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ON THE LINEAR TRANSFORMATIONS OF
AHLFORS FUNCTIONS

By AKIRA YAMADA

1. Introduction.

Let R be a finite open Riemann surface of genus p with n boundary com-
ponents I', (=0, ---,n—1). For two distinct fixed points a, b in R, it is known
that there exist the extremal functions which maximize |f(b)| in the family

{f; reAR), fl@=0, |f|=1 on R}

and they are unique up to a constant multiple of absolute value 1. The same
assertion holds when for a fixed local coordinate we take [f’(a)| instead of
|f(b)|. They are called Ahlfors functions at ¢ and we denote any of them by
fav, fo respectively. In his lecture note, J.D. Fay [3] has given an explicit
representation of the Ahlfors functions of a planar domain by means of theta
function. In the present paper, using Fay’s result, we obtain a necessary and
sufficient condition for the linear transformation of f,,

Jas(2)— far(@)
]-—fab(a) 'fa.b(z) ’

to be fus (BER) when R is planar. Let Q(R) denote the set of points a in R
such that T.(f.)=f. for some a=R distinct from a. As a corollary, if Q(R) is
not empty, then the double R of R is hyperelliptic and Q(R) is the union of n
mutually disjoint analytic simple curves in K. However in the non-planar case
the situation changes. In section 4 we shall show an example of the bordered
surface whose Q(R) has non-empty interior. Prof. Suita pointed out to the author
that this fact enables us to give a negative answer for the real analyticity of the
analytic capacities of non-planar surfaces. But they are real analytic for every
plane region €O,p [4]. These phenomena show interesting contrasts between
non-planar and planar cases. The author wishes to express his sincere thanks
to Prof. Suita for his valuable advice and remarks.

a<ER

To(far)2)=

2. Notation

Fay’s notation and definitions [3] will be used in this paper. Let ¢ be the
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canonical anti-conformal involution of R, and fix a symmetric canonical homo-
logy basis on R :

Ay, By, o, Apy Boy Aoity Bosss 5 Aoin—1, Bown-1, Avy By -y Apr, By s
such that A,,,=I", for k=1,---,n—1, and A,, By, -+, A,, B, (resp.A Ay, By, e,
Ag, By) are cycles in R (resp. ¢(R)) satisfying the relations in Hy(R, Z):
#(A)=A4:, @¢B)=—By, 1=1=p
#(A)=A4,, ¢(B,)=—B8,, ot+1=i=p+n—1.

Let uy, -, u; (g=2p+n—1) be a basis of the holomorphic differentials on R
normalized so that the period matrix with respect to the symmetric canonical
homology basis has the form (2zil, ) where /=the identity matrix and ¢ is a
symmetric matrix with Rer=<0. Let w,_, be the normalized differential of the
third kind on R with poles at b of residue 1 and at a of residue —1, E(x, )

the prime form, 6(z)= Z‘,gexp (%‘mrm—l—‘muz) Riemann’s theta function. Then
mezZ

the following symmetries hold [3, Chap. 6]: for x, yeR, zeC*

M wp-a(D=w,-o(X), 02)=0($(k), Elx,»=EX7),
where £=¢(x) the conjugate point of x, and for z, **, Zpsn-1, 21, =+, 20 €C
G(21y ) Zor Zossy * » Zowness Zvy " » Zpr)
=—(Z1, , Zos Zprs * » Eprness By 0 2p)

We denote by D(f) the divisor of a meromorphic function f.

3. Linear transformations of Ahlfors functions.

Let us write x—y:fy u:(fwu,) for the sake of simplicity. When R is

J:]‘Y“'!g
planar (p=0), the Ahlfors function can be represened by the theta function and

the prime form:

L O(x—a—s)E(x, a)
@ I e el

1 (o+o
IEIZI, $= 2’78‘ uECg,
ata
where the paths of integation of s must be chosen to be symmetric with respect
to dR so that s becomes a purely imaginary vector [3, Prop. 6.17].

THEOREM 1. Let R be a plane regular vegion of fimte connectiwity. Then
the following conditions are equivalent.

(1) Ta(fab) :fa'ﬂ ’
(ii) é—(a+ﬁ+b+5):é—~(a+5z+ﬂ+/§) i Jo=C%/(2ril, 7),
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(iii) there exists a meromorphic function f on R satisfying f(x)>0 on OR and
D(f)=a+p—a—b.
Proof. Clearly we may assume e=1 in (2) to calculate Tu(fs;). From the
symmetries (1),
O0Gx—a—9Ex, a)  Ola—d—s)E(a, @)
O(x—a—s)E(x, @) a—a—s)E(a, @)
Tl fe) =" ga—a—9E@,a) 0(i—a—s)E(x, a)
O(a—a—s)E(a, @) O(x—a—s)E(x, @)
_ x—a—s)dla—a—s)E(x, a)E(a, @)—0(x—a—s)0(a—a—s)E(x, @) E(a, a)
T 0(x—a—s)0(@—a—s)E(x, ))E@&, a)—0(x—a—s)f(@—a—s)E(x, a)E(@, @)

where

_ Ola—a—s)E(a, a)
1= " 0la—a—s)Ea, @)’
This expression can be simplified by the addition-formula of the theta function
[3]: for x,y,a, bR and e=C?,

[nl=1.

0(x—b—e)0(y—a—e)E(x, a)E(y, b)—0(x—a—e)0(y—b—e)E(x, b)E(y, a)
=0(e)f(x+y—a—b—e)E(x, y)E(a, b) .

Disregarding a constant multiple of absolute value 1, we now have
O(x+a—a—a—s)E(x, a)

Ox+a—a—a—s)E(x, @) *

It is obvious that T.(fas)=/xs if and only if they have the same divisor on R.

By using Riemann’s vanishing theorem [3, Th. 1.1] this condition can be ex-
pressed as

Ta(fab):

8+3
s+a+d—a—c¥=~2wg u in J,

ata

—

or
1 - _
—2~(a+d—]—b+b)=-;~(a+d+18—1—ﬁ) in Jo.

Thus (i) and (ii) are equivalent. On the other hand the equivalence of (ii) and
(iii) is a consequence of the next lemma which is a variant of Abel’s theorem.

LEMMA 1. Let R be planar. Then
—;—(a+d+b+5)=—;~(a+c‘r+ﬁ+/§) n Jo

if and only if there exists a meromorphic function f on R with D(f)=a+b—a—f8
satisfying >0 on OR.
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Proof. Let us introduce the notation {f} =2rie+10 for ¢, 0 R%. Note that

for any x, yER, x+%—y—7 has the form {2} (e R®) if we take symmetric paths

of integration. Thus the condition 1/2(a+a@+b+b)=1/2(a+a&+p+p) in I, is
equivalent to

0 -0

Vi "l)g

atatotb=ata+pri+2{) O} in €% v,eZ (j=1,,0).
Assume that this is true, then by Abel’s theorem there exists a meromorphic
function f on R with divisor D=a+a+b+b—a—a—p—p. In fact for any fixed
pe€l’, the function

F(p)=exp S;wo, pPER

has the divisor D where wp=wg_otwzatws,-stwsz We must examine the
argument of f along dR. If p,el’, (=1, ---,n—1), using the symmetries (1)
and Riemann’s bilinear relation, we have

arg f(p,)=Im SZZ(‘)D:% S-c]wD_g—c]aD):;—ll(Scj Q)D_S;S(Cj)wD)

1 1
__TSB]CDD_—Z—lSDuj—_Zvjﬂ » vi€Z,

where C, is a smooth curve in R connecting p,eI”, with po=l’,. Thus f(p,)>0.
Similarly, f(p)>0 for pel’,, hence we conclude />0 on JR.

Next assume that f is a meromorphic function on R with D{f)=a+b—a—p
satisfying />0 on dR. Then by reflection with respect to dR, f can be extended
to f which is meromorphic on R with D(f)=a+a+b+b—a—a—p—p. If B—A
(A, B>0) is the divisor of a meromorphic function F on R, by Abel’s theorem
we have

where m,:——zi—lSA dlog FeZ and n’:2—71r153 dlog FeZ (j=1, ---, g). Therefore
J J

m;=0 for D(F) since #>0 on 9R. On the other hand we have

1 x 1 1 x
nj_%SBJ dlog f—%gc, dlog f—l—z—S dlog f

L J-gCp

_ 1 S WTyeu i 7
T 2m SC,dIng 2w Sc,dlogf— T Im Scjdlogf
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1
_—‘.—‘7;__ rarg (f(Po)/f(P;))zZVJ ’ VJ‘EZ q.e.d.
For example if R is an annulus with center at the origin, the condition of
the lemma reduces to the one that arg af=arg ab.
Letting b—a, f—a in Theorem 1, we easily obtain

COROLLARY. T (fo)=fa tf and only 1f a+d=a-+a mAJO. Moreover assume
that the genus of R=2. Then T (fo)=f« 1f and only 1f R 1s hyperelliptic and
d(a)=J(a), p(a)=J(a) where ] 1s the hyperelliptic mvolution of R.

It is natural from this corollary that the next problem is to determine, when
R is hyperelliptic, the locus of ¢=], or as is the same, the set of fixed points
of ¢oJ. Let h be a non-trivial automorphism of K and H be the set of fixed

points of A.

LEMMA 2. If hog=goh, then either HCOR or HNOR=¢ (empty set). In the
second case, for any p€HNR

HNRC{xeR; fp(x)=0}.

Proof. If HCOR, there is nothing to prove. Thus we may assume H\oR
*¢. It is then easily verified from the hypothesis of the lemma that A(R)=R
and % is an automorphism of R. Fix pe HNR and consider the function f,oh.

fooh(p)=0,  |fpehl=1  on R

For a suitable choice of the local coordinate z centered at p, A has the form
hz)=ez (¢¥=1, e=1) in a neighborhood of p. Taking the derivative of f,oh at
p, we have (fpoh)'(p)=ef,'(p). Hence f,oh is an Ahlfors function at p and
fooh(x)=efp(x) for all x in R\JOR, since Ahlfors functions are unique. Suppose
x€HN(RJOR), then f,(x)=¢f,(x), so that f,(x)=0. This means that x€ R which
gives HNIR=¢. q.e.d.

Let R be hyperelliptic and A=] its hyperelliptic involution. Since Jog=go],
it follows from lemma 2 that WCOR or WNOR=¢, where W is the set of all
Weierstrass points. More precisely we have

THEOREM 2. Let the double R of R be hyperelliptic of genus g.

(i) Assume p=0: W s contained in 0R and there are two Weerstrass points
on each I', (=0, ---,n—1). The locus of ¢=] 1s a umon of n mutually disjoint
analytic sumple closed curves in R passing through the Weerstrass points on OR.

(ii) Assume p>0: The number of the boundary components of R 1s one or
two, and WNoR=¢. The Ahlfors functions at the g+1 Weierstrass points in R
are wdentical and have g+1 zeros at these Weierstrass pownts. The locus of ¢=]

is empty.

Proof. First we consider the case where WCoR. Since B is hyperelliptic,
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R has 2g+2 Weierstrass points. From 2g+2=2n, we see that one of the boun-
dary components of R, say [, contains at least two Weierstrass points. If
W, W,el', are those Weierstrass points, then from the hypothesis there exists
a meromorphic function w(x) on B with D(w)=2W,—2W,. Comparison of the

divisors gives

w(¢(x))=2-w(x) ’ )‘EC’ |’z| :ly XER .
For a suitable eC, w,(¥)=e-w(x) satisfies
wo(p(0)=wo(x) .

Therefore wy(I";) (3=0, -, n—1) is a continuum in R\J{co} so that a closed
interval in R\ {co}. It is easy to see that each I, covers w,(l,) exactly twice.
Since w, is of order 2, we have

wll )nwl'D=¢  (G*k).
From the argument principle w, maps R conformally onto a slit region w(R)
n—1
:C\Uowa(F,). Consequently p must be zero and on each [, there are two
P

Weierstrass points which correspond to the end points of wy(/',). To determine
the locus of ¢=] we claim that

{(xeR; ¢(x)=](x)}:WU{xEE; wox)ER, xE0R} .

This follows easily from the functional equation wo(x)=we(¢°J(x)). Now it is
clear that the locus consists of n disjoint simple closed analytic curves passing
through the Weierstrass points. We will then be finished with the proof of (i)
if we can show p>0 whenever WNIR=¢.

Suppose that WNdR=¢. Let @ be a Weierstrass point in R. Then there

exists, as in the proof of the first part, a mermorphic function w; on R with
D(w,)=2Q —2¢(Q) satisfying

w,(¢(0))w,(x)=1.

The restriction of w, to R is a unitary function on R having only a double zero
at Q= R. But on bordered surfaces every non-constant unitary holomorphic func-
tion has at least n zeros, where n is the number of the boundary components.
Thus n must be one or two. The hyperellipticity of R implies that g=2p+n—1
=2. From n=2 we conclude that p>0. This completes the proof of (i) and
the first part of (ii).

Next we proceed to prove the rest of (ii). Let p WNR. Then by Lemma
2 we have
WNRC{xseR; f,(x)=0}.

But it is known that the Ahlfors function has at most g+1 zeros [1]. Noting
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that W\ R consists of g-+1 points, we have indeed
WNR={xeR; f,(x)=0}.

Thus the Ahlfors functions at the Weierstrass points in R are identical with
each other, since they have the same divisor. To complete the proof we have
to show that the locus of ¢=J is empty. Assume that ¢(x)=J(x) for xeR.
Then we obtain

I=wy(()w () =wi(J(0)w,(x)= [ wi(x) |*.

Hence x€0R and so x=J(x) or x€ W, contradicting the fact that WNdR=4g.
q.e.d.
The proof of Theorem 2 contains the following: every regular plane region
whose double is hyperelliptic is conformally equivalent to a region slit along a
finite number of segments on a line. The converse is clearly also true.

4. Example.

Let D, and D, be two copies of a closed unit disk with slits along the seg-
ments [s, 1], [—1, —s] (0<s<i<1). We construct the desired finite bordered
surface S by joining D, to D, along their common distinguished slits in the
standard manner (i.e. the upper edge of such a slit of a given copy being
joined to the lower edge of the corresponding slit of the other copy). The dou-
ble S of S can be expressed explicitly by the algebraic equation

(3) y=(x2—s)(x2—1)(x "t —s)(x 2 —1?) .

Thus S is hyperellitic of genus 3. It follows that ¢(x, y)=((1/%),7) is the can-
onical anti-conformal involution of S and that S={(x,y)€S; |x|<1}. Denote by
0;, 0, (resp. oo, c0,) the points of S lying over the origin (resp. the point at
infinity) in such a way that we have

@ xly=si+0(x?), x*y=—st+0(x?), x*y=st+0(x7%), x*y=—st+0(x7%)
near these points, respectively. In this section we shall show that the Ahlfors
function for S at p in a sufficiently small neighborhood of O,, O, has the form

x—p _
- e le|=1.
Consequently, S is an example of the bordered surface whose Q(S) has non-
empty interior.

To show this we begin by studying the meromorphic differential ¢ on S
with D(¢)=0,—0,+00,—co,. Such differentials, by the Riemann-Roch theorem,
form a 2-dimentional vector space. Indeed, easy calculation shows that its basis
is given by
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dx {y+st(x—x"H)% dx
xy xy ’
The former is holomorphic and the latter is meromorphic with simple poles at

01, 9;.

_-1\e
LemMa 3. Let = Fstx L VABAE 2eC Then ¢ is a positive dif-

ferential 1f and only 1f
6) —(1=s51—)=2=1-s)(1—1?).
Proof. By definition the positiveness of ¢ means that

y+st(x—x"1)*+2
y
Since y is real for |x|=1, 2 must also be real. Since =y correspond to a fixed
X, we have

=0 for all |x|=1.

. st(x—x"1)242 >_
y

1 for all |x|=1,

or
{st(x—x)2+2}2<y*  for all |x|=1.

Set r=x%4x"% for convenience, then from (3) we can replace the above inequality

by
{str—2)F A2 <1 +s'—s(A+t'—tr), —2=r=2.

This inequality is linear with respect to », and so setting r==+2, we obtain
A=(1—s)*(1—1%)?, (A—4st) < (14114122

These inequalities yield (5). qg.e.d.

Next let W be the family of all differentials w holomorphic on S\UdS except
at a=S where » has a principal part
dz(x) n 7 dz(x)
(2(x0)—z(@)*  2x)—z(a) ’

for a fixed local coordinate z around a<S. Following Ahlfors [1], for any aeS

nel

there exists an extremal differential minimizing the expression faslwl in W. It

is in general not unique. But if we denote any of it by w, and set ¢,=f,w,,
then it is known to be characterized by arg ¢,=const. on dS. This characteriza-
tion and the fact that |f,|=1 on aS imply that f,, w,, ¢ are extended mero-
morphically across 8S to S. Setting D(f,)=a+A, on S we obtain
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D(f)=a+A,—a—A,
(6) D(wo)=B,—2a+24,+B, on §
D(¢pa)=Au+Bo—a+A,+B,—a

where B, is a positive divisor satisfying a<: {B,} CS\UoS. _Conversely, if fis a
unitary function on S and ¢ a positive differential on S with D(f) and D(¢)
having the form (6) for some divisors A and B, then f is an Ahlfors function
at a. Since the degree of a meromorphic differential is 2g—2, we have

) deg A, +deg B,=g .

Set N(a)=1+deg A, (the number of the zeros of f,) and call any extremal dif-
ferential w, a conjugate differential of f,.

LEMMA 4. If there exists a conjugate differential w, having no zeros on 0S,
then N(p)=N(a) for p wmn a neighborhood of a.

Proof. 1t is easily verified from Hurwitz’s theorem and a normal family
argument that N(p) is lower semi-continuous, i.e.,

) N@=N(p), pel

in some neighborhood U, of a. We shall show under the hypothesis of Lemma
4 that N(p) is also upper semi-continuous. To this end we proceed as follows.

Since w, is a Schottky differential with only a double pole at a, the residue
of w, at a vanishes. Therefore if we set

w,(x)=rL(x, p)+2,(x)

for x, pe§ where L(x, p)A is the adjoint Bergman kernel [2] and 2,(x) is a holo-
morphic differential on S, then we obtain

1

2

Steas 19:(0) §2Lngteas |, (1)1 +%S:easl L, pl

1
J— 14 -
=15+ LD
Note that the last equality holds by the duality relation between f, and w, [1].
It is clear that the last expression is bounded for p=U,, so that
1
2r
with finite K. Let U, be a sufficiently small neighborhood of a satisfying U,c
U\{B,}. This is possible because ae: {B,}. Fix a nowhere-vanishing holomor-

phic differential £&(x) on S\UaS. Then clearly %;l is locally bounded in S\U,

|..emi=K, for peu,
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for p=U,. On the other hand, we obtain from Green’s formula

Qp(0) | 1 2,0 L ] 4G |
e 7w s g 9005 2 M Ty | 12001
< K- Max | 4G el,,

HOME
where dG,(p)=dg(p, x)+i*dg(p, x), g being the Green’s function of S. Thus the
family {w,(x)/§(x)} e, is locally bounded in S\U,, so that it is normal there.
Since {B,} CS\U,, a similar reasoning as in the case of Ahlfors functions gives

that deg B, is also lower semi-continuous at g, i.e., there is a neighborhood
U (CU,) of a such that

teas

9 deg B,=deg B,, peU.
From (7), (8), (9) one obtains the desired result. q.e.d.

Now it is almost clear how to prove the before mentioned assertion con-
cerning our example. By Lemma 3 and the remark stated below (6), x is an
Ahlfors function at O, since D(x)=0,+0,—c0,—0, in S. Thus N(O,)=2. But
the proof of Lemma 3 shows that ¢>00naS if —(1—s*)(1—5)<A<A—s*)(1—1t).
Hence by Lemma 4 N(p)=2 in some neighborhood U of O,, so that f, (pU) is
a fractional linear transformation of x. Since |f,|=1 on 3S, f, must have the
form

s~%§px—, le|=1, peU.

By symmetry the same assertion holds for O,.

It is of some interest to see that at =s, +1f, the Weierstrass points in S, the
Ahlfors functions are given by

xz_szxxz_ﬁ)

y _ - _
TG V a—wi—rxy - =

This is a direct consequence of part (ii) of Theorem 2. Thus N(p)=4 in some
neighborhoods of -+s, +f. Furthermore, a closer examination using the method
of this paper will show that N(p)=4 also in a neighborhocd of aS.

Finally we remark that the analytic capacity Cz(z) is not real analytic on S.
The Gaussian curvature of Cp is given by

1 0°log Cy(z2)

TCy 6702
and is constant —1 in some neighborhood of O,&S since there we have
/
€= Lo/ @]l

1—[fo,(2)[*



LINEAR TRANSFORMATIONS OF AHLFORS FUNCTIONS 169

If Cg is real analytic on S, then the curvature is —1 everywhere on S by analytic
continuation. However, when compaired with the Poincaré metric by using
Ahlfors’ version of Schwarz’s lemma, this gives rise to a contradiction.

L1
[21

£3]
(4]
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