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CONFORMAL FOLIATIONS*

BY IZU VAISMAN

Differential Geometry already suggested a large number of interesting classes
of foliations. Particularly interesting were the foliations with bundle-like metric
[6] also called Riemannian foliations [5].

Our aim in this Note is to introduce a new class of foliations which generalize
the Riemannian foliations and will be called conformal foliations. The definition
is suggested by natural geometric reasons and the conformal foliations seem to
be worthy of attention because there are enough such foliations. E.g., the dif-
ferentiable foliations of codimension 1 and the complex analytic foliations of
complex codimension 1 are all conformal.

We shall obtain characteristic properties of the conformal foliations. These
introduce an important 1-form which we shall use in defining and studying some
particular classes of conformal foliations.

All our considerations will be in the C°°-category.

§ 1. Characteristic properties of conformal foliations.

We begin by defining conformal foliations, via Haefliger cocycles, following
the definition of the Riemannian foliations in [5].

If we take as objects (units) the germs of Riemann metrics over Rq and as
morphisms the germs of the local diffeomorphisms of Rq which are conformal
transformations between the respective germs of Riemann metrics, we get a
small category, which is a topological groupoid CΓq.

A conformal Haefliger structure of codimension ^ on a topological space X
is defined as a CΓg-structure. Such a structure is represented by a cocycle, which
consists of an open covering {Ua} of X and a system of continuous maps γaβ:
UaΓ\Uβ->CΓq such that

(l.i) r?M=r?Mnμ(χ) (*e uλr\Uυr\Uμ).

Two cocycles define the same structure iff their union is again a cocycle.
Because of (1.1), γaa: Ua —> CΓq define continuous maps into the space of the
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units of CΓq which obviously induce some continuous maps fa: Ua-+ Rq. If X
is a differentiate manifold and the functions fa are submersions, the considered
Haefliger structure is said to be a conformal foliation on X.

If the values of γaβ above are germs of isometries we obtain a Riemannian
Haefliger structure or foliation [5]. Hence, these are particular conformal struc-
tures or foliations.

A conformal structure (foliation) obviously has an underlying /^-structure
(foliation) [1], which allows using the classical theory.

Hereafter, we shall consider only conformal foliations and, in this section,
we shall give some characteristic properties of such foliations. We always denote
by M an 72-dimensional differentiate manifold and by E a differentiate foliation
of codimension q on M. v=T{M)/T{E) is the transverse bundle of E and P(v) is
its principal frame bundle. We use the labeling foliate for all the elements (func-
tions, forms, bundles, etc.) which are constant along the leaves of E [8].

Like in [8], if g is a Riemann metric on M, v may be identified with the
normal bundle of T(E). The foliation E is characterized by an adapted atlas
{Ua Xaf Xa), where a=l, ••• , q, u=q+l, •••, n, and the leaves of E are given by

x

a=const. The transition functions of this atlas have the local form xa

B=xa

β(xa),
x%=x]S(x?t, Xa)- The foliate elements depend locally on xa only. T(E) has the
local bases Xu=d/dxu and v has local bases of the form Xa=-d/dxa-ΣW/dxu).

u

(The usual summation convention will also be used.) The dual cobases are dxa,
Θu=dxu+Vidxa.

Furthermore, all the components of the tensors and forms will be with
respect to the previous bases and cobases, The convention for indices will always
be: a, b, c, ••• —1, ••• , q, u> v, w, ••• =q+l, ••• , n. The mentioned two parts of the
cobases give a natural definition of forms of the type (p, q) and this leads to a
decomposition d=d'+d"+d, where d is the exterior differential and the com-
ponents have respectively the type (1, 0), (0, 1), (2, —1). The expression and
properties of these operators are given in [8]. One has d/n=0 and we may
speak of a drr-cohomology. One also has d'd"——d/rd'.

The main characteristic property of the conformal foliations is given by

PROPOSITION 1.1. The foliation E on M is conformal iff its transverse bundle
v has a Riemann metric which is locally conformal with a foliate metric. Equi-
valentίy, E is conformall iff M has a Riemann metric which is locally conformal
with a bundle-like metric [6].

Proof. Suppose E is conformal and take a representative cocycle of E with
the already introduced notation. Then, for every x^Ua, Taa(x)=zίga']faiχ^ is
some germ of a Riemann metric on Rq and ha—ftga gives a germ of a Riemann
metric of v at x. (Recall that v\Ua=fάKTRq).) Because of the continuity of γaa,
these germs lit over Ua, and we get a Riemann foliate metric ha of v\ua-

Now, from the definition of CΓq and from (1.1), we get over Uar\Uβ
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where φa3: UaΓ\Uβ-* R are differentiable positive foliate functions, such that
{In φaβ} is a 1-cocycle of {Ua} with values in the sheaf of germs of differentiable
functions on M.

Since the mentioned sheaf is fine, we have

(1.3) In φaβ=φβ—φa >

where ψa : Ua-> R are some (generally non-foliate) differentiable functions, defined
up to the addition of the restrictions of a globally defined function F: M - » R
to Ua.

In view of (1.3), (1.2) becomes

(1.4) ^"ha^βhβ,

which gives a global Riemann metric h of v, defined up to a global positive
factor and which is locally conformal to the foliate metrics ha.

Conversely, we may choose a representative cocycle of E attached to a
covering {Ua}, for which v\Ua has a foliate conformal metric. The existence of
these foliate local metrics is just the conformal structure of E.

The second part of proposition 1.1 is now obvious.
The Riemann metrics of proposition 1.1 will be called locally conformal foliate

(/. c. /.). A manifold M with a conformal foliation E and a fixed locally conformal
bundle-like (/. c. b. —I.) Riemann metric γ will be called a locally conformal Reinhart
(/. c. R.) space.

COROLLARY 1.2. Every differentiable foliation of codimension 1 is conformal.
Every complex analytic foliation of complex codimension 1 is conformal.

Proof. In the first case, an arbitrary Riemann metric of v has the local
form hidx1)2. In the second case we use similarly a Hermitian metric, which is
locally hdzιdz\

Now, in order to give a second characteristic property, let us recall that the
conformal group C(q) is R'xO(q), where 0(q) is the real orthogonal group and Rf

is the multiplicative group of the real positive numbers. Then, we have

PROPOSITION 1.3. The foliation E of M is conformal iff there exists a foliate
reduction of the structure group of its transverse bundle v to C(q).

Proof. Take a conformal E and a /. c. f. metric of v(E). Then, we have a
convenient open covering {Ua} of M, such that v\U(X are trivial and have the
foliate metrics ha. Now, if we take the subset of the principal frame bundle
P(v) consisting of frames {ea} whose vectors ea are pairwise orthogonal and have
the same length with respect to the metrics ha, we clearly get a foliate principal
subbundle P'(v), whose structure group is C(q). This gives the desired reduction
of the structure group of v.

Conversely, if the mentioned reduction exists, we have the C(#)-princiρal
subbundle P\v) of P(v), which is foliate, and whose local cross-sections clearly
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allow the construction of the local foliate metrics ha. The conformal structure
of E is thereby defined.

Finally, we may give a third characterization of the conformal foliations by
generalizing Morgan's characterization of the Riemannian foliations. Recall that
v(E) has always adapted connections [1, 3], which may be defined by the condi-
tion that parallel translation along paths on the leaves of E coincides with the
"vector equipolence", i. e. equality of the coordinates with respect to the bases
Xa. The mentioned characterization is then

PROPOSITION 1.4. The foliation E on M is conformal iff v has an adapted
connection, whose holonomy group at some point x0 is a subgroup of the conformal
group C(q).

Proof. Consider an arbitrary foliation E and an arbitrary Riemann metric
γ on M. An arbitrary connection 7 on v(E) has the local equations

(1.5) dXa=ωb

aXb,

where

(1.6) ω'ί=Γb

acdxc+Γb

auθ
u.

This connection is adapted iff Γίu=0, because in this case ξaXa is parallel
along a line with xα=const. iff Xuξ

a=dξa/dxu=0.
Also, we shall say that 7 has no torsion, iff Γb

ac=Γb

a(the geometric character
of this equality may easily be established) and that 7 in transversally metric if
one has for the transversal part h of γ:

(1.7) dhab-ωc

ahcb-ωc

bhac=0 (modulo θu=0).

But then Γic may be uniquely determined by the classical computation leading
to the Christoffel symbols of a Riemann metric [7]. I. e. there is always a unique
adapted transversally metric connection without torsion on v, which we'll call the
transversal Levi-Civita connection [8].

Now, let E be conformal and γ a /. c. b. —I. metric on M. Then, if 7 is the
corresponding transversal Levi-Civita connection, (1.7) implies

(1.8) ^χh){ζ,r])=λ{X)h{ξ, η ) ,

where X is a tangent field to M, ξ, η, are sections of v and λ is a 1-form on M
given locally by λ=d"ψa, where φa are the functions entering in (1.4) formula
(1.3) shows that λ is, actually, globally defined. Indeed, it suffices to verify (1.8)
for ξ=Xa, η=Xb and X=Xe, Xu. In the first case we get by (1.7) 0=0 and in
the second case (1.8) follows directly from h=ePΛha.

But (1.8) clearly implies that the holonomy group of 7 is a subgroup of C(q),
thereby proving the necessity part of proposition 1.4.

As for the sufficiency part, if the mentioned connection exists, then, by a
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well-known result of the connection theory, P(v) admits a C(q)-reduction. In our
case, this reduction must be foliate because, 7 being adapted, loops on a slice of
E define trivial elements of the holonomy group and this shows that the con-
sidered reduction is locally constant on the leaves of E.

Hence, the proof of proposition 1.4 is completed by using proposition 1.3.

The 1-form λ defined above will be very important. First, note that, by

taking in (1.8) ξ=Xa, y^Xb, X=XU, we get

(1.9) Xuhab==Auhaι>,

where λ=λuθ
u. (By its definition, λ is of the type (0, 1).) Hence

(1.10) λu= — habXJιab=—Xu[\n det(/iα 6)].
Q Q

where habh
ac=δb.

I. e., we have

(1.11) λ= — d"lndet(hab),

and this formula may be used to define a 1-form λ of type (0, 1) for every folia-
tion E and every metric γ (which may be not l.c.b.—L). λ is globally defined,
because of the transformation law of the components hab, and it depends on the
whole metric γ and not on its transversal part only. We shall call λ the com-
plementary form of (X, E, γ) and this is clearly a ^-closed form.

Now, we may use λ to give a characterization of the locally conformal Rein-
hart spaces:

PROPOSITION 1.5. (M, E, γ) is a locally conformal Reinhart space iff

(1.12) {lxh){ξ,y)=λ{X)h{ξ,η),

where h is the transversal part of γ, 1 is the transversal Levi-Civita connection, λ
is the complementary form, X is any vector field tangent to E and ζ, η are normal
fields of E. Moreover, the considered space is globally conformal Reinhart iff the
supplementary condition that λ be a dn~exact form also holds.

Proof. If (M, E, γ) is locally conformal Reinhart, (1-12) follows from the
already proven relation (1.8). Moreover, if it is globally conformal Reinhart, λ
is ίF-exact because we may define a global function ψ.

Conversely, if (1.12) holds, and on UQX, λ—d"ψ (such U clearly exist and
by (1.11) we may take ψ=(l/q) In det(Λα6)), then, taking ζ=Xa, η=Xb, X=XU>
we get from (1.12)

d"hab=(d»ψ)hab,

which is equivalent to

(1.13) d"(e-*hab)=0.
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Hence, e~φh is a bundle-like metric on U and we see that γ is a /. c. b. —I.
metric.

If λ is d"-exact, we may take U~X and proposition 1.5 will be completely
proven.

§2. Some particular classes of conformal foliations.

We defined in section 1 the complementary form λ, which was used to
characterize the /. c. R. spaces. In this section, we shall see that the properties
of λ influence much the properties of the space.

Let us begin by proving some new facts about λ.
First, we know by (1.11) that λ is a d^-closed form, hence it defines a dfr-

cohomology class A. If we interpret d" as the differential in the exterior algebra
of the dual bundle T*(E), this will be an operator which depends only on E and
is independent on the metric. Namely, dff is the exterior differential along the
leaves. Then, using the transformation law of hab, we get easily from (1.11) that
A does not depend on the metric. Hence, the de Rham theorem implies

PROPOSITION 2.1. Every foliation E has a well denned associated family of
cohomology classes A of H\F, R), where F denotes a generic leaf of E.

Another interesting fact is that λ is related with the so-called Atiyah classes
defined by Molino [3].

Namely, let v be, as usual, the transversal bundle of E, and consider the line
bundle a—(/\qv)ιlq, where Λ9 denotes q-t)\ exterior power and the exponent 1/q
refers to tensor product of line bundles, a will be called the characteristic line
bundle of E. If q is even a is defined only when E is transversally orientable
and, in the rest of this paper, this condition is assumed to hold whenever a is
used.

PROPOSITION 2.2. The Atiyah class of the characteristic line bundle a{E) is
the dff-cohomology class of the form (l/2)d'λ, where d'λ is calculated by the help
of an arbitrary Riemann metric J.

Proof. We refer to [3] for the construction of the Atiyah class which we
use in the sequel. Our notation is always like in section 1. a is clearly a foliate
bundle and it is easy to see that (άethab)~1/q, where h is the transverse part of
y, is the local component of a Riemann metric of a. Then, using the known
transformation law of the local forms of a connection, we see that

defines a connection on a. Next, it follows by (1.11), that θ=π+(l/2)λ defines
an adapted connection of a. (The notion of an adapted connection may be defined
for every foliate vector bundle in the same way like for v and such connections
always exist [3].)
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By its very definition, the Atiyah class of a is the ύf'-cohomology class of
the globally defined form dnθ. Because d"λ=0 and because of dfdtr——dffdr

y we
get that this form is just (l/2)d'λ as announced.

We might give a similar interpretation using Aqv, but it is a which will be
used in the sequel. Also, recall that the significancy of the Atiyah class lies in
the fact that its vanishing is equivalent to the existence of an adapted foliate
connection [3].

Now, before considering particular classes of conformal foliations, let us con-
sider some other general results.

If E is a conformal foliation, the foliate bundle v=a®v will be called the
conformal transverse bundle of E and we have

PROPOSITION 2.3. The conformal transverse bundle v of a conformal foliation
E has a foliate Riemann metric.

Proof. Take the covering {Ua} of M endowed with the local foliate metrics
ha of v\Ufχ. Define over each Ua the form of T.Y. Thomas [7]

(2.1) ha=(άetha)'1/qha.

It is easy to see that this gives a Riemann foliate metric for ϊ>\Ua and that ha

=hι3 over each intersection Uar\Uβ. Hence (2.1) gives the desired metric h of ϊ>.
It is obvious that the principal bundle P(p) of the frames of v is foliate in

the sense of [2] as well. Proposition 2.3 shows that P(p) has an SO(^)-principal
foliate subbundle P'(p), whence in view of the results of Kamber-Tondeur [2, p.
73, 75] we have

COROLLARY 2.4. The usual secondary characteristic classes of the foliate bundle
P(p) reduce to the principal characteristic classes of P'(y). In exchange, a secondary
characteristic homomorphism

(2.2) Δ* : H{ W(so(q), G)q) — > HDR{M)

appears for every G-reduction of P'(p).

The notation here is like in [2], i.e. so(q) denotes the Lie algebra of SO(q),
G is an arbitrary closed subgroup of SO(q), W(-, -)q is the corresponding trun-
cated Weil algebra, H is cohomology and HDR is the de Rham cohomology.

We see thereby that the conformal foliations enjoy of their own theory of
secondary characteristic classes.

We go over finally to the announced particular classes of foliations. Namely,
a conformal foliation for which a /. c. b. —I. metric exists such that: A) dλ=0,
B) λφO at every point, C) Λ^O at every point and dλ=Q, D) Λ^O at every point
and d'λ=0, E) λ is d"-exact, F) d'λ is d"-exact, is called respectively a foliation
of the type A, B, C, D, E, F. In this case, the foliation and the metric give an
/. c. R. space of type A—F.

The following relations are obvious:
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(2.3) C — > D — > F, E — > F, A —>F.

The foliations of type E were already considered and they are characterized
by the existence of a globally c.b. —I. metric, i.e. they are just the Riemannian
foliations. We want to prove next an interesting property of the foliations of
type F. By (2.3) this will hold for all the considered types of foliations, except B.

PROPOSITION 2.5. Any conformal foliation of type F has a transverse pro-
jectable connection.

Proof. A transverse projectable connection is defined as a foliate connection
on v(E) [3].

Suppose E satisfies the hypotheses. We shall prove then that v(E) has a
foliate connection.

Let e be a local basis of a and Xa=e0Xa the corresponding natural basis
of v. Then, a connection of v has the local equations

(2.4) dXa=ωb

aXb,

where

(2.5) ωb

a = Γ^cdxCJrΓb

anθ
u.

Like for v, this connection is adapted iff Γb

υ=0 and it is foliate iff, moreover,
Γb

ac are foliate functions.
The Riemann metric h of proposition 2.3 has some local components hab=

h(Xa, Xb) and the connection (2.4) preserves this metric iff

(2.6) dhab—ωc

ahcb—ωίi)hac=0.

We shall look for the desired connection of v by looking for an adapted
metric foliate connection. Because hab are foliate functions, one sees, by the
classical computation which gives the Christoffel symbols of a metric [7], that
the Γb

ιc are defined by (2.6) if one knows the quantities Tb

c=Γb

ac~Γb

a.
By the transformation law of the connection forms ωb

at it follows that T«e

are the local components of a geometric object on M, obeying to the transforma-
tion law

rpfn._ dx'a> dxb dxc

* b'c' — — o — a ^ ιb> Λ /c -* be

(2.7)

where (x/a', x/u') and (xa, xu) are two adapted systems of local coordinates and

A=det(9x / a 73* a ).
Hence, if the local foliate functions Ta

u satisfying (2.7) exist, ϊ> has a foliate
connection.
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But, because E is of type F, it follows from proposition 2.2 that a has a
foliate connection. This will be defined by a local equation de=ηe, where η is
a local foliate 1-form with the transformation law

(2.8) y

If we denote η=ηadxa, it follows by a straightforward computation that

(2.9) Ttc=δiVe-δίVb

satisfy (2.7).
Hence, £ has a foliate connection.
Now, since by the definition of v we clearly get v=a~1<g)v, it follows that

v has a foliate connection whose local matrices are given by

(2.10) τ=ω-ηl,

where ω is the foliate connection of ΰ, η is the foliate connection of a and / is
the unit ^-matrix.

COROLLARY 2.6. // E is a conformal foliation of one of the types A, C, D,
E, F, we have necessarily

(2.11) Pont kv=Q for k>q,

where Pont *v denotes the ring of the real Pontryagin classes of v.

This follows from proposition 2.5 in view of the results in [1] and [3].
We shall list in the sequel a few other properties of the considered types of

conformal foliations.

PROPOSITION 2.7. // E is a conformal foliation of the type A, the lift E of
E to the universal covering M of M (M-connected) is a Riemannian foliation.

Proof. Indeed, if we also take the lift of the metric attached to E and
satisfying dλ=0, we get on M a structure of an /. c. R. space of type A. Since
M is simply connected, we have for this structure λ=df and because λ is of
type (0, 1), λ~d"f. I.e. E is of type E, whence the announced result.

PROPOSITION 2.8. If E is a conformal foliation of type B, E admits a sub-
foliation of codimension 1, whose restriction to any leaf of E is transversally paral-
lelizable. Moreover, if E is of type C or D, M has a bundle-like metric with
respect to this subfoliatwn.

Proof. The first assertion of this proposition means that there is a foliation
E' of codimension #+1 on M, whose tangent bundle is a subbundle of T(E).
And, as a matter of fact, E; exists and it has the local equations

(2.12) dx%=Q, dψa=0,
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over the coordinate neighbourhood Ua of M. The fact that this is a regular
foliation follows from the condition λφO at every point and from the relation
between λ and ψa.

The equation of the restriction of E' to a leaf of E is just λ=0, where λ is
closed on the leaf. This means that the restriction is transversally parallelizable.
In this case, one knows, for instance, that if we have a compact leaf 5 of E its
universal covering manifold is of the form S'xR, where Sf is the universal
covering of a leaf of E'\s.

Next, it is clear that the transverse bundle of E' is given by

(2.13) v(jB /)= y(£)0H,

where n is the line bundle defined by the normals of E/ with respect to E.
Here v(E) is foliate with respect to E' as well, and it has the it'-foliate

metric h=e^aha (which is the l.c.f. metric of E, satisfying C or D).
Hence, we get for v(E') the metric

(2.14) h'

which has the local expression

(2.15) h'=0>«ha+d'ψ%-2d'ψ,tdψ*+dψ%.

But, both in C and D, we have

d/λ/=d/dlfψa= -dffd'ψa=0.

Hence d'φa are foliate forms and we see that (2.15) may be extended to a
bundle-like metric for E'. Q. e. d.

As an application, let us consider the case of a transversally orientable folia-
tion E of codimension 1, which is always conformal by corollary 1.2.

Then, E has a global Pfaff equation

(2.16) w=0,

where

(2.17) dw=θΛw,

θ being a second Pfaff form on M, which we may choose of the type (0, 1).
From (2.17), it follows that we must have locally w=adx and, in this case,

a2dx2 is a l.c.f. metric on the transverse bundle of E. Hence, with our usual
notation, e^=a2, i.e. cZ>=21n a and λ=2df'ln a~2θ.

Hence, E is of type A iff dβ=0. Actually, this last condition is equivalent
also with d'θ=ΰ, because d"θ—0 and dθ—O as a form of type (2,0) for a codi-
mension 1 foliation. E is of type B iff dwΦO at every point and in this case E
has a subfoliation E' of codimension 1. E is simultaneously of types C and D
and this happens iff dwΦO at every point and dθ=0. In this case, E' is a trans-
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versally parallelizable foliation of codimension 2 on M. Finally, E is of type E
iff θ is d'-exact and of type F iff dθ is d"-exact.

Added on May 28, 1978. 1) It is worth while to note that, in the case of a
transversally oπentable foliation, the line bundle a used in this paper is differen-
tially trivial but, generally, it is not foliately trivial. Similarly, v is then differen-
tially but not foliately isomorphic to the transverse bundle v.

2) We learned later that conformal foiations were also studied by S. Nishi-
kawa and H. Sato (On characteristic classes of riemannian conformal and projective
foliations, J. Math. Soc. Japan 28 (1976), 223-241). Namely, by using Cartan
connections instead of linear connections, these authors showed that Corollary
2.6 actually holds for general conformal foliations. They also gave examples of
conformal foliations of an arbitrary codimension, which are not riemannian.
Other results on the characteristic classes of conformal foliations were proved
by S. Morita and K. Yamato (to appear).

Conformal foliations

Summary

The conformal foliations are a generalization of the Riemannian foliations.
They are characterized by the existence of a global Riemann metric which is
locally conformal with bundle-like metrics. They are also characterized by the
existence of a foliate reduction of the structure group of the transverse bundle
to the conformal group, and by the existence of an adapted connection whose
holonomy group at a point is a conformal group. A relevant 1-form λ may be
attached to such foliations. The conformal foliations have their own theory of
secondary characteristic classes. Several particular classes of conformal foliations
are considered. For these classes we show the existence of a transversally
projectable connection and we obtain a number of different other geometric
properties. Note that all the differentiable foliations of codimension 1 and all the
complex analytic foliations of complex codimension 1 are conformal foliations.
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