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ON THE PICK-NEVANLINNA PROBLEM

BY JAMES A. JENKINS AND NOBUYUKI SUITA

Introduction

Let there be given a finite number of points z3 in the unit disc Δ and assigned
data Wj, \Wj\<l at z3, j=l, ••, N. The classical Pick-Nevanlinna (interpolation)
problem asks whether there exist functions analytic, bounded by unity in Δ and
satisfying f(2j)=wJt j=ίf —, N (Pick [16], Nevanlinna [14], [15]). When this
class of functions is found to be non-void, the set {/(z0)}, called the "Wertevorrat"
should be investigated [15] and the problem can be transformed into a linear
extremal problem for the functional Re(eίθf(z0)) under the given data. The
problem was generalized for multiply-connected domains and the linear extremal
problem was solved by Garabedian [8]. He formulated a dual extremal problem
for the Schwarz lemma there, which has been a useful tool for extremal problems.

Duality in a problem with side conditions as in the Pick-Nevanlinna problem
was not known for a long time until Havinson [9] found a dual extremal problem
for the general Carleman-Milloux problem. Recently a formulation of dual ex-
tremal problem for the general Pick-Nevanlinna problem was given by Gamelin
[6]> [7]. More recently Hejhal [12] has shown how the method of dual extremal
problems can be applied to both problems.

In the present paper we are concerned with the Pick-Nevanlinna problem.
We treat the problem under the formulation of Caratheodory-Fejer [3] i. e.
minimize the norm of / among the functions with side conditions (e.g. f(zj)=w3,
j—l, •••, N). This formulation will allow us a symmetric treatment of the problem.
By using a well-known duality in Banach spaces, the problem is reduced to a
linear extremal problem for a single functional, which was investigated by Hejhal
[11] a great deal. It should be noted that another duality relation was used by
Lax [13] many years ago and that it was a fundamental technique for the case
of regular regions in Hejhal [11]. Our duality, a counterpart of theirs, provides
us with a conjugate differential conveniently. We also note that linear extremal
problems in Gamelin [6], [7] and Hejhal [12] can be reduced to our formulation.

In § 1 we shall show how the Pick-Nevanlinna problem under Caratheodory-
Fejer's formulation is reduced to a linear extremal problem for a single functional.
The relationship with Gamelin's formulations will be discussed there. We also
show the uniqueness of extremal functions in the space of bounded functions.
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In § 2, conjugate differentials will be obtained from the duality relation on a
compact bordered Riemann surface. Here Royden's result [18], an extension of
F and M Riesz's theorem, is useful.

§3 will be devoted to discussion of uniqueness of the extremal for the Pick-
Nevanlinna problem in a more general situation. We shall need a sort of Cauchy
kernel for differentials in order to apply HejhaΓs method to a subdomain of a
compact Riemann surface which does not belong to OAB [21].

In §4 we shall treat the classical Pick-Nevanlinna problem for meromorphic
or multiplicative functions. To this case, while the problem is transformed into
the single-valued case, HejhaΓs result [11] cannot be applied directly.

§ 1. General principles, interpolation for bounded functions.

1. Problems. Let Ω be a subdomain of a compact Riemann surface, which
does not belong to OAB and let X{Ω) be a Banach space of functions / analytic
in Ω with norms ||/||. A general Pick-Nevanlinna interpolation problem for a
finite number of data will be formulated in the following way: let there be given
a finite number of linear functionals L3 continuous with respect to the supnorm
on compact subsets K} of Ω, each of which does not separate the boundary dΩ
of Ω and the same number of data aJf j — 1, •••, N. Do there exist functions of
X(Ω) which satisfy | | / | | ^1 and Lj(f)=aJf j=l, •••, N? In the classical Pick-
Nevanlinna problem we just consider the Banach space AB(Ω) of bounded analytic
functions /, with supnorm | |/ | |=sup \f(z)\, z^Ω and take the values of / or more
generally the values of successive derivatives at a finite number of points z3,
j — \ y ..., N as the data of the linear functionals. Here, for simplicity, we used
Zj as a fixed value of a local parameter at a given point. The latter condition
is equivalent to giving Taylor sections

(1) D,= Σ aXz-ZjY at zJ} ; = 1, - , N.

Quite recently Heins [10] proved uniqueness of the extremal function f0

which maximizes Re (eiθ f(z0)) among the class of analytic functions / bounded by
unity and with given Taylor sections (1) at zJ} Zjφzo, j=l, •••, N on a compact
bordered Riemann surface Ω. He also proved the extremal f0 maps Ω onto a
finite sheeted covering of the unit disc and gave a bound of the number of sheets
called the Garabedian bound.

In No. 4 of this section we show uniqueness for extremal functions for the
general Pick-Nevanlinna problems for the class of bounded functions on a sub-
domain Ω of a compact Riemann surface. Other properties such as the Garabe-
dian bound will be discussed in § 2.

2. Fundamental lemma. We state a well-known lemma, a duality result in
a Banach space X.

LEMMA 1. Let X be a Banach space with norm || ||. Let S be a closed
subspace of X. Let SL denote the annihilator of S, that is, the set of all con-
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tinuous linear functionate ψ such that ψ(x)—0 for x^S. Then for each fixed

max \φ(x)\= inf \\x+y\\ .

Here "max" indicates that the suϋremum is attained.

For a proof the reader is referred to Duren [4] p. 111.

3. Relation to other formulations. First of all we see that our Pick-Nevan-
linna problem with finite data can be reduced to that with a single datum. We
state it in the most general form.

PROPOSITION 1. Let X be a Banach space of functions analytic in a open
Riemann surface Ω normed by || ||. Let {Lυ}ίLi be continuous linear functionate
on X. Suppose that there exists an extremal function fQ which minimizes the norm
11/11 in the family § of functions / e l satisfying Lv(f)=av, v~l, ••• N. Then there
exists a linear combination

N

ψo= Σ cvLv
v = l

for which the f0 is an extremal function of the Pick-Nevanlinna problem with a
single datum L0(f)= Σ J^ cvav.

Proof. Let 5 be a closed subspace of X defined by S={f\fe=X, L*(/)=0,
v=l, •••, N}.

By Lemma 1, we have

max

It is easy to show that ψo^SL implies that ψ0 is a linear combination of {LJίLi i. e.

N

ψo= Σ cvLv.

Since 11̂ 11 = 1, for every /eft we have | | / | | ^ \ψo(f)\ = | Σ U Mf)\ = \ Σ JLi

<\,αj=ll/ol|.
We may suppose that ψo(fo)= \ψo(fo)\ multiplying by a constant. This means

that the / 0 is extremal for the Pick-Nevanlinna problem with a single datum
φo(f)=Έ?=iCvav.

We consider the Garabedian-Hejhal-Gamelin formulation. Let B be the unit
ball in X. Consider a linear extremal problem : maximize |L o (/) | , / G 5 under
the side condition Lv(f)=av, v~l, •••, N, where Lo is a given continuous linear
functional which cannot be expressed by a linear combinations of {Lv}?=1. Sup-
pose that there exists an extremal function / 0 for the linear extremal problem.
Then the relation to the Pick-Nevanlinna problem is given by



PICK-NEVANLINNA PROBLEM 85

PROPOSITION 2. The extremal f0 is an extremal function for the Pick-Nevan-

linna problem with N+l data Lυ(f)=aυ, v=l, •••, N and L 0 ( / ) = L 0 ( / 0 ) — a Q .

Proof. If /o were not extremal for the Pick-Nevanlinna problem, there would
be a function fλ with the same data and satisfying | |/J <| |/ 0 | | . Since Lo is in-
dependent of {Lυ}ίLi, there exists a function / I G I such that Ly(/z)=0, v=l, •••, N
and L0(h)φ0. Then f^εh^B for sufficiently small ε and we get a contradiction
that |L 0(/i+ε/ΐ)l> |£o(/o)l for a suitable ε.

4. y4 uniqueness theorem. In this section we consider the Banach space
ΛB(Ω) of bounded functions / analytic in an arbitrary plane domain Ω&OAB

normed by the supnorm |]/||=sup 1/(2)1, z^Ω. Let {Ly}jLi be linear functionals
which are continuous with respect to the supnorm on a compact subset K of Ω.

Let § be the family of functions / satisfying

Lv(f)=av, v=l, - , N.

To avoid a trivial case, assume that inf | |/ | | ,/efί, is positive. There exists a
minimal sequence {/n}~=i such that

II/JI — > inf 1|/||=MO (n — > oo).

Since {fn} forms a normal family, we may suppose that fn-+f0 on every
compact subset of Ω. lim | | / n | | ^ | | / 0 | | . By continuity with respect to ||/|]A'»/oef?
Hence / 0 is an extremal function.

By using Fisher's method [5], we show uniqueness of the extremal function /0.

THEOREM 1. The extremal function f0 is unique.

Proof. Suppose that there were another extremal function /0*. Set

^=(/o+/o*)/2,A=(/o-/o*)/2.

Then we have

1
Q 2 I \ Jη 2 I I 1 / ^

l o l Γ|' i'| Λ \ I j 0 I 1 IJ 0

I

and

Since ,g is an extremal function for the Pick-Nevanlinna problem with data Lv(f)
=av, v=l, •••, N, by Proposition 1, g is an extremal function for the Pick-Nevan-
linna problem with a datum ψo(f)= Σ v^i cvav. Since the problem is conformally
invariant, we may assume



86 JAMES A. JENKINS AND NOBUYUKI SUITA

Let {zv}™=ι be the totality of zero points of h2 on K counting multiplicity.
Then

I I ^ with
Z M o υ=l \Z — ZV)

satisfies

and
H(z)Φθ,

By making use of a variation g+εH, | ε | = l , we have ψo(H)=O. Since \Hf/\\f\\\
<\H\, we get ψo(Hf)=0, for f^ΛB(Ω).

We want to use Bishop's approximation theorem [2] p. 48. Every domain
Ω&OAB has a minimal prolongation for which every /<ΞΛB(Ω) can be analytically
extended onto the prolongation (Rudin [20]). We denote it by the same Ω. By
adding relatively compact components of Ω—K to K, we may assume that the
ideal boundary of every connected component of Ω—K does not belong to the
class NB (for definitions see Sario-Oikawa [21]). Then from Bishop's approxima-
tion theorem cited above, every analytic function on the compact set K is
approximated by functions of ΛB(Ω). For an arbitrary function / e AB(Ω), f/H
is analytic on K. Hence there exists a function fε such that

\\f/H-fε\\κ<ε.

Since φo(Hf6)=Q, we have ψo(f)=O which is a contradiction.

§2. Conjugate differentials.

5. Duality relation. In this section we consider a compact bordered Riemann
surface Ω. Let X{z) be a real valued function harmonic in Ω and continuous on
Ω. We define a norm with respect to X for analytic functions / by

We denote by X the Banach space of analytic functions / on Ω satisfying
%-||/||<oo. Let {Lυ}ίLi be linear functionals on X continuous with respect to
the supnorm || |U on a compact set K on Ω. We consider the Pick-Nevanlinna
problem under the conditions Lυ{f)=av, v=l, •••, N.

Since Lv is defined on a linear subspace X of the space C(K) of continuous
functions on K, by the Hahn-Banach extension theorem it can be regarded as a
continuous linear functional on C(K). By the Riesz representation theorem there
exists a finite Borel measure dμv supported by K and such that
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Let g(zt ζ) be the Green's function of Ω. For simplicity, we use the local
parameters z, ζ as the points of Ω in this section. We define a transform of
Lv by

(3) Uz)dz=z-

-=— being -jrl-z ι-z—\ z=x+ιy. Then we have
oz 2 \ ox By /

(4) \aQAz)lJLz)dz=LJ(f) for every

Here f(z) denotes the Fatou boundary value of / on dΩ. Note that / is
bounded on Ω.

Let fj be the family of functions f^X satisfying Lv(f)—av, v=l , •••, N. We
state

THEOREM 2. Suppose that K does not separate the boundary of Ω. If

M0=inf χ-||/| |>0,
/eg

then there exists a unique extremal function / 0 ^ S satisfying X-||/0 | |=M0. More-
over, in a simply-connected neighborhood U of any boundary point of Ω, the func-
tion /0(>)β~(χ(2)+ι**C2)) can be analytically continued onto dΩr\U and \fQe~χ\ is
identically equal to Mo on dΩ. Here X* is a conjugate harmonic function of X(z)
in U.

6. Proof of Theorem 2. As in No. 4, a routine use of the normal family
arguments proves existence of an extremal function f0 for which %-||/0||— Mo.
Set

S={f\Uf)=0, v=l,-,N,f^X}.

From Lemma 1, we can deduce that there exists a ψ0 for which </>0(/0)

=Z-ll/oll and

max I#/„)I =<&.(/„), 11 .̂11=1, ί&.eS 1 .
φ&S1' 11011 = 1

Let A(Ω) denote the class of functions analytic in Ω and continuous on Ω.
Clearly A(Ω) is a linear subspace of X. When we consider the restriction of ψ0

to Ά(Ω), its norm \\φo\h(Ω) never exceeds one. Transforming Ά(Ω) to 1—Ά(Ω)
= {X-f\X-f=e-*f,fe=Ά(Ω)} and φ0 to X-φ0: e~*f-> ψo(f), we see from the
Hahn-Banach extension theorem that ψ0 is extended to the space C(dΩ) of con-
tinuous functions on dΩ with norm H^ollicβ). By the Riesz representation theorem,
there exists a finite Borel measure dμ supported by dΩ such that

Φo(f)=\ fdμ
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and that the total variation \\eχdμ\\ of eχdμ is equal to WΦOWMΩ)-
By Proposition 1, ψQ— Σ ΰ=ι cvLv and we have from (4)

[ Adμ- Σ cjudz).=θ, for f^Λ(Ω).
J3Ω v—i

From Royden's extension of F. and M. Riesz's theorem [18], we deduce that
dμ is of the form

dμ—CΣ cjv(z)+ψ{z))dz, z e dΩ ,

where φodz belongs to the class Q[18], that is, for a nonvanishing analytic dif-
ferential ω on Ω, φdz/ω is an analytic function of the Hardy class of index one
and <po(z) is considered as its Fatou boundary value. It is well known that ψ{z)
is locally integrable under a boundary uniformizer and that for every bounded
analytic function / on Ω

Hence we have

dΩ v = l

Since

and

l
ΘΩ

lΣ
y = l

N

we have \\eχdμ\\=l. By Riesz's uniqueness theorem Σ (cJv-
J

Γφ0)dz never vanishes
y = l

except for a set of linear measure zero. We infer that

(5) \Uz)e'^\=Ma a.e. on dΩ

and

(6) flz)φχcJLJίz)+φJίz))dz^$ a.e. on dΩ.

To show the boundary property of f0, take a simply-connected neighborhood
U of a boundary point ζ. U is supposed to be represented as the demidisc V,
\z\ <1, Im^^O so that dΩr\U corresponds to the interval (—1, 1) and ζ to the

origin. Take a conjugate harmonic function X* of 1 in V and set E(z)=e~χC^~ιχ*Cz)

in V. Then we have from (5), (6)
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(7) |/β(.t)£(*)|=Λ/, a.e. χ e ( - l , 1)

and

Σ(8) Mx)E(x)E-ι(x)(

a. e. i£(- l , 1).

Since the left hand side of (8) belongs to the Hardy class of index one, it
can be continued analytically to every # e ( — 1, 1). By Rudin's lemma [19], this
together with (7) implies f0E is continued analytically to (—1, 1) and clearly
\foe-z\=Mo on dΩ.

We will show uniqueness. Let /0* be any extremal function. By the same
argument, we have | / 0 | = |/0*l on dΩ. From (8) after being analytically continued
we conclude that arg/ 0 =arg/ 0 *. We have f0— /0* on dΩ whence / 0 = / 0 * . This
completes the proof.

Remark. If we drop the assumption that K does not separate the boundary,
there might be components of Ω—K for which (Σ£=i cJv+φ0)dz=0. Then we have
no information about the value of f0 on the part of dΩ on those components
except that \fo(z)e~χU)\^Mo. However, since there is a component of Ω—K for
which the differential does not vanish identically the uniqueness of the extremal
function still holds. Such an example does exist (Hejhal [11]).

The relation given by (5) and (6) is called a duality relation and the dif-
ferential

(9) dΦ0=CΣcvlv+ώ)dz with f e*\dΦQ\=l

is called a conjugate differential of f0 in the Pick-Nevanlinna problem.
Following Garabedian [8], we state

COROLLARY 1. The conjugate differential dΦ0 minimizes the integral

\ e*\dΦ0+φdz\, φdz^Q .
JδΩ

Any duality relation for dΦ0 in (9) characterizes the extremal function.

Proof. The extremality of dΦ0 follows from

ύ\ e*\dΦ0+φdz\.\ n^(0+φz)ύ\

Next for / e g , we have

MQ =\ fdΦ0^X-11/11 ( \e*dΦ0\=χ-\\f\\ .
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7. The classical Pick-Nevanlinna problem. Let fl be a bordered Riemann
surface. To discuss this problem, we give a datum at a point pv in the follow-
ing form. For a fixed local parameter z(p) around pv with z(pv)=0, take a finite
Taylor section

tty

AX*)= Σ α/ V .

For given TV points {pv}{Lι and associated Taylor sections {Dv}ξ=ι, consider the
family $ of analytic functions in Ω satisfying that f(z)—Dv(z) has a zero of order
at least nv+l at pv, v=l, ~ , N. Then we show

THEOREM 3. //

M0=inf 11/11 >0,

there exists α unique extremal function / o e g such that | / 0 | = M 0 on dΩ. Here
|| || denotes the supnorm of f. If Ω is of genus g and has h contours, then f0

maps Ω onto an at most Σ J^i(^v+l)+2^+/ι—2 sheeted disc \z\<MQ.

Proof. Let K be the union of N mutually disjoint closed parameter discs Δ y

of {pv}v=i. We may suppose that Δ v corresponds to \z\ ^ 1 with z(pv)=0, v = l , •••,

N. Let {Lj}plt N0='Σ?=ι(nv+l), be linear functional defined by L1(f)=f(p1)f

L2{f)—f/{pι), •••, LNo(f)—fCn^(pN), where derivatives are those with respect to
the respective local parameters. Then the present problem is equivalent to the
Pick-Nevanlinna problem for those data. We remark that in this case L3 is
explicitly expressed by a measure dμ3 on Δ^: dμ1—(2πιz)~1dz on | z | = l ; = 0 in
the interior of Δ l f •••, dμNo=(2πιzn^+1)~1nN! dz on U | = l ; = 0 in the interior
of ΔN. From Theorem 2, we obtain a unique extremal function / 0 and its
conjugate differential dΦ0 satisfying

fodΦo^O along 3Ω.

We call the divisor δ—pι

nip2

n2' 'pN

nN the interpolation divisor of the (classical)
Pick-Nevanlinna problem and No the degree of δ. It is easy to construct a func-
tion F(z) which is analytic on Ω and has the same divisor as δ (Heins [10]).
For every /ej4(£?), fF^S and

( fFdΦ0=0.

Again by Royden's result [18] cited in No. 5, FdΦ0 is an analytic differential
on Ω. Thus dΦ0 is an meromorphic differential which is a multiple of δ~\

Let Ω be the double of Ω. Since f0dΦ0^0 along dΩ, fodΦo can be analyti-
cally continued to Ω. The genus of Ω is equal to 2g+h—l. Hence the degree
of (fodΦo) is equal to 2(2g+h—2). Since fodΦo has possible poles at pjf the sum
of whose orders is equal to at most No in Ω, by symmetry the amount of the
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orders of the poles fodΦo on Ω is not greater than 2N0. Hence the number of
zeros on Ω is at most 2g-\-h—2-\-N0.

§ 3. Generalizations.

8. The Pick-Nevanlinna problem for arbitrary domains. Let Ω be a sub-
domain of a compact Riemann surface R of genus g. Suppose that Ω does not
belong to OAB. We may suppose that the genus of Ω is equal to g. Let X(z) be
a real valued harmonic function in Ω. As in No. 5, we define the %-norm by
(2) and set

X={f\f is analytic in Ω and %-|l/H<°°}.

To avoid a trivial case X(z) is supposed to be taken so that Xφ{0}. We take a
canonical exhaustion {Ωn}n=ι of Ω. Let X-\\f\\n denote the %-norm of / in Ωn.
Let there be given N linear functional {Ly}JLi, each of which is continuous with
respect to the supnorm \\f\\κ of / on a compact subset K of Ω. We may sup-
pose KdΩx. Moreover we suppose that K does not separate the boundary of
Ω. Then each Ωn enjoys the same property with respect to dΩn and K. Let
8fn be the family of functions / analytic in Ωn and satisfying Lv{f)—aVi v=l, •••,
N. We denote by fy the corresponding family in Ω.

Suppose

0 < M 0 = i n f χ - | | / | | < o o .
/eg

Then a normal family argument shows that there exists an extremal function fQ

such that M0=X— ||/O||, Lv(f0)=av, v=l, •••, Λf. By Proposition 1, we get a linear
combination

N

such that

?Fo(/o)= m a x ^

and that f0 is an extremal function for the Pick-Nevanlinna problem with a
single datum Ψ0(f)= Σ ΰ=i cvav.

Now we consider the Pick-Nevanlinna problems for the norm %-|l/L with a
single datum ψo(f)= Σ5U cvav in each Ωn. Then there exists a unique extremal
function Fn and its conjugate differential dΦn satisfying \e"/S^Fn{z)\=Mn on
dΩn. On the other hand there exists a unique extremal function fn satisfying

Those are direct results from Theorem 2. Clearly Mn^Mn''. We state
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THEOREM 4. The sequence {fn} converges to a unique extremal function f0

uniformly on every compact subset of Ω.

9. A Cauchy kernel. Before proving Theorem 4 we prepare

LEMMA 2. Let q be a non-Weierstrass point of R in Ω. Then for a fixed
parameter disc U of q there exists a meromorphic function C{p, r), r e U, called a
Cauchy kernel, satisfying the condition that C(p, r) is analytic apart from p—r,
at which it has an expansion

C{p, r)= - 2^. (^^_^y +regular terms, /)£{/, ζ=*(r).

and that C(p, r) is uniformly bounded in a neighborhood of the boundary of Ω if
r lies in any compact subset of U.

Proof. We take a parameter disc U whose closure contains no Weierstass
points. Then for r e U there exists a meromorphic function Q(p, r) on R with
a single pole of order g-\-l at p~r, where it has an expansion

+ ...+ *L^1
2πi(z(p)

+regular

—ϋ)* + 1

terms,

+ ~iz{p)—Qg

Λ C=z(r)

Such a function is uniquely determined as a definite integral of a linear
combination of normalized differentials of the first and the second kind. From
the symmetry law [22], we can deduce that those differentials and their periods
are continuous with respect to the parameter r.

Let fo(p, r) be the Ahlfors function of Ω which satisfies /0(r, r)=0 and

^ > r ) | , = ζ =max \df{p(z))/dz\z^\,

It is easy to see the Ahlfors function is unique for such a Riemann surface
Ω. In fact, in order to use Fisher's method [5] we need a meromorphic function
with a simple pole at r, analytic in Ω—r and bounded near the boundary. Since
Ω&OAB, there exists a bounded function h(p) which has a zero of some order,
say n, at r. On the compact Riemann surface R containing Ω, there exist
meromorphic functions g(p) with a single pole at r. The order of the pole can
be taken as an arbitrary positive integer m greater than an integer mQ. Set
m=nk+l>m0. Then hkg is a desired function. Write fo(p, r)=fo(z, ζ). We
show that /</(ζ, ζ) is continuous with respect to ζ, r e U. Since

fθ(Z, ζ Q — / 0 ( ζ , ζ θ / rr fV_ / ,N

O/ofe CO ' r e ^ ς - ^ r ;

denotes a competing function in the problem to determine the maximum at ζ,
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we have

whence

Jo «•><-)= l _ i / . ( ζ , ζ ' ) Γ " '

•1 l / o l s ' C y I

Similarly we have

Λ'CC ζ)-/o'(C' ζ')^Λ'(C O - — i ^ ^ - ^ J

Since by uniqueness
lim/0(z,C)=/o(^0

C' - C

uniformly on D, we get the continuity of /</(ζ, ζ) for ?-e /7.
Now set

Λ — Π( -h Άf ( h iAs/ff(Γ Γλs γ—γ(r\riiTj

)—w\P> r)Jo\P> n /lo \^y ̂ ) i r—r^jtz u

Then C(/>, r) has the desired singularity and since /</(ζ, ζ) is continuous and
positive [21], C(p, r) is uniformly bounded in a neighborhood of 3Ω if r lies in
any compact subset of U.

10. Proof of Theorem 4. Under the notations in No. 8, we have Mn^Mn

f

^ M o and lim Mn=M0. Clearly {Fn} forms a normal family. If we establish the
uniqueness of the extremal function, the proof of Theorem 4 is completed. Hence
we may suppose that {Fn} tends to a function Fo uniformly on every compact
subset of Ω. It is easily verified that Fo is an extremal function of the original
Pick-Nevanlinna Problem in Ω.

Define a transform lv of Lv by (3). For every / analytic in Ωn and with

Z—||/L<°°, there holds

( f(z)Uz)dz, v=l, » ,N.
oΩ

Hence for a conjugate differential dΦn of Fn, we have an expression

dΦn=(knΣcJXz)+ψn)dz along dΩn.
l

v=l

Here kn is defined by

and ψn dz belongs to the class Q on Ωn.
We shall show that {Foψndz} forms a normal family in the following sence:

for every compact BaΩ and a nonvanishing analytic differential ωB on B,
{Foψndz/ωB} is normal on B.
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Take a non-Weierestrass point p0 in Ω—Ω1 and its parameter disc U in
Lemma 2 and contained in Ω—Ωλ. We have

= [ FQ(t)(ψn(t)+kn Σ cJv(t))C(t, z)dt,
jdΩjι-ϋΩι y=l

C{q{t), p(z))=C(t, z),p(z)eU.

By Lemma 2, |C(ί, z)\^L on dΩnxU for sufficiently large w. We have

r N

since \e~χF0\^M0 on i2 and \ \φn

Jrkn

yΣiCvlv\eχ\dt\^=l f and

f FoψnC(t, z)dt=0 f
JdΩi

since C(#, £) is analytic in Ωλ. Since kn-*l (n -* oo), {F0^ra} is uniformly bounded
on ί/. Since the set of all Weierstrass points of R is finite, we may suppose that
dΩn, n^ly 2, ••• contains no Weierstrass points. Then dΩn, n^2 is covered
by a finite number of parameter discs for which {FQψn} is uniformly bounded.
Then for a non-vanishing analytic differential ωQm on Ωm by the maximum prin-
ciple {Foψndz/ωΩm}n=vι is uniformly bounded on Ωm. Hence {Foψndz/ωΩm} forms
a normal family. Changing notations__ we may suppose that {Foψndz/ωβm} con-
verges to Foφodz/ωβm uniformly on Ωm. We say that {Foψndz} converges to an
analytic differential foψodz. Since convergence of {Foψndz/ωΩm} implies that of
{ψndz/ωΩm}, {ψndz} converges to an analytic differential ψodz uniformly on every
compact subset of Ω. Note that FOΞ£O. Thus dΦn=(knΊlif=i cjv+ψn)dz tends to
an analytic differential dΦ0=(Σ £=i cυlv

J

Γψo)dz in Ω—K.
Now HejhaΓs method [11] provides the uniqueness of the extremal functions.

Let F o * be any extremal function of the Pick-Nevanlinna problem in Ω. Let C(Ω)
be the Banach space of complex valued functions h continuous in Ω and normed
by the supnorm \\h\\. We define three sequeces of linear functionals

TX\h)=\ hFndΦn,

n h^FodΦn,
dΩn Mo

h-^-F0*dΦn9 n = l , 2,
ΰΩn Mo
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We have | | T ^ | | ^ M n ^ M 0 , ; = 1, 2, 3. In fact

\FndΦn\ = \ FndΦn=Mn,

and |F oβ~ χ | and |F 0V"*| are bounded by Mo in 42. By HejhaΓs lemma ([11] p.
102) for those three sequences we can find a subnet {na} of {n} for which they
have a common weak star limit To.

We take a non-Weierstrass point p0 and its parameter disc U so near to the
boundary dΩ that there exists an Ahlfors function fo(p, r) such that

inf |Λ(A r ) |>max

Since Ω&OAB and since supώ|/o(A r) | = 1 , such a point £0 exists. We have

Φn'{p(z))=kn{ Σ cJjLz)+φu(z)), kn=MJMa.
v-l

Taking the subnet {na} and letting it tend to oo, the integral along dΩ1

tends to zero. Since C(q, p) is regarded as the restriction of a bounded con-
tinuous function to a boundary neighborhood, the integral along dΩna also tends

to zero. We get (Fo(p)-Fo^(p))dΦo(p)=0 in U. Since f FodΦo=Mo>0, dΦ^O.
We get F O Ξ F O * in 42 which completes the proof. x

§ 4. Special problems

11. Meromorphic functions. In this section we consider the classical Pick-
Nevanlinna problem for wider classes of functions. For simplicity we restrict
ourselves to a plane domain Ω. For a moment, suppose that Ω is bounded by k
analytic Jordan curves (k^l). Let tJf j = l, •••, /, be a finite number of mutually
distinct points. We take X(z) as the superharmonic function

χ(z)= Σ mjg(z, tj),
3 = 1

ΎΠj being positive integers and g(z, t) being the Green's function of Ω. Let
{ζυ}£=i be mutually distinct points in Ω. We give data at ζy by Taylor or
Laurent sections:

(10)

A,(z)= Σ
7 7 1 = — 771 j
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Let ?? be the family of functions meromorphic in Ω which have the given
data at ζy. Our problem is to minimize

Write Mo for the minimum and suppose M 0>0.
The set X of meromorphic functions / defined by

forms a Banach space. Every function / G Z has possible poles at t3 of order my

Let h be a function analytic on Ω which vanishes at t3 precisely of order m3

and has no zeros other than t3. We can set h= ΠJ=i (z— t3)
mj/(z—ξ)mJ, ξ$Ω.

Then hf is a bounded analytic function if / e l . Consider a Banach space
Xh of bounded analytic functions / normed by XhΛf\\—^Φ\f{z)h{z)''1e~χ^\f z^Ω.
By this transformation we have the new data

(11) D*(z)=LKz)Dv(zKNu+mu,

where [ ].vv+mv denotes a Taylor section up to order Nv-\-mv with m]y=0 if ζvφt3.
Since —\og\h\—X{z) is harmonic on Ω, Theorem 3 is applicable. We get

THEOREM 5. There exists a unique extremal function f0 and its conjugate
differential dΦ0 for the Pick-Nevanlinna problem with data (10). / 0 is meromor-
phic on Ω and | / 0 | is equal to Mo on dΩ. dΦ0 is a meromorphic differential on
Ω which is a multiple of the divisor δ= Tlίf=\ζv~Nv'~mv~1JIt)nJ, when j runs over
non-interpolation points t3. dΦ0 satisfies

\ \dΦ0\=lΛ

and the duality relation

fodΦo^O along dΩ,

which characterizes the extremal function f0.

Proof. It is easy to see that the extremal function Fo for the transformed
Pick-Nevanlinna problem with the data (11) in Xh yields the solution fo—F^h"1.
sup \F0(z)h-\z)e-'/'^\=M0 on dΩ and e"*(2) = l on dΩ. Thus \fo\=Mo on dΩ. As
in the proof of Theorem 2, there exists a conjugate differential dΦλ for Fo

satisfying

[ \hey-dΦ1\=l
JdΩ

and Fo dΦ^O along dΩ. Put dΦ0=h dΦλ. We have
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and /o dΦo^O along dΩ. As in the proof of Theorem 3 dΦ0 is a multiple of
Πvliζy"^" 1 - Hence dΦ0—hdΦ1 has the desired property concerning the divisor
of dΦ0. The uniqueness of f0 and its characterization follow from Theorem 2
and Corollary 1.

Many years ago R. M. Robinson [17] proved a generalization of the maximum
principle for meromorphic function with one pole in an annulus Ω, R~1<\z\
<R (R>ϊ). It follows from a solution of our extremal problem. We state it as
the following

COROLLARY 2. Let f(z) be meromorphic in an annulus Ω, R~ι< \z\<R (R>1),

which has possibly one simple pole at z= — t, R-1<t<R. If lim z-+dΩ\f(z)\ ^=1, then

[ / U ) | ^ l for R-'<x<R.

Proof. The Green's function g(z, x) of Ω yields a positive differential

dΦ0=-—i-g(z, x)dz>0 along dΩ .
7Γ OZ

Since g(z, x) is symmetric with respect to the real axis, it has a critical point t0

on (-R, —R'1). By the argument principle there exists only one critical point.
Set dω=idz/z which is positive along \z\-R~1 and negative along \z\=R. We
construct positive differentials

dΦλ=dΦ0+λdω,

where the real parameter λ runs on a interval (—λlf λ2), λίf λ2>0 so that dΦλ

remains positive along dΩ. The zero of dΦλ moves from t0 to — R and from t0

to — R"1 as λ moves from 0 to λ2 and from 0 to — λx respectively. The there
exists a λt such that dΦλt=O at z= — t.

Consider the Pick-Nevanlinna problem with single datum f(x)—l for the class
of meromorphic functions with possible pole at —t. Here the norm of / is given
by χ - 1 | / | | = sup l/WέΓ'^M, Z(ΞΩ, X=g(z, t). Clearly fo(z)=l is an extremal
function. Indeed

( dΦλ=\ \dΦλt\=l
JSΩ L JoΩ t

and
f0dΦλt>0 along dΩ

is a duality relation. If | / (#) |>1 we get a contradiction X-\\f/f(x)\\<l.

12. General domains. Let Ω be a plane domain which does not belong to
0G. For the Green's function g(z, t) of Ω we set as before

We consider the Pick-Nevanlinna problem with data (10) for the same as in
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No. 11. We take a canonical exhaustion {Ωn}n=i such that all t3 and ζv^Ωx.
Then from Theorem 5 we obtain a sequence of extremal functions {/n} and

conjugate differentials {dΦn} with Xn—Hmjgn(z, tj), gn(z, t0) being the Green's

function of Ωn. We show

THEOREM 6. / /

0<M o =inf MI/IK oo,

the sequence of extremal functions {fn} converges to a unique extremal function
/o uniformly on every compact subset of Ω. Here § is as in No, 11.

Proof. Consider the Pick-Nevanlinna problem with the same data (10) for
the norm χ-| |/ | | n =sup \f(z)e~χiz^\f z^Ωn, in Ωn. Let 3rn be the corresponding
family for the problem.

Then M ϊ l=inf/e§'n%-||/||n>0 and is increasing with respect to w. In fact, if
Mn=0, all the data vanish and Mo=0. The monotonicity of Mn follows from
the fact that § n + i C § Λ . Similarly as in the proof of Theorem 5, there exists a
unique extremal function fn and its conjugate differential dΦn which satisfy

(12) lΛe-χ(t)l=A/n,

(13) fndΦn^O along dΩn,

and

(14) Mn=\ n LdΦn, with \ e*\dΦn\=l.

dΦn is a multiple of H{f=ίζv~
Nv~1~mvIltjmJ, where j runs over non-interpolation

points tj. Since \fne~χCz^\ satisfies the maximum principle, | / n ^" χ U ) l is uniformly
bounded. Then we may suppose that {fn} tends to a meromorphic function / 0

uniformly on every compact subset of Ω. Here spherical distances are taken in
the convergence. It is easy to see that /„ is one of the extremal functions in $.
On the other hand, by the same reason, | fne~χn | is also bounded and every infinite
subsequence of {fn} contains a subsequence converging to an extremal function.
If we show that the extremal function /„ is unique, the proof is complete.

Let 5 be a subspace of X consisting of meromorphic functions with vanishing
data, that is, Dv(z)=0, v=l , 2, •••, N.

If S={0}, then the extremal fQ is unique. Next suppose that h^O belongs
to S. For the sequence of conjugate differentials {dΦn}, we have

= 1 \he-*'e*dΦn\^χ-\\h\\.

Since

h(ζ)dΦn(ζ)
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{h{z)Φn{z)} is locally uniformly bounded. Hence we may suppose that {Φn'}
tends to a meromorphic function Φ0'{z) uniformly on every compact subset of Ω.
Since

Mn=

from (14), ΦQ{z)m.
Let / 0* be any other extremal function. We define three sequences of

measures,

dμn=

fndΦn
Mn

0

fodΦn
Mo

0

on dΩn

otherwise

on dΩn

otherwise
and

dμn*=

0

on dΩn

otherwise.

| ^ l , sinceWe have \\dμn\\ = l from (13) and (14), \\dμn\\^l and

l/o*e"Z Λl^l on dΩn.
By taking subsequences, we may suppose that

{dμn} -> dμ0, {dβn} -» dβ0, {dμn*} -> dμQ*

in weak star convergence as n —> oo. Since / n , / 0 and / 0* have the same data,
we find by the calculus of residues

and

_ Mn

Mo

Clearly \dfin\^dμn and \dμn*\^dμn. Since Mn/M0-^l as n-> oo, we have
dμo=dβQ=dμQ*. For h=fQ—/0*eS

as n —> oo, since l/(ζ—z) is continuous in a neighborhood of 9i2.

Φβ'(2)=lim Φn'(
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We have / 0(Z)ΞΞ/ 0*(*).

Remark. The case where S={0} does exist. For example, suppose that Ω
belongs to OΛB-OG. Set X(z)=-g(z, t), tt=Ω. We give a datum Dt(z)=(z-tyι

so that f(z)—Dt(z)=0 at z—tφ^. Then the extremal function is (z—t)'1 and

13. Function with characters. Extremal problems for a class of mutiple-
valued functions were recently dealt with by Widom [23]. Let / be a multiple-
valued function whose modulus is single-valued. Then continuation of a function
element of / along a closed curve c results in multiplication by a constant Γf(c).
Γ'f(c) depends on the homotopy class containing c. Since Γf{c) is given by

Γf(c)=eS(/'/f)d\

Γ'f(c) is a character on the homotopy group π(Ω) of Ω or the homology group
Hλ(Ω). We consider the classical Pick-Nevanlinna problem with fixed Γ(c).

Let Ω be a plane domain bounded by k analytic curves. In this case we fix
a point ζo<=Ω. We give N data at {ζv}£Lu ζv^Ω

(15) Dv(z)=Σa{;\z-ζvy

and fix a system of curves {Tv\r=i such that yv connects ζ0 with ζv. Let g Γ be
a family of functions / multiple-valued, analytic, with character Γ, and such that
the analytic continuation of a fixed element of / along γυ has the same Taylor
section (15).

Then we show

THEOREM 7. Under the nontrwiality condition

Mo= inf 11/11 > 0 ,

there exists a unique extremal function f0 which minimizes \\f\\. \fo\=Mo on dΩ

and / 0 has at most

Έ(nv+l)+k-2
l

zeros.

Proof. It is easy to transform the problem into that for single-valued func-
tions. Let {CJ}JZ\ be the boundary contours except Ck, which form a homology
basis. Let ωj(z) be the harmonic measure of Cy We construct a linear combina-
tion %(z)=ΣJil Xj<0j(z) so that

This has clearly a solution [1]. Set E(z)=eχ^+ι^^ where Z*(z) is a con-
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jugate harmonic function of X(z). Then for / e § Γ , fE(z) is single-valued. By
taking Taylor sections of Dυ(z)E(z) up to nv, we get the new data,

(16) A,*(*)= Σ WXz-W .

We consider the Pick-Nevanlinna problem with data (16) for the Banach
space of analytic functions / normed by X—\\f\\=sup\f(z)e~χCz)\,z^Ω. Then
Theorem 2 is applicable and we obtain a unique extremal function Fo with
\F0(z)e~χCΌ\—MQ on dΩ. Now it is easy to check that fo=Fo/E is the desired
extremal function.

To examine the number of zero points of f0, take a conjugate differential
dΦ0 of Fo, which has poles of order at most nυ+l at ζy. Since F0dΦo^0 along
dΩ, it is continued analytically onto the double Ω of Ω. Similarly as in the
proof of Theorem 3, we get the bounds of the number of zeros of Fo, 2 =̂i (X+l)
+ £•—2. Since EφQ, the proof is complete.

Let Ω be an arbitrary domain &OG. Let a character Γ on HX(Ω) be given.
We consider the classical Pick-Nevanlinna problem with data (15). We take an
exhaustion {Ωn} on Ω such that Ωx contains {ζy}JLi, ζ0 and {γv}v=\. The restric-
tion of Γ to β n , denoted by Γn, is a character on i/i(£?n) and the Pick-Nevan-
linna problem with the same data has a unique solution fn(z). We state

THEOREM 8. / /

0 < M 0 = inf H/IKoo,

ί/ιe sequence of extremal functions {fn} converges to a unique extremal function
/ 0 uniformly on every compact subset of Ω.

The proof is verbatim of that of Theorem 6 and will be omitted.
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