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REPRESENTATION OF ADDITIVE FUNCTIONALS
ON VECTOR-VALUED NORMED KOTHE SPACES

By Fumio Hiar

§1. Introduction.

Integral representation theory has been developed by many authors for
nonlinear additive functionals and operators on measurable function spaces
such as Lebesgue spaces and Orlicz spaces ; see Al and Korvin [17, Drewnowski
and Orlicz [3-5], Friedman and Katz [6], Martin and Mizel [11], Mizel [12],
Mizel and Sundaresan [13-15], Palagallo [16], Sundaresan [19], and Woyczynski
[21]. Representation theorems have been obtained also for additive operators
on continuous function spaces; see Batt [2] and references therein. The pur-
pose of this paper is to establish representation theorems for additive func-
tionals on Banach space-valued normed Koéthe spaces.

In this paper, let (2, A, ) be a o-finite measure space and X a real
separable Banach space. Let L,(X) be an X-valued normed Kothe space equip-
ped with an absolutely continuous function norm p. A functional @: L,(X)
— R is called to be additive if @(f+g)=0(f)+®P(g) for each f, g L,(X) such
that p(Supp "\ Supp g)=0. For several types of additive functionals @ : L ,(X)

— R, we shall establish integral representations of the form @( f):Sggb(w, flw)dp

with certain kernel functions ¢: 2xX — R. Representation theorems have been
so far obtained for additive functionals which are continuous or rather equi-
continuous in some senses. However our method via measurable set-valued
functions is applicable to additive lower semicontinuous functionals on L ,(X).

In §2, we give definitions and some elementary facts on function norms
and normed Kothe spaces. In §3, a characterization theorem for closed decom-
posable subsets in L,(X)X L, is established by means of measurable set-valued
functions. This characterization will be useful in constructing a set-valued
function whose values are closed subsets of XX R corresponding to epigraphs
of an integral kernel function. In §4, we provide several lemmas on additive
functionals and integral functionals on L,(X). Finally in §5, we discuss in-
tegral representations for the following cases:

(1) Additive lower semicontinuous functionals on L ,(X).
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REPRESENTATION OF ADDITIVE FUNCTIONALS 301

(2) Additive continuous functionals on L ,(X).

(3) Bounded linear functionals on L ,(X).

(4) Additive lower semicontinuous convex functionals on L ,(X).

The author wishes to express his gratitude to Professor H. Umegak: for
his constant encouragement and valuable suggestions.

§2. Preliminaries.

Throughout this paper, let (2, A, y) be a fixed o-finite measure space and

A the completion of 4 with respect to x Let M* be the collection of all
n_onnegative real-valued measurable functions on £. A mapping p on M* to
R=[—o0, o] is called a function norm if o satisfies the following conditions:

(i) p(&)=0 and p(&)=0 if and only if &w)=0 a.e.,
(if)  p(E+0)=p®)+p©),

(iil) p(ad)=apé)  for a=0,

(iv) §w)={(w) a.e. implies p(&)=p(0).

Let p be a fixed function norm, and let X be a real separable Banach space
with dual space X*. Note that the notions of strong and weak measurability
of functions f: £2— X are identical, since X is separable. Let L,(X)=
L,(2, A, pr; X) denote the space of all measurable functions f: 2— X such
that p(|| fl)<co where | f|=[|f(-)|. Then L,(X) becomes a normed linear space
with the norm p(|| f||) where p-almost everywhere equal functions are identified.
For X=R, the space L,=L,(R) is called a normed Kithe space, and also called
a Banach function space if it is complete. Usual L,(1=<p=co) spaces and Orlicz
spaces are Banach function spaces. The function norm p is said to have the
Fatou property if p(€,)1 p(§) whenever §,eM* and &, 1§, and said to have the
weak Fatou property if p(f)<oo whenever &,eM*, &, 1§, and sup p(&,)<oo.
The weak Fatou property implies the completeness of L, and L,(X). In this
paper, we shall not require p to have the weak Fatou property.

The characteristic function of a set A=/ is denoted by 1,. A set Ac A
with u(A)>0 is called unfriendly relative to p if p(lz)=co for every BeA
with BCA and x(B)>0. The function norm p is called saturated if A contains
no unfriendly sets. There exists a maximal (up to g-null sets) unfriendly set
., and so0 &(w)=0a.e. on Q.. for every £€L,. In order to give representations
of additive functionals on L,(X), we may assume by removing 2. from £
without loss of generality that p is saturated. As a consequence of this assump-
tion, there exists a p-admissible sequence, i.e., a sequence {£2,} in A with 2,12
such that u(£2,)<oco and p(lg,)<co for all n. The associate norm p’ is defined by

p©=sup!| sau: semr, pO=1},  ceM,
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which is also a saturated function norm having the Fatou property.

A function &L, is said to be of absolutely continuous norm if p(1,,1€1)10
for every sequence {A4,} in A such that A, ] 0. The space L§ of all £€L, of
absolutely continuous norm is a closed order ideal of L,, that is, L§ is a closed
subspace of L, such that {&Lj and |&w)| =|{(w)| a.e. imply £L§. Then the
dominated convergence theorem holds as follows: If &,(w)— &w) a.e. and
&) =lw) a.e. with {=Lg, then p(|é,—&|)— 0. We shall always assume
that p is an absolutely continuous norm, i.e., L§=L,. It is well known that
Li=L, when L,=L,(1=<p<oco) or more generally when L, is an Orlicz space
with a Young’s function obeying A,-condition. After all, it will be assumed in
this paper that p is a saturated absolutely continuous norm. Therefore the
dual space L,* of L, is isometrically isomorphic to the Banach function space

L, with the associate norm p’ under the bilinear form &, 0= & dp of £=L,

and {=L,. For detailed arguments on normed Kothe spaces, see [22, Chap.
15]. The proofs of above stated facts can be found there.

It is worth while remarking that even when p is not absolutely continuous,
the representation theorems in §5 hold for additive functionals restricted on
LyX)={feL,(X): |fleLs}. However, for the uniqueness of kernel functions,
it must be assumed that the carrier of L% (cf. [22, p. 481]) is the whole set £.
See also Remark 1 to Theorem 5.3.

§3. Decomposable subsets in L, (X)X L,.

For a set-valued function F: 2 — 2% where 2% is the collection of all subsets
of X, let D(F)={weR: F(w)+0} and GF)={(w, x)€L2XX: x=F(w)}. The in-
verse image F-Y(U) of UCX is defined by F X (U)={weR: Fw)N"U+0}. As to
the following conditions for F: 2 — 2% such that F(w) is closed for every w2,
the implications (1) 2 (2) & (3) = (4) hold, and moreover if (2, A, p) is complete,
then all the conditions (1)-(4) are equivalent :

(1) FYC)eA for every closed subset C of X;

(2) F-Y(0)e A for every open subset O of X;

(3) D(F)e A and there exists a sequence {f,} of measurable functions
fn: D(F)— X such that F(w)=cl{f,(w)} for all weD(F);

4) GF)e AR®Bx where By is the Borel o-field of X.

A set-valued function F: 2—2% is called measurable (resp. weakly measurable)
if F satisfies the above condition (1) (resp. (2)). We shall denote by H[£2; X]
the collection of all weakly measurable set-valued functions F: 2—2% such
that F(w) is nonempty and closed for every wsf. We observe that if
G(F)e AQ®By and F(w) is nonempty and closed for every w2, then there
exists an F'eM[2: X] such that F/(w)=F(w) a.e. Indeed, since there exists
a sequence {f,} of A-measurable functions such that F(w)=cl{f.(w)} for all
we 2, we obtain a desired FFeU[2; X] by taking A-measurable functions
[l with f,/(w)=f.(») a.e. and defining F'(w)=cl{f,(®)}. For more complete
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discussions of measurability of set-valued functions whose values are closed

subsets in a separable metric spaces, see [9] and [20].
Let M be a set of measurable functions f: 2 — X. We call M decomposable
if 1,/+1pugeM for each f, geM and A=A, It is clear that if M is decom-

posable, then i} 14,fi€ M for each finite measurable partition {4, ---, A,} of
=1

Qand {f,, -, fo}CM. We showed in [8, Theorem 3.1] that any closed decom-
posable subset of L,(X), 1Sp<co, is characterized as a set of the form S,(F)
={feL,(X): lweF(w) a.e} with Feu[2; X]. In this section, we obtain an
analogous result for subsets of L,(X)XL; which will play an important role in
the proof of Theorem 5.1. The product space L,(X)XL, is equipped with the
norm (|l FI)+1€l: for fe L, (X) and é€ L, where £, is the L;-norm. A subset
M of L,(X)XL, is decomposable if and only if (1,f+1gug, lié+1gl)eM for
each (f, &), (g, {)eM and A= A. For given FEM[Q; XXR], we define the
subset S, «(F) of L,(X)XL, by

Sp(F)={(f, e L, (X)XL,: (flw), {w)EF(w) a.e}.
We first give some properties of subsets S, (F) in the following lemmas.
LEMMA 3.1. [f FeM[2; XXR], then S, (F) 1s closed in L, (X)X L,.

Proof. Let {(fa, &)} be a sequence in S, ,(F) convergent to (f, §)e L ,(X)
X L,. Passing to a subsequence, we may assume that p(|lf,—/f[)<1/2" for all
n and &,(w) — &w) a.e. To prove (f, £S5, (F), it now suffices to show that
| falw)—fw)| — 0 a.e. Taking a p-admissible sequence, we may assume in ad-
dition that lgeL,. For each k>0, let A,={weQ: || folw)—flw)=1/k} and

A= F\ C) An. Since p(14)=p(kll fa—fI)<Ek/2%, we have

m=1 n=m

J
P(IAOC) §n§1 p(lA,,)—i— P(lnL>J]An) <k/2m-'4 p(lng]An)

for each j=m=1. Since p is absolutely continuous, it follows that p(1 gAn> 10
n>y
as j— oo, so that p(l,.)=0 and hence u(A.)=0. Letting =1, 2, ---, we obtain

o

WU A Ues2: | flo)—f@)|=1/k)=0,
which shows that | f,(w)—f(w)| — 0 a.e. Thus the lemma is proved.

LEMMA 3.2. If FEM[R; XXR] and S, (F) 1s nonempty, then there exists
a sequence {(fr, )} 1n S, (F) such that Flw)=cl{{(fn(w), & (@)} for all o= L.

Proof. There exists a sequence {(g;, )} of measurable functions g,:
2 — X and {,: 2~ R such that Flw)=cl{(g:(w), (@)} for all wes? (see the
above condition (3)). Since S,,,(F)#0, we can select an element (f, §) S, ,(F)
such that (flw), &(w))eF(w) for all we. Taking a p-admissible sequence {2,},
we define
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Aymr=1{0€ 2, m—1=| g x@)l+Cx(w)| <w},
Some=lamu8atloa,m s Ema=1la,m,Catloa,nié s
J,m, k=1,

Then it is easy to see that {(f,mes &me)t ©S,,1(F) and Flw)=cl{(f;mr(®), §;mr(@))}
for all we 2, completing the proof.

LEMMA 33. If FEM[2; XXR] and S,,(F) is nonempty and convex, then
Flw) is convex for a.e. we .

Proof. By Lemma 3.2, there exists a sequence {(f,, &)} in S, (F) such
that F(e)=cl{(fz(w), (@)} for all Q. Since ((fi+f))/2, (§i+E)/2)E S, (F),
we can take an NeJ with p(N)=0 such that

(fdo)+T{w)/2, Ew)+E0)/2)EF ), i, j=1, 0E\N.

This shows that F(w) is convex for every ws\N, and the lemma is proved.

THEOREM 3.4. Let M be a nonempty subset of L, (X)X L, Then there exists
an FEM[2; XXR] such that M=S,(F) if and only if M is closed and decom-
posable mn L,(X)XL,.

Proof. If there exists an FeM[2; XX R] such that M=S, (F), then M
is closed by Lemma 3.1 and clearly decomposable.

To prove the converse, let M be a nonempty closed and decomposable
subset of L,(X)X L, Take an element (fy, &)€M and let My={(f—fo, §—&n:
(f, &) €M}. Then M, is a closed decomposable subset of L,(X)X L, containing
(0, 0). If there exists an Foe M[L2; XX R] such that M,=S,, ,(F,), then defining
F(o)=Fy(o)+(fiw), & w)) we obtain FEM[2; XXR] and M=S,, (F). Thus
we may assume that M contains (0, 0). Now let Mi=MN(L(X)XL,) and M,
the closure of M; in L,(X)XL,. Then it follows that M, is a nonempty closed
and decomposable subset of L,(X)XL, Noting L,(X)XL,=L,(XXR) where
the norm of XXR is taken by ||(x, a)|=|x|+|a|, we obtain, by [8, Theorem
3.1], an FeHU[2; XX R] such that

M={(f, §)€ L(X)X L;: (flw), w))EFw) a.e}.

We shall then prove that M=S, (F). For each (f, §)eL,(X)XL,, taking a p-
admissible sequence {2,} we put A,={wsf,: |fw)|<n} for n=1. Then
(14, fr 14,8)€ Li(X)X L, for all n and it follows from A, 1 2 that

PUILa, =D+ La,E—Ell=p(lowu,| FD+1eu,El: 1 0.

Thus we deduce in view of (0,0)eM that M, and S, . (F)INL(X)XL)=
S, 1(F)NM; are dense in M and S, ,(F), respectively. Since both M and S, (F)
are closed, it remains to show that M,CS,. (F) and S, (F)"\M,CM. The first
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inclusion is obvious. To see the second inclusion, let (f, §)€S,,.(F)"\M,. Then
there exists a sequence {(f;, £:)} in M, convergent in L, (X)X L, to (f, &. It
can be assumed that ||f.(w)—flw)| —0 a.e. Taking a p-admissible sequence
{2,}, we put B,,={wel,: | |2 f@)|+1} for n, k=1. As k— oo for
each fixed n, it follows from p(2,\B,,)— 0 that

11s,,6e—10,Eli=16e—El+11o 5,50 — 0.
Moreover, since
20 f1+1g,Zl15,,/ 1(@)—1g,f@)] — 0 a.e,

we obtain p(|1g,,/s—1e, /) — 0 by the dominated convergence theorem. Since
(g, fes 15,500 M by (0, 0)=M, it follows that (lg,f, le,5)=M for all n, so
that (f, §)€M. Thus M=S, ,(F) is proved.

4. Additive functionals and integral functionals.

A functional ¢: V—Rona topological vector space V is called proper if
¢(x)>—oo for all xeV and ¢gz~co. The epigraph Epig of ¢ is defined by Epi ¢
={(x, )€ VXR: ¢(x)<a}. A functional ¢: V— R is lower semicontinuous
(resp. convex) if and only if Epi¢ is closed (resp. convex) in VXK. Let ¢:
2xX— B be an AR By-measurable function. For a measurable function f:

£ — X, since the function ¢(w, f(®)) is measurable, we define [4(f)=
qui(a), fw)dp if the integral exists permitting +oo. We call Iy the integral

functional associated with the kernel function ¢. A function ¢: @XX— R is
called normal if ¢ is AQBy-measurable and @(w, -) is lower semicontinuous
for every w=f. Let Epig: 2 —2%% be defined by (Epi ¢)w)=Epi ¢(w, -).
By way of the measurability of the function (w, x, @) — ¢(w, x)—a with respect
to ARBxr=ARBxQBr, it is seen that ¢ is normal if and only if G(Epi ¢)
e AR Bx.r and (Epi ¢)w) is closed for every w=£. Thus ¢ is normal if Epi¢
e M2 ; XXR], and vice versa when (£, A, p) is complete.

For a measurable function f: 2 — X, let Supp f={w=2: flw)+0}. A func-
tional @: L,(X)— R is called to be additive if O(f+g)=0(f)+D(g), where
the addition oo--(—o0) is not permitted, for each f, g&L,(X) such that
#(Supp fN\Supp g)=0. The additivity of @ means that for each f&L,(X) the
set function A— @(1,f) is finitely additiveon A. If @: L (X)— R is additive
and proper, then @(0)=0 is readily verified. The integral functional Is; with
#(w, 0)=0 a.e. is obviously additive on L,(X), if it is defined on L,(X). In
the remainder of this section, we provide lemmas which will be needed in the
next section.

LEMMA 4.1. If @: L,(X)— R is an additive lower semicontinuous proper
Sfunctional, then for each feL,(X) the set function A— @1,f) 15 countably
additive on A.
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Proof. Let feL,(X) and A= Q A, with disjoint A, . Then we have

O(LN)= 5 00, NTOUs,f),  nzl,

where B,=\J A,. Since lim inf @(15,/)=@(0)=0 by o(1z,llfI)]0, it follows
i>n n—co
that
O(1,f) lim sup 3 O(1Ly, /)-+1im inf O(1, )

= lim sup 3 @(14, ).
On the other hand, since p(]| )y Lo, /=1afD=p(s,1 /1) | 0, we have
1=1

O(1,f)<lim inf @ 3 1, /)=lim inf 3 B(L,f).

N0 N 00

Thus O(1,/)= 3 @1, f) is obtained.
1=1

The following three lemmas are concerned with the relationship between
integral functionals and their kernel functions.

LEMMA 4.2. Let ¢y, ¢o: QXX — R be two AR By-measurable functions with
1w, 0)=¢x(w, 0)=0 a.e. such that 14 (/)=I4,(f) (resp. I4,(f)=14,(f)) for each
FE€ L, (X) whenever both I4(f) and I4,(f) are defined. Then there exists an Ne A
with p(N)=0 such that ¢,(o, x)Z¢y(w, x) (resp. ¢(w, x)=d¢:w, x)) for all ws2\N
and x < X.

Proof. Taking Epi ¢, Epi ¢,: £ —2%F we define H: 2 —2%F by Hw)
=(Epi ¢,)(w)\(Epi ¢,)(w). Since G(Epi ¢,), G(Epi ¢;)e AQBx.r it follows that
G(H)=G(Epi ¢p,)\G(Epi ¢,) is ARQBx.p-measurable. Thus it follows (cf. [17,

Theorem 4]) that D(H)EJZ. To prove the lemma, it suffices to show that
D(H) is p-null. Now suppose the contrary. By von Neumann-Aumann’s

selection theorem (cf. [9, Theorem 5.27, [17, Theorem 3]), there exists an A-
measurable function (g, {): 2 — XXR such that (glw), {(w)e H(w) for all
we D(H). Taking an A-measurable function (f, &): 2 - XX R with (flw), &w))
=(g(w), {(w)) a.e., we can choose an A=A with u(A)>0 such that (flw), &w))
cH(w) for a.e. weA and moreover (1.f, 1,6)€ L, (X)X L, Since ¢i(w, f®)
>&w)=¢x(w, flw)) a.e. on A, it is seen that both [,4,(1,f) and [I4,(1.f) are
defined, and hence we have

1o,u)=| dio, @) dp>| & dp
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2| pio, F@Ndp=150111),

a contradiction. This completes the proof.

LEMMA 4.3. Let ¢: XX — R be a normal function with o, 0)=0 a. e. such
that Iy 1s defined on L,(X). If Iy 1s convex on L,(X), then ¢(w, -) 1s convex on
X for a.e. w= L.

Proof. Since G(Epig)e AQBx.r and (Epi ¢)(w) is closed for every wef,
we can take, as observed in §3, an FeM[ 2 ; XX R] such that F(w)=(Epi ¢)(w)
a.e. To prove the lemma, it suffices by Lemma 3.3 to show that S, (F) is
nonempty and convex. It is immediate that (0, 0)S, (F). The convexity
assumption of /4 means that Epi /g4 is convex in L,(X)XR. Thus the convexity
of S,,(F) follows from the following observation: For each (f, §)& L (X)X L,,

(f, §)eS,.(F) if and only if (141, SAS dp)eEpily for all AeA. Indeed, (f, &)
€S,.(F) if and only if (flw), é(w)e(Epid)w) a.e, i.e., ¢lo, flw)=éw) a.e.
which is equivalent to SA¢(w, f(w))dyéSAE dp for all AeA. This means in
view of ¢, 0)=0 a.e. that (1.f, SAg dp)=Epi I, for all A€ A. Thus the lemma
is proved.

LEMMA 4.4. Let ¢ be aswn Lemma 4.3. If there 1s an a€R such that I14(f)
Za for all fe L, (X), then there exists a §€ L, such that ¢lw, x)=Ew) on X for
a.e. wE .

Proof. Take an FEM[; XXR] as in the proof of Lemma 4.3. Since
0, 0)eS,.(F), there exists, by Lemma 3.2, a sequence {(f», &4} in S,,.(F) such
that F(o)=cl{{f»(®), &,(@))} for all w= Q. Then it is easy to see that

Inf ¢(w, x)= inf &(w) a.e.

Let C(w):igf &x(w). Since {(w)<¢d(w, 0)=0 a.e., it now suffices to show that
ggc dp=a. Suppose S.@C dp<a. Thena {’eL; can be chosen so that {(w)<{ (w)
a.e. and SQC’ dp<a. It follows that there exists a countable measurable parti-
tion {A4,} of 2 such that &,(w)<{'(w) a.e. on A, for n=1. Taking an integer
k such that S

n

4 {’ dp<a and defining g= f_}l la,/n€ L(X), we have

2
U
=1

Iy@)= 3, s ful@ndp= 3 [, & dp

o

n

AnC dp<a,

1

| Cae
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a contradiction, which completes the proof.

§5. Representation theorems.

We now present integral representation theorems for several types of ad-
ditive functionals on L ,(X).

THEOREM 5.1. Let @: L,(X)— R be an additwe lower semicontinuous proper
Sunctwonal. Then there exists a normal function ¢: QXX — R with ¢(w, 0)=0
a.e. such that ¢(w, -) 15 proper for every w2 and @=Iy on L,(X). Moreover
such a normal function ¢ 1s unique up to seis of the form NXX with p(N)=0.

Proof. The final uniqueness assertion follows immediately from Lemma 4.2.
Since @ is additive and proper, we get @(0)=0. Define a subset M of L,(X)
XL, by

M= {((f, 9= L, (X)X L: (LN §dpe for all Aceh).

Let {(fa, &)} be a sequence in M convergent to (f, §)& L, (X)X L, Then we
have

(1 f)=lim inf O(1f,)< lim SAgn d;,z:SAE dp, Aed,

and hence (f, §) € M. Thus M is closed in L,(X)XL;. For each (f, &), (g, {)
€M and B A, we have

O, (15 +1058)=P(Lsns )+ P1uzsg)
éSmBé d/«‘+SA\BC dﬂ:SA(lBE+IQ\BC)dﬂ, Aed,

and hence (1zf+1gwsg, 1z€+1egsl)eM. Thus M is decomposable. Moreover
M is nonempty since (0, 0)e M. Thus, by Theorem 3.4, there exists an Fe&
M[2; XXR] such that M=S, ,(F). We can choose, by Lemma 3.2, a sequence
{(f., &)} in S, ((F) such that Flw)=cl{(fi(w), &(w))} for all we L, and a sequence
{€;} in L, such that {{;(w)} is dense in [0, co) for every w=£. Since (f,, £&,+;)
€M for all 1, j=1, we obtain

Flo)=cl{(filw), §(0)+C{w): 1, j=1} a.e,

which shows that there exists an Ne A with p(N)=0 such that (x,_a)eF(w)
implies {x} X[a, c0)CF(w) for each w=\N. Now define ¢: XX — R by

inf {a: (x, a)eF(w)} if we\N
Mo, x)= .
if weN.

Then we have
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Flw) if we\N

(Epi ¢)(w)={ i
X %[0, c0) if weN,

and hence Epige M2 ; XX R] which implies that ¢ is normal. We shall then

prove that @=I4 on L,(X) in the following three parts:

(D) Let feL,(X) and @(f)<co. We show that I4(f) is defined and I4(f)
<O(f). In view of Lemma 4.1, the set function A— @(l,f) is a p-continuous
bounded signed measure on 4, and hence it has a Radon-Nikodym derivative
&= L, with respect to p. Then we have (f, )M and hence (flw), &w)) e F(w)
a.e., so that ¢(w, f(w))<&w) a.e. This implies that I4(f) is defined and I4(f)

gggs dp=0(f).

() Let feL,(X) and assume that I4(f) is defined. We show that @(f)
=14(f). Assuming [4(f)<oo, we can select a sequence {,} in L, such that

&) | plo, f(0) a.e. Since (f(w), {x(w)E(Epi ¢)w)=F(w) a.e., we get (f, &)
€M for all n, and hence (D(f)éggén dp |l I4(f) by the monotone convergence

theorem. Thus @(f)<14(f).
(Il) We now deduce that I4(f) is defined for every f€ L,(X). To see this,
suppose that I4(f) is not defined, and let A={we?: ¢(w, f(w))<0}. Then it

follows that SAng(w, f@)dp=—co. By part (I), we obtain [,(0)<®(0)=0 and so
Ssa A¢(w, 0)du<oco. Hence we have

151 N)={ §, f@)dpt,  plo, Odp=—oo,

so that by part (II) we have @(1,f)=—oco contradicting the assumption of @
being proper.

The above three parts (I)-(Ill) yield that @=I; on L,(X). We shall finally
show that ¢ can be modified so as to satisfy the conditions in the theorem.
Define H: £ — 2% by Hw)={x€X: ¢(w, x)=—o0}. Since G(H)e AQBx, D(H)
e and there exists an A-measurable function g: 2 — X such that g(w)e Hw)
for all we D(H). Suppose that D(H) is not p-null. Taking an <A-measurable
function f: 2 — X with flwo)=g(w) a.e., we can choose an A=A with p(A)>0
such that f(w)e H(w) for a.e. w€ A and moreover 1,/ L,(X). Then we have
&(1,f)=—o0, a contradiction, which implies that D(H) is p-null. Since ¢ may
be modified appropriately on a set NxX with p(N)=0, ¢ can be taken so that
é(w, +) is proper for every wef. Furthermore, in view of @(0)=0, replacing
dlw, *) by @, -)—¢w, 0) for we R with @lw, 0)<oo, we can let ¢(w, 0)=0 a.e.
Thus the proof is completed.

We call a function ¢: 2XX— R to be of Carathéodory type if ¢ satisfies
the following two conditions:

(i) ¢(-, x): £ — R is measurable for each x€X,
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(i) ¢w, -): X— R is continuous for each we L.
It is known (cf. [9, Theorem 6.1]) that a function of Carathéodory type as
above is A®3By-measurable. In the usual definition of Carathéodory function,
the condition (ii) is weakened so that ¢(w, -) is continuous for a.e. ws 4.
Whenever a function ¢: 2XX — R is considered as an integral kernel function,
we may modify ¢ appropriately on a set NXX with p(N)=0. Hence we adopt
here the above definition. Let Car,(£2; X) denote the collection of all functions
¢: @XX— R of Carathéodory type such that for each f€L,(X) the function

$o, flw) is in L.

THEOREM 5.2. If @: L,(X)— R 1s an additive continuous functional, then
there exists a $=Car,(2; X) with (o, 0)=0 a.e. such that @=I4 on L (X).
Moreover such a function ¢ 1s unique up to sets of the form NXX with u(N)=0.

Proof. By Theorem 5.1, there exist two normal functions ¢, ¢: AxX—R
with ¢lw, 0)=¢(w, 0)=0 a.e. such that @=I4=—I, on L,(X). Then, applying
Lemma 4.2, we can take an NeJ with p(N)=0 such that ¢(w, x)=—¢(w, x)
for all weQ\N and x€X. Redefining ¢(w, x)=0 on NX X, we obtain a desired
geCar,(2; X).

REMARK. When L,(X) is a Banach space (for example, when p has the
weak Fatou property), it can be shown as in [10, pp. 22-25] that if ¢
eCar,(£2; X), then the operator T': L,(X)— L, defined by Tf(w)=¢(w, flw)) is
continuous. Thus, in this situation, the converse of Theorem 5.2 holds: If
geCar,(2; X) and ¢(w, 0)=0 a.e., then the integral functional I, is additive
and continuous on L ,(X).

We denote by £,(X*) the space of all functions f*: 2 — X* satisfying
the following two conditions :

(1) <x, f*-)>: 2— R is measurable for each x€ X,

(2) the function || f*|=|/*(-)| is in L,.

Note that the condition (1) implies the measurability of | f*(-)|. Under the
usual identification of p-almost everywhere equal functions, .£, (X*) is a normed
linear space (in fact, a Banach space) with the norm p’(|l f*|).

THEOREM 5.3. The dual space L,(X)* of LX) is isometrically isomorphic
to L, (X*) under the bilinear form {f, f*>:Sg<f(w), fHw)>dp of feL,(X) and

freL,(X*).
Proof. Let f*e.£,(X*). For each feL,(X), it follows that the function
{flw), f*(w)> is measurable and

SQ [<flw), F*()>| dﬂégg @)l FH@)lldp=plfDp (I /*1)<oo.

Thus the linear functional @(f)=<f, f*)> is well-defined on L,(X) and we get
121=p’(I F¥ID-
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Conversely let @< L,(X)*. By Theorem 5.2, there exists a g=Car,(2; X)
with ¢(w, 0)=0 a.e. such that @=Iy4 on L,(X). For each f, g&L,(X) and each
a, BER, since

[ 9@ af@)+Be@)dp=0(L(ar+pg)
=a(Lif)+O(Lsg)
=| {aglo, f@)+Bplw, g dp, Ac,

it follows that ¢(w, af(w)+ Bglw)=ad(w, f(@)+ félw, glw)) a.e. There exists,
as in Lemma 3.2, a sequence {f,} in L,(X) such that {f,(w)} is dense in X
for every ws{. We can now take an NeJ with p(N)=0 such that

do, af @)+ Bf(w)=ad(w, filw)+pdlo, f{), wc\N,
for each 1, j=1 and each rational numbers «, 8. This shows that ¢(w, -)e X*
for every ws 2\N. Define

oo, *) if weQ\N
)= {

if weN.

Then it is clear that f* satisfies the above condition (1). It remains to show
that p’(|/*[)=II®|l. Since p’ is a saturated function norm having the Fatou
property, for any given ¢>0 there exists a strictly positive p=M* with p’(y)
<e. Then we can select a measurable function u: £ — X such that [u(w)|<1
and <u(w), [*w)y=zmax (0, | Hw)l—7(w) for all weR. Putting {(w)=<u(w),
f*w)>, we have {eM* and [ f*|={+75. For each ée M* with p(§)<], it fol-
lows that

| & dp= (), rH@pap
G IP(EN TP

which shows p’(Q)=I[|®| and so p'(| f*N=p' )+ o' (7)<|P|+¢c. Thus we have
the desired conclusion.

REMARK 1. When p is not necessarily absolutely continuous, Theorem 5.3
is extended as follows: If the carrier of L is the whole set £, then L(X)*
is isometrically isomorphic to £, (X*) in the manner as in Theorem 5.3.

REMARK 2. If X* is separable, or equivalently if X* has the Radon-Nikodym
property (cf. [18]), then Theorem 5.3 asserts that L,(X)* is isometrically iso-
morphic to L, (X*). This conclusion is a special case of [7, Theorem 3.2],
but p is as- sumed in [7] to have the weak Fatou property.

For the case of lower semicontinuous convex functionals, we give a repre-
sentation theorem in a somewhat detailed form.

THEOREM 5.4. For each proper functional @ : L,(X)— R, @ is additive lower
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semicontinuous and convex 1f and only if there exists a normal function ¢: £2X
X — R with ¢(w, 0)=0 a.e. such that

(i) élw, +) is proper and convex for every we 2,

(ii) there exists an f*& L,(X*) and a E€ L, satisfying ¢(w, x)=<{x, f*(w)>
+E&w) on X for a.e. wE LR,

(iii) @=Iy4 on L, (X).

Proof. Let @: L,(X)— R be additive, lower semicontinuous, proper, and
convex. By Theorem 5.1 and Lemma 4.3, there exists a normal function
¢: QxX— R with ¢(w, 0)=0 a.e. for which the conditions (i) and (iii) are
satisfied. Since Epi @ is closed and convex in L,(X)XR and (0, —1)&Epi @,
the separation theorem gives, in view of Theorem 5.3, an f*€.£,(X*) and a
BE R such that {f, f*>+aB<—p for all (f, a)=Epi @. Then <0 follows from
(0, 0)=Epi @, and hence we can let f=—1. We now have

[, 6@, fl)—<f@), FH@)}dp
=0, > =1, fELX),

which implies the condition (ii) by Lemma 4.4.

Conversely let ¢ be a normal function with ¢(w, 0)=0 a.e. satisfying (i)-
(iii). It is immediate that @=I; is additive and convex. To show the lower
semicontinuity, let {f,} CL,(X), feL,(X), and p(| fr—f])— 0. As is seen from
the proof of Lemma 3.1, we can select a subsequence {g,} of {f,} such that
lgi(@)—f(@)] =0 a.e. and @(gs)— lim inf @(f,). Then, using Fatou’s lemma,
we have "

0(N)—<f, | gdp
=, 180, fw)—fl@), @D —E@) dp
</ lim inf (g(0, £4(0)—Cgalw), SHw)—Ew) dp
< lim (0(g)—<gn, | £dp
=tim inf O(£,)—<f, /- edp,
and hence @(f)§1i{r»1£nf O(f,). The proof is now completed.
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