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ON THE LINEAR TRANSFORMATIONS OF

AHLFORS FUNCTIONS

BY AKIRA YAMADA

1. Introduction.

Let R be a finite open Riemann surface of genus p with n boundary com-
ponents Γj 0 = 0 , -" yn—1). For two distinct fixed points a, b in R, it is known
that there exist the extremal functions which maximize \f(b)\ in the family

{f;feA(R),f(a)=0, \f\£l on R}

and they are unique up to a constant multiple of absolute value 1. The same
assertion holds when for a fixed local coordinate we take \f(a)\ instead of
\f(b) I. They are called Ahlfors functions at a and we denote any of them by
fab, fa respectively. In his lecture note, J. D. Fay [3] has given an explicit
representation of the Ahlfors functions of a planar domain by means of theta
function. In the present paper, using Fay's result, we obtain a necessary and
sufficient condition for the linear transformation of fab

Ta{fab)(z)-

to be faβ (β^R) when R is planar. Let Q(R) denote the set of points a in R
such that Ta(fa)=f<x for some a^R distinct from a. As a corollary, if Q(R) is
not empty, then the double R of R is hyperelliptic and Q(R) is the union of n
mutually disjoint analytic simple curves in R. However in the non-planar case
the situation changes. In section 4 we shall show an example of the bordered
surface whose Q(R) has non-empty interior. Prof. Suita pointed out to the author
that this fact enables us to give a negative answer for the real analyticity of the
analytic capacities of non-planar surfaces. But they are real analytic for every
plane region ί θ i 5 [4]. These phenomena show interesting contrasts between
non-planar and planar cases. The author wishes to express his sincere thanks
to Prof. Suita for his valuable advice and remarks.

2. Notation

Fay's notation and definitions [3] will be used in this paper. Let φ be the
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canonical anti-conformal involution of R, and fix a symmetric canonical homo-
logy basis on R:

•Ά\f LJ\f '" f Άp, Dp, Ά.p+i, L)p+ι, '" , /ip + n - ι , LJpj.γι-1, s\\', LJ\<, ' " , Άpi, Dp' ,

such t h a t Λp+k=Γk for k=l, ••• , n — 1 , and Aly Bu •••, Ap, Bp (resp. Av, Bv, •••,
Apl, Bp ) a re cycles in R (resp. φ(R)) satisfying the re lat ions in HX(R, Z):

φ(,Ax)=Av ,

φ(At)=At, φ(Bτ)=-Blf

Let ulf- ,ug (g=2p+n—ϊ) be a basis of the holomorphic differentials on R
normalized so that the period matrix with respect to the symmetric canonical
homology basis has the form (2πil, τ) where /=the identity matrix and τ is a
symmetric matrix with Reτ^O. Let α>δ_α be the normalized differential of the
third kind on R with poles at b of residue 1 and at a of residue — 1, E{x,y)

the prime form, θ(z)= Σ exp (-τy-tπιτm+tm'z) Riemann's theta function. Then

the following symmetries hold [3, Chap. 6] : for x, y^R,

(1) ω6-α(*)=ω6-α(x), θ(z)=θ(φ(z)), E{x, y)=E(x, y),

w h e r e χ—φ{x) t h e c o n j u g a t e p o i n t o f x , a n d f o r z u •••, z p + n - l f z v , ••• , z

Φ\%1> '" > %p> Zp+l> y Zp+n-i> %ι'> > Zp'J

r = (βl'f '" f Zp'y Zp+1> '" > Zp+n-l> %i> "' > Zp)

We denote by D(f) the divisor of a meromorphic function /.

3. Linear transformations of Ahlfors functions.

Let us write x—y={ u—(\ uλ for the sake of simplicity. When R is

planar (ρ=0), the Ahlfors function can be represented by the theta function and
the prime form:

, θ(x-ά-s)E(x, a) 1 p+»
θ(x-a-s)E{x, a) 2 Jα+_

where the paths of integation of s must be chosen to be symmetric with respect
to dR so that s becomes a purely imaginary vector [3, Prop. 6.17].

THEOREM 1. Let R be a plane regular region of finite connectivity. Then
the following conditions are equivalent.

(i) Ta(fab)=faβ,

(ii) -^(a+ά + b^^^ia+a+β+β) in J0=C*/(2πiI, r),
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(iii) there exists a meromorphic function f on R satisfying f(x)>0 on dR and
D(f)=a+β-a-b.

Proof. Clearly we may assume ε = l in (2) to calculate Tα(/α 6). From the
symmetries (1),

θ(x-ά-s)E(x, a) _ θ(a-ά-s)E(a, a)
θ(x-a-s)E(x, a) θ(a-a-s)E(a, a)

l V X )laVabAX)- θ(a-ά-s)E(a, a) θ(x-ά-s)E(x, a)
θ\a-a-s)E(a, a) θ(x—a—s)E(x, a)

_ θ(x-d-s)θ(a-a-s)E(x, a)E(a, d)-θ(x-a-s)θ(a-ά-s)E(x, ά)E(a, a)
~ϊ]*J{x-a-s)θ(ά--ά-s)E(x, ά)E(ά, a)—θ(x—ά—s)θ(cc—a—s)E(x, a)E(ά, a)

where

_ θ(a—a—s)E(a, a)
V~ θ(a-a-s)E(a^J)~

This expression can be simplified by the addition-formula of the theta function
[3] : for x,y, a, b^R and e^Cg

f

θ(x-b-e)θ(y-a-e)E{x, a)E{y, b)-θ(x-a-e)θ(y-b-e)E(x, b)E(yf a)

= θ(e)θ(x+y-a-b-e)E(x, y)E(a, b).

Disregarding a constant multiple of absolute value 1, we now have

θ(x+a—a—ά—s)E(x, a)
Ta(fab)—'

θ(x+ά—a—ά—s)E(x, a)

It is obvious that Ta(fab)=faβ if and only if they have the same divisor on R.
By using Riemann's vanishing theorem [3, Th. 1.1] this condition can be ex-
pressed as

y in Jo

a + a

or

^ in/„.

Thus (i) and (ii) are equivalent. On the other hand the equivalence of (ii) and
(iii) is a consequence of the next lemma which is a variant of Abel's theorem.

LEMMA 1. Let R be planar. Then

in Jo

if and only if there exists a meromorphic function f on R with D(f)=a + b—a — β
satisfying />0 on dR.
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Proof. Let us introduce the notation { } =2πiε+τδ for ε, δ^Rg. Note that

for any x, y^R, x+x—y—y has the form { } (ε^Rg) if we take symmetric paths

of integration. Thus the condition l/2(a+ά+b+b)=l/2(a+ά+β+β) in Jo is
equivalent to

\ '" }in Cg, v^Z (j=l, •••, g).

Assume that this is true, then by Abel's theorem there exists a meromorphic
function / on R with divisor D—a+ά^-b+b—a—ά—β—β. In fact for any fixed

the function

exp
JPO

has the divisor J9 where ωD=ωa-aJr(^Έ-'aJr(0b-βJr(0F-~β' We must examine the
argument of / along dR. If p5^Γ3 (j=l, ••- ,n—ϊ), using the symmetries (1)
and Riemann's bilinear relation, we have

arg/ί/,,)=Im

where C3 is a smooth curve in R connecting pj^Γ3 with po^Γo. Thus f(pj)>0.
Similarly, f(p)>0 for />eΓ0, hence we conclude / > 0 on 3i?.

Next assume that / is a meromorphic function on R with D(f)=a+b—a—β
satisfying / > 0 on 3i?. Then by reflection with respect to 3/?, / can be extended
to / which is meromorphic on R with D(/)=α+^+fr+£—a—a—β—β. If B—A
(A, B>0) is the divisor of a meromorphic function F on R, by Abel's theorem
we have

where m ^ = — ^ — \ d l o g F e Z and n^=-^—\ dlog F e Z ( ; = l, ••• ,^r). Therefore

m ; = 0 for D(f) since / > 0 on dR. On the other hand we have

nj=-^-\ dlog/=-^ dlog/

- ^ - [ dlog/=—Im( dlog/
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= - i - arg (APO)/ΛPJ))=2^ , v^Z q. e. d.

For example if R is an annulus with center at the origin, the condition of
the lemma reduces to the one that arg α/3=arg ab.

Letting b-*a, β-*a in Theorem 1, we easily obtain

COROLLARY. Ta(fa)=fa if and only if a+ά—a+ά in Jo. Moreover assume
that the genus of R^2. Then Ta(fa)=fa if and only if R is hyperelliptic and
φ(ά)=J(ά), φ(a)=J(a) where J is the hyperelliptic involution of R.

It is natural from this corollary that the next problem is to determine, when
R is hyperelliptic, the locus of φ=J, or as is the same, the set of fixed points
of φoj. Let h be a non-trivial automorphism of R and H be the set of fixed
points of h.

LEMMA 2. // hoφ=φoh, then either HddR or Hr\dR—φ {empty set). In the
second case, for any p<=Hr\R

HnRc:{x^R; fp(x)=0} .

Proof. If HCidR, there is nothing to prove. Thus we may assume H\dR
^φ. It is then easily verified from the hypothesis of the lemma that h(R)=R
and h is an automorphism of R. Fix p^Hr\R and consider the function fpoh.

fpoh(p)=0, I Λ o A l ^ l onR

For a suitable choice of the local coordinate z centered at p, h has the form
h{z)=εz {εN—l, ε*pΐ) in a neighborhood of p. Taking the derivative of fpoh at
p, we have (fp°h)f(p)=efp(p). Hence fpoh is an Ahlfors function at p and
fp°h(x)=εfp(x) for all x in R^JdR, since Ahlfors functions are unique. Suppose
xtΞHniR^dR), thenfp(x)=εfp(x), so that fp(x)=0. This means that x^R which
gives Hr\dR—φ. q. e. d.

Let R be hyperelliptic and h—J its hyperelliptic involution. Since Joφ=φoJ,
it follows from lemma 2 that WddR or Wr\dR=φ, where W is the set of all
Weierstrass points. More precisely we have

THEOREM 2. Let the double R of R be hyperelliptic of genus g.
(i) Assume p=Q: W is contained in dR and there are two Weierstrass points

on each Γ3 (j=0, •••, n—1). The locus of φ—] is a union of n mutually disjoint
analytic simple closed curves in R passing through the Weierstrass points on dR.

(ii) Assume p>0: The number of the boundary components of R is one or
two, and Wf\dR=φ. The Ahlfors functions at thό g+1 Weierstrass points in R
are identical and have g+1 zeros at these Weierstrass points. The locus of φ=J
is empty.

Proof First we consider the case where WddR. Since R is hyperelliptic,
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R has 2g+2 Weierstrass points. From 2g+2^2n, we see that one of the boun-
dary components of R, say ΓQ, contains at least two Weierstrass points. If
Wlf W2^Γ0 are those Weierstrass points, then from the hypothesis there exists
a meromorphic function w(x) on R with D(w)=2W1—2W2. Comparison of the
divisors gives

w(φ(x)) = λ-w(x),

For a suitable εeC, wo(x)=ε w(x) satisfies

Therefore wQ(Γj) 0 = 0 , •••, n—1) is a continuum in R\J{oo} so that a closed
interval in i2W{oo}. It is easy to see that each Γ3 covers wo(Γj) exactly twice.
Since w0 is of order 2, we have

wo(Γj)ΓΛwo(Γk)=φ

From the argument principle w0 maps R conformally onto a slit region wo(R)
n—l

= C\\J wo(Γj). Consequently p must be zero and on each Γ3 there are two
J = 0

Weierstrass points which correspond to the end points of wQ{Γ3). To determine
the locus of φ—J we claim that

; φ(x)=J(x)} =

This follows easily from the functional equation w0(x)=w0(φoj(χ)). Now it is
clear that the locus consists of n disjoint simple closed analytic curves passing
through the Weierstrass points. We will then be finished with the proof of (i)
if we can show p>0 whenever Wr\dR=φ.

Suppose that Wr\dR=φ. Let Q be a Weierstrass point in R. Then there
exists, as in the proof of the first part, a mermorphic function w1 on R with
D(w1)=2Q- 2φ(Q) satisfying

The restriction of wλ to R is a unitary function on R having only a double zero
at Q^R. But on bordered surfaces every non-constant unitary holomorphic func-
tion has at least n zeros, where n is the number of the boundary components.
Thus n must be one or two. The hyperellipticity of R implies that g—2p-\-n—1
^ 2 . From n ^ 2 we conclude that ρ>0. This completes the proof of (i) and
the first part of (ii).

Next we proceed to prove the rest of (ii). Let P^WΓΛR Then by Lemma
2 we have

But it is known that the Ahlfors function has at most g+1 zeros [1]. Noting
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that Wr\R consists of g-\-l points, we have indeed

Thus the Ahlfors functions at the Weierstrass points in R are identical with
each other, since they have the same divisor. To complete the proof we have
to show that the locus of φ=J is empty. Assume that φ(x)=J(x) for
Then we obtain

l=w1(φ(x))w1(x)=w1UM)w1{x)= I wλ(x) 12.

Hence x^dR and so x=J(x) or x^W, contradicting the fact that Wf~\dR—φ.
q. e. d.

The proof of Theorem 2 contains the following: every regular plane region
whose double is hyperelliptic is conformally equivalent to a region slit along a
finite number of segments on a line. The converse is clearly also true.

4. Example.

Let Dλ and D2 be two copies of a closed unit disk with slits along the seg-
ments [s, ί], [—t, — s] ( 0 < s < ί < l ) . We construct the desired finite bordered
surface S by joining D2 to Dx along their common distinguished slits in the
standard manner (i. e. the upper edge of such a slit of a given copy being
joined to the lower edge of the corresponding slit of the other copy). The dou-
ble S of S can be expressed explicitly by the algebraic equation

(3) y2=(x2~s2)(x2-t2){χ-2-s2)(χ-2-f).

Thus S is hyperellitic of genus 3. It follows that φ(x,y)=((l/x),y) is the can-
onical anti-conformal involution of S and that S—{(x,y)^S; \x\^l}. Denote by
Oi, 02 (resp. colf oo2) the points of S lying over the origin (resp. the point at
infinity) in such a way that we have

(4) χ2y=st+O(x2), x2y=-st+O(x2), x~2y=st+O(χ-2), χ-2y=-stJr0(x~2)

near these points, respectively. In this section we shall show that the Ahlfors
function for S at p in a sufficiently small neighborhood of Olf 0 2 has the form

Consequently, S is an example of the bordered surface whose Q(S) has non-
empty interior.

To show this we begin by studying the meromorphic differential ψ on 5
with D(ψ)^O2—0i+oo2— oo2. Such differentials, by the Riemann-Roch theorem,
form a 2-dimentional vector space. Indeed, easy calculation shows that its basis
is given by
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dx

xy xy

The former is holomorphic and the latter is meromorphic with simple poles at

LEMMA 3. Let ψ^ΛΣ±^i^^Σ±A^Lf λζΞCm T h m ψ is a positive dif-

ferential if and only if

(5) -α-s 2χi-

Proof. By definition the positiveness of ψ means that

y+st(x—x'λ)2+λ ^ A . l t . . ,
;>0 for all \x = 1 .

y

Since y is real for \x\—l, λ must also be real. Since ±y correspond to a fixed
x, we have

+ ^>_ i for all |x| = 1 ,

y

or

{sΐ(x— x~1)2-{-λ}2^y2 for all | # | = 1 .

Set r=x2jrx~2 for convenience, then from (3) we can replace the above inequality

by

This inequality is linear with respect to r, and so setting r = ± 2 , we obtain

These inequalities yield (5). q. e. d.

Next let W be the family of all differentials ω holomorphic on S^JdS except
at α e 5 where ω has a principal part

dz(x) -η dz(x) „

{z{x)-z(a)Y "*" z(x)-z(a) ' V

for a fixed local coordinate * around α e S . Following Ahlfors [1], for any α e S

there exists an extremal differential minimizing the expression | ω | in W. It

J ds

is in general not unique. But if we denote any of it by ωa and set ψa= faa)a,
then it is known to be characterized by arg ς/>o—const, on dS. This characteriza-
tion and the fact that | / α | = l on dS imply that fa>ωa,ψa are extended mero-
morphically across dS to S. Setting D(fa)=a+Aa on 5 we obtain
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D(fa)=a+Aa-ά-Άa

(6) D(ωa)=Ba-2a+2Άa+Ba on S

D(ψa)=Aa+Ba-a+Άa+Ba-ά

where Ba is a positive divisor satisfying a& {BJcS^JdS. Conversely, if / is a
unitary function on S and φ a positive differential on S with D(f) and D(ψ)
having the form (6) for some divisors A and B, then / is an Ahlfors function
at a. Since the degree of a meromorphic differential is 2g—2, we have

(7) άegAa+άegBa=g.

Set N(a)=1+deg Aa (the number of the zeros of fa) and call any extremal dif-
ferential ωa a conjugate differential of fa.

LEMMA 4. // there exists a conjugate differential ωa having no zeros on dS,
then N(p)=N(d) for p in a neighborhood of a.

Proof. It is easily verified from Hurwitz's theorem and a normal family
argument that N(p) is lower semi-continuous, i. e.,

(8) N(a)^N(p), p^U,

in some neighborhood Ux of a. We shall show under the hypothesis of Lemma
4 that N(p) is also upper semi-continuous. To this end we proceed as follows.

Since ωa is a Schottky differential with only a double pole at a, the residue
of ωa at a vanishes. Therefore if we set

ωp(x)=πL(x, p)+Ωp(x)

for x,p^S where L(x,p) is the adjoint Bergman kernel [2] and Ωp(x) is a holo-
morphic differential on S, then we obtain

4
Zπ

Note that the last equality holds by the duality relation between fp and ωp [1].
It is clear that the last expression is bounded for p^Uly so that

±-\ \Ωp{t)\^K} for p^U,
2π Jt&ds

with finite K. Let U2 be a sufficiently small neighborhood of a satisfying U2(Z
. This is possible because a&{Ba}. Fix a nowhere-vanishing holomor-

phic differential ξ(x) on S^JdS. Then clearly -^jr^~- is locally bounded in S\D2
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for p^U2. On the other hand, we obtain from Green's formula

_ 2π Jt(Ξd

Ωp(t)

ξ(t)

t ΞdS

dGx(t)

ξ(t)

Δπ
Max

where dGx(p) = dg(p, x) + i*dg(p, x), g being the Green's function of S. Thus the
family {ωp(x)/ξ(x)}pξΞU2 is locally bounded in S\U2, so that it is normal there.
Since {Bα}c:S\U2, a similar reasoning as in the case of Ahlfors functions gives
that deg Bα is also lower semi-continuous at α, i. e., there is a neighborhood
U (C/72) of a such that

(9)

From (7), (8), (9) one obtains the desired result. q. e. d.

Now it is almost clear how to prove the before mentioned assertion con-
cerning our example. By Lemma 3 and the remark stated below (6), x is an
Ahlfors function at Oλ since D(X)=01+02-OO1-OD2 in S. Thus iV(Oi)=2. But
the proof of Lemma 3 shows that ^ > 0 o n d S if — (1—s2)(l—ί2)<^<(l—s2)(l—ί2).
Hence by Lemma 4 N(p)=2 in some neighborhood U of Ou so that fp (p^U) is
a fractional linear transformation of x. Since \fp\=l on dS, fp must have the
form

x p , , τ

\~pχ ' | W | ^ lJ ~ '

By symmetry the same assertion holds for O2.

It is of some interest to see that at ±s, ±t, the Weierstrass points in S, the
Ahlfors functions are given by

y U2-s2)(x2-/2)
ε | = l .x2(χ-2-s2)(χ-2-t2) w / V(1- S ^2)( 1 _^2 ) >

This is a direct consequence of part (ii) of Theorem 2. Thus N(p)=A in some
neighborhoods of ±s, ± ί . Furthermore, a closer examination using the method
of this paper will show that N(p)=4: also in a neighborhood of dS.

Finally we remark that the analytic capacity CB(z) is not real analytic on S.
The Gaussian curvature of CB is given by

1 d*\ogCB(z)
CB

2 dzdz

and is constant —1 in some neighborhood of O^S since there we have

r(*- \foMWdjl
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If CB is real analytic on S, then the curvature is —1 everywhere on S by analytic

continuation. However, when compaired with the Poincare metric by using

Ahlfors' version of Schwarz's lemma, this gives rise to a contradiction.

REFERENCES

L 1 J AHLFORS, L., Open Riemann surfaces and extremal problems on compact sub-
regions, Comm. Math. Helv., Vol. 24 (1950), 100-134.

[ 2 ] BERGMAN, S., The kernel function and conformal mapping, Math. Surveys 5,
Amer. Math. Soc. Providence, R. I., 1950.

[ 3 ] FAY, J. D., Theta functions on Riemann surfaces, Springer-Verlag, Lecture
Notes, Vol. 352, 1973.

[ 4 ] SUITA, N., On a metric induced by analytic capacity, Kδdai Math. Sem. Rep.
25 (1973), 215-218.

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY,

OH-OKAYAMA, MEGURO-KU,

TOKYO, JAPAN






