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MINIMAL HYPERSURFACES WITH THREE PRINCIPAL
CURVATURE FIELDS IN Sn+1

BY TOMINOSUKE OTSUKI

As is well known, there are many works on minimal hypersurfaces with two
regular principal curvature fields in the space forms, especially the spheres. On
the contrary, it seems we have very few works on minimal hypersurfaces with
more than two principal curvature fields in such spaces. In the present paper,
we shall study minimal hypersurfaces in Sn+1 which have three regular and
nonsimple principal curvature fields, say μu μ2 and μs.

In § 1, we shall state some fundamental theorems in the following argument.
In § 2 and § 3, we shall develope a general theory on such hypersurfaces and
find that the three tangent vector fields H(μx) (defined by (3.13)) corresponding
to μiy z=l, 2, 3, play important role in our investigation. In § 4 and § 5, we shall
treat the case in which one of H(μτ) vanishes identically and give an example
of such hypersurfaces. Finally, we shall investigate the case in which H(μt)
^ 0 , ί = l , 2, 3, and show that each μx can not be constant (Theorem 5), which
tells us that in order to construct examples of such hypersurfaces each μx must
be considered as a nonconstant function.

§ 1. Preliminaries

Let M—Mn be a hypersurface in an (n+l)-dimensional Riemannian manifold
M—Mn+1 of constant curvature c. Let ωA, ωAB = —ωBA, A, B=l, 2, •••, n + 1 , be
the basic and connection forms of M on the orthonormal frame bundle F{M)
over My which satisfy the structure equations

(1.1) dωΛ= ΈωABΛώB, dωAB = Σ
B C

Let B be the submanifold of F(M) over M composed of b=(x, eu •••, en+1) such
that (r, elf -, en)^F(M), where F(M) is the orthonormal frame bundle of M
with the induced Riemannian metric from M. Then, deleting the bars of ωA, ωAB

on B, we have

(1.2) ω n + i = 0 , ωKn+Ό=ΣlΛtJωJ, Alj=Aji,
j

f, 7 = 1, 2, •••, n .
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Let Φ(ω) : = ^ΣAιjωiωJ and Ψ(ω) :== Σ BiJkWiW^k be the 2nd and 3rd fundamental

forms of M respectively, where Bιjk are defined by

(1.3) DAtJ :=dAtJ- ΈωιkAkj- ΣiωjkAik= ΈBijkωk

and

(1.4) Btjk=Bjik—Bikj.

Now, let k be a principal curvature of M at xeM, an eigen value of Φ at
x, and denote the tangent subspace of all principal tangent vectors for k and
the zero vector at x by E(k, x). dimE(k, x) is equal to the multiplicity of k.

Let μ be a smooth principal curvature field of M. If £(μ, x) = E(μ(x), x)
is of constant dimension, then E(μ, x), x^M, make a smooth distribution of M,
which we denote by E(μ). We call such field μ regular. We have the following
theorem.

THEOREM A. Let M be α hyper surface immersed in an (n+1)- dimensional
Riemannian manifold M of constant curvature c and suppose that M has a regular
principal curvature field μ, then the distribution E(μ) is completely integrable.

Proof. Let m be the dimension of the distribution of E(μ) and take only
the frames b such that ea^E(μ), a=l,2, ~,m. Then, we have

(1.5) o)ex(n+Ό=μωa, ωrCn+Ό= ΣArtωt.

In the proof, we suppose the ranges of indexes as follows:

a, β, ••• = 1 , 2, •••, m r, t, ••• = m + l , •••, n .

From (1.1) and (1.5), we get easily

= μ Σ ωβ A ωβa— Σ Artωt A ωar

β r,t

and hence

dμAωa— Σ ^ r Λ Σ(A r t—μδ r t)ω t=0 .
T t

Setting dμ='Σμιωi, we can put

μtωa+ Έo)aΛArt--μδrt)= ΈKatsωs, Kats=Kast,

r s

by E. Cartan's lemma. Thus we have

Έ(Art—μδrt)ΣlωaAωcxr=ΣlKatsωaAωSf
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which implies

(1.6) Σ ω α Λ ω α r = O (mod ωm+1, •••, ωn),
a

because

by the regularity of μ. On the other hand, we have also

by (1.6). This shows that the system of Pfaff equations:

i. e. the distribution E(μ) is completely integrable. Q. E. D.
Remark. We have proved Theorem A under the condition of regularity

of the other principal curvatures (Theorem 2 in [3]).
We prove the following

THEOREM B. Let M be a hyper surf ace immersed in an (n+ϊ)~dimensιonal
Riemannian manifold M of constant curvature c. If the 3rd fundamental form
of M vanishes, then M is totally geodesic or umbilic, otherwise M has just two
principal curvatures λ, μ such that λμ=—c.

Proof. Since we have AlJ>k=0, we can choose special frames such that
Aii=λτ, Alj=0(iΦj) and λly--, λn are all constant. If λ1=λ2= •-=λn, then M
is totally geodesic or umbilic. Otherwise, we have co i ;=0 for λiΦλj. In fact,
for such i and , we have from (1.3)

0=dAtJ— Σ,ωikAkJ— ΈωjkAik=(λi—λj)cΰij,

hence α>ί<7 =0. Furthermore, from this relation we get

i.e. λιλJ+c=O, for λiΦλj.

This fact shows that the number of different principal curvatures is at most
two. Q. E. D.

Theorem B shows that if a hypersurface M in M have more than two prin-
cipal curvatures, its 3rd fundamental form Ψ does not vanish.

In the following, we consider also Ψ as a symmetric tensor field of M. We
denote the tangent space M at ,τeM by Mx and the inner product of X,
by <Z, 7>.
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§ 2. On the distributions for two regular principal curvature fields

In this section, we shall consider M in M a s in Theorem A, whose 3rd fun-
damental form Ψ does not vanish.

LEMMA 1. Let μ be a regular principal curvature field of M. For any tan-
gent vectors X, Y^E(μ,x), such that (X, 7 > = 0 and any Z^MX, we have

Ψ(X, Y, Z)=0.

Proof. Let us put dim E(μ, x)=m. We restrict ωi} ωi3, A%3 on the subma-
nifold of the frames b = (x, elf •••, en, en+1) such that ea^E(μ, x), a=l, 2, •••, m.
T h e n we have

Λ a t = μ δ a ι , a = l , 2, •••, m z = l , 2, •- , n .

Hence, by (1.3) we get

n n n

(2.1) Σ Baikωk=δaidμ— Σ ωakAki— Σ ωikAak
k=Ί k = l k = l

m n

— baidμ—μ Σ δriωar— Σ ωatAti+μωaι.r=i t=m+i

Especially, we have

(2.2) Έ^aβkω^δaβdμ, a, β=l, 2, -~,rn,

which imply easily this lemma. Q. E. D.

LEMMA 2. // dim E(μ)=dim E(μ, x)^2, then

Ψ(X,Y,Z)=0, X,

Proof. On the submanifold of B used in the proof of Lemma 1, we have
from (2.2)

n n

dμ— Σ Baakωk=Ba(xaωa-\- Σ Baarωr
k=l r=m+l

n

for a fixed a^m. Hence, putting dμ= Σ μ,kcok, we have

(2.3) μ,k=Baak, α = l , 2, •••, m k=l, 2, •••, n

and then, using the assumption m^2, we obtain

(2.4) i U , 1 = . . . = i M m = o .

Hence we have BaβT=Q, which imply the lemma. Q .E. D.

Since any integral submanifold of the distribution E(μ) is a solution of the
system of Pfaff equations
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ωm+1= ••• —ωn=0,

we have easily the following

COROLLARY. If dim E(μ)^2, μ is constant on any integral submanifold of
the distribution E(μ).

LEMMA 3. Let μλ and μ2 be two regular principal curvature fields of M.
Let E(μ^)+E(μ2) be the distribution of the tangent subspace E(μu x)+E(μ2, x),
x^M. Then, E(μ1)+E(μ2) is completely integrable, if and only if for any
E(μl9x), F e % i ) and any Z L E(μu χ) + E(μ2, x) we have Ψ(X,Y,Z)=0.

Proof. Let us put dim E(μlf x) = mx and dim E(μ2, x) = m2. We restrict
ωlf (ϋij, A%3 on the submanifold of the frames b=(x, eu •••, en, en+i) such that eai

lf x), aλ=l, •••, mu and ea2^E(μ2, x), a2=m1+l, •••, m1-^m2. Then, we have

Aaiι=μiδaiι and Aa2l=μ2δ(X2l

« i = l , •••, mλ cίi—m^l, •••, mx+m2, z = l , 2, •••, n .

From (2.1) and (2.3), we have for s>mx-\-m2~m

£*l,*G>ai+ Σ ^αiΛos^αo"^ Σ Ba tsO)ta2 ί>wι

={μx—Ass)ωaiS— Σ ω α i ί i4ί , ,

hence
Σ BaoC2SωaiΛft)cf2+ Σ Σ Ba tsωaiAωt

oa AωaiS~ Σ AtgωaΛcύait

Analogously, we get

Σ Ba a2Sωa2Λωa +Σ> Σ Batsωa2/\ωt
«1 «2 «2 O>m

CX2Aωa2S— Σ ^ 4 ί s ω α
t>m,tΦs

Here, we restrict locally the submanifold of the above frames to the one such
that At8=δtgλt,t,s>m. Then, from the regularity of μ± and μ2, we have μχΦλS}

μ2φλs, s>m. Hence the above equalities turn out

Σ>ωaiAωa s= r— { Σ Ba a sωaiAωa2+Σ, Σ BatsωσAωt} ,
aι λ ι μ1 — Λs aι,a2 <*l t>™>

ί Σ B A + Έ Σ Ba2tsωa2Aωt} .

Making use of these equalities, we get

dωs~TiωσiAωaiS+Έo)a2Aωa2S+ Σ ωtAωts
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_λ ΈΣ^B^tsω^Λωt-i ZJ~Σ Σ

+ Σ ωtAωts.
t>7Π

Since Eiμ^+Eiμ^ is given by ωs=0, s>m, it is completely integrable, if and
only if

(2.6) Baia2,=0,

α i — 1 , •••, m1 a2=m1+l, •••, w 1 + ? ^ 2 s=m1+m2+l, •••, n,

by means of (2.5). (2.6) is equivalent to the condition in the statement of this
lemma. Q. E. D.

From Lemma 3, we obtain easily the following

THEOREM 1. Let M be a hyper surf ace immersed in a Riemannian manifold
M of constant curvature and Ψ its 3rd fundamental form. If M has just three
regular principal curvature fields μλ, μ2, μz such that E(μι)+E(μ2)+E(μz) = TMf

then the distributions E(μ2)+E(μ3), E(μ3)
JrE(μ1) and E(μ^+E(μ2) are simulta-

neously completely integrable if and only if fo? any Xi^.E{μι, x), I G M , i=l, 2, 3,

Ψ(X1} X2y Z 8 ) = 0 .

In the case of integrable in Theorem 1, by (2.2) and (2.3) the equation (2.5)
becomes

dωa= w r- Σ BaiO2O&ωaiΛωa2
3 (μi—μ*)(μ2—μs) «\><**

( 2 7) 1 1
+ — — Σ μztai<oσi A ωσz + — — Σ μz,o2o)a2 Λ ωaz

μi—~μz «i μz—μz #2

where eai&E(μlf x), a±=l, •••, mx ea2^E(μ2, x), a2=m1+l, ••-, m1

J

Γm2 ea3

l, •••, n .

§ 3. Minimal hypersurfaces with three non-simple regular principal cur-
vature fields

Using the notation in § 2, we shall investigate a minimal hypersurface M in
M as in Theorem 1 with

(3.1) Ψ(XuX2,X*)=0 for Xi^E{μι,x)yx^M> z=l,2,3

and
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(3.2) dim E(μu x)=mi^2, z=l, 2, 3,

in this section.

LEMMA 4. There exist a local coordinate system ulf •••, un and functions fλ

^flfaaj, fz=Muai), / 8 = / s 0 O SUch t h a t

μi=—-(f2~/B) , i"2=—-(Λ-/l) , i"8=-—(/l-Λ)
/TZj ΊΎI2 Ύϊl3

Proof. Since M is minimal in M, we have

(3.3) ?n1μ1-\-m2μ2+m3μs=0.

By (3.1), we have

(3.4) BaiaiOS=0, att=Ifa),

where

/(jtί!)={l,2, — , w j , /(i« 2)={m 1+l, — ,m1+m2}, Kμi)={m1+m2+l, — ,n}.

By (3.2), (2.4), (2.7) and (3.4), there exist a local coordinate system uu - ,un such
that wαi=constant, a^Iiμd, give an integral submanifold of the distribution
E(μj)+E(μk), {ι,j, k} = {l, 2, 3}, and μi=μi(uaj; uak). Taking a fixed point of M
with local coordinates (cu ••, cn), from (3.3) we get easily the following equalities :

m2μ2(uai; ua3)+m3μ3(uai; ua2)=m2μ2(cai; ua3)+msμ3(cai; ua2),

(3.5) m3μB(uai; uaz)+m^ua%\ ua3)=m3μ3(uai; c^+mφ^c^; uas),

miμi(ua2\ uai)+m2μ2(uai', ua^=m^x{ua^ cas)+m2μ2(uai; caz),

from which we obtain

{m2μ2(uai; cas)-\-msμ3(uai; ca2)} + {m3μ3(cai; u^+m.μ^u^; caz)}

Hence there exist constants alf a2, a3 such that

m2μ2(uai; caj+mzμs(uai; ca2)=al9

(3.6) m3μ3(cai u^+mφ^u^ cas)=a2,

πiφάc^; ua3)+m2μ2(cai; ua3)=a3

and
α 1H-α 2+α 3=0.

Now, setting

fi(uox)=m3μ3(uai cCT2) + a3, f2{ua2) = -m3μ3(cai £ua2),

fz(uaz)=m2μ2(cai z^3),

we have easily from (3.5) and (3.6)
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m2

— — fi(uai)+as—m^caz; uas)

and
Q. E. D.

By Lemma 4, in the present case we obtain easily

and from (2.7)

(3.8)

dωnΛ — —

Next, from (2.1) and (2.3) we obtain

hence

(3.9)

"«2«3 F-nfi

1

Using these, we get

dωaiβ1=Σ,ΛωaikAωkβ1-(μϊ+c)ωaiAωβl

• / n , λ 2(p—nf3)



MINIMAL HYPERSURFACES WITH THREE PRINCIPAL

2) γz
,aio>n--m*f*,nQ>*i)Λ(mifhβ

(F-nfzγ
 | F / ' 2 | 2 + (F-nf2)

, m1m2

i.e.

dωaiβl— Σ,coairiAωriβl

(3.10)

φ ™[nhγ ifi,βιωai

F—nfz)
2dfz}.

Analogously, we get the formulas for dωa2β2 and ^ωα3i33 by cyclic changes of
the suffixes in (3.10). Making use of the above formulas we get the following
theorem.

THEOREM 2. Let M be a minimal hypersurface immersed in a Riemannian
manifold M of constant curvature with three non-simple regular principal curva-
ture fields μu μ2 and μ3 such that E{μx)+E{μ2)+E{μz)^T{M) and Ψ(Xlf X2, Xz)
= 0 for Xi^E{μux)> z=l, 2, 3, xeM. Then the integral submanifolds of E{μt)
are totally umbilic in M.

Proof. The integral submanifolds of the distribution E(μλ) are the solu-
tions of the Pfaff equations:

(3.11) o)a2=ωas=0, a2(=I(μ2), a3^I(μ3).

Hence, along any integral submanifold Kmi of E(μχ) we have from (3.9), (1.2) and
Lemma 4 the following:

fs,β3coai,

m i
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These equalities show that Kmi is totally umbilic in M. Q. E. D.
By means of (3.12) the mean curvature vector field H(μύ of Kmι is given^by

(3.13)
1

{m2(F-nf2)Ff2+m3(F-nf3Wf3}

nil

We have also for Kmi the following formulas:

(3.14) = — < # ( M ea2}dx-{-

where D denotes the covariant differential operator of M.

COROLLARY. Kmi is a submanifold with m-index 0 in M.

Proof. For any normal vector ζ of Kmi

= Σf «
«2

Σ f α

the corresponding 2nd fundamental form Aς is given by

Hence, Trace Λξ=0 if and only if ^4^=0. Therefore, the minimal index of Kmi

(=dim{Λe|Tracei4e==0}) must be zero (see [1]). Q.E. D.

§ 4. Certain minimal hypersurfaces in S n + 1

In this section, we shall investigate minimal hypersurfaces as in Theorem 2
in the case of Mn + 1=Sn + 1(unit(n+l)-sρhere).

For any integrald submanifold Kmi of E{μλ), (3.14) becomes
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deai=Σlωaiβleβl

Jr(H(μ1)—x)ωai,

dea2=—<ϋΓ(^!), ea2)dx+ Έωazβ2e

Σ,

where d is the ordinary differential operator in Rn+2(Z)Sn+1).

LEMMA 5. Kmi is an m^dimensional small sphere or an open subset of this
sphere.

Proof. From (4.1), we get easily

Σ ^ j j Γ Σ ω ^ Λ {Έωβirieri+(H(μ1)—x)ωβl}
βl βl ΐl

+(H(μ1)-x)dωai+d(H(μ1)-x)Λωai

= Σ {dωaiβχ— ΣωaiTlAωriβl}eβl
pi Ti

+ {dωai—ΣlωaiβlAωβl}(H(μ1)--x)-ird(H(μ1)—x)Aωai.
βl

Hence, for any vector Y orthogonal to E(μu x) and H{μ^—x, we have

d{H(μi)-x, Y>Aωaι=0, « ! = 1 , 2, •••, m1.

Since m1—άim E(μu x)^2, this equalities imply

(4.2) <d(H(μi)-x),Y)=0, for YLE(μlfx) and

By means of (4.1) and (4.2), we can easily see that the Euclidean (?
vector ex/\ ••• AemιA(H(μϊ)—x) is parallel to a fixed one along Kmi. Hence,
there exists an mi+1 dimensional Euclidean plane Emi+1Z)Kmi. Q. E. D.

LEMMA 6. Let Mn be as in Theorem 2 and Mn+1=Sn+1. Then, at least two
of the vector fields H(μ^), H{μ2) and H(μ3) do not vanish identically.

Proof. Assume that H{μ^) = H{μ%)=Q, Then, from (3.13) we obtain

Hence, fl9 f2 and f3 are the same constant, and so μ1=μ2=μ3=0 by Lemma 4.
This is a contradiction. Q. E. D.

In the following of this section, we shall consider the case:

(4.3) H(μi) = 0 on M.

From (3.13) we may put
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2—f^=CL (constant)

By virtue of the proof of Lemma 5, we see that the (m!+l)-plane Emi+1 passes
through the origin of Rn+2 in the present case, that is, the spherelD/Γ711 is an
mi-dimensional great sphere. We have from Lemma 4, (3.9), (3.8) and (3.13) the
following:

_ 1 l

(4.6)

m2 m3

(4.7)

and

(4.8)

1

/l #

7 — -
/l — β

1

as zn Theorem 2 and Mn+1 = Sn+1. If % ) Ξ O ,

/i—α

LEMMA 7. Let Mn

fx can not be constant.

Proof. Let us suppose that H(μ^ = § and fλ is a constant, then from
Theorem 1 and (2.3) we obtain Ψ^O, which is impossible in the present case
by Theorem B. Q.E.D.

By this lemma, we see that fλ is a non-constant function of ulf ~-,umi.
Now, we consider an integral submanifold Km2+m3 of the distribution E(μ2)+E(μB).
Along Km2+ms, by (4.5) and (4.6) we have

(4.9)
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LEMMA 8. Let Mn be as in Theorem 2 and Mn+1=Sn+1. If % ) Ξ O , then
any integral submamfold Km2+rτl3 of E(μ2)

JrE(μΆ) is locally contained in an (m2

+m3+2)-dimensιonal Euclidean plane in Rn+2 not containing the origin.

Proof. From (4.9), we get easily

O=d2ea2= Σ,dωa2β2eβ2— Έcoa2β2A {Σlo)β2r2er2

Jr(H(μ2)-x)ωβ2}
P2 β2 Γ2

+(H(μ2)-x)dωa2+d(H(μ2)-x)Aωa2,

i.e.

Σ {dωa2β2- Σ ωa2Ϊ2 A ωΪ2β2] eβ2
P2 72

+ {dωa2— Έ<oa2β2Aa)β2}
!—a / m2

and analogously

Σ {dωasβs—
P3

Hence, for any vector Y orthogonal to E(μ2, x)+E(μs, x), en+1 and — — —

we have

d(~^ Vfi-x, γ)Aωa2=0, d(—^ F/i-*, γ)Λωai=0,
\ j \ a I \ j\—a I

which imply

(4.10) Id

for Y 1 E(μ2, x), E(μ3, x), en+1, ——Ff^x .

Now, by means of (4.9) and (4.10), we obtain easily the equality

~r F / j — x ) A e m , jΛ ••• AenAen+1\

\
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1

fi-a'J1

1 rr

ι+l

βm,+iΛ ••• /\en/\en+1

Λ—X

/i
j 1 a

along u:m2+wi3^ w hich shows that the simple (m2+m3+2)-vector field

is parallel to a fixed (m2+m3+2)-dimensional direction in Rn+2. Therefore, there
exists^ an (m2+m8+2)-dimensional Euclidean plane Em*+m*+2Z)Kn*+n*. Since Vfx

ΦO, Em2+m*+2 can not contain the origin of Rn+2. Q.E.D.

LEMMA 9. Let Mn be as in Lemma 8 with Hiμd^O. Then Km2+7rL* is a
Riemannian product of an m2-dimensιonal sphere and an mz-dimensιonal sphere.

Proof. By Lemma 8, Km2+ms is contained in the (m2+m3+l)-dimensional
sphere S m 2 + m 3 + 1 : =sn+1r\Em2+ms+2 as a hypersurface with normal unit vector field

1
en+1. In Em2+7Tls+2 wi th t h e origin —z Vfu the position vector of x is given by

7i — 0-

Hence, in Em2+m^2, (4.9) can be written as

(4.11)

ωasen+1—ωa3y,

L m2 «2 W3 «3 J

These equalities show that Km2+m* is a minimal hypersurface in Sm2+mz+1 with

two principal curvatures — — and — of multiplicities m2 and m3 respec-

m2 m3

tively. Hence, by Theorem 3 in [3] , Km2+Vl3 is locally a Riemannian product of
two spheres of dimension m2 and m3 respectively. Q. E. D.

Remark 1. The two spheres in Lemma 9 can be considered as integral
submanifolds of the distribution E(μ2) and £(μ 3 ) respectively. On the other
hand, by means of the equalities in the proof Lemma 8 we obtain
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til 2.
2, den+1}\ Aωa2

J

= \<eβs, dy> ~——<eβs, den+1)\ Λα>αs
<• '1I3 •>

Hence, in E m 2 + m 3 + 2 we have locally the product:

where Sm(r) denotes the m-dimensional sphere of radius r.

LEMMA 10. Let Mn be as in Lemma 8 with Hiμ^O. Then, fλ satisfies:

(4.13) L
π 12'ί 12,

Proof, By means of (4.6) we have

= Έ ωanβ1Aωβl^—(μ2μs+l)ωa2Aωa3
PI

from which we get immediately (4.13). Q. E. D.

Remark 2. Setting p — ~? , (4.13) becomes
jι—a

(4.14) \Fp\2+p2=:—-— on Mn.
m2m3

Let C be an orthogonal trajectory of the function fλ parameterized with
arclength s, then we get from (4.14)

r m2m3

hence by integrating along C we may put

(4.15) p= -sin
wmm
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where c0 is a constant and sin(s+c o)^0. This curve C lies in an integral sub-
manifold of E(μύ, which is a great mi-sphere of Sn+1 in the present case.

LEMMA 11. Let M be an n-dimensional Riemannian manifold and u a non-
constant function such that \Vu\2 is a non-zero function of u only. Then, the
integral curves of Vu are geodesies of M with certain parameters.

Proof. We choose local coordinates x1, •••, xn~ι, xn such that u~xn and the
metric of M takes the form:

ds2= Σ gaβ(x)dxadχP+gnn(x)dxndxn.
a,β=i

Then, we have \Fu\2=gnn(x). From the assumption, we get

which imply dgnn/dxa—O, a—1,2, ••- ,n—1, where ΓJ

ik are the Christoffel symbols
of the Riemannian connection of M.

On the other hand, the equations of a geodesic with respect to any parameter
t are

d2x1 ^ dx3 dxk d2xn „ dx3 dxk

~aΨ~ Γί Jk~Jt ΊΓ ~aΨ Ji jk~It dΓ
dx1 dxn

dt dt

Now, for any curve xa~constant, a=l, 2, ~- ,n—1, and xn~t, we have

d2xa dx3 dxk 1 v~1 Λ dσ

dt2 j , k dt dt 2 j3=i

a n d

•

dt2 x ίfk 3k dt dt ^nn 2& d x n '

These equalities show that this curve is a geodesic of M. Q. E. D.
Remark 3. In Lemma 11, if we suppose thai }Fu\2=^F(u), then we obtain

from the above computation gnn(xn)=l/F(xn), Therefore, the arclength s of the
curve between w—a and u=b (a<b) is given by

du

aVF(u)'

Remark 4. By means of Lemma 11, Remark 2, Remark 3 and (4.14) the
orthogonal trajectories of the function f1 are all great circles of Sn+1. From
these lemmas and remarks, we get the following theorem.

THEOREM 3. Let Mn be as in Theorem 2 and M n + 1 ^ S n + 1 and H(μi) = 0.
Then, we have the following:

(i) There exist a constant a and a non-trivial function f such that
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jUi = O , μ2= ^(f~a) > /*8 = — ( / - α )

(ii) Any integral submamfold of the distribution E(μλ) is an mrdimensional
great sphere of Sn+1 and any integral submanifolds of the distributions E(μ2) and
E{μz) are m2 and m3-dimensional small spheres of Sn+1 respectively.

(iii) Any integral submamfold of the distribution E(μ2)
JrE(μ3) is a Rieman-

nian product of an m2-dimensional sphere and an m2-dimensional sphere.
(iv) Any orthogonal trajectory C of the level hypersurfaces of the function f

is an arc of a great circle of Sn+1.
(v) As function of the arclength s of C, f can be written as

= sin (s+Co) '

where c0 is a constant.

(v) of Theorem 3 implies immediately the following fact.

COROLLARY. Any n-dimensional complete Riemannian manifold can not be
isometrically immersed in Sn+1 as in Theorem 3.

§ 5. An example of minimal hypersurfaces in S n + 1 for Theorem 3

In this section, we shall give an example of minimal hypersurfaces in Sn+1

with three non-simple regular principal curvatures μly μ2 and μz such that H(μ^)
=0, by making use of the facts obtained in §4.

Let mlf m2 and m3 be any integers greater than 1 and put n=m1

Jrm2-{-m3.
Let us consider as

First of all, we take two hyperspheres in Rm^+1 and Rm*+1 as follows:

b—a vϊ-i/2\2") -1/2
- ) ,

/ J

h — Π \2Ϊ -1/2

^ ^ ) }
and put

(5.1)

which is contained in the (m2+m3+l)-dimensional sphere S?2 + m 3 + 1(r0) in Rm2+1

χRms+1, where

(5.2) r 5 = f , + r ί

From (5.2), we have
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b-a γ\f ( b—a
(5.3) 1 — r g = i 7 N Γ I f / i l + l

I (ra2ra3)
2 J / I V m2

and so we suppose here the inequality:

(5.4) (b-aY>m2m3.

Let 97 be a normal unit vector field of K^2+ms in ?J*2+TO8+1(r0).
Next, we take the hypersphere S%il~1(r1)CZRmi, then we have

Let ^o^C^o, ̂ 0) be any point of S Γ^irOx/ίo12"1"™3 and E^ be the 77^-dimen-
sional linear subspace of Rn+2 which is tangent to Sn+1 at x0, orthogonal to
OxT20(K^+mή and OXτj(z0). Let Sjft be the great m rsphere of Sn+1 which is
the intersection of Sn+1 and (mj+lO-dimensional linear subspace including E^1 and
the origin of Rn+2. Then, we define a hypersurface of Sn+1 by

(5.5) Mn: - W ί S ^ U o e S Γ ^ W x ^ S 1 2 ^ 3 } .

In the rest of this section, we shall prove that this Mn is a minimal hyper-
surface of Sn+1 as in Theorem 3 under an additional condition.

First, we define a tangent unit vector field ξ of Mn by the following way.
At the point x0 above, ξ(x0) be one of the tangent unit vectors to S^1 orthogonal
to TyJiS^'Kr^xO, since this makes sense by means of S^-^r^XzodS^. Then,
we extend the domain of definition of ζ along the great circle CXo of Sn+1 which
passes through x0 and has ξ(x0) as the tangent vector. Let CXo be parameterized
with arclength s such that

(5.6) CXo: x=γXo(s) with xQ=rXo(0).

Then, considering (v) in Theorem 3, we put

(5.7) C o = S i n - > ^ »
b—a

and define a function / on Mn by

(5.8) / ( * ) = α + - . ( , v ,
sin(s+c0)

where x = ^ 0 ( 5 ) a n <3 0<sJrc0<π.
Now, we compute the second fundamental form of Mn in Sn+1. Setting

x=(y, z), z=(u, v),

and Zo=(wo, ̂ o)? we have \yo\=r1, \uo\—r2, \vo\=rs. The normal unit vector η(zQ)
at z0 of K^z+mz in S^2+ms+1(r0) is given by

(5.9)
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Analogously, we can obtain

(5.10) £(*o)=(-—3Ό, - ^ -

Hence, we get

x=x0 cos θ+ξ(x0) sin θ

(5.11) = ((cos0——sinf lW (cos/?+ — sin tfV, (costf-f — s i n

Next, we compute the normal unit vector N(x0) of M7* in Sn + 1 at x0 by means
of (5.10). We get easily

(5.12) N(xo)=(θ,
^ 0 ^ 2 ^ 0 ^ 3

From (5.11), we have at x0

dyo-((dθy+—d2θ)yo,

and hence we get

2v0, v^-

i.e.

(5.13) <d2x, <du0, Q> dvo>

On the other hand, we have also at x0

dy=dy0 ~-dθ y0>

dx: du=du0 -dθ u0 >

r0

dθ vQ
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and hance we get

(5.14) ds2=(dy0, dyQ}-\-dθ2jrζduo, duo} + (dvo, dvQ} .

From (5.13) and (5.14), we see that Mn have three principal curvatures μi=0, μ2

— ?__̂  ^ 3 — — ? _ of m u i t jp i i c i t i e s Mif m^ m g respectively at x0. From the

argument above, especially the formula (5.11), we see that μlf μ2, μ3 can be
considered as regular fields and μx=Qf by replacing r2 and r3 with

r 2=(cos6H —s'mθ)r2, F3=(cos#H — sin θ)r3

respectively. Then, we get easily

(5.15) H(μi)=0.

Finally, we shall check the condition that Mn is minimal in Sn+1. We have

__ r 2 r 3 Γ m 2 m 8 1 r 2 r 3 Γ 77t2 m 3 1

r 0 L rf Pf J r 0 L rl rf J

( ^ 2 ^3/^2^3

that is

(5.16) m2μ2+msμ3=

where r o =VrI+f f . Accordingly, by (5,4), Mn is minimal if and only if

(5.17) m2=m3.

Now, assuming (5.17), at a general point x we have

On the other hand, from (5.3), (5.7) and (5.17) we have

n Vl-2rl _ I 1
T 7 - ./9.2 " V 2

V2 I tan CO Γ

—a YY1 sin2c0

l+sin 2c 0 '

and
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sin#
Co

{±cosό> "~

l + s i n 2 c 0

where
Vz sin Co Λ cos CQ

c o s ^ =s i n # 0 = ± - / τ - g- , u / Γ Ί — ^ ~ >
V1+ smτ 0 V1+ sinVo

Hence, we may put

(5.18) μ2= -μs= . * , .

Thus, we obtain a conclusion as follows:

THEOREM 4. Let Mn be a hypersurface constructed by (5.5) in Sn+1. Then,
it is an example of minimal hypersurfaces as in Theorem 3, if and only if m2=ms.

Remark 5. Since we took S^-1xKo

n2+m3c:Sn+1 as a base hypersurface of
Mn for our construction, the above argument does not entirely treat with this
kind of minimal hypersurfaces in Sn+1.

§ 6. The case in which H(/O^0, i = 1 > 2> 3

In this section, we shall investigate minimal hypersurfaces as in Theorem 2
with H(μi)ΞjtΞθ, 2=1, 2, 3, in the case of Mn+1=Sn+1.

By (3.13), Hiμ^ — O is equivalent to the condition

f2—fz=a constant.

LEMMA 12. Let Mn be a minimal hypersurface in Sn+1 as in Theorem 2 with

ι)^0, 2=1, 2, 3, then fτ in Lemma 4 can not be constant for 2=1, 2, 3.

Proof. Let Mn be a hypersurface as in the statement. Let us suppose
that fι=at, 2=1, 2, 3, where a1} a2 and a3 are constants different from each
others. Then, by (3.9) we have the equation

Hence we have from (1.3)

n n

DAaιCiy=dAaχa. Σ (oaikAkaj ^Σ o)rxjkAaίk

= -μjωaίaj-μίωajCΐι=(μι-μJ)ωaίaj=0,

for z, ; = 1, 2, 3, which imply Ψ=Q. This contradicts to Theorem B. Q. E. D.
By means of Lemma 12, we may consider the case:

(6.1) fi—f is a non-constant function, / 2 =α 2 > fs=cι3, a2Φa3,
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where a2 and α3 are constants, as the simplest one in the present situation. In
the following, we shall investigate this case.

Under the condition (6.1), we have from Lemma 4 and (3.13)

(6.2)

(6.3)

a2—a3

m2

H(μ1)=μ1en+1,

where

(6.4) F = m 1 / +

From (3.8) and (3.9) we have

F-na2

n=m1+m2+m3.

dωai=

(6.5)

and

(6.6)

βl

n r
J n (Off ,

Now, by means of (6.3) and (6.6), we have the following equalities along Mn:

x= Σ ω ^ , + Σ ωσ2ea + Σ ω α 8 β α 8 ,
«1 ci'2 «3

l = Σ "rt

(6.7)
dea2= Έ ωa2β2eβ2+(H(μ2)-x)ωa2,

PI

dea3= Σ ωasβ3eβs+(H(μs) — x)ωaa,

den+1~—μ1 Σ ωaea —μ2 Σ coaea2

From these equalities, we obtain

0=d2ea2= Σ dωa2β2eβ2- Σ ω ^
P2 P2

—μs Σ

{Σ
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i.e.

(6.8) Σ (dωa2β2— Σ ωairiΛωr2β2)eβ2+(dωa2— Σ ωa2β2Aωβ2)(H(μ2)—x)
β2 Ϊ2, βi

and analogously

(6.9) Σ {dωazβz— Σ ωa3T3Aωr3β3)eβs+(dωaz- Σ ωa3β3Aωβs)(H(μ3)-x)
P3 ΪZ p3

+d(H(μ3)-x)ΛωaB=0.

Let Y2 be any vector perpendicular to E{μ2) and H(μ2)—x at the point x, then
we get from (6.8)

Since άim.E(μ2, x)^2, this equality implies

Hence, we have the following equality for the (m2-j-l)-vector (H(μ2)—x)Aemi+i
Λ - Aemi+m2 in Rn+2

d{(H(μ2)—x)Aemi+1A ••• Aemi+Vl2}

(6.10) = . . (d(H(μ2)-x), H(μ2)-x}(H(μ2)-x)Aemi+1A ••• Λ β m i + r a 2

and analogously

d{(H(μ3)-~x)Aemi+m2+1A ••• Aen

1
(6.11) = -

J I

(6.10) and (6.11) imply that there exist two fixed (m2+l)-plane Eψ2+1 and (m 3+l)-
plane Ef3 + 1 in Rn+2 through the origin such that

(H(μ2)-x)Aemi+1A ••• Aemi+7ΐl2//Eψ*+1,

(H(μ3)-x)Aemi+m2+1A ••• AeJ/Ef^1.

Let E™i+ί be the (m,+l)-plane through x parallel to EΓi+1, x=2, 3. Then, we see

easily that E™i+1Γ\Sn+1 contains the integral submanifold of the distribution E(μι)

through x. Since we have

xA{H{μ2)-x)A{H{μz)-x)=xAH{μ2)AH(μz)

3 (F—nα 3 ) m2(F—na2)

the (?n2+m3+2)-plane containing £ ^ + 1 and £3

mJ+1, which we denote by £2

mf+m3+2,

does not contain the origin of i?π + 2. Furthermore, the small (m2+m3+l)-sphere
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n + 1 contains the integral submanifold Km^m^ of the distribu-
tion E{μ2)Λ-E{μz). Thus, we see that Km*+m* can be considered locally as a locus
of moving S™J =E™2

x

+ίΓ\Sn+1, where x is a moving point along 53

mj0=
On the other hand, from (6.6) we have

f
= - 7 7 ;(F—na2)(F—na3) βi " 1 m2m3

from which we get the equality for /

{m1f—(κm1

Jrm3)a2

Jrm3as} {m1f1-\-m2a2—(m1-\-m2)a3}

i. e.

(6.12)

Hence, we have

that is

(6.13) (H(μt)-x)L(H(μB)-x),

and so

(6.14) ET2+ι 1 ET3+1.

We notice here that (6.12) will be reduced to (4.13), if we put f=flf a2=a3=a.
And, by Lemma 11, any orthogonal trajectory C of the level hypersurfaces of
the function / is an arc of a geodesic of Mn. C lies in an integral submanifold
K?1 of the distribution E(μx).

Now, we prove the following
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THEOREM 5. Let Mn be a minimal hypersurface in Sn+1 as in Theorem 2
with H(μi)3=0, z=l, 2, 3, then dμ^O for z=l, 2, 3.

Proof. Let us suppose that dμ{=Q9 then f2 and / 3 must be constants by
Lemma 4. Setting / 2 = α 2 and / 3 = α 3 , we have a2^^3 and / Ί = / is not a constant
function by Lemma 12. Thus, this must be the case (6.1) and so we can use the
argument above in this section. We may consider as

and we denote any point I G F T 2 as

x=(y,u,υ), y^R?1,

Taking a fixed point xo=(yo,uo,vo)^Mn, we may assume that

Rψ*\\EmKμz, x0)

Let K^ be the integral submanifold of the distribution E{μx) through x0 and
Eΐ hΊ;1 the (mj+D-plane containing K%}. Since

elf -" , emv H{μι)-~xΰ=μ1en+1—xQ\\Eΐ;]t^

we may consider as

E?,iV\\RrxR2xR3

by (6.3) and (6.14). Therefore, Eψ}x%
1 is given by an equation such that

where aav c2, c3 and c0 are real constants such that

mi

Σ αlΛcl+cl=l, 0<co<l, cl+clΦQ
«1 = 1 1

and

(Since K%£ is a small m^sphere of Sn+1, c0 must be 0 < | c 0 | < l ) . Therefore, for
any point Xi=(yi, ulf vJ^KfJ and any point x=(y,u,v)<^Kΐι

2~tm3, we have

7712

1
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m3

<Jϋ, ϋ> = <l?i, ϋ i > = Σ (Vo«3)
2 + (ViCm3+i))2

By a suitable change of orthogonal coordinates of Rf1, we may put

a=(alf ••• ,α m i )=(c 1 ,0, - , 0).

Thus, setting uKm2+Ό=t2, vKπi3+Ώ=t3, we can represent locally and explicitly Mn

as :

(6.15)

where b2, b3, c1} c2, c3 and c0 are all constants such that

(6.16) 0 ^ & 2 ^ l , O ^ ^ s ^ l , c 2 + c 2

2 + c 3

2 = l ,

and ί2 and 3̂ a r e auxiliary variables.
Now, we compute the normal vector Mn at x. By differentiating (6.16),

we get

(u, du)+(v, dv}=:0,

from which we obtain

dt2= — (c3y—t3a, dy} , dts= — — (c2y—t2a, dy}
£3*2 £2^3 ^3^2 ^2^3

and, supposing c3t2—c2t3Φ0, and

rt-rt <c*U-f*a>

^8*2 ^2^3

tc3ι2 c2τ3

Hence, the normal unit vector N(x) at x is represented as

N{x)=λ{t2(c3y-t3a), (c3t2-c2t3)u, 0)

+ μ(-t3{c2y-t2a), 0, (c3t2-c2t3)v).

Since (x, N(x)}=0, we have

Z{cst2(y, y)-t2t3(a, y}-\-(c3t2-c2t3)(u, u}}

+μ{-c2t3(y, yϊ+UUia, y>+(c3t2-c2t3Kv, v)} =0 .

The coefficients of λ and μ of the above equality are
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c3(l—bf)t2—c2btt3—c0t2t3 and —c2(l—bϊ)t3+c3blt2+c0t2t3

respectively. Therefore, N(x) is proportional to

{-c2{l-bl)t,+czblt2

J

rcot2t3}(t2(c3y-tΆa)> (c3t2-c2t3)u, 0)

+ {—cs(l—bl)t2+c2blta+c0t2tB}(—U(c2y—tza), 0, (c3t2-c2t3)v)

=^{cMt2

Jrc2blt3

JrC0t2t3){c3t2—c2t3){y> u, v)

—{c3t2—c2t3)(t2t3a, c2t3u, c3t2v).

Hence, supposing t2t3φQ, N(x) is proportional to

(6.17) N(x)=

χ=(y, u, v).

Now, we compute the 1st and 2nd fundamental forms of Mn at x, where

0, t3φQ, From the above argument, we may still put

by changing the coordinate axises of Rψ2+1 and Rfs+1. We get easily

d-U-mz-n^—- dt2, dvrϊl3+1

::=—- dt3

and

c3ι2 c2ι3

{

{c3(y, dyy—dUdy^

c2(y, dyy — cxt2dy^ .dt3

c3τ2 c2ΐ3

Hence we have

(6.18) ds2=(dy, dy}+(du, du}+(dv, dv}

=l<dy,

m2 m3

+ Σ dua2dua2+ Σ dva,6dυaz.

L2 £.2

By means of (6.17), setting ψ—c^Λ — H — ^ - , we have

-(d2x, N{x)}=(dx, dN(x))=φ(dx, dx)

2̂ / \ ίa t3

-{du, -ψ-du—%-udtt)+(dvt -^dυ—%-υdU
* h I \ t3 ί3
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i.e.

(6.19)

r
i 2 2 t3 / αs

(6.18) shows that the parameter submanifolds corresponding to (yu ••• ,ymi),
{uv •••, z/m2) and (z;^ •••, vm3) are orthogonal to each others at x. And (6.19) show
that the tangent spaces to the submanifolds corresponding to (ulr~ ,umz) and
(vi, ~ ,vmi) must be E(μ2, x) and E(μs, x) respectively. Therefore, the form in
the brackets of (6.19) must be proportional to the one of (6.18).

Since we have

<dy, dy>+(dum2+1y+(dυma+1y

(6.20) =<</„, dy>+( Ut; VLj

+ ίl(ci^3;i--y-<^ ^>) J

and

the differential form in

must be proportional to (6.20). This is generally impossible. Thus, we reach a
contradiction. Q. E. D.
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