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MINIMAL HYPERSURFACES WITH THREE PRINCIPAL
CURVATURE FIELDS IN S*!

By TOMINOSUKE OTSUKI

As is well known, there are many works on minimal hypersurfaces with two
regular principal curvature fields in the space forms, especially the spheres. On
the contrary, it seems we have very few works on minimal hypersurfaces with
more than two principal curvature fields in such spaces. In the present paper,
we shall study minimal hypersurfaces in S™!' which have three regular and
nonsimple principal curvature fields, say gy, g, and ps.

In §1, we shall state some fundamental theorems in the following argument.
In §2 and §3, we shall develope a general theory on such hypersurfaces and
find that the three tangent vector fields H(u;) (defined by (3.13)) corresponding
to i, 1=1, 2, 3, play important role in our investigation. In §4 and § 5, we shall
treat the case in which one of H(g,) vanishes identically and give an example
of such hypersurfaces. Finally, we shall investigate the case in which H(yx,)
#0, 1=1, 2, 3, and show that each g, can not be constant (Theorem 5), which
tells us that in order to construct examples of such hypersurfaces each g, must
be considered as a nonconstant function.

§1. Preliminaries

Let M=M™ be a hypersurface in an (n+1)-dimensional Riemannian manifold
M=Mm** of constant curvature ¢. Let @, @ p=—dp, A, B=1, 2, -, n+1, be
the basic and connection forms of M on the orthonormal frame bundle F(N)
over M, which satisfy the structure equations

(1.1) da—)AZEIEAB/\@B: da—)AB:éV‘.IEAC/\ECB—'C-EA/\&)—B-

Let B be the submanifold of F(M) over M composed of b=(x, e;, -**, en41) such
that (x, e, -, e,) € F(M), where F(M) is the orthonormal frame bundle of M
with the induced Riemannian metric from AZ. Then, deleting the bars of @,, @45
on B, we have

(1.2) Wnt1=0, Witn+1y= ]EAUC"; ’ A=A,

1, 7=1,2, -, n.
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Let O(w): =2 A, w0, and ¥(w):= ZkBi;kwiijk be the 2nd and 3rd fundamental
1,9 2,7,

forms of M respectively, where B,;, are defined by

(1.3) DA,,:=dA,,— ;wlkz‘l“— %wjleik: kEBijkwk
and
(1.4) B,jx=DBjis=DBs, .

Now, let & be a principal curvature of M at x€M, an eigen value of @ at
x, and denote the tangent subspace of all principal tangent vectors for k£ and
the zero vector at x by E(k, x). dim E(k, x) is equal to the multiplicity of .

Let ¢ be a smooth principal curvature field of M. If E(g, x)=E(u(x), x)
is of constant dimension, then E(g, x), x€M, make a smooth distribution of M,
which we denote by E(y). We call such field g regular. We have the following
theorem.

THEOREM A. Let M be a hypersurface immersed in an (n+1)-dimensional
Riemannian manifold M of constant curvature ¢ and suppose that M has a regular
principal curvature field p, then the distribution E(y) is completely integrable.

Proof. Let m be the dimension of the distribution of E(zx) and take only
the frames b such that e, € E(p), «=1, 2, ---, m. Then, we have

(1.5 Dan+1D= UD g Dyrin+1D=— Zt)Anwt .

In the proof, we suppose the ranges of indexes as follows:
a, B, - =1,2,-,m; 7, b, e =mA1, e,
From (1.1) and (1.5), we get easily
dwa<n+n=dy/\wa+ﬂ(§a}ﬁ/\wﬁa+ Zo N0,

AdWacnsy= % Wap N\ Opcnint rZwm N @rcnrn

=p %‘,wg/\wlea— 2 An0 N\ Oar

and hence
dﬂ/\wa— Ewar/\ ?A(Art’—'/«lart)wbzo .
T

Setting dp= > p,w;, we can put
ﬂtwa'l" ;war(Art——#art): gKatsws s Kes=Kost

by E. Cartan’s lemma. Thus we have
;(Art—ﬂarb) ;wa/\a)ar: gKatsa)a/\ws s
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which implies
1.6) ;wzx/\a)ar:o (mod Wy, *+, ®n),

because
det(A;;—pd.)#0

by the regularity of g. On the other hand, we have also
dw, =2 W\ Oar+ D0, AN wry
a T

'_:_O (mOd wm+1; ) (Un)
by (1.6). This shows that the system of Pfaff equations:
WDy = *** :wn:() ’

i.e. the distribution E(y) is completely integrable.

Q.E.D.

Remark. We have proved Theorem A under the condition of regularity

of the other principal curvatures (Theorem 2 in [37).
We prove the following

THEOREM B. Let M be a hypersurface vmmersed mn an (n+1)-dimensional
Riemannian manifold M of constant curvature ¢. If the 3rd fundamental form
of M vanishes, then M is totally geodesic or wmbilic, otherwise M has just two

principal curvatures A, p such that Au=—c.

Proof. Since we have A,,,=0, we can choose special frames such that
Ay=2, A,;=00+#j) and 4, ---, 2, are all constant. If 2,=A,= =2, then M
is totally geodesic or umbilic. Otherwise, we have w;;=0 for 2;#2,. In fact,

for such 7 and j, we have from (1.3)
O=dA1j—%wikAkj——%}w,kAikz(li—lj)wij,

hence w;;=0. Furthermore, from this relation we get
O:dwij:kza)ik/\wk1+wi(n+1)/\w(n+1)1—6(9i/\a)]

:—(21/21‘[—5)(01:/\(0] »
i.e. AA,+C=0, for A;#4,.

This fact shows that the number of different principal curvatures is at most

two.

Q.E.D.

Theorem B shows that if a hypersurface M in M have more than two prin-

cipal curvatures, its 3rd fundamental form ¥ does not vanish.

In the following, we consider also ¥ as a symmetric tensor field of M. We
denote the tangent space M at x&M by M, and the inner product of X, YeM,

by <X, V).
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§2. On the distributions for two regular principal curvature fields

In this section, we shall consider M in M as in Theorem A, whose 3rd fun-
damental form ¥ does not vanish.

LeMMA 1. Let p be a regular principal curvature field of M. For any tan-
gent vectors X, Y€ E(u, x), such that <X, Y>=0 and any Z&€M,, we have

VX, Y, Z)=0.

Proof. Let us put dim E(g, x)=m. We restrict w;, ;,, A,, on the subma-
nifold of the frames b=(x, e, -:*, e, €54,) such that e, € E(y, x), a=1,2, ---, m.
Then we have

Am_—_‘uﬁm’ a=1,2, - ,Mm; 1_—:1, 2’ en.
Hence, by (1.3) we get

2.1 é Baikwk:5aid#— % OarAri— i WipAar
k=1 k=1 k=1

:aaid#—/«l % 57iwar—' i watAti"-/la)m .
r=1 t=m+1
Especially, we have
22) 3 Bason=dupdpt, @, f=1,2,,m,
which imply easily this lemma. Q.E.D.
LEMMA 2. If dim E(u)=dim E(g, x)=2, then
(X, Y,2)=0, X, Y, Z€E(y, x) .

Proof. On the submanifold of B used in the proof of Lemma 1, we have
from (2.2)

dﬂ: iBaakwk:Baaawa_l_ i Baara)‘r
k=1

rem+1

for a fixed a=m. Hence, putting dy:ki 0y, We have

2.3) tor=DBaar, a=1,2,-,m; k=1,2,--,n
and then, using the assumption m=2, we obtain
(2~4) ,uyl: o :#;m:O .

Hence we have B,z =0, which imply the lemma. Q .E.D.
Since any integral submanifold of the distribution E(g) is a solution of the
system of Pfaff equations
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WDpp1= """ :a)n:O »
we have easily the following

COROLLARY. If dim E(p)=2, ¢t 15 constant on any integral submanifold of
the distribution E(u).

LemMA 3. Let p, and p, be two regular principal curvature fields of M.
Let E(u)+E(y,) be the distribution of the tangent subspace E(p, x)+E(t,, x),
xeM. Then, E(u)+E(u) 1s completely integrable, 1f and only if for any Xe&
E(p, x), YEE(u,, x) and any Z | E(py, x)+E(ps, x) we have ¥(X,Y, Z)=0.

Proof. Let us put dim E(y;, x)=m, and dim E(y,, x)=m, We restrict
1, Wy, A,; on the submanifold of the frames b=(x, e, -+, €y, €ns1) such that e,
EE(uy, 1), ay=1, -+, my, and eqs, & E(s, x), az=m,+1, ---, my+m,. Then, we have

Aalz:ﬂlaalz and Aazz:,uzaazz
alzl; e, My a2:m1+1; ) ml_'_mz s 2:17 2) e, N
From (2.1) and (2.3), we have for s>m,+m,=m

,Ul,swal‘l‘ > Balazswa2+ tz Baltsa)t
ag >m

z(ﬂl_Ass)a)als_‘ = swaltAts ’

>m, t#

hence
2 Balazswal/\waz"l"z 2 Baltswal/\wt
ay,ag ay t>m

= (,ul —As) %‘: We,y A Woys— t>n§¢s Atsa)al AN Wyt -
Analogously, we get
> Balazswaz/\ wal"_ I Baztswaz/\ [oh
ay, az ag t>m
= (ﬂz_Ass) QEZ Wory/\ Werys— t>w§¢s Atswaz A Wyt -

Here, we restrict locally the submanifold of the above frames to the one such
that A,;=0;s4;, t, s>m. Then, from the regularity of g, and p, we have p,#24,,
a7 A, s>m. Hence the above equalities turn out

1
azlwal/\wals: -‘u_l—__T {REZ Balagsa)al/\waz—l_ azl tgmBaltswo’l/\wt} ’
1
%wag/\wazs: #2_123 {_ al'zazBalagswal/\wag—i— g‘_«z LgmBagtswag/\ wt} .

Making use of these equalities, we get

A=W, N Wgys+ D00y N O g5+ 2 0 AWy
al ag t>m
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2.5 Y - el R
= (1= A (= 2s al.zaz Bayass®ar N @eo
1 1
+ #1_13 2_:, tgmBaltswal/\wt—i_ —‘uz—_z"% EmBaztsa)az/\a);
+ E W\ Wy .
t>m

Since E(u)+E(u,) is given by w,=0, s>m, it is completely integrable, if and
only if
(2.6) Buyas=0,
a,=1, -, my; ag=my+1, o, mytmy ;) s=mytma+l, - n,
by means of (2.5). (2.6) is equivalent to the condition in the statement of this

lemma. Q.E.D.
From Lemma 3, we obtain easily the following

_ THEOREM 1. Let M be a hypersurface vmmersed i a Riemannian manifold

M of constant curvature and ¥ its 3rd fundamental form. If M has just three

regular principal curvature fields py, ps, pts such that E(p)+E(p.)+E(u)=TM,

then the distributions E(u)+E(us), E(p)+E(w) and E(u)+E(y,) are simulta-
neously completely integrable 1f and only 1f for any X;€E(u, x), xeM, i=1,2,3,

T(Xh Xz; XS)ZO .

In the case of integrable in Theorem 1, by (2.2) and (2.3) the equation (2.5)
becomes

17 e
dwgy=— (ﬁl—is)(:‘i—ﬁs) a%*zBaloZaswal/\waz
2.7 1
+H§“3’“1“’MA“’”3+ L2 (s %”3’“2(’)“2/\“’“3
+ Zwﬁs/\wﬂsas ’
P3

where e, S E(uy, %), ar=1, -+, My ; 0, EE(tts, %), ay=my+1, -+, my+m, ; eq, € E(u,,x),
ay=my+my+1, -, n.

§ 3. Minimal hypersurfaces with three non-simple regular principal cur-
vature fields

Using the notation in § 2, we shall investigate a minimal hypersurface M in
M as in Theorem 1 with

3.1 U(X,, X,, X5)=0  for X,€E(y, n,xeM, 1=1,2,3

and
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(3.2 dim E(y;, x)=m; =22, 1=1,2,3,
in this section.

LEMMA 4. There exist a local coordinate system uy, -, u, and functions f,

=f1(Uay), fo=1(thay), fs=Fs(Us;) Such that

i R R ]

m, My m

=

Proof. Since M is minimal in M, we have

3.3) My Myt +Mapt,=0 .
By (3.1), we have

(34) Buoyos=0,  a.SI(p),
where

I(,ul):{]-y 2: “'Jml}; [(ﬂz):{m1+1, "')ml+m2}) ](#3):{m1+m2+1; '“’n}'

By (3.2), (2.4), (2.7) and (3.4), there exist a local coordinate system uy, -*-, u, such
that u,,=constant, a;<I(y,), give an integral submanifold of the distribution
E(p)+E(uw), 1,7, }=1{1,2,3}, and p;=p(us;; u,,). Taking a fixed point of M
with local coordinates (¢, -+, ¢n), from (3.3) we get easily the following equalities :

Mopts(Uay 5 Uag) TMafts(Uay 5 Ua) =M fto(Cary 3 Ua) TMspts(Cay 5 Uay)
(3.5) Mapts(Ugy 3 U H1 11 (U 3 Uo) =M fts(U 5 Cap) M ps(Cays Uag)
Mapls(Uy 5 Ug) TMaple(Uy 5 Uag) =M1 ft1(Ugy 3 Cog) TMafte(Upy 5 Cay) 5
from which we obtain
{Mapto(Uay ;5 Cap)Fmsts(Uay s Cadt +{Mapts(Cay s Uay) Fmupta(Uy, 5 Cap}
H{map(Cay 5 Uag) F1Mapta(Cay s Uay)t =0.
Hence there exist constants a,, a,, a; such that
Mapto(Uay 3 Cay) FMatts(Ua; Cap) =0y,
(3.6) Mats(Cay 5 Uay) TMtts(Uoy 3 Cag)=0s,
Myfti(Coy 3 Uay) FMats(Cay s Uay) =03

a1+a2+03:O .

and

Now, setting
fl(uol):m3ﬂ3(ua’1 ; Cag)+a3; f2(uag): _m3#3(ca1 ;juug) b
f3(ua3):m2,u2(ca1; Uag) »

we have easily from (3.5) and (3.6)
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m1#1(uaz H uag) :fZ(uaz) —f3(ua3) ’
Mo ty(Upy 3 Uar) = —Mats(Ury 5 Cap) =M fts(Cay s Ug)
=—f1(ta) Fas—m11(Cary 5 Uay)

= _fl(ual)—l—mZ,uZ(Cal B ua3) =f3(ua3) _fx(ual)
and

mS#S(ual H uaz):fl(ual)_f2(ua2) . Q- E- D-
By Lemma 4, in the present case we obtain easily
g Fnfs = Enfe P ol
3.7 Ho— U= P M3 = mam, P M= Mo,

F=m,fi-+m,fot+msfs
and from (2.7)

. madf, msdfs

dwe,= < Fnf, + F—nf, )/\wal-i- %1] O FIAN T I
_ Mmsdfs midf,

3.8) dony= (et ) Nt 30 A0se
mydfy + Mmsydfy

dwas:—( )/\wa3+ % a),gs/\ Wasas -

F—nf, F—nf,
Next, from (2.1) and (2.3) we obtain

K
(,Uz —,us)wq'zaa': k;l Bagagka)k: Bagaaazwaz—l_Baztxgagwas

= Uz, a5 @y T U3, @arg »

hence
1
Wagaz=— F—?’lf1 (m3f3,a3wa2_m2f2,azwa3) ’
1
(39) waaaq:'—_(mlfl,alwa:;—maf&aswal) »
F—nf,
1
Opyay™= _];::_’:Lﬁ—(meZyazwal—mlfhalwag) .

Using these, we get
n
dwayp,= kZ:)l Waye/\ wkﬁl—(#%_}_ O)way N\ @g,

= %: OPNEAN 0)71191—(/"%—"5)0’01 Nwg,

1
— —_(F—T’Lf )2 - %(mzfzmzwal“mlfx,alwrz)/\(mzfz,rzwﬂl—mlfl,ﬁla)m)
3
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1
- m %(m1f1,a1w73*mafa,rgwal)/\ (m1f1,ﬁ,wr3—mafs,r3wﬁl)

= B Ao e I7 Al s 1P ol i S Ao
@iy 7181 (F—nfy)? 2 (F=nfy)" 3 M1 a 81
myms

‘(—F_—nf;)?(wal/\fl,,aldfz‘i‘fl,a,dfz/\w,sl)

+
m My

T F—ary

(Q)al/\f1,ﬁldf3+flya1df3/\wlgl) 4

dwmﬁl - %wmh AR

. 1
- [ (F=nfo)*(F—nfy)*

{3 F—nf)*|V fol*+mi(EF—nf)* |V fa] *}
(3.10)

m,y

+/"H’5:| O N+ (F—nf)XF—nfy)? (fl’ﬁ1wa1

—1,@) N Amo(F —n ) dfy+my(F—nfi)*dfs}.

Analogously, we get the formulas for dw,p, and dw,ps, by cyclic changes of
the suffixes in (3.10). Making use of the above formulas we get the following
theorem.

THEOREM 2. Let M be a munimal hypersurface wmmersed n a Riemannian
manifold M of constant curvature with three non-sumple regular principal curva-
ture fields p, po and py such that E(u)~+E(us)+E(p)=TM) and ¥(X,, X,, Xs)
=0 for X;€E(u;,x), 1=1,2,3, x&M. Then the wntegral submanifolds of E(u,)
are totally umbilic in M.

Proof. The integral submanifolds of the distribution E(y,) are the solu-
tions of the Pfaff equations:

(3'11) wa’zzwagzox a’ZE[(/’Q)) 0.'361({,63) .

Hence, along any integral submanifold K™ of E(y,) we have from (3.9), (1.2) and
Lemma 4 the following :

m
w“lng:—F__fo—szrﬁzwm ’ .8261(/12) ’

(3.12) O = U ST B (B8

1

Wyy(ne1)= T(fz—fs)wal .
1
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These equalities show that K™ is totally umbilic in M. Q.E.D.
By means of (3.12) the mean curvature vector fleld H(y,) of K™ is given by
o my Mg 1
(3.13) H(p)= F—nf, Vit F—np, Vis+ — (fa—Ss)ens

1

= (F~nf2)(F~nf3) {mz(F—nfz)sz+m3(F—nf3)Vf3}

—fsen+1.

We have also for K™ the following formulas:
dx:%:waleal

De,,= Ewal[gle@l-!—H(yl)wal s

(3.14) De,=—<H(t), enprdx+ %}a)%gzeﬂz s

Deqy=—CH(ps), eaddxt Donss

Depy=—CH(py), enrydx,

where D denotes the covariant differential operator of M.
COROLLARY. K™ 15 a submanifold with m-index 0 in M.
Proof. For any normal vector § of K™

SZ E&ageag—*— §8a32a3+6n+len+l ’

the corresponding 2nd fundamental form A: is given by

1
A= { T S hunfot gy Baot e fan} 1.
Hence, Trace A:=0 if and only if A;=0. Therefore, the minimal index of K™
(=dim{A:| Trace A;=0}) must be zero (see [1]). Q.E.D.

§4. Certain minimal hypersurfaces in S"*!

In this section, we shall investigate minimal hypersurfaces as in Theorem 2

in the case of M"*'=S"*'(unit (n+1)-sphere).
For any integrald submanifold K™ of E(y,), (3.14) becomes
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Adx=22Wa,80, ,
aj
dealz ﬁz: walﬂleﬁl—l—(H(‘ul) —‘.X)Cl)a.:l »
1
4.1) deq,=—CH(p), eqppdx+ ﬁEZ)waz,sze,az )
deq,=—<H(wy), eqpdx+ %wasgge,as ,

d€n+1:—<H(ﬂ1)’ enipdx,
where d is the ordinary differential operator in R™"%(DS"*!).

LEMMA 5. K™ 1s an my-dimensional small sphere or an open subset of this
Sphere.

Proof. From (4.1), we get easily
Ozdzeal_—_' ﬁzl:dwalﬁleﬁl_ pzl:wahgl/\ { §w3171971+(H(#1)—x)w:31}

F(H(p) —0)dw g, +d(H(p) — ) N gy

= E {dwalﬁl— %waﬁ'l/\wrligl} eABl
F{doq— Dus N 0p) (Hip) =0+ dH(p) =0 N -

Hence, for any vector Y orthogonal to E(y,, x) and H(y,)—x, we have
d<H(p)—x, Y ) Nwo=0, a;=1,2, -+, my.

Since m;=dim E(y,, x)=2, this equalities imply

4.2) d(H(p)—x), Y>=0, for Y [ E(u,x) and H(u)—x.

By means of (4.1) and (4.2), we can easily see that the Euclidean (m,+1)-
vector e A -+ Aen A(H(y)—x) is parallel to a fixed one along K™. Hence,
there exists an m;+1 dimensional Euclidean plane E™*'DOK™, Q.E.D.

LEMMA 6. Let M™ be as in Theorem 2 and M™'=S""'. Then, at least two
of the vector fields H(u,), H(y,) and H(ys) do not vanish identically.

Proof. Assume that H(p,)=H(¢;)=0, Then, from (3.13) we obtain
Vf1:Vf2:Vfa:0, f1:f2:f3'

Hence, fi, /. and f; are the same constant, and so p,=pg,=u,=0 by Lemma 4.
This is a contradiction. Q.E.D.
In the following of this section, we shall consider the case:

4.3) H(p)=0 on M.

From (3.13) we may put
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(44) f2:f3:d (constant) .

By virtue of the proof of Lemma 5, we see that the (m;+1)-plane E™*! passes
through the origin of R™"? in the present case, that is, the sphere DK™ is an
m,-dimensional great sphere. We have from Lemma 4, (3.9), (3.8) and (3.13) the
following :

1 1
4.5 =0 =— —a =—(f1—a
( ) H » U - (fl ), HUs — (fl ),
1 1
wazaazo ) W oz0,— fl,alwag; » Woyog=— " fl,alwaz
fi—a fi—a
4.6)
=0 . fl"‘a . 1—a
Woyne=VY Wayn+1)=— " m Wy s Wyg(n+1)=— Weay s
2 3

dwm: fj—l‘ Doy 3y A @,

1

“.7) dwoy= =~ dfiN0wy+ Bwas N,
1
Q== ANt T
and
_ 1 _ fi—a . 1 fi—a
(4.8) H(po)= fi—a Vi "y €n+1) H(ps)= fi—a Vfi+ — Cny1 -

LEMMA 7. Let M™ be as in Theorem 2 and M™*=S""', If H(u)=0, then
f1 can not be constant.

Proof. Let us suppose that H(y,)=0 and f; is a constant, then from
Theorem 1 and (2.3) we obtain ¥'=0, which is impossible in the present case
by Theorem B. Q.E.D.

By this lemma, we see that f, is a non-constant function of uy, -, Up,.
Now, we consider an integral submanifold K™2*™s of the distribution E(g,)+ E(us).
Along K™*™s by (4.5) and (4.6) we have

dx: Ew(f\'Ze“Z_l_ Ewase(xg >
az ag
dea‘zz ﬁzzwazﬁzeﬁ2+ (H(ﬂZ)—x)waz ’

dea3: ,32 wa3ﬁ3eﬁ3+ (H(#a) —x)wa'a ’

4.9
1
dem:_ fi—a flra1dx+ Ewallgleﬂl ’
1 1
denﬂ:(fl—a){ My %wazeaz— 7; %wasew} .
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LEMMA 8. Let M™ be as in Theorem 2 and M™'=S"*1, If H(p)=0, then
any ntegral submanifold K™*™s of FE(us)+E(us) 1s locally contained in an (m,
+my+-2)-dimensional Euclidean plane in R™* not contaiming the origin.

Proof. From (4.9), we get easily
0:d2ea2: % dwﬂzﬁzeﬁz—— %wazﬁ’z/\ { % wi9272e72+ (H</"2)—x)wﬁz}

+(H(pts) = 0)dw oy +d(H(pts) — ) AN @y
i.e.
%ﬁ {dwa'zﬁz__ % [OPRA w?‘zﬂz} €3,

a
Cn+1

+ {dw,,— 522(()“2[32/\(1).@2} {(~f—11_—al7f1“x)_ f;n—z

+{(f )—

and analogously

deﬂ+1}/\wﬂ2:0 ’

% {da)a3ﬂ3 - % [OPRIVA wrsﬁa} s,

+{dwaa—%wugﬂs/\wﬂ3}{(zl_77f1_x>+ f;n—sa en+l}

+{(f1 P i)t den+1}/\a),,3—0

1 .
T_—G—Vfl X,

Hence, for any vector Y orthogonal to E(u,, x)+ E(gs, X), €x+: and

we have

<f1 Vf— x,Y>/\a)“2:(), d< i Vf1 X, Y)/\co(YS 0,

which imply

(4.10) (4 fll_a Pfi—x), ¥ )=0

for Y .1. E(#Z; x)) E(/"&v x); en+lr

1
71_—0‘7][1—)(.

Now, by means of (4.9) and (4.10), we obtain easily the equality

d{(f1 Vf— )/\emlﬂA---Aen/\enﬂ}

1
:d( 7—a Vfl—x>/\em1+1/\ o Nep/N\epiq
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1 1 |
) f_l—a—Vfl 41 <d( fima i) Vfl_x>

1
X( fl—a Vfl—x>/\em1+1/\ b /\en/\en+1

along K™*™s, which shows that the simple (m,+m;+2)-vector field

1

<f_a Vfl——x)Aemlﬂ/\ N
1

is parallel to a fixed (m,-+m,-+2)-dimensional direction in R™2, Therefore, there

exists an (m,+m;+2)-dimensional Euclidean plane E™*™s**DK™2*™s. Since Vf,

#(0, E™*m3*2 can not contain the origin of R™*Z Q.E.D.

LEMMA 9. Let M™ be as in Lemma 8 with H(p)=0. Then K™*™ is a
Riemannian product of an m,-dimensional sphere and an mg-dimensional sphere.

Progf. By Lemma 8, Km™*ms ig contained in the (m,+m;+1)-dimensional
sphere Sm2tmstl. —Gnti~\ pmetmate aq 9 hypersurface with normal unit vector field

~ . .. 1 .. .
enyy. In E™2*™3%2 with the origin _fTV f1, the position vector of x is given by
—

Ve, .

yi=g—
) fl—
Hence, in Emz“m”, (4.9) can be written as

QY= 20,0yt 2 WeyCag
ag ag

fi—

a
deq,= f?—zlwazﬁzeﬁz—_ Tmo@e”“_wdzy ’
(4.11)

fi—a
deﬂ':i: Ewdslgseﬁs_,’_ wagen+1_wa3y s
83 mg

den+1:(f1_a)‘{ 7;

1
D Wy Cy— ——— 21 Wy, }
. ‘@ agCay My ‘a3 agtag

These equalities show that K™2*™3 is a minimal hypersurface in Smarmst1 with

two principal curvatures — Sz and f ;n—a of multiplicities m, and m, respec-
2 3

tively. Hence, by Theorem 3 in [3], K™*™s ig locally a Riemannian product of

two spheres of dimension m, and m, respectively. Q.E.D.

Remark 1. The two spheres in Lemma 9 can be considered as integral
submanifolds of the distribution E(y,) and E(y,) respectively. On the other
hand, by means of the equalities in the proof Lemma 8 we obtain
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dwagﬁz——' %)wlxz'fz/\wrgﬂz {<e,’32; dy>+ fl <e,92’ den+1>} /\wag

e Fpouren

—a
Ay Zr N = {<egy 09— Ly, e} Mo,
7 3

=— {H— (—f—;’;—a)z}waa/\wﬂa .
Hence, in Emetmatz we have locally the product :
@i s ()T s ()

where S™() denotes the m-dimensional sphere of radius 7.

LEMMA 10. Let M™ be as in Lemma 8 with H(p)=0. Then, f, satisfies:

2__ 1 )4 — )2
(4.13) Vfl*= g (fi—a)'—(fi—a)®.
Proof. By means of (4.6) we have

7
O dwa’g'lg g rvzj/\w]a3+wa2(n+1)/\w(n+l)a3—a)a2/\wa;;

I
=M

wa 31/\0)[31«3 (ﬂz#s"rl)a)a’g/\wag

2 =-Lo0 o, Ao,

{ (/1 a)2
from which we get immediately (4.13). Q.E.D.

Remark 2. Setting p:f—la—, (4.13) becomes
—

(4.14) IV o2+ p*= on M".

MMy
Let C be an orthogonal trajectory of the function f, parameterized with

arclength s, then we get from (4.14)

1

2 2__
(dp/ds) +p — My ’
hence by integrating along C we may put
1 .
(4.15) o= m sin (s+cy),
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where ¢, is a constant and sin (s+c¢,)#0. This curve C lies in an integral sub-
manifold of E(y,), which is a great m;-sphere of S™"! in the present case.

LEMMA 11. Let M be an n-dimensional Riemanman manifold and u a non-
constant function such that \Fu|? is a non-zero function of wu only. Then, the
integral curves of Vu are geodesics of M with certain parameters.

Proof. We choose local coordinates x*, -+, x"7%, x® such that u=x" and the
metric of M takes the form:

ds?= ﬁi} Lap(X)dx*dxP+gpp(x)dx™dx™ .
a,B=1

Then, we have |[Vu|?=g™(x). From the assumption, we get
0g™ /o= —2g" =0,

which imply 0g,,/0x%=0, a=1,2, ---,n—1, where I}, are the Christoffel symbols
of the Riemannian connection of M.
On the other hand, the equations of a geodesic with respect to any parameter

t are

d*x! . dx?  dx* azx" . dx?  dx*
i TR e e TR a4
dx! o - dx™
dt dt

Now, for any curve x®=constant, a=1, 2, ---, n—1, and x"=¢, we have

d?x= dx?  dx* 1 7 og
—_— ¢ =] =——— af _Z3rn
FTERRE 2T e P I o )
and
d*x" L odx? dx® 1 Og
ar PRy T e
These equalities show that this curve is a geodesic of M. Q.E.D.

Remark 3. In Lemma 11, if we suppose thal |Fu|*=F(u), then we obtain
from the above computation g,,(x")=1/F(x™), Therefore, the arclength s of the
curve between u=a and u=>b (a<b) is given by

S:S: «/C?éa) '

Remark 4. By means of Lemma 11, Remark 2, Remark 3 and (4.14) the
orthogonal trajectories of the function f; are all great circles of S®*!. From
these lemmas and remarks, we get the following theorem.

THEOREM 3. Let M™ be as in Theorem 2 and M™'=S™*' and H(u)=0.

Then, we have the following :
(i) There exist a constant a and a non-trivial function f such that
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—(f—0), =)

=0,  py=— -

(i) Any wmtegral submanifold of the distribution E(y,) 1s an my-dimensional
great sphere of S™' and any wntegral submanifolds of the distributions E(u,) and
E(us) are my, and my-dimensional small spheres of S™' respectwely.

(iii) Any wmntegral submamifold of the distribution E(u)-+E(ys) 1s a Rieman-
nian product of an my-dimensional sphere and an my-dimensional sphere.

(iv) Any orthogonal trajectory C of the level hypersurfaces of the function f
is an arc of a great circle of S™*.

(v) As function of the arclength s of C, f can be written as

g,
f=a+ sin (s+c¢,) ’
where ¢, 1S a constant.
(v) of Theorem 3 implies immediately the following fact.

COROLLARY. Any n-dimensional complete Riemannian manifold can not be
1sometrically immersed in S™* as in Theorem 3.

§5. An example of minimal hypersurfaces in S**! for Theorem 3

In this section, we shall give an example of minimal hypersurfaces in S"*!
with three non-simple regular principal curvatures p,, g, and p, such that H(y,)
=0, by making use of the facts obtained in §4.

Let m,, m, and m; be any integers greater than 1 and put n=m,+m,+ms,.
Let us consider as

Rn+2:Rm1 X ng-}l X Rm3+1 .

First of all, we take two hyperspheres in R™2*! and R™** as follows:
b )2}—1/2

—a
My

Mg

Smar)C Rmett 72:{1+(

and put
(5.1) Kpetma=8pa(r,)x Sma(ry)

which is contained in the (m,+m;+1)-dimensional sphere Smetmstipy jn  pmet
X R™*! " where

6D r=ritr={2+( ;7112 +—n%>(b—a)2} / {1+( bn;a )2}{1+( bn;a Y}

From (5.2), we have
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I M D B

and so we suppose here the inequality :

(5.4) (b—a)*>mym,.

Let » be a normal unit vector field of K metms jn Smetmetigey,
Next, we take the hypersphere S ~Y(r,)CR™, then we have

Spimi(r) x Kprrmec ™,

Let xo=(¥,, z,) be any point of §3"1“(r1)><K5"2’”"3 and EZ} be the m;-dimen-
sional linear subspace of R™* which is tangent to S™*! at x, orthogonal to
OXT,(Kp2*ms) and OXx(z,). Let STi be the great m,-sphere of S™' which is
the intersection of S™* and (m,--1)-dimensional linear subspace including E7: and
the origin of R™*2%. Then, we define a hypersurface of S™"! by

G5) M*™ s =\ (S| xo & 8p172r) X K}

In the rest of this section, we shall prove that this M™ is a minimal hyper-
surface of S™*! ag in Theorem 3 under an additional condition.

First, we define a tangent unit vector field & of M™ by the following way.
At the point x, above, £(x,) be one of the tangent unit vectors to S7! orthogonal
to Ty (ST (r)) X O, since this makes sense by means of §6"1"(r1)><20c5;"01. Then,
we extend the domain of definition of § along the great circle C,, of S™** which
passes through x, and has £(x,) as the tangent vector. Let C., be parameterized
with arclength s such that

(5.6) Cryt X=72(s)  With x:=75,(0).

Then, considering (v) in Theorem 3, we put

_ vV mamy

5.7) co=Sin h—a

and define a function f on M" by

V' mani,

(5.8 f(x):a+m )

where x=p,,(s) and 0<s+c¢, <.
Now, we compute the second fundamental form of M™ in S™"!. Setting

x=(y,2), z=(u,v), yER™, usR™", pcRm™

and z,=(u,, Vo), we have |y,|=r, |uo|=7,, [vo|=r;. The normal unit vector 7(z,)
at z, of Kpetms in Spetmsti(y)) is given by

=i =)
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Analogously, we can obtain

(5.10) §e)= (o e, ).
1

Hence, we get

x=1x, cos 0+&(x,) sin §

(5.11) = ((cos 60— :: sin 0) Vo, (cos ﬁ+:—:sin 0>u0, (cos 6+ :—:sin 0)1;0) .

Next, we compute the normal unit vector N(x,) of M™ in S™! at x, by means
of (5.10). We get easily

(.12) N(xo)———(O, =y, ————,) =(0, 7(z0)

Vol 2 Vo3

From (5.11), we have at x,

o To _ To
diy=diyy—2dd dy, ((d&’)2+ - dﬁ)yo,

. — 71 — "o
dtsy dhu= dugt 22 df du—((d0) = &0 ),

— 1 _ a1 e
dv=dv,+2 v dé dv, ((dﬁ) P, d 0)1)0

and hence we get

{d2x, Nxg)y=<d?y, 0+ —>

Ve
d®u, uyy———<d*, vy
7,1,2 < ’ 0> 7,01,3 < » Yo

=T {(dzuo,uo>_7’§(<d0)2—%d20>}

Vol's

o3

ie.

(5.13) {d?x, N(xo)y=——"— {duy, dus)+—2—{dvo, dvy) .
Vol s Vol

On the other hand, we have also at x,
7
dy=dy,— . dd y,,
"1

§1

dx:( du=du,+
14

daé u,,

7
L dgv,,
7o

dU:dvo+
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and hance we get
(5.14) ds*={dy,, dyey+d0*+<du,, duey+<dv,, dv,) .

From (5.13) and (5.14), we see that M™ have three principal curvatures p,=0, y,
a rore Hs Vo3
argument above, especially the formula (5.11), we see that g, g, ps can be
considered as regular fields and g, =0, by replacing 7, and », with

in 0)7,

of multiplicities m,, m,, m, respectively at x,, From the

Fo= (cos g+

Yo

sin 0) Yo, Ta= (cos 4

respectively. Then, we get easily
(5.15) Hipu)=0.
Finally, we shall check the condition that M™ is minimal in S™®*!. We have

MyTs + M3Ts

My phy+Mspts=— 77 77
o2 073
_ Fal's [_ M,y 4 M ]: 7ol's [_ 7y 4 m3]
o 73 73 7o 73 73
et PR 1 _ 1 ]
== [ (my—ms)+(b—a) ( p— e ) s
that is
(5.16) mgpz—}-mgys:w {(b—a)t—myms} ,

MMty
where 7,=+/F+72. Accordingly, by (54), M" is minimal if and only if
(5.17) My—My .

Now, assuming (5.17), at a general point x we have

B N S T Y-
e VI {va(
On the other hand, from (5.3), (5.7) and (5.17) we have

S Vi=o2r
Yo - \/21’

-1
r.}

vz Itancol

= o (0 )2}“= ﬁi’fﬁ‘ico :

and
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T\ sin @ 2 sin’c,
2(cos 0+ P sin 0) rz—2(cos 0+ V7 |tan ci| ) X I Fsin’c,

_ {=cos - +/zsin ¢y+sin 0-cos ¢} ?

—ain?
1+sin’, =sin(0+00),
where
. /2 sin ¢ €OS ¢,
0 =t , 0 =,
s o +/1+F sin’c, €08t v/1-F sin’c,
Hence, we may put
1
18 Y A

Thus, we obtain a conclusion as follows :

THEOREM 4. Let M™ be a hypersurface constructed by (5.5) wn S™. Then,
1t 1s an example of mummal hypersurfaces as in Theovem 3, 1f and only 1f my=m,.

Remark 5. Since we took Spi-ix KmetmscCS™1 ag a base hypersurface of
M™ for our construction, the above argument does not entirely treat with this
kind of minimal hypersurfaces in S™*'.

§6. The case in which H(y,)#0, i=1, 2, 3

In this section, we shall investigate rrlinimal hypersurfaces as in Theorem 2
with H(g)70, 1=1, 2, 3, in the case of M""'=S"*!
By (3.13), H(¢,)=0 is equivalent to the condition

f:=fs=a constant.

LEMMA 12. Let M™ be a munwmal hypersurface in S™* as in Theorem 2 with
H(p,)##0, 1=1, 2, 3, then f, in Lemma 4 can not be constant for 1=1, 2, 3.

Proof. Let M™ be a hypersurface as in the statement. Let us suppose
that f,=a,, 1=1, 2, 3, where a,, a, and a, are constants different from each
others. Then, by (3.9) we have the equation

B gy = Oy = Dy =0
Hence we have from (1.3)

J§

n
DAaznj:dAmaj_ k=1w“ikAkﬂj—k§ a)anAaik

=T HliOaia; Filaja, =(p _#J)waia]:() ’

for 1, y=1, 2, 3, which imply ¥'=0. This contradicts to Theorem B. Q.E.D.
By means of Lemma 12, we may consider the case:

6.1) fi=f is a non-constant function, f,=a,, fi=as;, a,#as,
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where a, and a,; are constants, as the simplest one in the present situation.

the following, we shall investigate this case.
Under the condition (6.1), we have from Lemma 4 and (3.13)
a,—das as—f f—a,

(6.2) lh:—_mT‘—; Le= m, M= T,

H(#l)zlhenﬂ »

(6.3) m,
H(llz) “‘—_Vf+/123n+1 ’ H(,U3): ‘F_——Vf‘l'/lsenﬂ
_naz
where
(6.4) F=m,f+mya,+msa;, n=m;+m,+ms.

From (3.8) and (3.9) we have

da)a'1 Z [CF] /\wﬂlnl ’

(6.5) dw 4=~ —F——-“;Edf/\ Wyt /322: O N O,y 5
M,
A0y=—"F = U N 205N Oy,
and
My my
(66) waza';;:o; Dz — F— na, f,n'lwas s Woyag— " F—nas f,alwaz .

In

Now, by means of (6.3) and (6.6), we have the following equalities along M™:

Ax= 20 0ala;t 20 Wyt 20 Wiy
ay ag a3
dey, = 20 Way5,05,—M1f,q {;Ewg es —I—;Zw; es }
1 )31 1717P1 1] F__na3 192 22732 F'_nag 193 23
+()Ulen+1_x)wa1 ’
dezvg 2 W gy 8,€ 132+(H(ﬁ2) x)wag H

6.7)

dea3: % wa’g/gaeﬂg_’_(H(#S)—x)a)ag s

den+1: —th 2 Wo @y Mo E W o€y s Z W34 -
oy ay ag
From these equalities, we obtain
0=, = 3 d0y5,85,— 2 0nyy MZ Oy, (Hip) = D)

Fd(H(pts) = 0) N @ gy +(H(pto) — %) d @,
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i.e.
(6.8) %_2-" (dwazﬁz— Tzz wdszAw72132)2ﬁ2+(dwa2_ % wﬂzﬁz/\w192)(H(/"2)_x)
{

Fd(H(p) = x) N\ 40,=0
and analogously

(6.9) 52 (dway8,— rEg Ougrg N Wryp,)ep, T (AW 0y 20 W aypy A sy (H(pt5)— %)

3 N

+d(H(ps)—2) AN w,,=0.
Let Y, be any vector perpendicular to E(y,) and H(y,)—x at the point x, then
we get from (6.8)

Y, d(H(p2) = %)) Aw oy, =0
Since dim E(y,, x)=2, this equality implies
(Y, d(H(pg)—2)>=0.

Hence, we have the following equality for the (m,-1)-vector (H(gs)—x)Aemn,+;
At Nemysm, in R**2

d{(H(pa) = x) A elmys1/\ " Nemomy)

(6.10) CA(H (1) =), H{pte)= ) H(t) = 2) A empar A =+ A oy

1
o H(p) P41

and analogously
d{(H(/ls)_x>/\em,+m2+1/\ = Aeg}

(6.11) Cd(H(ps) =), H(p) —)(H(gta) = X) Nemyimyra/\ = New .

1
o IH(#s)[2+l

(6.10) and (6.11) imply that there exist two fixed (m,+1)-plane E72*! and (m;+1)-
plane E*! in R™** through the origin such that

(H<‘u2)_x>/\eml+1/\ o /\em1+m2//E§"Z+1 »
(H(/’l3)_x)/\em1+m2+1/\ /\en//Egll;;'Fl.

Let E™* be the (m,+1)-plane through x parallel to E=%,1=2,3. Then, we see
easily that E™*™N\S™"* contains the integral submanifold of the distribution E(g,)
through x. Since we have

AN (H(pa)—x) N CH(pts) ~2)=x N\ H(p) N H(pts)

e f—a, S—as
__m1< my(F—nas) + o F—nay) >x/\Vf/\en+1¢0’

the (m,-+m;+2)-plane containing E72* and E*!, which we denote by EIgtms+s

2,z

does not contain the origin of R"? Furthermore, the small (m,+m,-+1)-sphere
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Spatmati=ppatmet2 S+ contains the integral submanifold K™2*™s of the distribu-

tion E(us)+E(us). Thus, we see that K™2*™3 can be considered locally as a locus

of moving ST =E}2'NS""!, where x is a moving point along S7'3 =E7sHNS™*1,
On the other hand, from (6.6) we have

n
_ —\
O’_dwazag_ ]2_.41wtxz]/\w]a3+waz(n+l)/\w(n+l)a3—wa2/\wa3

= % Oy, N Oy — (ot F 1) Wy N\ W

=— mi 2 (f—a)(f—as)
o { (F—na,)(F—na,) E(f’ﬁ‘) Mgy +1}w"‘2/\w“3’
from which we get the equality for f
o 7 51°

{my f—(my+ma)as+maast {m, fi+maa,—(m+my)as}
- (f_GZ)(f—a3) +1:0

Moy

i.e.

771 { e (aad} { o (@ —a)
(6.12)

(f—az)(f— 613)
X {————~m2m3 —1}.
Hence, we have
CH(pt)—x, H(ptg)—x>= ol sl

(F—naz)(F—nas,)
. (f_az)(f*as) +1=0,

MyMg
that is
(6.13) (H(po)—x) L (H(ptg)—x) ,
and so
(6.14) Epatt | Epstt,

We notice here that (6.12) will be reduced to (4.13), if we put f=/f,, a.=a;=a.
And, by Lemma 11, any orthogonal trajectory C of the level hypersurfaces of
the function f is an arc of a geodesic of M™. C lies in an integral submanifold

K7 of the distribution E(g,).

Now, we prove the following
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THEOREM 5. Let M" be a munvmal hypersurface wn S™* as wn Theorem 2
with H(p))#0, 1=1, 2, 3, then dp,=E0 for 1=1, 2, 3.

Proof. Let us suppose that dy,=0, then f, and f; must be constants by
Lemma 4. Setting f,=a, and f;=a,;, we have a,#a; and f,=/ is not a constant
function by Lemma 12. Thus, this must be the case (6.1) and so we can use the
argument above in this section. We may consider as

RMP2=RM X Rm2tlx Rmatl
Rpetl=Fmpa*t Ryps~l=Fpstt R,=R;=R=R,
and we denote any point xR""? as
x=(y,u,v), yeRM, ues Ry vERpsT,
Taking a fixed point x,={,, u,, V)= M", we may assume that
Ry =Ry2XR,, R;'LEIIE”LZ(#Z, Xo)
R =R X R,, 5"3”Em3(#3, Xo) -

Let K%' be the integral submanifold of the distribution E(y,) through x, and
Emit the (m,-+1)-plane containing K7. Since

€1, " ey H(pt)—x0= 1841~ X0 | E7it
we may consider as
ETSH I R X Ry X Ry

by (6.3) and (6.14). Therefore, E{!i{' is given by an equation such that

mi

2 Ay Yoy T CollmgsrFH CsVmge1=0Co ,

ayj=1

ua2:u0a2 ’ Ua3:U0a3 ’

where a,,, ¢ ¢; and ¢, are real constants such that

my
> ak, +ceitci=1, 0<co<1, c2+c2+#0

ay;=1
and

Uo=(toy, **, Uomy, u0(7n2+1)) ’ Uo=(voy, -+, Vomg, Uo<m3+1)) .

(Since K73 is a small m,-sphere of S™"!, ¢, must be 0<|c,| <1). Therefore, for
any point x,=(y,, u;, v,)€ K7 and any point x=(y, u, v)e K™**™3, we have

Y=Y,

ma

{u, uy=<{u,, u1>:a22 (u01r2)2+<u1(m2+1))2

=1
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mg
v, vy={vy, v1>=a§1(v0a3)2+(v1<m3+1>)2 .
By a suitable change of orthogonal coordinates of R"!, we may put
az(alf o ) am1):(C17 O} ot s O) -

Thus, setting #icmy+1y="2, Vicmg+n="13, We can represent locally and explicitly M™
as:
Y, y+<u, wy+{v, vy=1,

(6.15) {u, uy=t3+b3, {v,vy=18+0b3,
iyttt csts=c,
where b,, b,, ¢1, ¢s, ¢; and ¢, are all constants such that
(6.16) 0=bh,=1, 0=bh,=1, cd+a+a=1, 0<e<1

and t, and {, are auxiliary variables.
Now, we compute the normal vector M™ at x. By differentiating (6.16),
we get
<y, dy>+<u, duy+<v, dv)=0,

{u, duy=t,dt,, v, dvy=tdt,,

1Ay +codt, - cydts =0,
from which we obtain

1 1
dty=———— —bLa, dy), dty=——7—— —ta,d
2 Cola—Cols {esy—tsa, dy) t3 Cola—Cals {e:y—tra, dyy

and, supposing c¢st,—c,t; 70, and

& {esy—tsa, dyd+<u, duy=0,

Csla—Cals

__t
Csla—Cylg

{e:y—tya, dyy-+<v, dv)=0.
Hence, the normal unit vector N(x) at x is represented as
N(x)=2t,(csy—1sa), (csta—csta)u, 0)
+ p(—tslczy—1ta), 0, (csty—cata)V) .
Since <{x, N(x)>=0, we have
sty y>—tatla, yd-+(csty—cot)u, ud}
+p{—ctily, Yr+ttla, yo+(cst;—csts)v, v} =0.

The coefflcients of 2 and g of the above equality are
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c(1—bDt,—coblts—cotot; and  —cy(L—bd)ts+csb3ts+-cot ot
respectively. Therefore, N(x) is proportional to
{— (1 =09t c3bita+cot ol s} (F(csy —ts@), (csta—caots)ut, 0)
+ {—cs(1 =0ty Cob3ts+cotat s} (—ts(cy—ta@), 0, (csty—cats)V)
=(c3b3tst cobdts+cot ot s)(Csta—Cot )Y, 1, V)
—(csta—Cats)(tots@, Cotsle, Cstal) .

Hence, supposing t,t,#0, N(x) is proportional to

S bic, bic, _ G2 Cs
6.17) N(x)—<co—|———t2 o )(y, u, v) (a, ) v),
=y, u,v).

Now, we compute the 1st and 2nd fundamental forms of M™ at x, where
t,#0, t,#0. From the above argument, we may still put

u:(O, '”,0;172); v:(O’ "';O;p3)

by changing the coordinate axises of R72*' and RP*!. We get easily

t ¢
dum2+1:72’dt2 ’ dvm3+1:—3-dt3
2

Ps
and
dl‘*‘————l——{ <y, dy>—citydy}
2= Cola—Cals Cs Y, AY ) —C1l5aY,
dty=—1 (e, dy>—citudys)
T ta—caty 2 Y, aY)—Cila0Yyg -

Hence we have
(6.18) ds*=<dy, dy)+<du, du)+{dv, dv)
=[dy, dy>+(dumy+)*+(AVmg41)*]

+ Zz)ldu,,zduaz—}- Z% AV 4, AV g -
az= az=1

bic, bic,

By means of (6.17), setting ¢= co—l-——t—-——l— P we have
2 3

—{d2x, N(x)y={dx, dN(x)y=¢{dx, dx)

—<du,

Ca g, Co Cs gy, G
I du " udt2>—|—<dv, 7, dv 7 va’z‘3>
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=¢{dy, dy>+( ,du>+( dvy+ 2 dtydt,+ 2 dtydty
t, ts
i.e.
—Carx, Boy= p¢dy, d>+(p— - + -2t
t, ts
G Csp3
(6.19) S (O LS [N

+(—t2>

(6.18) shows that the parameter submanifolds corresponding to (yi, =+, Ym,),
(4, ***, Um,) and (v, -+, v,,) are orthogonal to each others at x. And (6.19) show
that the tangent spaces to the submanifolds corresponding to (uy, -+, un,) and
(v, =+, Umy,) must be E(y,, x) and E(ys, x) respectively. Therefore, the form in
the brackets of (6.19) must be proportional to the one of (6.18).

Since we have

) 32 1 4y 00, -

az «az

dy, dy)+(dupys1)*+(dvngsr)®

(6.20) =dy, dyp+ (e

m)z[ﬁ(cldh——z—@, dyy)?

+ P%(cldyr ;—:<y, dy>)2]

and

o<l dy>+ (9= ) )+ (= 2 S

=@ {{dy, dy>+(dumy1)*+(dVmg+1)

( (csts tiz,)png ) [ bzczp? ( 1y —

biespd (g, :
P (adyi— 2w ap) |,

2
dy>)
+

the differential form in dy,, -, dyn

bic. b3 [ 2 b3C3p3 C3 2
_— dy,——— y d, d ’ d
i (cl I y>) ( neg, Y y>)

must be proportional to (6.20). This is generally impossible. Thus, we reach a
contradiction. Q.E.D.
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