ι = l , •••, n. Therefore the immersion X is anti-invariant.

The integral curves of the structure vector field ξ are great circles S1 in
S2n+1 which are the fibres of the standard fibration π: S2n+1->CPn, where CPn

is a complex projective space of complex dimension n and of constant holo-
morphic sectional curvature 4. Now we consider the following diagram:

CPn.
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We easily see that π\χcτn> is one to one. Consequently Tn is imbedded in
CPn by π°X.

By Theorems 1, 2 and Example 5.2, we have

THEOREM 3. Let M be an n-dimensional compact orientable anti-invarlant

submanifold of a Sasakian space form S2m+1 with η-parallel mean curvature vector.

If the curvature tensor of the normal connection of M is of the form (4.1), then

M is a torus S'X ••• XS1 in some S2n+1 in S2m+1.
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