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ON THE PICK-NEVANLINNA PROBLEM

By JAMES A. JENKINS AND NOBUYUKI SUITA

Introduction

Let there be given a finite number of points z, in the unit disc A and assigned
data w,, |w;| <1 at z, j=1, ---, N. The classical Pick-Nevanlinna (interpolation)
problem asks whether there exist functions analytic, bounded by unity in A and
satisfying f(z;)=w,, j=1, -, N (Pick [16], Nevanlinna [14], [15]). When this
class of functions is found to be non-void, the set {f(z,)}, called the “Wertevorrat”
should be investigated [15] and the problem can be transformed into a linear
extremal problem for the functional Re(e??f(z,)) under the given data. The
problem was generalized for multiply-connected domains and the linear extremal
problem was solved by Garabedian [8]. He formulated a dual extremal problem
for the Schwarz lemma there, which has been a useful tool for extremal problems.

Duality in a problem with side conditions as in the Pick-Nevanlinna problem
was not known for a long time until Havinson [9] found a dual extremal problem
for the general Carleman-Milloux problem. Recently a formulation of dual ex-
tremal problem for the general Pick-Nevanlinna problem was given by Gamelin
[6], [7]. More recently Hejhal [12] has shown how the method of dual extremal
problems can be applied to both problems.

In the present paper we are concerned with the Pick-Nevanlinna problem.
We treat the problem under the formulation of Carathéodory-Fejér [3] i.e.
minimize the norm of f among the functions with side conditions (e.g. f(z,)=w,,
j=1, -+, N). This formulation will allow us a symmetric treatment of the problem.
By using a well-known duality in Banach spaces, the problem is reduced to a
linear extremal problem for a single functional, which was investigated by Hejhal
[11] a great deal. It should be noted that another duality relation was used by
Lax [13] many years ago and that it was a fundamental technique for the case
of regular regions in Hejhal [11]. Our duality, a counterpart of theirs, provides
us with a conjugate differential conveniently. We also note that linear extremal
problems in Gamelin [6], [7] and Hejhal [12] can be reduced to our formulation.

In §1 we shall show how the Pick-Nevanlinna problem under Carathéodory-
Fejér’s formulation is reduced to a linear extremal problem for a single functional.
The relationship with Gamelin’s formulations will be discussed there. We also
show the uniqueness of extremal functions in the space of bounded functions.
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In §2, conjugate differentials will be obtained from the duality relation on a
compact bordered Riemann surface. Here Royden’s result [187], an extension of
F and M Riesz’s theorem, is useful.

§ 3 will be devoted to discussion of uniqueness of the extremal for the Pick-
Nevanlinna problem in a more general situation. We shall need a sort of Cauchy
kernel for differentials in order to apply Hejhal’s method to a subdomain of a
compact Riemann surface which does not belong to O, [21].

In §4 we shall treat the classical Pick-Nevanlinna problem for meromorphic
or multiplicative functions. To this case, while the problem is transformed into
the single-valued case, Hejhal’s result [11] cannot be applied directly.

§1. General principles, interpolation for bounded functions.

1. Problems. Let 2 be a subdomain of a compact Riemann surface, which
does not belong to O,z and let X(2) be a Banach space of functions / analytic
in £ with norms |[f||. A general Pick-Nevanlinna interpolation problem for a
finite number of data will be formulated in the following way : let there be given
a finite number of linear functionals L, continuous with respect to the supnorm
on compact subsets K, of £2, each of which does not separate the boundary 0%
of £ and the same number of data a,, j=1, .-, N. Do there exist functions of
X(9) which satisfy [f|=1 and Li(f)=a,, j=1, -+, N? In the classical Pick-
Nevanlinna problem we just consider the Banach space AB(2) of bounded analytic
functions f, with supnorm |f||=sup |f(z)|, z€ 2 and take the values of f or more
generally the values of successive derivatives at a finite number of points z,,
j=1, -+, N as the data of the linear functionals. Here, for simplicity, we used
z, as a fixed value of a local parameter at a given point. The latter condition
is equivalent to giving Taylor sections

Ny
) D,= Z})ay(z—z])v at z,, j=1, -, N.

Quite recently Heins [10] proved uniqueness of the extremal function f,
which maximizes Re (¢ f(z,)) among the class of analytic functions f bounded by
unity and with given Taylor sections (1) at z,, z,#z, j=1, -, N on a compact
bordered Riemann surface . He also proved the extremal f, maps £ onto a
finite sheeted covering of the unit disc and gave a bound of the number of sheets
called the Garabedian bound.

In No. 4 of this section we show uniqueness for extremal functions for the
general Pick-Nevanlinna problems for the class of bounded functions on a sub-
domain £ of a compact Riemann surface. Other properties such as the Garabe-
dian bound will be discussed in §2.

2. Fundamental lemma. We state a well-known lemma, a duality result in
a Banach space X.

LEMMA 1. Let X be a Banach space with norm || ||. Let S be a closed
subspace of X. Let S* denote the annihilator of S, that is, the set of all con-
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tinuous linear junctionals ¢ such that ¢p(x)=0 for x€S. Then for each fixed x< X,

max |J(x)|= 122 x4yl .

QS gn=1

Here “max” indicates that the supremum 1s attained.
For a proof the reader is referred to Duren [4] p. 111.

3. Relation to other formulations. First of all we see that our Pick-Nevan-
linna problem with finite data can be reduced to that with a single datum. We
state it in the most general form.

ProPOSITION 1. Let X be a Banach space of functions analytic in a open
Riemann surface Q normed by | |. Let {L,}}., be continuous linear functionals
on X. Suppose that there exists an extremal function f, which minimizes the norm
I/ wn the family § of functions fe X satisfying L,(f)=a,, v=1, --- N. Then there
exists a linear combination

for which the f, 1s an extremal function of the Pick-Nevanlinna problem with a
single datum L(f)= >, c.a,.

Proof. Let S be a closed subspace of X defined by S={f|feX, L,(f)=0,
y=1, ---, N}.
By Lemma 1, we have

max ) |¢(fo)|: |¢o(fo)I:“f0”» ¢0€Sl-

IPl=1.p=S

It is easy to show that ¢, S* implies that ¢, is a linear combination of {L,}J-, i.e.

Since [¢o]=1, for every f€F we have [f|=[¢o(/)I=1Z i eLN)I=12
c.a, | =1l

We may suppose that ¢o(fo)=1|¢(f,)| multiplying by a constant. This means
that the f, is extremal for the Pick-Nevanlinna problem with a single datum
Gbo(f): > e,

We consider the Garabedian-Hejhal-Gamelin formulation. Let B be the unit
ball in X. Consider a linear extremal problem: maximize |Ly(f)|, fB under
the side condition L.(f)=a,, v=1, ---, N, where L, is a given continuous linear
functional which cannot be expressed by a linear combinations of {L,}}.;. Sup-
pose that there exists an extremal function f, for the linear extremal problem.
Then the relation to the Pick-Nevanlinna problem is given by
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PROPOSITION 2. The extremal f, 1s an extremal function for the Pick-Nevan-
linna problem with N-+1 data L(f)=a,, v=1, -+, N and L(f)=Ly/,)=a,.

Proof. 1f f, were not extremal for the Pick-Nevanlinna problem, there would
be a function f, with the same data and satisfying ||/, <|fol|. Since L, is in-
dependent of {L,}).,, there exists a function he X such that L, (h)=0, v=1, -, N
and Ly(h)#0. Then f,+eh< B for sufficiently small ¢ and we get a contradiction
that |Ly(f,+eh)|>|L(fy)| for a suitable e.

4. A wmqueness theorem. In this section we consider the Banach space
AB(2) of bounded functions f analytic in an arbitrary plane domain 20,5
normed by the supnorm |f|=supl|f(2)|, z€ Q. Let {L,}}., be linear functionals
which are continuous with respect to the supnorm on a compact subset K of £2.

[ fllx=sup | ()] .
€K

Let & be the family of functions f satisfying
Lv(f):aw )J:l, Tty N.

To avoid a trivial case, assume that inf ||f]|, f€, is positive. There exists a
minimal sequence {f,}%-; such that

£l — ing I/ 1=M, (s —> <)

Since {f,} forms a normal family, we may suppose that f,— f, on every
compact subset of 2. lim |f,=/fol. By continuity with respect to |f|x, /oG-
Hence f, is an extremal function.

By using Fisher’s method [5], we show uniqueness of the extremal function f,.

THEOREM 1. The extremal function fy 1s unique.

Proof. Suppose that there were another extremal function f,*. Set

g=(fo+[e")/2, h=(f,—F)/2.

Then we have

1
lgl*ial*= 5 (1ol + [f* =M.

and

lgl=M—5—

Since g is an extremal function for the Pick-Nevanlinna problem with data L,(/)
=a,, y=1, ---, N, by Proposition 1, g is an extremal function for the Pick-Nevan-
linna problem with a datum ¢,(f)=2> X, c,a,. Since the problem is conformally
invariant, we may assume oo 2.
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Let {z}7~, be the totality of zero points of h? on K counting multiplicity.
Then

2 m m
7 h 1 with |5 1T

> M. o Ta—2) <
2 M, »=1 (z—zv) v C—z, <1, CE&,Q

H(z)=

satisfies
lg(2)|+|H(2)| =M, 26 2
and
H(z)+0, zeK.

By making use of a variation g+¢H, |¢|=1, we have ¢(H)=0. Since |Hf/|f]|
<|H|, we get ¢(Hf)=0, for fe AB(Q).

We want to use Bishop’s approximation theorem [2] p. 48. Every domain
2« 0,45 has a minimal prolongation for which every fe AB(f2) can be analytically
extended onto the prolongation (Rudin [20]). We denote it by the same 2. By
adding relatively compact components of 2—K to K, we may assume that the
ideal boundary of every connected component of 2—K does not belong to the
class Np (for definitions see Sario-Oikawa [21]). Then from Bishop’s approxima-
tion theorem cited above, every analytic function on the compact set K is
approximated by functions of AB(£2). For an arbitrary function f€ AB(Q), f/H
is analytic on K. Hence there exists a function f. such that

1f/H—f ) x <e.
Since ¢o(Hf.)=0, we have ¢,(f)=0 which is a contradiction.

§2. Conjugate differentials.

5. Duality relation. In this section we consider a compact bordered Riemann
surface 2. Let X(2) be a real valued function harmonic in £ and continuous on
Q. We define a norm with respect to X for analytic functions f by

(2) X‘”f”: Szlél_g |f(z)e‘l(2)| X

We denote by X the Banach space of analytic functions f on £ satisfying
LISl <co. Let {L,})., be linear functionals on X continuous with respect to
the supnorm || ||x on a compact set K on 2. We consider the Pick-Nevanlinna
problem under the conditions L,(f)=a,, v=1, ---, N.

Since L, is defined on a linear subspace X of the space C(K) of continuous
functions on K, by the Hahn-Banach extension theorem it can be regarded as a
continuous linear functional on C(K). By the Riesz representation theorem there
exists a finite Borel measure dy, supported by K and such that

LAN=( S dp, f=CE).
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Let g(z, {) be the Green’s function of 2. For simplicity, we use the local
parameters z, { as the points of £ in this section. We define a transform of
L, by

® Wade=- (-2 o 0d @)z, 2K,

0 . 170 0 .
s being 7(_3?_1W)’ z=x+1y. Then we have

@) Sm Al (dz=L,(f) for every feX.

Here f(z) denotes the Fatou boundary value of f on 0£. Note that f is
bounded on 2.

Let § be the family of functions f< X satisfying L,(f)=a,, v=1, ---, N. We
state

THEOREM 2. Suppose that K does not separate the boundary of Q. If
My= inf X—|| />0,
rE%

then there exists a unique extremal function f,€F satisfying X-|fo|l=M,. More-
over, mn a sumply-connected newghborhood U of any boundary pownt of 2, the func-
ton fo(z)e” @@ can be analytically continued onto 02 N\U and |fe %] 1s
wdentically equal to My on 08. Here X* 1s a conjugate harmonic function of %(z)
wn U.

6. Proof of Theorem 2. As in No. 4, a routine use of the normal family
arguments proves existence of an extremal function f, for which X-||f,l|=M,.
Set

S={/IL(N=0, v=1, -+, N, fe X}.

From Lemma 1, we can deduce that there exists a ¢, for which ¢y(f,)
=X-Il /ol and

max ’¢(fo)lz¢o(fo)y ”410”:1’ SboESJ' .

¢St gi=1

Let A(2) denote the class of functions analytic in 2 and continuous on £.
Clearly A(Q) is a linear subspace of X. When we consider the restriction of &o
to A(R), its norm |,z never exceeds one. Transforming A(2) to X—A(2)
={X—fIX—f=e%f, f€AQ)} and ¢, to X—¢y: e 2f — Po(f), we see from the
Hahn-Banach extension theorem that ¢, is extended to the space C(082) of con-
tinuous functions on 92 with norm [|¢llze- By the Riesz representation theorem,
there exists a finite Borel measure dp supported by 9% such that

= . F=CGO)
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and that the total variation |le*du|| of e*dy is equal to |l¢ollzce-
By Proposition 1, ¢y= X -, c,L, and we have from (4)

Swf(dp—— zvzl old2)=0, for feA(Q).

From Royden’s extension of F. and M. Riesz’s theorem [18], we deduce that
du is of the form

dp=( é cl(2)+¢(2)dz, z€08 ,

where ¢,dz belongs to the class Q[18], that is, for a nonvanishing analytic dif-
ferential w on 2, ¢dz/w is an analytic function of the Hardy class of index one
and ¢,(z) is considered as its Fatou boundary value. It is well known that ¢(z)
is locally integrable under a boundary uniformizer and that for every bounded

analytic function f on £

S(mfgoodzzo .
Hence we have

N
ol fo=\ S Zedtodz.

Since

N

lerdpl={_etl 2 el ldzl=lgnlzo =1

and

N
M=( e tlen] 2 el gl 1dz), e | SM,,

N
we have [e*dul|l=1. By Riesz’s uniqueness theorem Zl(cvlv"l"f%)dz never vanishes

except for a set of linear measure zero. We infer that

5) | fo(2)e 2| =M, a.e. on 082
and
® S B bl pdz=0 ace. on 9.

To show the boundary property of f,, take a simply-connected neighborhood
U of a boundary point {. U is supposed to be represented as the demidisc V,
|z} <1, Imz=0 so that 02U corresponds to the interval (—1, 1) and { to the
origin. Take a conjugate harmonic function X* of X in V and set E(z)=¢ 2~ w'®
in V. Then we have from (5), (6)
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) | follx)E(x)| =M, a.e. x=(—1,1)
and
®) FOBOE S 6+ go(1)20

a.e. x=(—1,1).

Since the left hand side of (8) belongs to the Hardy class of index one, it
can be continued analytically to every x=(—1, 1). By Rudin’s lemma [19], this
together with (7) implies f,F is continued analytically to (—1, 1) and clearly
|foe | =M, on 0L.

We will show uniqueness. Let f,* be any extremal function. By the same
argument, we have |f,|=|f,*| on 2. From (8) after being analytically continued
we conclude that arg fy=arg f,*. We have f,=f* on 02 whence f,=/,*. This
completes the proof.

Remark. 1f we drop the assumption that K does not separate the boundary,
there might be components of 2—K for which (20, ¢,l,+¢,)dz=0. Then we have
no information about the value of f, on the part of 9 on those components
except that |fy(2)e | <M, However, since there is a component of 2—K for
which the differential does not vanish identically the uniqueness of the extremal
function still holds. Such an example does exist (Hejhal [117).

The relation given by (5) and (6) is called a duality relation and the dif-
ferential

©) d0o=( 3 el +¢)dz with S‘Qezld@o =1

is called a conjugate differential of f, in the Pick-Nevanlinna problem.
Following Garabedian [8], we state

COROLLARY 1. The conjugate differential d®, minumizes the integral
Sﬂgezld@o—l—gbdzl, pdz=Q.

Any duality relation for d®, n (9) characterizes the extremal function.

Proof. The extremality of d@, follows from

[ _Je ;
1_369 i (dq>0+¢dz)§gmeqd@o+¢dz| :

Next for feg, we have

M= f d0<t—1A1{ |ed s =1~171.
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7. The classical Pick-Nevanlinna problem. Let £ be a bordered Riemann
surface. To discuss this problem, we give a datum at a point p, in the follow-
ing form. For a fixed local parameter z(p) around p, with z(p,)=0, take a finite
Taylor section

D,(z2)= j a,”z .
7=0
For given N points {p,}}., and associated Taylor sections {D,}.,, consider the
family & of analytic functions in 2 satisfying that f(z)—D,(z) has a zero of order
at least n,4+1 at p,, v=1, ---, N. Then we show

THEOREM 3. If
M,=int | />0,
78

there exists a umque extremal function fo€F such that |fo|=M, on 082. Here
| I denotes the supnorm of f. If 2 1s of genus g and has h contours, then f,
maps 2 onto an at most X Y,(n,+1)+2g+h—2 sheeted disc |z| <M,.

Proof. Let K be the union of N mutually disjoint closed parameter discs A,
of {p,}i-,. We may suppose that A, corresponds to |z|=1 with z(p,)=0, v=1, -,
N. Let {L,}Y%, Ny= X2, (n,+1), be linear functionals defined by L,(f)=/(p.),
L(N)=f" (1), =+, Ly (/)=F""(py), where derivatives are those with respect to
the respective local parameters. Then the present problem is equivalent to the
Pick-Nevanlinna problem for those data. We remark that in this case L, is
explicitly expressed by a measure dy, on A,: dy,=(2miz)"'dz on |z|=1; =0 in
the interior of Ay, -, duy,=@mz"¥*")"'ny! dz on |z|=1; =0 in the interior
of Ay. From Theorem 2, we obtain a unique extremal function f, and its
conjugate differential d@, satisfying

fod®,=0 along 02.

We call the divisor d=p,"1p,"2 --- py"¥ the wnterpolation divisor of the (classical)
Pick-Nevanlinna problem and N, the degree of d. It is easy to construct a func-

tion F(z) which is analytic on 2 and has the same divisor as § (Heins [10]).
For every fe A(R2), fFES and

SmfF 40, =0 .

Again by Royden’s result [18] cited in No. 5, Fd®, is an analytic differential
on 2. Thus d®, is an meromorphic differential which is a multiple of 7%

Let 2 be the double of £. Since fod@,=0 along 082, f,d®, can be analyti-
cally continued to £. The genus of 0 is equal to 2g+h—1. Hence the degree
of (fod®,) is equal to 2(2g+h—2). Since f,dD, has possible poles at p;, the sum
of whose orders is equal to at most N, in £, by symmetry the amount of the
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orders of the poles f,d®, on 2 is not greater than 2N,. Hence the number of
zeros on 2 is at most 2g+h—2-+ N,.

§3. Generalizations.

8. The Pick-Nevanlinna problem for arbitrary domawns. Let 2 be a sub-
domain of a compact Riemann surface R of genus g. Suppose that £ does not
belong to O,5. We may suppose that the genus of 2 is equal to g. Let X(z) be
a real valued harmonic function in £. As in No. 5, we define the X-norm by
(2) and set

X={f|f is analytic in 2 and X-|| f| <co}.

To avoid a trivial case X(z) is supposed to be taken so that X+ {0}. We take a
canonical exhaustion {£,}7-, of 2. Let X-|f||, denote the X-norm of f in £2,.
Let there be given N linear functionals {L,}}.,, each of which is continuous with
respect to the supnorm | f||x of f on a compact subset K of 2. We may sup-
pose KCf2,. Moreover we suppose that K does not separate the boundary of
2. Then each £, enjoys the same property with respect to 082, and K. Let
T» be the family of functions f analytic in 2, and satisfying L.(f)=a,, v=1, -,
N. We denote by & the corresponding family in 2.
Suppose

0<M,=inf X—| f|| <oo.
sE€%

Then a normal family argument shows that there exists an extremal function f,
such that M,=X—|f,l, L.(fo)=a., v=1, ---, N. By Proposition 1, we get a linear
combination

such that
U(f)=_ max [F()=1—I1l,

1Fi=1,¥cs
and that f, is an extremal function for the Pick-Nevanlinna problem with a
single datum ¥'(f)= > ¥, c.a,.

Now we consider the Pick-Nevanlinna problems for the norm X-||f|, with a
single datum ¥ (f)= 2., c,a, in each £2,. Then there exists a unique extremal
function F, and its conjugate differential d@, satisfying |e #®F,(z)|=M, on
082,. On the other hand there exists a unique extremal function f, satisfying

M,/ =2-|fall= inf X-| f].
SEFn

Those are direct results from Theorem 2. Clearly M,<M,’. We state
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THEOREM 4. The sequence {f,} converges lo a unique extremal function f,
umiformly on every compact subset of £.

9. A Cauchy kernel. Before proving Theorem 4 we prepare

LEMMA 2. Let g be a non-Weierstrass pownt of R in Q2. Then for a fixed
parameter disc U of q there exists a meromorphic function C(p, r), r€ U, called a
Cauchy kernel, satisfying the condition that C(p, r) is analytic apart from p=r,
at which 1t has an expansion

C(p, r)= +regular terms, pe U, {=2z(r).

1
2ni(z( p)—C)
and that C(p, ) 1s unmiformly bounded wn a newghborhood of the boundary of £ if
v lies wn any compact subset of U.

Proof. We take a parameter disc U whose closure contains no Weierstass
points. Then for » U there exists a meromorphic function Q(p, r) on R with
a single pole of order g+1 at p=r, where it has an expansion

b,
z2(p)—C¢

Q(p’ 7’): + + -4

1 bg
2ri(z(p)—0)E  (@(p)—0)*
+-regular terms, pe U, {=2z(r)

Such a function is uniquely determined as a definite integral of a linear
combination of normalized differentials of the first and the second kind. From
the symmetry law [22], we can deduce that those differentials and their periods
are continuous with respect to the parameter 7.

Let fy(p, r) be the Ahlfors function of £ which satisfies f(r, ¥)=0 and

10, ) e=max |dfp() dzl ],
/151 f)=0.

It is easy to see the Ahlfors function is unique for such a Riemann surface
Q. In fact, in order to use Fisher’s method [5] we need a meromorphic function
with a simple pole at 7, analytic in 2—7 and bounded near the boundary. Since
& 0,5, there exists a bounded function A(p) which has a zero of some order,
say n, at . On the compact Riemann surface R containing £, there exist
meromorphic functions g(p) with a single pole at ». The order of the pole can
be taken as an arbitrary positive integer m greater than an integer m,. Set
m=nk+1>m, Then h*g is a desired function. Write f,(p, N)=Sfo(z, ). We
show that f,/(¢, {) is continuous with respect to {, rU. Since

folz, £)—/lC, T
1—=7o& O)folz, ©)

denotes a competing function in the problem to determine the maximum at ¢,

yr'el, U'=zF')
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we have
e T
whence
I =1 DA = 285
Similarly we have
o T AT

Since by uniqueness

hﬂ“ Tz, =1z, ©

uniformly on U, we get the continuity of f&, © for reU.
Now set

C(p, N=Q(p, NS, /S, OF, r=rQeU

Then C(p, r) has the desired singularity and since f,/({, {) is continuous and
positive [217, C(p, r) is uniformly bounded in a neighborhood of 92 if » lies in
any compact subset of U.

10. Proof of Theorem 4. Under the notations in No. 8, we have M,=M,’
<M, and lim M,=M,. Clearly {F,} forms a normal family. If we establish the
uniqueness of the extremal function, the proof of Theorem 4 is completed. Hence
we may suppose that {F,} tends to a function F, uniformly on every compact
subset of Q. It is easily verified that F, is an extremal function of the original
Pick-Nevanlinna Problem in 0.

Define a transform [, of L, by (3). For every f analytic in £, and with
X—| fll . <oo, there holds

L(N=| Sz v=1, -, N.
Hence for a conjugate differential d@, of F,, we have an expression
d@nZ(knﬁV]c,lu(z)—H/}n)dz along 02, .
v=1

Here k, is defined by

(Y = Ma
kn—"(vgl Cuav) A/[n— A{o ’
and ¢, dz belongs to the class Q on 2,.
We shall show that {Fy,dz} forms a normal family in the following sence:
for every compact BCQ and a nonvanishing analytic differential wz on B,
{Fo¢ndz/wp} is normal on B.
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Take a non-Weierestrass point p, in -9, and its parameter disc U in
Lemma 2 and contained in 2—2,. We have

FuD$u(+hn 2 6l(2)

=000, PO 0O D,

Clg(®), p(2)=C(, 2), p(x)€U.

By Lemma 2, |C(#, z2)| =L on 02,XU for sufficiently large n. We have

[, Folntta Zal)CCt, 2dt| SLM,,

a

since |eFy =M, on @ and [ Igutk B ablerldt]=1, and

S FupuC(t, 2)dt=0,
021

since C(g, p) is analytic in £2,. Since k, — 1 (n — o), {F¢,} is uniformly bounded
on U. Since the set of all Weierstrass points of R is finite, we may suppose that
02,, n=1, 2, --- contains no Weierstrass points. Then 02, n=2 is covered
by a finite number of parameter discs for which {Fy¢,} is uniformly bounded.
Then for a non-vanishing analytic differential wg, on 9., by the maximum prin-
ciple {Fypndz/wg,}7-n is uniformly bounded on 2. Hence {Fopadz/wg,} forms
a normal family. Changing notations we may suppose that {F,¢.dz/wg,} con-
verges to Fy),dz/wg, uniformly on 2,.. We say that {Fordz} converges to an
analytic differential f,¢,dz. Since convergence of {F {.dz/wg,} implies that of
{¢ndz/wg,}, {¢ndz} converges to an analytic differential ¢odz uniformly on every
compact subset of 2. Note that F,z0. Thus d@,=(k, 2, c.l+¢,)dz tends to
an analytic differential d@,=(Z I, c.,+¢o)dz in 2—K.

Now Hejhal’s method [11] provides the uniqueness of the extremal functions.
Let Fy* be any extremal function of the Pick-Nevanlinna problem in £. Let C(2)
be the Banach space of complex valued functions 4 continuous in £ and normed
by the supnorm |k|l. We define three sequeces of linear functionals

T;y(h):gw hE,dD,,

T;”(h)zgm h %0 F,d®,,

Tomw=| h M,

* = e
20, M, Fo*d®,, n=1, 2,
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We have |T?|=M,=M,, =1, 2, 3. In fact
|, 1Fuao,1=( F.d0,=M,,
29, 99

and |Fee %] and |F,*e | are bounded by M, in £. By Hejhal’'s lemma ([11] p.
102) for those three sequences we can find a subnet {na} of {n} for which they
have a common weak star limit 7.

We take a non-Weierstrass point p, and its parameter disc U so near to the
boundary 0f2 that there exists an Ahlfors function fo(p, r) such that

irl}f |fo(p: r)|>rl:71.gz)( [fo(p, DI

Since 2& 0,45 and since supglfo(p, 7)|=1, such a point p, exists. We have

T (ED—F A )0 p(2)

- M, o (Lol )\
=000 1 EFO (L) o, 040,

0/ (pE)= kel L+, k=M My

Taking the subnet {na} and letting it tend to oo, the integral along 02,
tends to zero. Since C(gq, p) is regarded as the restriction of a bounded con-
tinuous function to a boundary neighborhood, the integral along 02,. also tends

to zero. We get (Fo(p)—Fo*(9)dDo(p)=0in U. Since Sa Fod®,=M,>0, d®,20.
We get F,=F,* in 2 which completes the proof. &

§4. Special problems

11. Meromorphic functions. In this section we consider the classical Pick-
Nevanlinna problem for wider classes of functions. For simplicity we restrict
ourselves to a plane domain £. For a moment, suppose that £ is bounded by £k
analytic Jordan curves (k=1). Let £, j=1, ---, [, be a finite number of mutually
distinct points. We take X(z) as the superharmonic function

X(Z)z J=121 mjg(zx t]) ’

m, being positive integers and g(z, ) being the Green’s function of £2. Let
{¢,}i., be mutually distinct points in £. We give data at {, by Taylor or
Laurent sections:

D,,(Z): ;LE:OG;:)(Z_—CU)ms Cvit] ’
(10)
Ny
D,,(Z): m=2-m aﬁr’i)(Z—CQm, CD:tJ .
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Let & be the family of functions meromorphic in £ which have the given
data at {,. Our problem is to minimize

X-Ilfll=sup|f(z)e x| .

Write M, for the minimum and suppose M,>0.
The set X of meromorphic functions f defined by

X={/ x|l ] <eo}

forms a Banach space. Every function f€X has possible poles at ¢, of order m,.
Let h be a function analytic on © which vanishes at t, precisely of order m,
and has no zeros other than ¢,, We can set A= IT%., (z—t,)™1/(z—&)™, E& 2.
Then hf is a bounded analytic function if f= X. Consider a Banach space
X, of bounded analytic functions /' normed by X,-| fl|=sup|f(2)h(z) e 2|, z& .
By this transformation we have the new data

(1D D¥(2)=[n(2)DS2)]n,+m, ,

where [ Jv,+m, denotes a Taylor segtion up to order N,+m, with m, =0 if {,#¢,.
Since —log|i|—X(z) is harmonic on £, Theorem 3 is applicable. We get

THEOREM 5. There exists a umque extremal function f, and its conjugate
differential d®, for the Pick-Nevanlinna problem with data (10). f, is meromor-
phic on @ and |f,| is equal to M, on 8R2. d®, s a meromorphic differential on
Q which 1s a multiple of the divisor 0= T1{, &Y™ 1T t™, when j runs over
non-nterpolation pownts t,. d®, satisfies

Sag 4@, =1

and the duality relation
fod®@,=0  along 092,

which characterizes the extremal function f,.

Proof. 1t is easy to see that the extremal function F, for the transformed
Pick-Nevanlinna problem with the data (11) in X, yields the solution f,=F,h" .
sup | Fo(2)h (2)e™ 2@ | =M, on 082 and ¢ %=1 on 02. Thus |f,|=M, on 0£2. As
in the proof of Theorem 2, there exists a conjugate differential d®@, for F,
satisfying

S | herd®,| =1
29
and F, d®,=0 along 02. Put d®,=h d®,. We have
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and f, d®,=0 along 0. As in the proof of Theorem 3 d®, is a multiple of
I, &Vt Hence d@,=h d®, has the desired property concerning the divisor
of d®,. The uniqueness of f, and its characterization follow from Theorem 2
and Corollary 1.

Many years ago R. M. Robinson [17] proved a generalization of the maximum
principle for meromorphic function with one pole in an annulus £, R™'<|z|
<R (R>1). It follows from a solution of our extremal problem. We state it as
the following

COROLLARY 2. Let f(2) be meromorphic in an annulus 2, R™'<|z|<R (R>1),

which has possibly one sumple pole at z=—t, R™'<t<R. If Tim ,.s0|f(2)| =1, then
[f(O)] =1 for RT'<x<R.

Proof. The Green’s function g(z, x) of 2 yields a positive differential
1 0
d®,= P g(z, x)dz>0 along 08.

Since g(z, x) is symmetric with respect to the real axis, it has a critical point £,
on (—R, —R™). By the argument principle there exists only one critical point.
Set dw=idz/z which is positive along |z|=R~! and negative along |z|=R. We
construct positive differentials

d@x:d¢0+ Zda) s

where the real parameter 2 runs on a interval (—2,, 4,), 4, 4,>0 so that d@;
remains positive along 0£2. The zero of d®, moves from f, to —R and from ¢,
to —R™* as A moves from 0 to A, and from 0 to —A, respectively. The there
exists a A, such that d@,=0 at z=—1.

Consider the Pick-Nevanlinna problem with single datum f(x)=1 for the class
of meromorphic functions with possible pole at —¢. Here the norm of f is given
by X—|fll=sup|f(2)e ¢=v|, z€ 0, X=g(z, ). Clearly f,(z2)=1 is an extremal
function. Indeed

Smd(pltzgagld@‘lzl

and
fod®,,>0  along o2

is a duality relation. If |f(x)|>1 we get a contradiction X-||f///(x)| <1.

12. General domains. Let £ be a plane domain which does not belong to
O¢. For the Green’s function g(z, t) of 2 we set as before

]
Y(z)= Zlmjg(z, t,), e,
=

We consider the Pick-Nevanlinna problem with data (10) for the same as in
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No. 11. We take a canonical exhaustion {£,};., such that all ¢, and {,€2,.
Then from Theorem 5 we obtain a sequence of extremal functions {f,} and

l
conjugate differentials {d®,} with X,= Z‘im,gn(z, t;), g(z, t;) being the Green’s
function of 2,. We show !

THEOREM 6. If
0<M,=inf X-| fl| <o,
fEY

the sequence of extremal functions {f,} converges to a unique extremal function
fo uniformly on every compact subset of 2. Here § is as in No. 11.

Proof. Consider the Pick-Nevanlinna problem with the same data (10) for
the norm X-||f],=sup |f(2)e 2|, z€2,, in 2,. Let F, be the corresponding
family for the problem.

Then M,=inf;c§X-| fll.>0 and is increasing with respect to n. In fact, if
M,=0, all the data vanish and M,=0. The monotonicity of M, follows from
the fact that %’;,,HC%,,. Similarly as in the proof of Theorem 5, there exists a
unique extremal function f, and its conjugate differential d&, which satisfy

12) | Fue 2| =M,, 2z€02,,
(13) Fnd®,=0  along 02,,

and

(14) angmn 7.dB,, with Sagnezld@nlzl.

d®, is a multiple of TT2., &, "V*"*"™ [] t,”s, where j runs over non-interpolation
points ¢, Since |fne *®| satisfies the maximum principle, | f,e *®| is uniformly
bounded. Then we may suppose that {f,} tends to a meromorphic function f,
uniformly on every compact subset of . Here spherical distances are taken in
the convergence. It is easy to see that f, is one of the extremal functions in .
On the other hand, by the same reason, |f,e *»| is also bounded and every infinite
subsequence of {f,} contains a subsequence converging to an extremal function.
If we show that the extremal function f, is unique, the proof is complete.

Let S be a subspace of X consisting of meromorphic functions with vanishing
data, that is, D,(2)=0, v=1, 2, ---, N.

If S={0}, then the extremal f, is unique. Next suppose that h==0 belongs
to S. For the sequence of conjugate differentials {d®,}, we have

[, 1had, 1=  iheread,i=rinl.
2y 09y,

Since
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{h(2)8,'(2)} is locally uniformly bounded. Hence we may suppose that {@,'}
tends to a meromorphic function @,/(z) uniformly on every compact subset of £.
Since

M= Judd,

from (14), @,(2)=0.
Let f,* be any other extremal function. We define three sequences of

measures,

2@ 50,

d/lnz M,
0 otherwise
Sod®n on 82,
di,={ Mo
0 otherwise
and
e
S e,
dﬂn*: M,
0 otherwise .

We have |dy,|=1 from (13) and (14), |d#,| =<1 and |dp,*| =1, since |fie7r|<1,
| fo*e~tn| =<1 on 02,.
By taking subsequences, we may suppose that
{duat — dpo, {ditn} — dito, {dpn*t — dp™*

in weak star convergence as n — oo. Since f,, f, and f,* have the same data,
we find by the calculus of residues

ldzal =[den=1

and
i e M
= *=
Sd,un Sd/un M,
Clearly |df,|<dg, and |dpn*|=dpn. Since My/My— 1 as n—co, we have
dpo=dg,=dp,*. For h=f,—f*&S

(@)= FHNO =y | () =0

as n— oo, since 1/({—z) is continuous in a neighborhood of 02.

9, (z)=lim @,'(2)%0.
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We have fy(2)=f*(2).

Remark. The case where S={0} does exist. For example, suppose that £
belongs to O,p—0s Set Xz)=—g(z, t), te . We give a datum D,(z)=(z—1)"!
so that f(z)—D,(z)=0 at z—t+#oco. Then the extremal function is (z—¢)"' and
S={0}.

13. Functwon with characters. Extremal problems for a class of mutiple-
valued functions were recently dealt with by Widom [23]. Let f be a multiple-
valued function whose modulus is single-valued. Then continuation of a function
element of f along a closed curve ¢ results in multiplication by a constant I ;(c).
I" /(¢) depends on the homotopy class containing ¢. Since I";(c) is given by

o=,
I';(c) is a character on the homotopy group n(£2) of £ or the homology group
H,(Q). We consider the classical Pick-Nevanlinna problem with fixed I'(c).

Let 2 be a plane domain bounded by £ analytic curves. In this case we fix

a point {,=£2. We give N data at {{,}}, {2

(15) D)= 2 0¥ (z—L)

and fix a system of curves {r,}#L, such that 7, connects {, with {,. Let Fr be
a family of functions f multiple-valued, analytic, with character I”, and such that
the analytic continuation of a fixed element of f along 7, has the same Taylor
section (15).

Then we show

THEOREM 7. Under the nontriunality condition
M,= inf |[/]>0,
JE3r

there exists a umque extremal function f, which muninuzes |fl. |fol =M, on 022
and [, has at most

N
gl (n,+1)+k—2
zeros.

Proof. 1t is easy to transform the problem into that for single-valued func-
tions. Let {C,}%z! be the boundary contours except C,, which form a homology
basis. Let w;(z) be the harmonic measure of C,, We construct a linear combina-
tion 2(z)=2X ¥l x,w,(2) so that

k-
S lide*:_F(Cl)) 121: ) k—1.

cg y=1

This has clearly a solution [1]. Set E(z)=e%®*+7'®» where X*(z) is a con-
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jugate harmonic function of X(z). Then for fe$r, fE(z) is single-valued. By
taking Taylor sections of D (z)E(z) up to n,, we get the new data,

(16) D(z)= z Bz~

We consider the Pick-Nevanlinna problem with data (16) for the Banach
space of analytic functions f normed by X—| fll=sup |f(2)e 2|, z& Q2. Then
Theorem 2 is applicable and we obtain a unique extremal function F, with
|Fo(z)e x® | =M, on 0. Now it is easy to check that f,=F,/E is the desired
extremal function.

To examine the number of zero points of f,, take a conjugate differential
d®, of F,, which has poles of order at most n,+1 at {,. Since F,d®,=0 along
982, it is continued analytically onto the double £ of Q. Similarly as in the
proof of Theorem 3, we get the bounds of the number of zeros of Fy, > ., (n,+1)
+k—2. Since E+0, the proof is complete.

Let Q2 be an arbitrary domain €O, Let a character I” on H,(2) be given.
We consider the classical Pick-Nevanlinna problem with data (15). We take an
exhaustion {£2,} on £ such that 2, contains {{,};, {, and {7,}{Z;. The restric-
tion of I” to £,, denoted by [, is a character on H,(2,) and the Pick-Nevan-
linna problem with the same data has a unique solution f,(z). We state

THEOREM 8. If
0<M,= inf ||f]|<oo,
fESr

the sequence of extremal functions {f,} converges to a unique extremal function
fo uniformly on every compact subset of £.

The proof is verbatim of that of Theorem 6 and will be omitted.
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