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MOMENT INEQUALITIES FOR MIXING SEQUENCES
By KEN-ICHI YOSHIHARA

1. Introduction. Let {£,, —co<j<co} be a sequence of random variables
which satisfy one of the following mixing conditions ;
(I) ¢-mixing condition, i.e.,
1

1) n)=su su ——— |P(ANB)—P(A)P(B)| | 0 (n—oo

dm=sup  sup gy | PANBI-PAPB) LO(i—o0)
or
(II) the strong mixing (s.m.) condition, i.e.,
2 a(n)=sup  sup | P(ANB)—P(A)P(B)| | 0(n—o0)

AEME , BEMY,

where M} denotes the o-algebra generated by &, -+, &(a=b).
In this paper, firstly we shall prove some moment inequalities for mixing
sequences. Secondly, using these inequalities we shall find sufficient conditions

for the almost everywhere convergence of series X a,£, and obtain the conver-
=1

gence rates of the strong laws of large numbers, and the functional central limit
theorem for sums of (not necessarily strictly stationary) mixing sequences.

2. Preparatory lemmas.

LEMMA A (Theorem 17.2.3 in [3]). Suppose that condition (I) is satisfied and
that & and 7 are measurable over M*.. and M3., respectively. If E|&|?<co and
Elp|t<co with p>1, ¢>1, p~t+q *=1, then

©) | Eén—EEEn| <2{¢(m)} > {EI£|?}?{E] 91977

LEmMMA B (Lemma 2.1 in [2]). Suppose that condition (II) is satisfied and
that & and 7 are measurable over M*.. and My, respectively. If E|&|?<co and
Elpli<co with p>1, ¢>1, p7+q71<1, then

@ | E§p—E£E7| <12{E|&|7}» " {El 7|}« Ha(m)} 7?77

3. Moment inequalities for sums of s. m. sequences. In what follows, we
shall agree that K denotes some absolute constant.
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THEOREM 1. Let {§;} be ¢-mixing with ¢(n). We assume that for an even
integer m (=2)

(1) EE,,:O and EIE@IM_S_M(l:l’ 2: )’
and
(ii) 3 (DT {p(0) <o

Then, for every sequence {a,} and for every integer n, we have
) E(S af'<cadtn  (all b20, n21)

where ¢, is an absolute constant depending only on m and

b+n

6) A= > a.

1=b+1

Proof of Theorem 1. (5) is easily proved in the case m=2, and so is omitted
(cf. the proof of Theorem 3).

For simplicity of the proofs, we explicitely consider the case where m=4 and
b=0; an essentially same but more laborious proof holds for more general m(=6).
Put A},.=A2. We note that

E(3a)'= 3 el B+ T alajBEki+ 3 ala, BEE,
1= 1= ] 1#]
)
+ > a%a]akEE%Ejfk‘l‘ > aza;akalEEifjngl-
1#Eg#k vE)#h#L
From Ho¢lder’s inequality
) D aiajESE <K z_) ala;= KA, .
1#) ¥
By Lemma A
|3 dla,EEE,| =K 3 |adl la;| {p(5—D} ¥
<5 <y

©) <K X (at+aia) (g(— )
SKLE at 33 {pG—0) '+ 3 aia (6 —0) ]

<K[ g} alt2 3 ala} =KA,
and similarly

(10) [gaia§EEi$§l =KZ la.] [a;[*{g(G =D} "= KA.

Now, we shall show
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o |1<12<ka%ajakEE%EjEk| <KA:.

Since (E|&,|)?<E|&,]*<M<co and E&,=0, so using Lemma A and Hélder’s
inequality, we have the followings:

| KEQ a%ajakEsgéjEkl

]—ij<k—]
=2 3 alagllal {E1&6, 1 {E|& |}V {p(R—1)} ¥/
1S5,
n—2 n——1
SKS 'S 3 {6kt aihmd B(@)
=1 q=2 p=1
n—2 m—1—1 n o
=KX { El a%a%+p+(p§ ay)ai} FZ‘i {P(Q}*=KA.
[ sz:q a%ajakES%SjSk’
J—i2k—y
= K%k aila;lap| CEECEIE, |V UEIE V)Y {g(k—7)}
J—i2k—y

+2{EI& | VHEIE &P {p(G—} V2]
=K 3 (diaj+aa)l{gte— +{(j—D}"]

1—i2k—y

<KS "3 3 (0t 0kt p [ 1B+ (B0

n—2 n—1—1
=1 p=1 ¢=1

n—2 n—1—1

<KL(S "3 ity 3 G} +'5 TS atalp (B()H)

=1 p=1 p=1

HEDE Bapar +HE a3 Bawrn

=KA;.

Hence, we have (11). Similarly, we have

(12) !K;qaia?akE&f;{:k[ <KA:,
= | 3 a0, ESE 60 = KA.
<j<k
NeXt: we shall prove
(14) | 2 aiajaka,E{:iEjgk{:l ] :KA; .
1< j<k<l

For fixed 1, let 23", 3 and X® be respectively the components of the summa-
tion X . for j—i=(k—j, I—k), k—j=(y—1, [—Fk) and [—k=(j—i, k—j). From

1< j<k<
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Lemma A

n—3
FZ; ptl ;0,001 [ E&ié]ékfl |

< Kz S0 {atai+ala) {p()—i)}

A

n—| -2

ESCSS 3 alab, (g(p)

3 =1 ¢=1 r=1

F @} prq@iiprar- (PP} 4]

SKSILS, dlat, 90
HB 'S 5 gl 600

SKLE 3 dat,+ 403 35S alpa (600

SKAHL+ 5 plo(0) ") <KAL.

Similarly, we have
T 20 lagaal | EEE 2|
SKS 2 {alai+aja [P0 — " (gU—) =+ (=)} 7]

=KA}
and

n-3
§1 I | a;a;a,a, [ Efifj{:ksz |

<K' B9 {alaj+alal) (-} S KA} .

So, we have (14). Hence, from (7)-(14), we have (5) in the case where m=4

and b=0.
From Theorem F in [4] and Theorem 1, we have the following conclusion

(cf. [1, p. 102], [9, p. 83] and [11])
THEOREM 2. Let the conditions of Theovem 1 1s satisfied for some even in-

teger. If m=2, then

15) E(max | b‘;:laifllz)éczA%m(log22n) (all b=0, n=1)

1s)sn 1=

and if m=4, then
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b+
(16) E(max | 2 afl™M=cnAp,  (all 520, n21)

15jsn  1=b+

Here, cp(m=2, 4, --+) are constants defined in Theorem 1.

4. Moment inequalities for sums of s. m. sequences.

THEOREM 3. Let {£;} be a s.m. sequence with coefficient a(n). We assume
that for some >0 and for an even integer m(=2)

® E£,=0 and E|£,|™<M<co  (=L,2, ),
and
® 3 (oD (o)) 9o <o

Then, for every sequence {a,} and for every integer n, we have
b+n
an E( 3 afrscndt,  (@lbz0, nzl),

where c;, is an absolute constant depending only on m. Hence, the analogous
inequalities to (15) and (16) hold.

The first part of Theorem 3 is analogously proved to the proof of Theorem
1, using Lemma B instead of Lemma A and so is omitted.

5. Functionals of mixing sequences. For a strictly stationary mixing pro-
cess {§;}, let H) be a Hilbert space of random variables, measurable with
respect to M3, and U an isometric operator on HZ.. Let Y&H?Z, be a random
element such that EY=0 and E|Y|*'°<co for some 6=0. Define

18) Y,=U0Y (=0, £1, %2, --+)
and put
19) PR)=E|Y—EY|ML)|*° (k=L 2, -).

THEOREM 4. Let {£;} be a strictly stationary, ¢-mixing sequence. Let {Y;}
be the strictly stationary sequence defined by (18) with 6=0. If §1¢‘/2(k)<oo and

§1¢1/2(k)<00’ then for every sequence {a,} and for every n(=1)

20) Var (3 a YOSKM AL, (allb20).

Hence, for every n=1

+J

21 E(max ( bE

1sysn 1=br

1a,Y,)Z)é KM, A} (log 2n)*  (all 5=0)
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Here, My=max{EY?, {EY %%,

Proof. Without loss of generality, we may assume that b=0. From the
proof of (18.6.4) in [3]

|E(@.Y Xa,Y ) =laa,| |[EY.Y,..]

matay (|25 )+ ([}

where j>1 and [s] denotes the largest integer p such that p=s. Thus, (20)
follows, since

Var (B av)=M,| B ai+2 s (az+a‘;‘>{¢1/2([%])+¢1/2([%])}]

KM E et 3 S (67(0)+¢(p)

+ 5 0S4 a+e"0)]
SKMA}, .

(21) follows easily from (20).
Analogously, using inequalities in the proof of Theorem 18.6.2 in [3] we
have the following

THEOREM 5. Let the strictly stationary sequence {€} be s.m. and consider
the strictly stationary sequence {Y;} defined by (18) with some d>0. If

k}:’:} {a(R)} 7D <00 and él {G(R)} 720 < oo,

then for any n(=1)

22) Var (Z:::a,Yl)éKMl 2. (allh=0)
and so
(23) E(max 3 a,Y.)'SKM,A,(log2n)  (all b=0).

1S7sn 1=b+1

Here, M,=max (E|Y|?*, {E|Y |29} ¥2%9),

6. Some applications.

(I) Almost sure convergence of series > a,&,.
1=1

THEOREM 6. Let {§;} be a s.m. muxing sequence of random variables with

E&,=0. Then, the series éai& s convergent almost surely, 1f Zml) allog? and for
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some 6>0 the following conditions are satisfied:

(i> E|$l|2+6§K(Z:1’ 2) “'): and
(ii) 1;’:)1 {a(n)} 8/(2+4) < 0.

Proof. Let N=N(n) be an arbitrary function of n such that N>n. If (i)
holds, then from Theorem 1

E(Sad <K Y dEE<Kdlog ~*n

where d= ) a?log 21, and so
=1

1
2 <o,

S E(S aéSKS

—an

Hence, by the Beppo-Levi theorem

f)Ez——>O a.s.

1=27

The rest of the proof is obtained by the method of the proof of Theorem
3.2.1 in [8], using Theorem 2 instead of Theorem 3.1.1 in [8] and so is omitted.
If (ii) holds, from Theorem 3 we have the desired conclusion analogously.

For functionals of mixing processes the following theorem holds :
THEOREM 7. For a strictly stationary mixing process {£;}, let {Y,;} be the

process defined wn Section 5. Then the series Z‘iai& 18 convergent almost surely
=

if ia% log 21< o0 and one of the following conditions holds:
1=1

@) {6} is g-mixing with §1¢1/2(i)<oo and §¢1’2(i)<00,
or
(ii) {3} 15 5. with 3 {a(}?**> <oo, E|Y[*9<00 and

S g} <o (5>0).

Remark. 1t is obvious from the proof of Theorem 6 that the conclusions of
Theorems 6 and 7 remain true, if we replace the condition g a?log 2<oo by the
condition

3 ai(log i)(log log i)(log log log i)***< o

for some ¢>0.
(I) The rate of the convergence in the strong law of large numbers.
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THEOREM 8. Let m=4 be an even integer. If the conditions of Theorem 2
or 3 are satisfied, then the followings hold:
(1) 1f A, — oo, then for each ¢>0 and 6>0

(24) P( é a.§;=0{A(log A,)""(log log A,)"*?'™})=1
and
a%/m

J
(25) * P< AToim(log A)aTom (e | 2 ak] §e><oo

(i) of Ap— 0 and ai=<cAi(n=n,, 0<c<1), then for each ¢>0 and 6>0

a3 Ap 1 ¢
__nm . L=
= > Thog Ay Pl | adilze) <o
and
al 1 k
_—_ —_— . >
@) > Zi(log A P(Sk‘ig Hog A" | & a’5’|=1)

(0<b,<bym—1). Here, A2= 3,n:§1a3.

This theorem follows from Theorems 5-8 in [4] and Theorems 2 and 3.

(III) The functional central limit theorem for (not necessarily strictly sta-
tionary) mixing sequences. In what follows, we assume that {§;} is a sequence
of random variables centered at expectations with variances E&, uniformly

bounded by 1. Put
(28) Sp=2 &, si=E(S%), o%=maxEf;
PR 1SnsEN

We shall assume that s2 — oo,
Consider the point s3/s2(1=k=n) on the real line. Order them linearly and

discard those bigger than 1. Set

Xa(si/si)=sz"Sk
and define a random function Xy(¢) in C[0, 1] by
(30 Xu(t)=su'sk

and linear between those points. Similarly define a random function Y,(¢) in
D[0, 1] by setting Y, (1)=s;'S, if t=s;%s3. Throughout the interior of the parti-
tion intervals (¢,_,, f,) we define Y,(f) to be constant equaling any value between
Vi(tiy) and Y, (2).

We shall suppose that one of the following conditions holds.

(a) {&,} satisfies Condition (I) with i}ln{gé(n)} i< 0o, and EEIZK(1=1, 2, ---), and
(b) {&,} satisfies Condition (II) with i;lna5/4+5(n)<oo, and E|&,|*"<K(t=1, 2, ---)
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for some §>0.
Now, we write

@31) Si=3 =3+ 5z

where we set
n=&+ -+, a=Eat o e 0,
Y=ot o FHEopn,  2=Eopnat o €00

Zl+1='§pl+1+ +$n .
Here, we put
o= 3 (h )

the integers A and % being at our disposal.
A double sequence of real numbers is called an admissible pair for {¢,} if

2

. 0 knBax 0 S2
n ’ %2 ’

o B,

—> 0

32)

£nBn \ S k.B s2
¢( oF )Bn_—)o or “( ox )B,,—)O
according to whether Condition (I) or (II) is assumed to hold.
LEMMA. Suppose that (a) or (b) holds. Let (£, s,) be any admissible pair
for {€.}. Then we can represent S, in the form (31) subject to the following
conditions.

E(y))=B,(1+0(1)), E(z)=Kk,B,
(33)
E(z})=Bn(1+0(1))

uniformly mn 1=j3=I[. Moreover

(34) E(EIZ,)ZéKIcnSZ, E(Ely, P=sa(l4o0(1)).

The proof of this lemma is easily obtained by the method of the proof of Lemma
4 in [7], using Theorems 1 and 3, and so is omitted.

By Lemma we have the following theorem which is a generalization of
Theorem 1 in [8].

THEOREM 10. Suppose that {£.} satisfies either (a) or (b). Let (k,, By) be
any adnussible pair and let y;=y, (with df F,,) be the sequence of random varia-
bles associated with 1t according to Lemma. Then

(35) X, —>W and V,—>W
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where W is standard Browman motion 1f and only if, for any ¢>0

(36) o2 szlS ydF,, —>0 (1 —> o)

lylzesp

Proof. The proof is carried out by the same method of the proof of Theorem
1 in [8], using Theorems 1 and 3 instead of condition a) in [8] and so is omitted.
(IV) The rate of convergence to normality. Let {£;} be a strictly stationary,

s.m. sequence of random variables with E¢;=0. Put S,=0 and S,= zV‘_,E,, and
=1
assume that ’

37) o= EEi+2 Ji EE&,>0

if the series is convergent. It is known that if E|&,|?*9<co and > {a(M*i< o
J=1

for some >0, then the series in (37) is absolutely convergent. (cf. [3], Theorem
18.5.3)

THEOREM 11. Let {£;} be a strictly stationary, s.m. sequence of random varia-
bles with E£,=0 and E|&;|**%<oo for some 0>0. If a(n)=0(e"™) for some 7>0,
then

(38) 4,=sup| P(S, <x0 V1) —@(x)| =0(n="7)
where
(39) D(x)= SL \/;'{ e vy

Proof. Let n be any positive integer fixed. Let
p=["7, g=[clogn] (cr>2),

k=[n(p+9™].

Define
y4
nNi— ]gléi(p+q)+y (1:1) ) k)
and
y4
Ci: ]glgi(p+q)+p+] (12 ]-: Tty k) .
Put

pF=(var n) "y, (=1, -, k).
Then
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4, sup | P( 3 nt=xv/E)—0()|
+sup| @(x—2¢,)—~0()| +sup l@(\—%,%x)—@(x)l

+P( S8l zem)+P(_ 3 &lzem)

1=k(pTq)+1

where ¢,=n""".
Now, by the method used in the proof of Theorem 2 in [5], we shall show

“0) L=sup | P(3} ¥ S xv/E )~ 0(x)| =0(n™").

Let Y, -+, Y, be independently and identically distributed random variables
each having the same df as that of ¥ Thus, EY,=0, Var ;=1 and from
Theorem 1

E|Y,|*=(var 9:)"*E|7:[*’=(Var 7,) " E| [ )**
éKop—a/zpa/z:Ko .

Applying Lemma 1 in [6, p. 109] to the sum k"“]‘é Y,, we obtain

ﬁ Eotth™Y27;__ ,-t?/2
=1

t

léKk‘”Z{Var Y.} “V2E| Y, | et
gKk-l/ZtZQ—tzh

for all ¢ such that |¢| =K, VE .
On the other hand, as 7¥'s are s.m.,, so for all n sufficiently large and for

all ¢

ith—1/2 %,7« k itk~12y ;) < — -7
| Ee SET — HlEe i = Ka(q)=0(n"7)
7=

and from Theorem 1

it h— k * 13 fpp—
| Eett® 1/2]§1nj — I[ Eetts27;]
J=1

t2
2k

IA

{E| Zkllﬂ}kiz-l-kEY?}éKtz
Z

for all |#| sufficiently small.
Hence, from Theorem 3 in [6, p. 111] it follows that for some a>0

E{exp (itk™" ,é 7R} —emt
t

A;é[(ssakw l

—arl?

ldt+K4k'”2
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k k
E {exp(itk™/? Z‘i 75} —1'[l Eexp(utk™?Y,)
7= 7=

:Ka[{gltlén‘l+Sn'1§|t|sak1/2}I t dt

k
II E exp(itk™2Y ) —e~**/2
+Sltlsak1/5’-| = f |dt+K4k‘”2

= K, {0(n™%) +ka(q)S 1] -1ds} + K b

n-lsitisar!/?
=K, {0(n 3)4+0n")} + K,k 2=0(n""").

Thus, we have (40).
From inequalities (3.3) and (3.4) in [6, p. 114] and Theorem 1 we have the
following inequalities :

(41) Sgpl D(x—26,)—D(x)| S2e,=2n"V"
'k Var 7, vk Var 7,
sup |05 ) 0| sk R 1
(42)
k Var n,—no?* b _y
:K S — _<_ - = 3/7
l n(~'k Var p,++n)o I“K n Kn

P(l 8 Zem )= E| BC.°

(43)
< Kn 5"k {E|L,| 20} 22+ =0(n 1)

P S &1z Kn o (n—k(p+q)

1=k(p+q)+1

(44)
=0(n~1").

Hence, by (40)-(44), we have (38) and the proof is completed.
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