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1. Introduction

Let f and g be entire functions. We say that f and g determine the same
covering structure if they are a‰ne equivalent, i.e. there are similarities A and B
such that

f ¼ A � g � B;
and that f and g determine the same dynamical structure if they are a‰ne con-
jugate, i.e. there is a similarity A such that

f ¼ A � g � A�1:

We denote by Cf and Df the covering structure and the dynamical structure,
respectively, induced from f . Then, the dynamical structure Df is smaller than
the covering strucure Cf as sets of entire functions. On the other hand, we know
the following theorem.

Theorem 1. Suppose that f is a polynomial of degree Nb 2 such that f 0

is not a Ritt polynomial

ðz� dÞmPððz� dÞlÞ;
where m and l are non-negative integers, P is a polynomial, d A C, and l > 1. If
another polynomial g satisfies that g � g A Cf � f , then g A Df .

This theorem follows from a result by Ritt in [7], or directly from the
following simple lemma.

Lemma 2 (Lenstra-Schneps lemma [8]). Suppose that Pð�Þ and Qð�Þ are poly-
nomials with P �Q ¼ P� �Q� and the degrees of Q and Q� are the same. Then
there exists a similarity A such that Q� ¼ A �Q.

For the sake of reader’s convenience, we include a proof of Theorem 1.
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Proof of Theorem 1. We may assume that

g � g ¼ f � f � C
with a suitable similarity C. Then by the Lenstra-Schneps lemma,

g ¼ A � f � C ¼ f � A�1:

Hence letting D ¼ C � A,
f ¼ A � f �D:

Here if D is the identical map, then A is also the identical map, which implies
that f ¼ g. So suppose that D is not the identical map. Set D 0ðzÞ ¼ d and
A 0ðzÞ ¼ a, and we have

adf 0ðDðzÞÞ ¼ f 0ðzÞ:
First, if D has a fixed point w, then either ad ¼ 1 and f 0 is a non-constant

automorphic function with respect to D, or f 0ðwÞ ¼ 0. In the latter case, sup-
pose that w is a zero of f 0 of order k. If k þ 1 ¼ N, then f 0 has such a form
as cðz� wÞN�1, which is a Ritt polynomial. If k þ 1 < N, then f ðkþ1ÞðwÞ0 0
and f ðkþ1Þ is non-constant. In particular, adkþ1 ¼ 1, which implies that

f ðkþ1ÞðDðzÞÞ ¼ f ðkþ1ÞðzÞ;

i.e. f ðkþ1Þ is automorphic with respect to D. Hence D has a finite order l > 1
and so is A.

Thus in any cases, we can find a positive integer ma l such that

hðzÞ ¼ ðz� wÞl�m
f 0ðzÞ

is automorphic with respect to D, and hence

hðzÞ ¼ Qððz� wÞlÞ

with a suitable polynomial Q. Thus f 0 is a Ritt function.
Finally, suppose that D has no fixed points. Then d ¼ 1 and

af 0ðDðzÞÞ ¼ f 0ðzÞ:
In particular, ð f 00=f 0ÞðzÞ is a periodic function which is not identically zero.
Since f 00=f 0 is a rational function, it should be a constant, which is impossible.

9

Remark. See [6], where Pilgrim shows that the dynamical structure of an
extra-clean Balyi polynomial P is determined by the covering structure of P � P.

In general, a covering structure Cf corresponds to a complex two-dimensional
family consisting of dynamical structures. An exception is the case of a non-
linear polynomial f with a single critical point. When f ðzÞ ¼ zN , then Cf con-
tains all

gðzÞ ¼ c1ðz� dÞN þ c2 ðc1 0 0Þ:

431structurally finite entire function



And for every such g, Dg ¼ DPc with a suitable PcðzÞ ¼ zN þ c. Hence Cf cor-
responds to a complex one-dimensional family of dynamical structures, i.e.

fDPc j c A Cg:

In this paper, we show a similar theorem as Theorem 1 for the case of
structurally finite transcendental entire functions.

The author expresses hearty thanks to Professor Kazuya Tohge for his val-
uable comments.

2. The main theorem

For the definition of structurally finite entire functions, see [9] and [10].
(Also see [5] and [11].) Here we recall the explicit representation and the to-
pological characterization of structurally finite entire functions.

Proposition 3 ([9]). An entire function f ðzÞ is strucuturally finite if and only
if

f 0ðzÞ ¼ PðzÞeQðzÞ

with suitable polynomials PðzÞ and QðzÞ.

Proposition 4 (Cf. [10]). An entire function f ðzÞ is structurally finite if
and only if f is a Speiser function and, applying the resolutions of a finite number
of singularities of f �1 (with respect to a given spider at y) to the covering
f : C ! C, we have the trivial covering of C by a countable number of C.

Here in general, the resolution of a singularity s of p�1 (which is either
a critical point of p or a logarithmic singurality of p�1) for a Speiser covering
p : R ! C of C by a, not necessarily connected, Riemann surface R with res-
pect to a given spider at y, is the operation defined as follows;

1. cut R along all components of p�1ðlÞ tending to s, where l is the leg of
the spider ending at the singular value corresponding to s, and

2. paste each component of the surface obtained in the first operation along
the newly appearing borders over l, if exist, so that p : R ! C induces a
holomorphic covering p 0 : R 0 ! C of C by the resulting, not necessarily
connected, Riemann surface R 0.

Theorem 5. Suppose that f is a structurally finite transcendental entire func-
tions such that f 0 is neither a Ritt function

ðz� dÞmPððz� dÞlÞeQððz�dÞlÞ

nor an exponential function

eczþd ;
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where P and Q are polynomials, m and l are non-negative integers, d A C, c A
C� f0g, and l > 1. If another entire function g satisfies that g � g A Cf � f , then
g A Df .

Theorem 5 is a generalization of Theorem 2 in [12] (cf. [13]). The proof
below is di¤erent from, and simpler than, that of Theorem 2 in [12]. Also see
[1], [2] and [3].

Example 1. Let f ðzÞ ¼ aebz þ c with ab0 0. Then Cf � f contains g � g for
every g with the same form as that of f . Recall that every such g A Del , where
elðzÞ ¼ elz with a suitable l A C� f0g.

To prove Theorem 5, first we note the following fact, which is an easy
consequence of Proposition 4.

Lemma 6. Such a function g as in Theorem 5 is structurally finite.

Proof. Since f is structurally finite, by applying the resolutions of a finite

number of suitable singularities of ð f � f Þ�1, which corresponds to those of f �1

for the right f in f � f , we have a Speiser covering p : R ! C such that p re-
stricted to W is structurally finite for every component W of R. We denote by
S the set of all singularities of ð f � f Þ�1 used to obtain R. Let S 0 be the subset
of S corresponding to singularities of g�1 for the right g in g � g.

Now g is a Speiser function, for so is g � g ¼ f � f . Suppose that g were
structurally infinite. Then by applying the resolutions of all singurarities in S 0

to g � g : C ! C, we have a Speiser covering p 0 : R 0 ! C such that either the
number of component of R 0 is infinite or there is a component W 0 of R 0 such
that the covering p 0jW 0 : W ! C, i.e. the restriction of p 0 : R 0 ! C to W 0, has in-
finitely many singularities of the inverse corresponding to those of g�1 for the
right g in g � g.

In the latter case, we can find, either a logarithmic singularity of ðp 0jW 0 Þ�1

corresponding to that of g�1, or infinitely many critical points p 0jW 0 corresponding to
those of g, for the right g in g � g. Hence letting N be the number of singularities in
S� S 0, we can obtain a Speiser covering p 00 : R 00 ! C by R 00 having more than N
components, by applying either the resolution of a logarithmic singularity or the
resolutions of a suitable number of critical points such as above.

Thus in any cases, we may assume that R 0 has more than N components,
and that the projection p 0 restricted to any component of R 0 is structurally in-
finite. Then, even if we apply resolutions of all the remaining singularities in
S� S 0 to p 0 : R 0 ! C, we can find a component W 0 of R 0 which is unchanged,
and hence p 0 restricted to W 0 is structurally infinite. This is a contradiction,
which shows the assertion. 9

Remark. Let l be an arc either to a critical point of g or to y. If l
determines a singularity s, then l also determines a singulariy s 0 of ðg � gÞ�1

corresponding to s of g�1 for the right g in g � g.
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Also note that, if the singular value a of g corresponding to s is a critical
point of g, the singularity of ðg � gÞ�1 corresponding to this critical point of g
for the left g in g � g also disappears when we apply the resolution of s 0 to
g � g : C ! C.

Thus as in the case of polynomials, Theorem 5 follows from the lemma
below, whose proof will be given in the next section.

Lemma 7 (Transcendental Lenstra-Schneps Lemma). Let f and g be struc-
turally finite transcendental entire functions. Suppose that other structurally finite
transcendental entire funcitons f � and g� satisfy the equation

f � g ¼ f � � g�:

Then there exists a similarity A such that g ¼ A � g� (and hence f ¼ f � � A�1).

Proof of Theorem 5. We may assme that

g � g ¼ f � f � C
with a suitable similarity C. Then by Lemmas 6 and 7, there is a similarity A
such that

g ¼ A � f � C ¼ f � A�1:

Hence letting D ¼ C � A,
f ¼ A � f �D:

Here if D is the identical map, then f ¼ g as before. So suppose that D is
not the identical map. If D has a fixed point w, then by Proposition 3 we
can conclude as before that f 0 is a Ritt function. If D has no fixed points,
ð f 00=f 0ÞðzÞ is a periodic function not identically zero. On the other hand, f 00=f 0

is a rational function again by Proposition 3. Hence it should be a constant,
and hence f 0 is an exponential function. Thus we conclude the assertion. 9

Example 2. If one of f , f �, g, and g� is structurally infinite, then the as-
sertion of the above lemma does not necessarily hold. A typical example is a log-
arithmic lift:

f ðzÞ ¼ ez; f �ðzÞ ¼ zez; gðzÞ ¼ zþ ez; g�ðzÞ ¼ ez:

Another typical example is

f ðzÞ ¼ ez
2

; f �ðzÞ ¼ e1�z2 ; gðzÞ ¼ sin z; g�ðzÞ ¼ cos z:

Here g and g� determine the same covering structure, but the assertion of the
lemma does not hold.

On the other hand, we can show the following proposition by the same
argument as in the proof of Lemma 6.
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Proposition 8. Suppose that f and g are structurally finite, that g� is tran-
scendental, and that f � g ¼ f � � g� with another entire function f �. Then f � is
structurally finite.

Finally, professor Masashi Kisaka notified the author the following corollary
of the transcendental Lenstra-Schneps Lemma.

Corollary 1. Let f and g be structurally finite transcendental entire func-
tions. Suppose that f � g ¼ g � f . Then g ¼ A � f and also f ¼ g � A�1 with a
suitable similarity A.

Moreover suppose that neither f nor g has the formð z

d

Pððt� dÞlÞeQððt�dÞlÞ dtþ d

with a suitable integer l > 1, polynomials P and Q, and d A C. Then f ¼ g.

Proof. In this case, D ¼ A�1 in the proof of Theorem 5. Hence if D has a
fixed point, f should have the form as in Corollary 1. If D has no fixed points,
then f ðzÞ should be written as aebz þ c, but then f ðzþ bÞ0 f ðzÞ þ b for every
b0 0. 9

Corollary 2. Let f and g be structurally finite transcendental entire func-
tions. Suppose that f � g ¼ g � f . Then the Julia sets of f and g coincide with
each other.

Proof. Even if f 0 g, g ¼ A � f ¼ f � A with a similarity A of a finite
order l. Hence the l-th iterations of f and g coincide with each other (cf. [4]).

9

3. Proof of the transcendental Lenstra-Schneps lemma

First by Proposition 3, we can write

ð f ð�ÞÞ0ðzÞ ¼ Pð�ÞðzÞ expðQð�ÞðzÞÞ; ðgð�ÞÞ0ðzÞ ¼ Rð�ÞðzÞ expðSð�ÞðzÞÞ
with suitable polynomials Pð�Þ, Qð�Þ, Rð�Þ, and Sð�Þ. Here we may assume that
Qð�Þð0Þ ¼ 0 and Sð�Þð0Þ ¼ 0. Let pð�Þ, qð�Þ, rð�Þ, and sð�Þ be the degrees of Pð�Þ,
Qð�Þ, Rð�Þ, and Sð�Þ, respectively. Then the assumption implies that qð�Þ and sð�Þ

are positive. Also Proposition 4 gives the following

Lemma 9. q ¼ q�.

Proof. Apply the resolutions of s� logarithmic singularities of p�1, cor-
responding to those of ðg�Þ�1, to the covering

p ¼ f � g ¼ f � � g� : C ! C:
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Then the resulting surface R 0 contains infinite number of components W 0 such
that each W 0 is biholomorphic to C and the covering p 0jW 0 : W 0 ! C induced from
p has exactly q� logarithmic singularities of the inverse. Further, apply the res-
olutions of at most s other logarithmic singularities of p�1, corresponding to those
of g�1 but not of ðg�Þ�1, to the covering p 0 : R 0 ! C, if exist. Then the resulting
surface R 00 also contains infinite number of components W 00, each of which co-
incides with some component W 0 of R 0, such that the covering p 00jW 00 : W 00 ! C
induced from p 0 has exactly q logarithmic singularities of the inverse, which im-
plies that q ¼ q�. 9

Next, since

f 0ðgðzÞÞg 0ðzÞ ¼ ð f �Þ0ðg�ðzÞÞðg�Þ0ðzÞ;ð1Þ

and since the orders of g and g� are finite, we can find a polynomial T such that

QðgðzÞÞ þ SðzÞ �Q�ðg�ðzÞÞ � S �ðzÞ ¼ TðzÞ:ð2Þ

Lemma 10. r ¼ r�, s ¼ s�, and bs ¼ b�
s , where we set

Sð�ÞðzÞ ¼ b
ð�Þ
sð�Þ

zs
ð�Þ þ � � � bð�Þ1 z:

Proof. First recall that jgð�Þj has a growth estimate

jgð�ÞðzÞj ¼ ðgð�Þ þ oð1ÞÞjzjr
ð�Þ�sð�Þþ1 expðRe b

ð�Þ
sð�Þ

zs
ð�Þ Þ;ð3Þ

with a positive constant gð�Þ depending only on gð�Þ, as z ! y along a ray in the
divergence sectors of gð�Þ (See for instance, [11] Lemma 4). Here the divergence
sectors P

ð�Þ
j of gð�Þ is the maximal open set of rays from the origin along which

jgð�Þj tends to þy:

P
ð�Þ
j ¼ arg z��yð�Þ þ 2pj

sð�Þ

�����
����� < p

sð�Þ

( )
ð j ¼ 0; . . . ; sð�Þ � 1Þ;

where we set yð�Þ ¼ arg b
ð�Þ
sð�Þ

.
Here by the equation (2), the divergence sectors of g and those of g� should

be the same, which means that s ¼ s� and y ¼ y� mod 2p. Then the equation (3)
gives that r ¼ r�, and jbsj ¼ jb�

s j, which implies the assertion. 9

Set Qð�ÞðzÞ ¼ a
ð�Þ
q zq þ � � � að�Þ1 z, and take a constant a such that a�

q ¼ aqaq.

Lemma 11. jg 0ðzÞ=aðg�Þ0ðzÞj tends to 1 as z ! y along any ray in the di-
vergence sectors.

Proof. Since jgðzÞ=ag�ðzÞj tends to 1 as z ! y along any ray l in the
divergence sectors by the equation (2), jQ 0ðgðzÞÞ=ðQ�Þ0ððg�ðzÞÞj tends to 1=jaj
(including the case that q ¼ 1), as z ! y along l.
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Also by di¤erentiating the equation (2), we see that jQ 0ðgðzÞÞg 0ðzÞ=
ððQ�Þ0ððg�ðzÞÞðg�Þ0ðzÞÞj tends to 1 as z ! y along l, which gives the assertion.

9

Lemma 12. SðzÞ equals to S �ðzÞ.

Proof. By Proposition 3 and Lemma 10, we see that

jg 0ðzÞj
jaðg�Þ0ðzÞj

e�ðReSðzÞ�ReS �ðzÞÞ

tends to a non-zero constant as z ! y along any ray in the divergence sectors.
Suppose that there is a k such that bk 0 b�

k , and let k0 be the maximal one
among such indice. (Note that s > k0 b 1 by Lemma 10.) Then we can find a
ray l in the divergence sectors along which

Reðbk0 � b�
k0
Þzk0 ! þy

as z ! y. Actually, rays from the origin with angle in suitable k open intervals,
the total length of which is p, in ½0; 2pÞ satisfy this condition, and since k0 0 s,
the set of all such rays can not be disjoint from the divergence sectors. But
jg 0ðzÞ=aðg�Þ0ðzÞj ! þy as z ! y along ever ray in the intersection, which
contradicts to Lemma 11. 9

Finally, by Lemma 12, we can write as

g 0ðzÞ � aðg�Þ0ðzÞ ¼ ðRðzÞ � aR�ðzÞÞeSðzÞ:
If RðzÞ � aR�ðzÞ is not identically 0, then jgðzÞ � ag�ðzÞj grows not slower than
jzj�s expðRe SðzÞÞ as z ! y along any ray l in the divergence sectors. Hence,
if RðzÞ � aR�ðzÞ were not identically 0 for every constant a such that a�

q ¼ aqaq,
then QðgðzÞÞ �Q�ðg�ðzÞÞ should grow not slower than jzj�qs expðq Re bsz

sÞ as
z ! y along l. But this contradicts to the equation (2), which implies that
RðzÞ � aR�ðzÞ is identically 0 for some constant a such that a�

q ¼ aqaq. Then
g 0 ¼ aðg�Þ0, which proves the transcendental Lenstra-Schneps lemma.
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