A. YAMADAKODAI MATH. J.1 (1978), 159–169

ON THE LINEAR TRANSFORMATIONS OF AHLFORS FUNCTIONS

By Akira Yamada

1. Introduction.

Let R be a finite open Riemann surface of genus ρ with n boundary components Γ_j ($j=0, \dots, n-1$). For two distinct fixed points a, b in R, it is known that there exist the extremal functions which maximize |f(b)| in the family

$$\{f; f \in A(R), f(a)=0, |f| \leq 1 \text{ on } R\}$$

and they are unique up to a constant multiple of absolute value 1. The same assertion holds when for a fixed local coordinate we take |f'(a)| instead of |f(b)|. They are called Ahlfors functions at a and we denote any of them by f_{ab} , f_a respectively. In his lecture note, J.D. Fay [3] has given an explicit representation of the Ahlfors functions of a planar domain by means of theta function. In the present paper, using Fay's result, we obtain a necessary and sufficient condition for the linear transformation of f_{ab}

$$T_{\alpha}(f_{ab})(z) = \frac{f_{ab}(z) - f_{ab}(\alpha)}{1 - f_{ab}(\alpha) \cdot f_{ab}(z)}, \qquad \alpha \in \mathbb{R}$$

to be $f_{\alpha\beta}$ ($\beta \in R$) when R is planar. Let Q(R) denote the set of points a in R such that $T_{\alpha}(f_a) = f_{\alpha}$ for some $\alpha \in R$ distinct from a. As a corollary, if Q(R) is not empty, then the double \hat{R} of R is hyperelliptic and Q(R) is the union of n mutually disjoint analytic simple curves in R. However in the non-planar case the situation changes. In section 4 we shall show an example of the bordered surface whose Q(R) has non-empty interior. Prof. Suita pointed out to the author that this fact enables us to give a negative answer for the real analyticity of the analytic capacities of non-planar surfaces. But they are real analytic for every plane region $\notin O_{AB}$ [4]. These phenomena show interesting contrasts between non-planar and planar cases. The author wishes to express his sincere thanks to Prof. Suita for his valuable advice and remarks.

2. Notation

Fay's notation and definitions [3] will be used in this paper. Let ϕ be the Received November 8, 1976.

canonical anti-conformal involution of \hat{R} , and fix a symmetric canonical homology basis on \hat{R} :

 $A_1, B_1, \cdots, A_{\rho}, B_{\rho}, A_{\rho+1}, B_{\rho+1}, \cdots, A_{\rho+n-1}, B_{\rho+n-1}, A_{1'}, B_{1'}, \cdots, A_{\rho'}, B_{\rho'},$

such that $A_{\rho+k} = \Gamma_k$ for $k=1, \dots, n-1$, and $A_1, B_1, \dots, A_{\rho}, B_{\rho}$ (resp. $A_{1'}, B_{1'}, \dots, A_{\rho'}, B_{\rho'}$) are cycles in R (resp. $\phi(R)$) satisfying the relations in $H_1(\hat{R}, \mathbb{Z})$:

$$\phi(A_i) = A_{i'}, \quad \phi(B_i) = -B_{i'}, \quad 1 \leq i \leq \rho$$

$$\phi(A_i) = A_i, \quad \phi(B_i) = -B_i, \quad \rho + 1 \leq i \leq \rho + n - 1$$

Let u_1, \dots, u_g $(g=2\rho+n-1)$ be a basis of the holomorphic differentials on \hat{R} normalized so that the period matrix with respect to the symmetric canonical homology basis has the form $(2\pi i I, \tau)$ where I=the identity matrix and τ is a symmetric matrix with Re $\tau \leq 0$. Let ω_{b-a} be the normalized differential of the third kind on \hat{R} with poles at b of residue 1 and at a of residue -1, E(x, y)the prime form, $\theta(z) = \sum_{m \in \mathbb{Z}^g} \exp\left(\frac{1}{2} {}^t m \tau m + {}^t m \cdot z\right)$ Riemann's theta function. Then the following symmetries hold [3, Chap. 6]: for $x, y \in \hat{R}, z \in C^g$

(1)
$$\omega_{b-a}(x) = \overline{\omega_{b-a}(\bar{x})}, \quad \theta(z) = \overline{\theta(\phi(z))}, \quad E(x, y) = \overline{E(\bar{x}, \bar{y})},$$

where $\tilde{x} = \phi(x)$ the conjugate point of x, and for $z_1, \dots, z_{\rho+n-1}, z_1, \dots, z_{\rho'} \in C$

$$\begin{split} \phi(z_1, \cdots, z_{\rho}, z_{\rho+1}, \cdots, z_{\rho+n-1}, z_{1'}, \cdots, z_{\rho'}) \\ = -(\bar{z}_{1'}, \cdots, \bar{z}_{\rho'}, \bar{z}_{\rho+1}, \cdots, \bar{z}_{\rho+n-1}, \bar{z}_1, \cdots, \bar{z}_{\rho}) \end{split}$$

We denote by D(f) the divisor of a meromorphic function f.

3. Linear transformations of Ahlfors functions.

Let us write $x-y=\int_{y}^{x}u=\left(\int_{y}^{x}u_{j}\right)_{j=1,\cdots,g}$ for the sake of simplicity. When *R* is planar ($\rho=0$), the Ahlfors function can be represented by the theta function and the prime form:

(2)
$$f_{ab}(x) = \varepsilon \cdot \frac{\theta(x - \bar{a} - s)E(x, \bar{a})}{\theta(x - a - s)E(x, \bar{a})}, \quad |\varepsilon| = 1, \quad s = -\frac{1}{2} - \int_{a + \bar{a}}^{b + \bar{b}} u \in C^g,$$

where the paths of integation of s must be chosen to be symmetric with respect to ∂R so that s becomes a purely imaginary vector [3, Prop. 6.17].

THEOREM 1. Let R be a plane regular region of finite connectivity. Then the following conditions are equivalent.

(i) $T_{\alpha}(f_{ab})=f_{\alpha\beta}$, (ii) $\frac{1}{2}(a+\bar{a}+b+\bar{b})=\frac{1}{2}(\alpha+\bar{\alpha}+\beta+\bar{\beta})$ in $J_{0}=C^{g}/(2\pi i I, \tau)$,

(iii) there exists a meromorphic function f on R satisfying f(x)>0 on ∂R and $D(f)=\alpha+\beta-a-b$.

Proof. Clearly we may assume $\varepsilon = 1$ in (2) to calculate $T_{\alpha}(f_{ab})$. From the symmetries (1),

$$T_{a}(f_{ab})(x) = \frac{\frac{\theta(x-\bar{a}-s)E(x,a)}{\theta(x-a-s)E(x,\bar{a})} - \frac{\theta(\alpha-\bar{a}-s)E(\alpha,a)}{\theta(\alpha-a-s)E(\alpha,\bar{a})}}{1 - \frac{\theta(\alpha-\bar{a}-s)E(\alpha,a)}{\theta(\alpha-a-s)E(\alpha,\bar{a})}} \frac{\theta(x-\bar{a}-s)E(x,a)}{\theta(x-a-s)E(x,\bar{a})}}{\theta(x-a-s)E(x,\bar{a})}$$

 $= \eta \cdot \frac{\theta(x - \bar{a} - s)\theta(\alpha - a - s)E(x, a)E(\alpha, \bar{a}) - \theta(x - a - s)\theta(\alpha - \bar{a} - s)E(x, \bar{a})E(\alpha, a)}{\theta(x - a - s)\theta(\bar{\alpha} - \bar{a} - s)E(x, \bar{a})E(\bar{\alpha}, \bar{a}) - \theta(x - \bar{a} - s)\theta(\bar{\alpha} - a - s)E(x, a)E(\bar{\alpha}, \bar{a})}$

where

$$\eta = \frac{\overline{\theta(\alpha - a - s)E(\alpha, \bar{a})}}{\theta(\alpha - a - s)E(\alpha, \bar{a})}, \quad |\eta| = 1.$$

This expression can be simplified by the addition-formula of the theta function [3]: for x, y, a, $b \in \hat{R}$ and $e \in C^{g}$,

$$\theta(x-b-e)\theta(y-a-e)E(x,a)E(y,b)-\theta(x-a-e)\theta(y-b-e)E(x,b)E(y,a)$$
$$=\theta(e)\theta(x+y-a-b-e)E(x,y)E(a,b).$$

Disregarding a constant multiple of absolute value 1, we now have

$$T_{\alpha}(f_{ab}) = \frac{\theta(x + \alpha - a - \bar{a} - s)E(x, \alpha)}{\theta(x + \bar{\alpha} - a - \bar{a} - s)E(x, \bar{\alpha})}$$

It is obvious that $T_{\alpha}(f_{ab})=f_{\alpha\beta}$ if and only if they have the same divisor on \hat{R} . By using Riemann's vanishing theorem [3, Th. 1.1] this condition can be expressed as

$$s+a+\bar{a}-\alpha-\bar{\alpha}=\frac{1}{2}\int_{\alpha+\bar{\alpha}}^{\beta+\bar{\beta}}u$$
 in J_{α}

or

$$\frac{1}{2}(a+\bar{a}+b+\bar{b}) = \frac{1}{2}(\alpha+\bar{\alpha}+\beta+\bar{\beta}) \quad \text{in } J_0.$$

Thus (i) and (ii) are equivalent. On the other hand the equivalence of (ii) and (iii) is a consequence of the next lemma which is a variant of Abel's theorem.

LEMMA 1. Let R be planar. Then

$$\frac{1}{2}(a+\bar{a}+b+\bar{b}) = \frac{1}{2}(\alpha+\bar{\alpha}+\beta+\bar{\beta}) \quad \text{in } J_{\alpha}$$

if and only if there exists a meromorphic function f on R with $D(f)=a+b-\alpha-\beta$ satisfying f>0 on ∂R .

Proof. Let us introduce the notation ${\delta \atop_{\varepsilon}}_{\tau} = 2\pi i \varepsilon + \tau \delta$ for ε , $\delta \in \mathbb{R}^g$. Note that for any $x, y \in \hat{\mathbb{R}}, x + \bar{x} - y - \bar{y}$ has the form ${0 \atop_{\varepsilon}}_{\tau} (\varepsilon \in \mathbb{R}^g)$ if we take symmetric paths of integration. Thus the condition $1/2(a + \bar{a} + b + \bar{b}) = 1/2(\alpha + \bar{\alpha} + \beta + \bar{\beta})$ in J_0 is equivalent to

$$a+\bar{a}+b+\bar{b}=\alpha+\bar{\alpha}+\beta+\bar{\beta}+2\begin{cases} 0 \cdots 0\\ \nu_1\cdots\nu_g \\ \tau \end{cases} \quad \text{in } C^g, \ \nu_j \in \mathbb{Z} \ (j=1,\cdots,g) \,.$$

Assume that this is true, then by Abel's theorem there exists a meromorphic function f on \hat{R} with divisor $D=a+\bar{a}+b+\bar{b}-\alpha-\bar{\alpha}-\beta-\bar{\beta}$. In fact for any fixed $p_0 \in \Gamma_0$ the function

$$f(p) = \exp \int_{p_0}^p \omega_D$$
, $p \in \hat{R}$

has the divisor D where $\omega_D = \omega_{a-\alpha} + \omega_{\overline{a}-\overline{\alpha}} + \omega_{\overline{b}-\beta} + \omega_{\overline{b}-\overline{\beta}}$. We must examine the argument of f along ∂R . If $p_j \in \Gamma_j$ $(j=1, \dots, n-1)$, using the symmetries (1) and Riemann's bilinear relation, we have

$$\arg f(p_{j}) = \operatorname{Im} \int_{p_{0}}^{p_{j}} \omega_{D} = \frac{1}{2\iota} \left(\int_{-C_{j}} \omega_{D} - \int_{-C_{j}} \overline{\omega}_{D} \right) = \frac{-1}{2\iota} \left(\int_{C_{j}} \omega_{D} - \int_{\phi(C_{j})} \omega_{D} \right)$$
$$= -\frac{1}{2\iota} \int_{B_{j}} \omega_{D} = -\frac{1}{2\iota} \int_{D} u_{j} = -2\nu_{j}\pi, \quad \nu_{j} \in \mathbb{Z},$$

where C_j is a smooth curve in R connecting $p_j \in \Gamma_j$ with $p_0 \in \Gamma_0$. Thus $f(p_j) > 0$. Similarly, f(p) > 0 for $p \in \Gamma_0$, hence we conclude f > 0 on ∂R .

Next assume that f is a meromorphic function on R with $D(f)=a+b-\alpha-\beta$ satisfying f>0 on ∂R . Then by reflection with respect to ∂R , f can be extended to \hat{f} which is meromorphic on \hat{R} with $D(\tilde{f})=a+\bar{a}+b+\bar{b}-\alpha-\bar{\alpha}-\beta-\bar{\beta}$. If B-A(A, B>0) is the divisor of a meromorphic function F on \hat{R} , by Abel's theorem we have

$$\int_{A}^{B} u = \begin{cases} m_1 \cdots m_g \\ n_1 \cdots n_g \end{cases},$$

where $m_j = -\frac{1}{2\pi i} \int_{A_j} \operatorname{dlog} F \in \mathbb{Z}$ and $n_j = \frac{1}{2\pi i} \int_{B_j} \operatorname{dlog} F \in \mathbb{Z}$ $(j=1, \dots, g)$. Therefore $m_j = 0$ for $D(\tilde{f})$ since $\tilde{f} > 0$ on ∂R . On the other hand we have

$$n_{j} = \frac{1}{2\pi i} \int_{B_{j}} \operatorname{dlog} \tilde{f} = \frac{1}{2\pi i} \int_{C_{j}} \operatorname{dlog} \tilde{f} + \frac{1}{2\pi i} \int_{-\phi(C_{j})} \operatorname{dlog} \tilde{f}$$
$$= \frac{1}{2\pi i} \int_{C_{j}} \operatorname{dlog} \tilde{f} - \frac{1}{2\pi i} \int_{C_{j}} \overline{\operatorname{dlog} \tilde{f}} = \frac{1}{\pi} \operatorname{Im} \int_{C_{j}} \operatorname{dlog} \tilde{f}$$

$$= \frac{1}{\pi} \cdot \arg\left(f(p_0)/f(p_j)\right) = 2\nu_j, \quad \nu_j \in \mathbb{Z} \qquad \text{q. e. d.}$$

For example if R is an annulus with center at the origin, the condition of the lemma reduces to the one that $\arg \alpha \beta = \arg ab$.

Letting $b \rightarrow a$, $\beta \rightarrow \alpha$ in Theorem 1, we easily obtain

COROLLARY. $T_{\alpha}(f_a) = f_{\alpha}$ if and only if $a + \bar{a} = \alpha + \bar{\alpha}$ in J_0 . Moreover assume that the genus of $R \ge 2$. Then $T_{\alpha}(f_a) = f_{\alpha}$ if and only if \hat{R} is hyperelliptic and $\phi(a) = J(a)$, $\phi(\alpha) = J(\alpha)$ where J is the hyperelliptic involution of \hat{R} .

It is natural from this corollary that the next problem is to determine, when \hat{R} is hyperelliptic, the locus of $\phi=J$, or as is the same, the set of fixed points of $\phi\circ J$. Let h be a non-trivial automorphism of \hat{R} and H be the set of fixed points of h.

LEMMA 2. If $h \circ \phi = \phi \circ h$, then either $H \subset \partial R$ or $H \cap \partial R = \phi$ (empty set). In the second case, for any $p \in H \cap R$

$$H \cap R \subset \{x \in R ; f_p(x) = 0\}$$
.

Proof. If $H \subset \partial R$, there is nothing to prove. Thus we may assume $H \setminus \partial R \neq \phi$. It is then easily verified from the hypothesis of the lemma that h(R) = R and h is an automorphism of R. Fix $p \in H \cap R$ and consider the function $f_p \circ h$.

$$f_p \circ h(p) = 0$$
, $|f_p \circ h| \leq 1$ on R

For a suitable choice of the local coordinate z centered at p, h has the form $h(z) = \varepsilon z$ ($\varepsilon^N = 1$, $\varepsilon \neq 1$) in a neighborhood of p. Taking the derivative of $f_p \circ h$ at p, we have $(f_p \circ h)'(p) = \varepsilon f_p'(p)$. Hence $f_p \circ h$ is an Ahlfors function at p and $f_p \circ h(x) = \varepsilon f_p(x)$ for all x in $R \cup \partial R$, since Ahlfors functions are unique. Suppose $x \in H \cap (R \cup \partial R)$, then $f_p(x) = \varepsilon f_p(x)$, so that $f_p(x) = 0$. This means that $x \in R$ which gives $H \cap \partial R = \phi$. q. e. d.

Let \hat{R} be hyperelliptic and h=J its hyperelliptic involution. Since $J \circ \phi = \phi \circ J$, it follows from lemma 2 that $W \subset \partial R$ or $W \cap \partial R = \phi$, where W is the set of all Weierstrass points. More precisely we have

THEOREM 2. Let the double \hat{R} of R be hyperelliptic of genus g.

(i) Assume $\rho=0$: W is contained in ∂R and there are two Weierstrass points on each Γ , $(j=0, \dots, n-1)$. The locus of $\phi=J$ is a union of n mutually disjoint analytic simple closed curves in R passing through the Weierstrass points on ∂R .

(ii) Assume $\rho > 0$: The number of the boundary components of R is one or two, and $W \cap \partial R = \phi$. The Ahlfors functions at the g+1 Weierstrass points in R are identical and have g+1 zeros at these Weierstrass points. The locus of $\phi = J$ is empty.

Proof. First we consider the case where $W \subset \partial R$. Since \hat{R} is hyperelliptic,

 \hat{R} has 2g+2 Weierstrass points. From $2g+2 \ge 2n$, we see that one of the boundary components of R, say Γ_0 , contains at least two Weierstrass points. If $W_1, W_2 \in \Gamma_0$ are those Weierstrass points, then from the hypothesis there exists a meromorphic function w(x) on \hat{R} with $D(w)=2W_1-2W_2$. Comparison of the divisors gives

$$w(\phi(x)) = \lambda \cdot \overline{w(x)}, \quad \lambda \in C, \ |\lambda| = 1, \ x \in \hat{R}.$$

For a suitable $\varepsilon \in C$, $w_0(x) = \varepsilon \cdot w(x)$ satisfies

$$w_0(\phi(x)) = \overline{w_0(x)}$$
.

Therefore $w_0(\Gamma_j)$ $(j=0, \dots, n-1)$ is a continuum in $\mathbb{R} \cup \{\infty\}$ so that a closed interval in $\mathbb{R} \cup \{\infty\}$. It is easy to see that each Γ_j covers $w_0(\Gamma_j)$ exactly twice. Since w_0 is of order 2, we have

$$w_0(\Gamma_j) \cap w_0(\Gamma_k) = \phi \qquad (j \neq k).$$

From the argument principle w_0 maps R conformally onto a slit region $w_0(R) = C \setminus \bigcup_{j=0}^{n-1} w_0(\Gamma_j)$. Consequently ρ must be zero and on each Γ_j there are two Weierstrass points which correspond to the end points of $w_0(\Gamma_j)$. To determine the locus of $\phi = J$ we claim that

$$\{x \in \hat{R}; \phi(x) = J(x)\} = W \cup \{x \in \hat{R}; w_0(x) \in R, x \in \partial R\}$$
.

This follows easily from the functional equation $\overline{w_0(x)} = w_0(\phi \circ J(x))$. Now it is clear that the locus consists of *n* disjoint simple closed analytic curves passing through the Weierstrass points. We will then be finished with the proof of (i) if we can show $\rho > 0$ whenever $W \cap \partial R = \phi$.

Suppose that $W \cap \partial R = \phi$. Let Q be a Weierstrass point in R. Then there exists, as in the proof of the first part, a mermorphic function w_1 on \hat{R} with $D(w_1)=2Q-2\phi(Q)$ satisfying

$$w_1(\phi(x))\overline{w_1(x)} = 1$$
.

The restriction of w_1 to R is a unitary function on R having only a double zero at $Q \in R$. But on bordered surfaces every non-constant unitary holomorphic function has at least n zeros, where n is the number of the boundary components. Thus n must be one or two. The hyperellipticity of \hat{R} implies that $g=2\rho+n-1 \ge 2$. From $n \le 2$ we conclude that $\rho > 0$. This completes the proof of (i) and the first part of (ii).

Next we proceed to prove the rest of (ii). Let $p \in W \cap R$. Then by Lemma 2 we have

$$W \cap R \subset \{x \in R; f_p(x) = 0\}$$
.

But it is known that the Ahlfors function has at most g+1 zeros [1]. Noting

that $W \cap R$ consists of g+1 points, we have indeed

$$W \cap R = \{x \in R; f_p(x) = 0\}$$
.

Thus the Ahlfors functions at the Weierstrass points in R are identical with each other, since they have the same divisor. To complete the proof we have to show that the locus of $\phi=J$ is empty. Assume that $\phi(x)=J(x)$ for $x\in \hat{R}$. Then we obtain

$$1 = w_1(\phi(x))\overline{w_1(x)} = w_1(J(x))\overline{w_1(x)} = |w_1(x)|^2.$$

Hence $x \in \partial R$ and so x=J(x) or $x \in W$, contradicting the fact that $W \cap \partial R = \phi$. q. e. d.

The proof of Theorem 2 contains the following: every regular plane region whose double is hyperelliptic is conformally equivalent to a region slit along a finite number of segments on a line. The converse is clearly also true.

4. Example.

Let D_1 and D_2 be two copies of a closed unit disk with slits along the segments [s, t], [-t, -s] (0 < s < t < 1). We construct the desired finite bordered surface S by joining D_2 to D_1 along their common distinguished slits in the standard manner (i.e. the upper edge of such a slit of a given copy being joined to the lower edge of the corresponding slit of the other copy). The double \hat{S} of S can be expressed explicitly by the algebraic equation

(3)
$$y^2 = (x^2 - s^2)(x^2 - t^2)(x^{-2} - s^2)(x^{-2} - t^2).$$

Thus \hat{S} is hyperellitic of genus 3. It follows that $\phi(x, y) = ((1/\bar{x}), \bar{y})$ is the canonical anti-conformal involution of \hat{S} and that $S = \{(x, y) \in \hat{S}; |x| \leq 1\}$. Denote by O_1, O_2 (resp. ∞_1, ∞_2) the points of \hat{S} lying over the origin (resp. the point at infinity) in such a way that we have

(4)
$$x^2y = st + O(x^2), \quad x^2y = -st + O(x^2), \quad x^{-2}y = st + O(x^{-2}), \quad x^{-2}y = -st + O(x^{-2})$$

near these points, respectively. In this section we shall show that the Ahlfors function for S at p in a sufficiently small neighborhood of O_1, O_2 has the form

$$\varepsilon \cdot \frac{x-p}{1-\bar{p}x}, \quad |\varepsilon|=1.$$

Consequently, S is an example of the bordered surface whose Q(S) has nonempty interior.

To show this we begin by studying the meromorphic differential ϕ on S with $D(\phi) \ge O_2 - O_1 + \infty_2 - \infty_1$. Such differentials, by the Riemann-Roch theorem, form a 2-dimensional vector space. Indeed, easy calculation shows that its basis is given by

$$\frac{dx}{xy}$$
, $\frac{\{y+st(x-x^{-1})^2\}dx}{xy}$.

The former is holomorphic and the latter is meromorphic with simple poles at O_1, ∞_1 .

LEMMA 3. Let $\psi = \frac{\{y + st(x - x^{-1})^2 + \lambda\} dx}{ixy}$, $\lambda \in C$. Then ψ is a positive differential if and only if

(5)
$$-(1-s^2)(1-t^2) \leq \lambda \leq (1-s^2)(1-t^2).$$

Proof. By definition the positiveness of ψ means that

$$\frac{y+st(x-x^{-1})^2+\lambda}{y} \ge 0 \quad \text{for all } |x|=1.$$

Since y is real for |x|=1, λ must also be real. Since $\pm y$ correspond to a fixed x, we have

$$\pm \frac{st(x-x^{-1})^2+\lambda}{y} \ge -1 \quad \text{for all } |x|=1,$$

or

$$\{st(x-x^{-1})^2+\lambda\}^2 \le y^2$$
 for all $|x|=1$.

Set $r=x^2+x^{-2}$ for convenience, then from (3) we can replace the above inequality by

$$\{st(r-2)+\lambda\}^2 \leq (1+s^4-s^2r)(1+t^4-t^2r), \quad -2 \leq r \leq 2.$$

This inequality is linear with respect to r, and so setting $r=\pm 2$, we obtain

 $\lambda^2 \leq (1-s^2)^2 (1-t^2)^2 , \qquad (\lambda - 4st)^2 \leq (1+s^2)^2 (1+t^2)^2 .$

These inequalities yield (5).

Next let W be the family of all differentials ω holomorphic on $S \cup \partial S$ except at $a \in S$ where ω has a principal part

q. e. d.

$$\frac{dz(x)}{(z(x)-z(a))^2}+\frac{\eta\cdot dz(x)}{z(x)-z(a)}, \qquad \eta\in C$$

for a fixed local coordinate z around $a \in S$. Following Ahlfors [1], for any $a \in S$ there exists an extremal differential minimizing the expression $\int_{\partial S} |\omega|$ in W. It is in general not unique. But if we denote any of it by ω_a and set $\psi_a = f_a \omega_a$, then it is known to be characterized by $\arg \psi_a = \text{const. on } \partial S$. This characterization and the fact that $|f_a| = 1$ on ∂S imply that f_a, ω_a, ψ_a are extended meromorphically across ∂S to \hat{S} . Setting $D(f_a) = a + A_a$ on S we obtain

(6)
$$D(f_a) = a + A_a - \bar{a} - \bar{A}_a$$
$$D(\omega_a) = B_a - 2a + 2\bar{A}_a + \bar{B}_a \qquad \text{on } \hat{S}$$
$$D(\psi_a) = A_a + B_a - a + \bar{A}_a + \bar{B}_a - \bar{a}$$

where B_a is a positive divisor satisfying $a \notin \{B_a\} \subset S \cup \partial S$. Conversely, if f is a unitary function on \hat{S} and ϕ a positive differential on \hat{S} with D(f) and $D(\phi)$ having the form (6) for some divisors A and B, then f is an Ahlfors function at a. Since the degree of a meromorphic differential is 2g-2, we have

(7)
$$\deg A_a + \deg B_a = g.$$

Set $N(a)=1+\deg A_a$ (the number of the zeros of f_a) and call any extremal differential ω_a a conjugate differential of f_a .

LEMMA 4. If there exists a conjugate differential ω_a having no zeros on ∂S , then N(p)=N(a) for p in a neighborhood of a.

Proof. It is easily verified from Hurwitz's theorem and a normal family argument that N(p) is lower semi-continuous, i.e.,

(8)
$$N(a) \leq N(p), \quad p \in U_1$$

in some neighborhood U_1 of a. We shall show under the hypothesis of Lemma 4 that N(p) is also upper semi-continuous. To this end we proceed as follows.

Since ω_a is a Schottky differential with only a double pole at *a*, the residue of ω_a at a vanishes. Therefore if we set

$$\omega_p(x) = \pi L(x, p) + \Omega_p(x)$$

for $x, p \in \hat{S}$ where L(x, p) is the adjoint Bergman kernel [2] and $\Omega_p(x)$ is a holomorphic differential on \hat{S} , then we obtain

$$\begin{split} \frac{1}{2\pi} \int_{t\in\partial S} |\mathcal{Q}_p(t)| &\leq \frac{1}{2\pi} \int_{t\in\partial S} |\omega_p(t)| + \frac{1}{2} \int_{t\in\partial S} |L(t,p)| \\ &= |f_p'(p)| + \frac{1}{2} \int_{t\in\partial S} |L(t,p)|. \end{split}$$

Note that the last equality holds by the duality relation between f_p and ω_p [1]. It is clear that the last expression is bounded for $p \in U_1$, so that

$$\frac{1}{2\pi} \int_{t \in \partial S} |\mathcal{Q}_p(t)| \leq K, \quad \text{for } p \in U_1$$

with finite K. Let U_2 be a sufficiently small neighborhood of a satisfying $\overline{U}_2 \subset U_1 \setminus \{B_a\}$. This is possible because $a \notin \{B_a\}$. Fix a nowhere-vanishing holomorphic differential $\xi(x)$ on $S \cup \partial S$. Then clearly $\frac{L(x, p)}{\xi(x)}$ is locally bounded in $S \setminus \overline{U}_2$

for $p \in U_2$. On the other hand, we obtain from Green's formula

$$\begin{split} \left| \frac{\mathcal{Q}_{P}(x)}{\xi(x)} \right| &= \frac{1}{2\pi} \left| \int_{t \in \partial S} \frac{\mathcal{Q}_{p}(t)}{\xi(t)} dG_{x}(t) \right| &\leq \frac{1}{2\pi} \max_{t \in \partial S} \left| \frac{dG_{x}(t)}{\xi(t)} \right| \cdot \int_{t \in \partial S} |\mathcal{Q}_{p}(t)| \\ &\leq K \cdot \max_{t \in \partial S} \left| \frac{dG_{x}(t)}{\xi(t)} \right|, \qquad p \in U_{2} , \end{split}$$

where $dG_x(p) = dg(p, x) + i^* dg(p, x)$, g being the Green's function of S. Thus the family $\{\omega_p(x)/\xi(x)\}_{p \in U_2}$ is locally bounded in $S \setminus \overline{U}_2$, so that it is normal there. Since $\{B_a\} \subset S \setminus \overline{U}_2$, a similar reasoning as in the case of Ahlfors functions gives that deg B_a is also lower semi-continuous at a, i. e., there is a neighborhood $U \ (\subset U_2)$ of a such that

(9)
$$\deg B_a \leq \deg B_p, \qquad p \in U.$$

From (7), (8), (9) one obtains the desired result.

q. e. d.

Now it is almost clear how to prove the before mentioned assertion concerning our example. By Lemma 3 and the remark stated below (6), x is an Ahlfors function at O_1 since $D(x)=O_1+O_2-\infty_1-\infty_2$ in \hat{S} . Thus $N(O_1)=2$. But the proof of Lemma 3 shows that $\phi>0$ on ∂S if $-(1-s^2)(1-t^2)<\lambda<(1-s^2)(1-t^2)$. Hence by Lemma 4 N(p)=2 in some neighborhood U of O_1 , so that f_p ($p \in U$) is a fractional linear transformation of x. Since $|f_p|=1$ on ∂S , f_p must have the form

$$\varepsilon \cdot \frac{x-p}{1-\bar{p}x}$$
, $|\varepsilon|=1$, $p\in U$.

By symmetry the same assertion holds for O_2 .

It is of some interest to see that at $\pm s$, $\pm t$, the Weierstrass points in S, the Ahlfors functions are given by

$$\varepsilon \cdot \frac{y}{x^2(x^{-2} - s^2)(x^{-2} - t^2)} = \varepsilon \cdot \sqrt{\frac{(x^2 - s^2)(x^2 - t^2)}{(1 - s^2 x^2)(1 - t^2 x^2)}}, \quad |\varepsilon| = 1$$

This is a direct consequence of part (ii) of Theorem 2. Thus N(p)=4 in some neighborhoods of $\pm s$, $\pm t$. Furthermore, a closer examination using the method of this paper will show that N(p)=4 also in a neighborhood of ∂S .

Finally we remark that the analytic capacity $C_B(z)$ is not real analytic on S. The Gaussian curvature of C_B is given by

$$-\frac{1}{C_B{}^2}\cdot\frac{\partial^2\log C_B(z)}{\partial z\partial \bar{z}}$$

and is constant -1 in some neighborhood of $O_1 \in S$ since there we have

$$C_B(z) = \frac{|f_{o_1}'(z)| |dz|}{1 - |f_{o_1}(z)|^2}.$$

If C_B is real analytic on S, then the curvature is -1 everywhere on S by analytic continuation. However, when compaired with the Poincaré metric by using Ahlfors' version of Schwarz's lemma, this gives rise to a contradiction.

References

- [1] AHLFORS, L., Open Riemann surfaces and extremal problems on compact subregions, Comm. Math. Helv., Vol. 24 (1950), 100-134.
- [2] BERGMAN, S., The kernel function and conformal mapping, Math. Surveys 5, Amer. Math. Soc. Providence, R. I., 1950.
- [3] FAY, J.D., Theta functions on Riemann surfaces, Springer-Verlag, Lecture Notes, Vol. 352, 1973.
- [4] SUITA, N., On a metric induced by analytic capacity, Ködai Math. Sem. Rep. 25 (1973), 215-218.

Department of Mathematics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo, Japan