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Abstract

We estimate the upper box and Hausdorff dimensions of the Julia set of an ex-
panding semigroup generated by finitely many rational functions, using the thermo-
dynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the
existence and uniqueness of a conformal measure, for a finitely generated expanding
semigroup satisfying the open set condition.

1. Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. This is a semigroup whose semigroup operation is the
functional composition. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial. Research on the
dynamics of rational semigroups was initiated by A. Hinkkanen and G. J. Martin
([HM1]), who were interested in the role of the dynamics of polynomial semi-
groups while studying various one-complex-dimensional moduli spaces for dis-
crete groups, and F. Ren’s group ([ZR], [GR]). For references on research into
rational semigroups, see [HM1], [HM2], [HM3], [ZR], [GR], [SSS], [Bo], [St1],
[St2], [St3], [S1], [S2], [S3], [S4], [S5], [S6], and [S7]. The research on the dy-
namics of rational semigroups can be considered a generalization of studies of
both the iteration of rational functions and self-similar sets constructed using it-
erated function systems of some similarity transformations in R” in fractal geo-
metry. In both fields, the estimate of the upper (resp. lower) box dimension,
which is denoted by dimp (resp. dimg), and the Hausdorff dimension, which is
denoted by dimp, of the invariant sets (Julia sets or attractors) has been of great
interest and has been investigated for a long time. In this paper, we consider the
following: For a rational semigroup G, We set
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JULIA SETS OF EXPANDING RATIONAL SEMIGROUPS 391

F(G) = {xeC|G is normal in a neighborhood of x}, J(G)= C\F(G).

F(G) is called the Fatou set for G and J(G) is called the Julia set for G. We use
{fi, fo, ...y to denote the rational semigroup generated by the family {f;}. For
a finitely generated rational semigroup G = {fi,..., fiuy, we set %,, = {1,. m}
(this is a compact metric space) and we use o : X,, — X, to denote the shlft map,
which is (wi,wa,...) — (w2, ws,...) for w= (wi,ws,w3,...) €Z,. We define the
map f:%, x C — X, x C using

S((w,x)) = (0w, fu (x)).
We call map f the skew product map associated with the generator system
{fi,..., fm}. For each weX,, we use F, to denote the set of all the points
x € C that satisfy the fact that there exists an open neighborhood U of x such
that the family {f,, o---o f,,}, is normal in U. We set J,, = C\F, and J, =
{w} x J,,. Moreover, we set

Jf)="U Ju F(f) = Enx OJ(),

wex,

where the closure is taken in the product space X, x C (this is a compact metric
space). We call F(f) the Fatou set for f and J(f) the Julia set for f. For
each (w,x) €2, x C and ne N we set

(") ((w,x)) = (S, =+~ fin) ().
Furthermore, we denote the first (resp. second) projection by 7 : X, x C—-3,
(resp. mg:Zyn x C— C). We say that a finitely generated rational semigroup
G={f1,..., fmy is an expanding rational semigroup if J(G) # () and the skew
product map f 2, xC—%,xC associated with the generator system
{fi,..., fm} 1s expanding along fibers, i.e., there exists a positive constant C and
a constant 4> 1 such that for each ne N,

"' @)l = car,

zed(f)

where we use ||-|| to denote the norm of the derivative with respect to the
spherical metric.

For a general rational semigroup G and a non-negative number f, we
say that a Borel probability measure z on C is t-subconformal (for G) if for
each ge G and for each Borel measurable set 4 in C, t(g(4)) < [,|l¢'|" d.
Moreover, we set s(G) = inf{¢|3z: t-subconformal measure}.

Furthermore, we say that a Borel probability measure 7 on J(G) is t-
conformal (for G) if for any Borel set A and geG, if A,9(4) = J(G) and
g:A— g(A) is injective, then t(g(4)) = [, |lg'||" d.

For any s> 0 and x e C, we set S(s X) =2 e 2gn—x 19" W) . More-
over, we set S(x) =inf{s > 0|S(s,x) < oo} (If no s exists w1th S(s,x) < co, then
we set S(x) = ). We set 5o(G) = inf{S(x)|x e C}. Note that if G has only
countably many elements, then s(G) < so(G) (Theorem 4.2 in [S2]).

Then, under the above notations, we show the following:

Al
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TueoreM 1.1 (Main Theorem A). Let G = {fi,..., fu)> be a finitely gen-
erated expanding rational semigroup. Let [ :X, xC — X, xC be the skew
product map associated with { fl, .oy fm}. Then, there exists a unique zero 0 of
the function: P(t) fP(f|J 19), where ¢ is the function on J(f) defined by:
#((%,2) = —1og([[(fun) () for (v, x) = (w1, w3, ), x) € J(F) and P(,) denotes
the pressure. Furthermore, 0 satisfies the fact that there exists a unique probability
measure v on J(f) such that MV = 7, where My is an operator on C(J(f)) (the space
of continuous functions on J( f )) defined by

M= Y S
FOw',9)=(w,x) ”(ful’) (y)H
where w' = (wj,w},...) € >",.. Moreover, J satisfies
holf)_ log(S, dea(5)

7qu<f~) g dv — L @ dv
where o= lim;_., M!(1) and we denote the metric entropy of (f, av) by hy(f).
The support for v:= (ng), v equals J(G).

Furthermore, let A(G)= UgeG g({xeC|3Ihe G, h(x)=x,|h'(x)] < 1}) and
P(G) = UgEG {all critical values of g}. Then, A(G)UP(G) = F(G) and for each
x e C\(4(G)U P(G)), we have 0 is equal to:

inf{tzoz > > ||<f;,ﬂ-~~f;f,,>’<y)||"<oo}.

nEN (wi,...,wy) € {1,cc,m}”™ (foy = S ) (¥)=x
THEOREM 1.2 (Main Theorem B). Let G =<{fi,..., fuy be a finitely gen-
erated expanding rational sengroup Suppose that there exists a non empty open
set U in C such that f7'(U) < U for each j=1,....m and {fi'(U)}, are
mutually disjoint. Then_ we have the following:

1. dimg(J(G)) = dimg(J(G)) = s(G) = so(G) = 0, where J denotes the number
in Theorem 1.1.

2. v:i=(ng),V is the unique J-conformal measure, where Vv is the measure in
Theorem 1.1.  Furthermore, v satisfies the fact that there exists a posi-
tive constant C such that for any x € J(G) and any positive number r with
r < diam C, we have

dimg(J(G)) < 5(G) < 5(G) <6 =

V(B(x, r))
70

3. v satisfies v(f71(J(G))N f7HJ(G))) =0, for each i,je{l,...,m} with
i # j. Furthermore, for each (,]) with i# j, we have f7'(J(G))N
];_I(J(G)) is nowhere dense in f;~ LJ(G)).

4. 0 < H*(J(G)) < o, where H° denotes the d-dimensional Hausdorff mea-
sure with respect to the spherical metric. Furthermore, we have v =

Hl 6
HO(J(G))

cl< <C.
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5. If there exists a t-conformal measure t, then t =0 and ©=v.
6. For any x € C\(A(G)U P(G)), we have

dimy (J(G)) =6 =inf{ 1> 0> Y [lg'(»)] ™" <

956G g{y=x

Remark 1. 1In [S6], it is shown that if G=<{f;...,f,> is expanding
and there exists a non-empty open set U such that f/fl(U) c U for each
J=1...,m, {fj(U)}; are mutually disjoint and U # J(G), then J(G) is porous
and dimg(J(G)) < 2.

Remark 2. In addition to the assumption of Main Theorem B, if J(G) < C,
then we can also show a similar result for the Euclidean metric.

For the precise notation, see the following sections. The proof of Main
Theorem A is given in section 3 and the proof of Main Theorem B is given in
section 5. The existence of a subconformal or conformal measure is deduced by
applying some of the results in [W1] and the thermodynamic formalism in ergodic
theory to the skew product map associated with the generator system. Since
generator maps are not injective in general and we do not assume the “cone
condition” (the existence of uniform cones) for the boundary of the open set,
much effort is needed to estimate v(B(x,r)) in Main Theorem B. Indeed, we cut
the closure of the open set into small pieces {K;}, and for a fixed se N, let
be the set of all (y,k;) that satisfies that y is a well defined inverse branch of
(fu, 0+ fu)"" defined on K; for some (wi,...,w,)e{l,...,m}" with u<s.
Then we introduce an equivalence class “~”’ in a subset I' of 4", and an order
“<” in I'/~. We obtain an upper estimate of the cardinality of the set of all
minimal elements of (I'/~,<) by a constant independent of r and x, which gives
us the key to estimate v(B(x,r)).

Note that in [MUI1], it was discussed the case in which there are infinitely
many injective generator maps and the boundary of the open set satisfies the cone
condition.

The uniqueness of a conformal measure 7 is deduced from some results in
[W1] and an estimate of 7(B(x,r)). Note that our definition of conformal mea-
sure differs from that of [MU1] and [MU2]. In this paper, we do not require the
separating condition for the definition of conformal measure.

2. Preliminaries

In this section, we give the notation and definitions for rational semigroups
and the associated skew products that we need to give our main result.

2.1. Rational semigroups
We use the definition in [S5].
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DerinITION 2.1. Let G be a rational semigroup. We set
F(G) = {zeC|G is normal in a neighborhood of z}, J(G)= C\F(G).

F(G) is called the Fatou set for G and J(G) is called the Julia set for G. The
backward orbit G~ (z) of z and the set of exceptional points E(G) are defined
by: G7l(z) = UgeGg (z) and E(G)={zeC|#G '(z) <2}. For any subset
A of C, we set G™1(A4) = qucg (4). We use {fi, f2,...» to denote the ra-
tional semigroup generated by the family {f;}. For a rational map g, we use
J(g) to denote the Julia set of dynamics of g.

For a rational semigroup G, for each f € G, we have f(F(G)) < F(G) and
f~1'(J(G)) = J(G). Note that we do not have this equality hold in general. If
#J(G) = 3, then J(G) is a perfect set, #E(G) <2, J(G) is the smallest closed
backward invariant set containing at least three points, and J(G) is the closure
of the union of all repelling fixed points of elements of G, which implies that
J(G):UgGGJ(g). If a point z is not in E(G), then for every xe J(G),
x€ G71(z). In particular, if ze J(G)\E(G), then G~!(z) = J(G). Further, for
a finitely generated rational semigroup G = <{fi,..., fu), if we use G, to denote
the subsemigroup of G that is generated by n-products of generators {f;}, then
J(G,) = J(G). For more precise statements, see Lemma 2.3 in [S5], for which
the proofs are based on [HMI1] and [GR]. Furthermore if G is generated

by a precompact subse‘r A of End(C), then J(G Ufe ASHI(G)) =
U,cah '(J(G)). In particular, if A is compact, then we have J (G) =
U reA f~YJ(G)) ([S3]). We call this property of a Julia set the backward self-
51mllar1ty

Remark 3. Using the backward self-similarity, research on the Julia sets of
rational semigroups may be considered a generalization of research on self-similar
sets constructed using some similarity transformations from C to itself, which
can be regarded as the Julia sets of some rational semigroups. It is easily seen
that the Sierpinski gasket is the Julia set of a rational semigroup G = {f1, f>, f3»
where fi(z) =2(z— pi)+ pi, i=1,2,3 with p;p,p; being a regular triangle.

2.2. Associated skew products

We use the notation in [S5]. Let m be a posrtlve integer. We use X, to
denote the one-sided wordspace that is %,, = {1,...,m}" and use ¢: %,, — %, to
denote the shift map, which is (wl,...) (wz,.. ) for w= (w,wa,ws,...) €L,.
For any w,w’ € %,,, we set d(w,w’) := > (1/2") - ¢(wk, wy.), where c(wy, w},) =0
if we =w; and c(wg,wy) =1 if we #wy. Then, (X,,d) is a compact metric
space. Furthermore, the dynamics of ¢: %, — %, is expanding with respect to
this metric 4. That is, each inverse branch ¢;! of 6! on %,,, which is defined by
o (wi,wa,...)) = (j,wi,wa,...) for j=1,....m, satisfies d(a;'(w),a;'(W')) <
(172) - d(w,w').

Let G={fi,/2-..,/my be a finitely generated rational semigroup. We
define the map f:%,, x C — %, x C using
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F(w,x)) = (o, fo (x))-
We call map f the skew product map associated with the generator system
{f1s-- -5 fm}- £ is finite-to-one and an open map. We hold that point (w,x) €
T, x C satisfies f (x) #0 if and only if f is a homeomorphism in a small
neighborhood of (w,x). Hence, the map f has infinitely many critical points
in general.

DErFINITION 2.2. For each we X, we use F, to denote the set of all the
points x € C that satisfy the fact that there exists an open neighborhood U of x
such that the family {f, o---o f,,}, is normal in U. We set J, = C\F, and
Jy = {w} x J,. Moreover, we set

J(f) = k_% s F(f) = (zm X C)\J<f)7
weX,

where the closure is taken in the product space X, x C. We often write F(f)
as F and J(f) as J. We call F(f) the Fatou set for f and J(f) the Julia set
for f. Here, we remark that Uwez,,, Jiw may not be compact in general. That
is why we consider the closure of that set in X, x C (this is a compact space)
concerning the definition of the Julia set for f.

For each (w,x) €%, x C and ne N we set

() ((w,x)) = (S, L) ().
Furthermore, we denote the first (resp. second) projection by z:%, x C — %,
(resp. 7 : %, x C— C). Note that we have f(F(f))=/""(F(f)) =F(f),

FUJS) = f1If) =J(f) and né(.f(f)) = J(G). (For the fundamental prop-
erties of these sets, see Proposition 3.2 in [S5]. In addition, see [S3].)

DerINITION 2.3. Let G = {f1,..., fny be a finitely generated rational semi-
group. Let us fix the generator system {fi,..., fi}. Weset f, := fi,, 0---0 fi,
for any w= (wi,...,wx) € {1,...,m}*. Weset # = U, en{l,-.,m}"UZ,, and
set W =), .n{1;---.m}". For any w= (wi,wy,...) €W, we set |w|=n if

we{l,...,m}" and |w| = o0 if we £,,. Furthermore, we set w|k := (w1, ..., wg),
for any keN with k& <|w|. Moreover, for any we #™, we set X, (w):=
{w eZp|w/ =wj,j=1,...,|w|}. Foranyw!e# ™ and w? e #", we set w'w? =
(wi, .. .,wllwll,wl,wf, L) EW

NoraTtioN. Let (X,d) be a metric space. For any subset 4 of X, we set
diam 4 :=sup{d(x,y)|x,y€ A}. Let u be a Borel measure on X. We use
supp u to denote the support of 4. For any Borel set 4 in X, we use y|, to
denote the measure on A such that u|,(B) = u(B) for each Borel subset B of A.
We set L' (1) = {¢p: X = R| [, |p| du < o}, with L' norm. For any ¢ € L'(p),
we sometimes use u(p) to mean fX(pdy. For any (peL‘(,u), we use gu to
denote the measure such that (pu)(4) = [, ¢ du for any Borel set 4. We set
C(X)={p: X — R]|continuous}. (If X is compact, then C(X) is the Banach
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space with the supremum norm.) For any subset 4 of X and any r > 0, we set
B(A,r)={ye X |d(y,A) <r}. For any subset 4 of X, we use int 4 to denote
the interior of A.

Remark 4. 1In this paper, we always use the spherical metric on C. How-
ever, we note that conjugating a rational semigroup G by a Mobius transfor-
mation, we may assume that J(G) < C, and then for a neighborhood V' of J(G),
the identity map i: (V,d;) — (V,d.) is a bi-Lipschitz map, where d; and d,
denote the spherical and Euclidean distance, respectively. In what follows, we
often use the above implicitly, especially when we need to use the facts in [F]
and [Pe].

3. Main Theorem A

In this section, we show Main Theorem A. We investigate the estimate of
the upper box and Hausdorff dimensions of Julia sets of expanding semigroups
using thermodynamic formalism in ergodic theory. For the notation used in
ergodic theory, see [DGS] and [W2].

DermNiTION 3.1. Let G = {fi,..., finy be a finitely generated rational semi-
group. We say that G is an expanding rational semigroup if J(G) # @ and
the skew product map f : %, x C — X, x C associated with the generator system
{f1,.-., fm} is expanding along fibers, i.e., there exists a positive constant C and
a constant A > 1 such that for each n e N,

inf (/") ()] = C2",
zeJ(f)
where we use || -|| to denote the norm of the derivative with respect to the
spherical metric.

Remark 5. By Theorem 2.6, Theorem 2.8, and Remark 4 in [S2], we see
that if G =<f1,..., fuy contains an element of degree at least two, each M&bius
transformation in G is neither the identity nor an elliptic element, and G is
hyperbolic, i.e., the postcritical set P(G) of G, which is defined as:

P(G) := [ {all critical values of g},
geG
is included in F(G), then G is expanding. Conversely, if G =<{fi,..., fi) is
expanding, then G is hyperbolic and each Mobius transformation in G is lox-
odromic. Hence, the notion of expandingness does not depend on any choice of
a generator system for a finitely generated rational semigroup.

LemMA 3.2. Let G=<{fi,..., fmy be a finitely generated expanding rational
semigroup. Suppose #J(G) <2. Then, #J(G) =1 and J(G) is a common re-

pelling fixed point of any f;.
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Proof.  Suppose #J(G) =2 and let J(G) = {z1,z2}. Then, f; is a Mobius
transformation, for each j=1,...,m. Since G is expanding, each f; is lox-
odromic. We may assume that z; is a repelling fixed point of f;. Then, since
S7HJ(G)) = J(G), it follows that z; is an attracting fixed point of f;. This is
a contradiction, however, since G is expanding. Hence, #J(G) = 1. O

DerFmviTION 3.3. Let G be a rational semigroup and let ¢ be a non-negative
number. We say that a Borel probability measure 7 on C is t-subconformal
(for G) if for each ge G and for each Borel measurable set 4 in C,
t(g(4)) < [, lg'l" d=. Moreover, we set

s(G) = inf{¢| 3z: t-subconformal measure}.

DerINITION 3.4. Let X be a compact metric space. Let f: X — X be a
continuous map:

1. We use /(f) to denote the topological entropy of f (see p83 in [DGS]).
We use /,(f) to denote the metric entropy of f with respect to an in-
variant Borel probability measure y (see p60 in [DGS]).

2. Furthermore, let ¢: X — R be a continuous function. Then, we use
P(f,p) to denote the pressure for the dynamics of f and the function
@ (see pl4l in [DGS]). According to a well known fact: the variational
principle (see pl42 in [DGS]), we have

P9 = sun{ )+ | oduf.

where the supremum is taken over all f-invariant Borel probability mea-
sures 4 on X. If an invariant probability measure u attains the su-
premum in this manner, then u is called an equilibrium state for (f,¢).
For more details on this notation and the variational principle, see [DGS]
and [W2].

3. For a real-valued continuous function ¢ on X and for each neN,
we define a continuous function S, on X as (S,p)(z) = Z;Zol o(f7(2)).
Note that P(f",S,p) =nP(f,9) (see Theorem 9.8 in [W2]).

DerFINITION 3.5. Let X be a compact metric space and let f: X — X be
a continuous map satisfying the fact that there exists a number k& € N such that
#f1(z) = k for each ze X. Let ¢ be a continuous function on X. We define
an operator L =L, on C(X) using

Ly(z) = D exp(p(z")y(z).
f(2)=z
This is called the transfer operator for (f, ). Note that L; equals the transfer
operator for (f”,S,p), for each neN.

LemMMA 3.6. Let G=<{f1,fs,...fm> be a finitely generated expanding ra-
tional semigroup. Let f:%, x C — X, x C be the skew product map associated
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with {fi,..., fu}. Then, for each Holder continuous function ¢ on J(f), the
transfer operator L, for (f|j,9) on C(J(f)) satisfies the fact that there exists
a unique probability measure v =7, on J(f) satisfying all of the following:

l. L)y = exp(P)v, where P = P(1 |J(f ¢) is the pressure of (fj 7))

2. For each s € C(j(f)), (exp(P)) — L) W (lp)%’j(j)
1

we set o, = limy_, mL o(1) € C(J(f)) and we use || - 177 to denote

the supremum norm on J(f).
3. o, is f-invariant, exact (hence ergodic) and is an equilibrium state for

(i 7y @)
4. oc,/,(8>0f0r each zeJ(f)

— 0, n — oo, where

Proof. According to the Koebe distortion theorem and since the dynamics
of ¢:%, — X, _is expanding, there exists a number se N such that the map
f3:J(f) — J(f) satisfies condition I on page 123 in [W1] (each of Xj, X, and
X in [WI1] corresponds to J(f)). Furthermore, by Proposition 3.2 (f) in [S5]
and Lemma 3.2, we have the fact that /* on J ( f ) satisfies condition II on page

125 in [W1]. The map u — Lju/(L,p)(1) is continuous on the space MJ(f))

of Borel probability measures on J ( f ). Hence, this map has a fixed point
v based on the Schauder-Tychonoff fixed point theorem. Let 4= (L,v)(1).
Then, L,v=4v. Hence, we have (Lé) v=A"%. By Theorem 8§, Corollary 12,
and the statement on equilibrium states on page 140 in [Wl] we get A' =
exp(P(f* 77 S ))—exp(sP(f|J ,9)). Hence, we obtain A =exp(P). The
other results also follow from Theorem 8, Corollary 12, and the statement on
equilibrium states on page 140 in [W1]. O

NOTATION. Let G = {fi,..., f) be a finitely generated rational semigroup.
Let f:%,xC—3, xC be the skew product map associated with {fi,..., f}.
Suppose that no critical point of f exists in J(f). Then, we define a funct10n 7

on J(f) as: @((w,%)) = ~log]| (o) (V)] for (w,%) = (w1, s, ..),x) € J(F).

LemMA 3.7. Let G={fi, f2,...fmy be a finitely generated expanding ra-
tional semigroup. Then, using the above notation, we have the following:

1. The function P(t) = P(f|; J(7) 1#) on R is convex and strictly decreasing as
t increases. Furthermore, P( ) — —o0 as t — . ~

2. There exists a unique zero 6 >0 of P(t). Furthermore, if h(f|; ) >0
then 6 > 0. B

3. There exists a unique probability measure V= Vs; on J(f) such that
M;V =%, where My is an operator on C(J(f)) deﬁned by

Y (', »))
(1) M ((w, x)) = Yl p)
é f;(("t”tyz)):(mx) ”(f‘t’]/) (y)H(>

Note that Ms = Lsg.
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4. 0 satisfies the fact that
has(f) 10g(2,  deg(f}))
— 57 @ dv = — 5 @o dv
where o = lim;_., M/(1) e C(J(f)).

2) 5=

Proof. Using the variational principle, we have P(f) = sup{/,( far J( ~)
jj ¢ du}, where the supremum is taken over all f-invariant Borel probablhty
measures won J(f). In addition, note that by Theorem 6.1 in [S5], we deter-
mine that the topological entropy /i(f) of f on X, x C is less than or equal

to log(>>" o1 deg(f;)). By the variational principle: h(f) = sup{/,( D for = p}
(see p138 in [DGS] or Theorem 8.6 in [W2]); it follows that

ha( ) < log (i(deg(ﬁ)))

J=1

for any f-invariant Borel probability measure z on J( f). Combining this with
the fact that the dynamics of f on J( 7 ) is expanding, we see that the function
P(¢) on R is convex, strlctly decreasing as ¢ increases, and P(f) — —oo as t — o0.
Hence, there exists a unique number J € R satlsfymg P(0) =0. Since P(0) =

(f|J )), we have 6 > 0 if h(f| 7)) >0. The statements 3 and 4 follow from
Lemma 3.6 and this argument. O

DerINiTION 3.8, We define an operator M acting on the space of all Borel
measurable functions on J(f) using the same formula as that for Ms. (See (1)).

We now show that M; acts on L'(¥) and that M; on L'(¥) is a bounded op-
erator, where v = Vs;.

Lemma 3.9. Let G=<f1,...,fmy be a finitely generated expanding rational

semigroup.  Using the above notation, we have the following:

1. Let A be a Borel set in J(f). If v(A4) =0, then V(f1(4)) = 0.

2. Let Y be a Borel measurable function on J( f). Let {y,}, be a sequence
of Borel measurable functions on J(f). Suppose W, (z) — y(z) for almost
every ze J(f) with respect to v. Then, we have (M3, (z) — (Ms)(z)
Jor almost every z e J(f) with respect to v. .

3. If e L\(¥), then Msp € L' (V). Furthermore, Ms is a bounded operator
on L'(¥) and the operator norm |Mj| is equal to 1.

Proof. Let u=av, where o= lim;., M!1. Then, by Lemma 3.6-3, we
have f,u = u. Furthermore, by Lemma 3.6-4, x4 and v are absolutely continuous
with respect to each other. Hence, we obtain the statement 1, and the statement
2 follows easily from this.
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We now show the statement 3. First, we show the following claim:
Cram. For any e C(J(f)), we have [|Msy|dv < [ || dv.

To show this claim, let e C(J(f)). Let y" =max{y,0} and ¢~ =
—min{y,0}. Then, we have y =y — ¢~ and |y| =y +¢~. Since MV =1,
we obtain [|Msy| dv = [|Mapy™ — Mgy~ | dv < [ Mgy dv + [ My~ dv = jw
Y~ dv= [|y|dv. Hence, the above claim holds.

Now, let  be a general element of L!(¥). Let {y,}, be a sequence in
C(J(f)) such that Y, — ¥ in L'(¥). We may assume that v, (z) — y(z) for
almost every z e J( f ) with respect to v. Then, according to the statement 2,
we have (Myy,)(z) — (M()l//)( ) for almost every zeJ(f) with respect to V.
Using this claim, {Mz),}, is a Cauchy sequence in L'(%). Hence, it follows
that My e L' (v ) Furthermore, we have [|Msy|dv = hmnﬂw“Mgz//”\ dv <
lim, ., [|,| dv =[] dv. Hence, |Ms|| < 1. Since [ Ml dv= [1dv=1, we
obtain || M;| = 1. O

We now show that the measure v = 53 is “conformal”.

LemMA 3.10.  Let G = {fi,..., fm) be a finitely generated expanding rational
semigroup. Let k € N and let A be a Borel set in J(f) such that froa— f (A4)
is injective. Then, using the above notation, we have ¥(f*(4)) = [ LU Y% dy.

Proof. We have My =% and M} is a transfer operator for (f* 0S.).
By Proposition 2.2 in [DU] and Lemma 3.9-3, we obtain the statement. O

Lemma 3.11. Let G =<{f1,..., fmy be a finitely generated expanding rational
semigroup. Then, with our notation, the probability measure v := (ng), (V) is -
subconformal.

Proof First, note that by Lemma 3.10, it follows that for any Borel
set B 1n %, x C we have #(f*(B)) < >u(f* =3 IB 1(f%) || dv =
Iz II(F%) ) H dv, where B=).B; is a measurable partmon such that f*| B 18

injective for each j. Hence for any Borel set 4 in C and any we W
with |w| =k, it follows that v(f (4)) =v(n Cl(fw( N) = i(fEEn(w) x 4)) <

Sonoopea N1 a5 < [ 1(4)11° dv. O

m

We now consider the Poincaré series and critical exponent for a rational
semigroup.

DEermNiTION 3.12. Let G be a rational semigroup. We set

AG) = |) 9g({zeC|3he G, h(z) =z |h'(z)| < 1}).

geG
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For any s>0 and xeC, we set S(s,x) =2 4e6 2g(n=x 9’7", Further-
more, we set S(x) =inf{s>0]S(s,x) < o} (If no s exists with S(s,x) < o0,
then we set S(x) = o). We set so(G) = inf{S(x)|x e C}.

If G is generated by finite elements {fi,..., f,}, then for any xe C and
(20, we st T(6X) = Yoy Yy (o IUA) O and  T(x) = inf{r >0
T(t,x) < oo} (If no ¢ exists with T'(,x) < oo, then we set T(x) = c0). Note that
S(x) < T(x).

Lemma 3.13. Let G=<{f1,...,fm)> be a finitely generated rational semi-
group. Let f:Z, x C — %, xC be a skew product map associated with
{fi,-- s fm}. Let ze F(f) be a point. Then, there exists a number ne N such
that na(f"(2)) € F(G).

Proof. Let ze F(f) be a point. _Then, there exists a word we #™ and
an open neighborhood V' of 7s(z) in C such that zeX,(w) x V< F(f). Let

n=|wl. Then, F(f)> f"EZnw)xV)=2%,xf,(V). Since néf(f) =J(G)
(Proposition 3.2 in [S5]), it follows that f,(V) < F(G). Hence, ngsf"(z) =
Ju(ng(2)) € fu(V) = F(G). O

Lemma 3.14. Let G={fi,..., fm) be a finitely generated expanding rational
semigroup. Let f:%, xC— X, xC be a skew product map associated with
{fi,-...fu}. Let zeZ,, x C be a point with x :=ng(z) € C\A(G). Then, for
each open neighborhood V of J(f) in X, x C, there exists a number | € N such
that Un>[(f”)71(z) < V. Furthermore, we have A(G)UP(G) < F(G) and if
x € C\(4(G)UP(G)), then T(x) < oo.

Proof. By Remark 5, we have P(G)  F(G). Next we show 4(G) c F(G).
Since G is expanding, then using the Koebe distortion theorem and 7s(J(f)) =
J(G) (Proposition 3.2 in [S5]), we obtain that there exist an n € N and a number
&> 0 such that for each a € J(G) and each we #™* with |w| =n, we can take
well-defined inverse branches of f,! on B(a,¢) and any inverse branch y of !
on B(a,¢) satisfies y(B(a,¢)) = B(y(a),3¢) and ||y’(y)|| < 4 for each y e B(a,e).
Taking a small enough ¢, it follows that for each a € J(G) and each w e #™, we
can take well-defined inverse branches y of f! on B(a,¢) and we have

sup{[|y' ()l » € B(a,¢),a € J(G),y: a branch of f !, |w]=n} —0

as n— oo. Let yeC be a point such that g(y) = y and |g’(y)| < 1 for some
g € G. Suppose that there exist an element /s € G and a point a € J(G) such that
h(y) € B(a,e). Let y, be a well-defined inverse branch of (hg”)”' on B(a, ) such
that y,(hg"(»)) = y,(h(¥)) = y. Then |y, (y)] — o as n — oo. This contradicts
the previous argument. Hence A(G) = C\B(J(G),¢) < F(G). )

Next, suppose_that there exists a sequence (z;) in F(f) such that f"(z;) =z
and z; — z,, € F(f) where nj e N with n; — o as j— co. Then, by Lemma
3.13, there exists a number neN such_that 7a(f"(z.)) € F(G). Let x; =
na(f"(z;)) for each je N and let x,, = nef"(z). Then, for each j with n; > n,
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there exists an element g; € G such that g;(x;) = x. Let a =d(x,4(G)). Since
Xj — X € F(G), we have #{j|d(g,(xoc),x) < %} = 0.

By contrast, we have sup{d(f,(x«),A4(G))||w|=n} — 0 as n — co. For,
if P(G) # 0, the above follows from Theorem 1.34 in [S3]. Even if P(G) =0,
since G is expanding, by the Koebe distortion theorem, then for each z € F(G),
qu ¢9(z) € F(G). Using the same argument as in the proof of Theorem 1.34
in [S3], we obtain the above.

Hence, we obtain a contradiction. Therefore, we have shown that for each
open neighborhood ¥V of J(f) in %, x C, there exists a number /€N such
that | J,_,(f")'(z) =« V. If xe C\(4(G)UP(G)), then since G is expanding,
combining the above result with the Koebe distortion theorem, we obtain
T(x) < o0. O

DErFINITION 3.15. Let E be a subset of C, >0 a number and >0 a
number. We set
© 0
HY(E) := inf{Z(diam(U,»))’ |diam(U;) < B, E < U1 Ul}
i1 i=
and H'(E) =limy_o H;(E) with respect to the spherical metric on C. H'(E)
is called the t-dimensional (outer) Hausdorff measure of E with respect to the
spherical metric. Note that H'(E) is a Borel regular measure on C (see [R]).
We set dimy(E) :=sup{t >0|H(E) = o} =inf{t > 0| H'(E) =0}. dimpy(E)
is called the Hausdorff dimension of E. Furthermore, let N,(E) be the smallest
number of sets of spherical diameter r that can cover E. We set dimpg(E) =
. log N,(E) —— . . .
lim sup 08 ArE) log(r ) dimp(E) is called the upper box dimension of E.
r—0 -
Lemma 3.16. Let G =<{f1,..., fmy be a finitely generated expanding rational
semigroup. Let t be a t-subconformal measure. Then, there exists a positive
constant ¢ such that for each r with 0 < r < diam C and each x € J(G), we have
©(B(x,r)) = cr'. Furthermore, H'|; is absolutely continuous with respect to t,
H'(J(G)) < o0 and dimp(J(G)) < t.

Proof. Let t be a t-subconformal measure. Using the argument in the
proof of Theorem 3.4 in [S2], we find that there exists a positive constant ¢ such
that for each r with 0 < r < diam C and each x € J(G), ©(B(x,r)) = ¢r’. (Note
that for an estimate of this type, we need only expandingness and we do not
need the strong open set condition used in [S2].) By Proposition 2.2 in [F], we
find that H'[; is absolutely continuous with respect to 7. In particular,
H'(J(G)) < oo. Furthermore, by Theorem 7.1 in [Pe], we get dimg(J(G)) < t.

O

Using these arguments, we now demonstrate Main Theorem A.
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Proof of Main Theorem A. By Lemma 3.7, we have that the function P(¢)
has a unique zero J, there exists a unique probability measure ¥ on J(f) such that
Mgv =79, and ¢ satisfies (2).

By Lemma 3.16, dimp(J(G)) <s5(G). By Lemma 3.14, we have A4(G)U
P(G) = F(G). Let xe C\(4(G)UP(G)) be a point. According to Theorem 4.2
n [S2] and the fact that S(x) < T(x) < oo (Lemma 3.14), we obtain s(G) <
50(G) < S(x) < T(x).

We show 0 = T'(x). We consider the following two cases:

Case 1. T(T(x),x) = oo.
Case 2. T(T(x),x) < oo.

Suppose we have Case 1. Let ze %, x C be a point with 7(z) = x. Let 7, be
a sequence of real numbers such that 7, > T'(x) for each ne N and ¢, — T(x).
For each neN, let i, be a Borel probability measure on %, x C defined by:

T Z )"0,

pepr

where J./ denotes the Dirac measure concentrated at z’. Since the space of Borel
probability measures on %, x C is compact, we may assume that there exists a
Borel probability measure u,, on X, x C such that u, — u,, as n— oo, with
respect to the weak topology. Then, by Lemma 3.14, we have supp u, < J( f ).
We now show the following claim:

Cram 1. For any Borel set A in J(f) such that f: 4 — f(A) is injective,
we have u. (f = [, If Vdu, .

To show this claim, let 4 be a Borel set in %, x C such that f: 4 — f(A) is
1 F1

—_— NA). If 4 -

el OLE) sat

isfies that ,ux(éf( ) = ,uy(aA) = 0, then letting n — oo in the above, it follows

that p,(f(4)) = [, II(f ~ ~

Now let B be a general Borel set in J(f) such that f:B— f(B) is in-
jective. Then, let B=3,_\ B; be a countable disjoint union of Borel sets B;
satlsfylng the fact that for each je N, there exists an open neighborhood W; of
B; in ¥, x C such that f: W; — f (W;) is a homeomorphism. Let j be a ﬁxed
number and K a fixed compact subset of W;. Then, for each neN, there
exists a number ¢, > 0 such that the set V, := {z €X, x C|ld(z,K) < ¢,} satisfies

- ~ - 1 1
Vo€ Wy, 1(0V2) = (U )) = 0, 1, (FORN(K)) < and g, (V\K) < -
For these sets V,, by the previous argument we have ,um( f (V) =
Iy I AT du, . Letting n — oo, we obtain u, (f = [ 1Ol ™ du, .

injective. Then, ,(f(4)) = [, I(/)'|I" du, —
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Next, for each /eN, we can take a compact subset K; of B; such that

1 ~ ~ 1
U, (BA\KY) <7 and u (f (B~)\f(K;)) < -. For these sets Kj, using the above

Z
argument we have ,uv =[x If T™ du, . Letting [ — oo, we obtain
wo (f fB || d,ugo Since B >;Bj and f is injective on B, we
Obtdln o (f fB|| d/xoo. Hence, we have shown Claim 1.

Using Clalm 1 and Proposition 2.2 in [DU], it follows that Lt = Hos-

We now show that = T'(x). Suppose < T'(x). Then, by Lemma 3.7- 1,

we have P(T(x))<0. Then, for each e C(J(f)), we have u, ()=
Lyog¥

P(T(x)" - n,,
(exp PTG 4 ((exp<P<T<x>>>>’

U, (W) =0 and this implies a contradiction. Suppose T'(x) <J. Then, by a
similar argument to the one above, we get a contradiction. Hence, T(x)=74.
We now consider Case 2: T(T(x),x) < co. Let ze X, x C be a point with
X =ng(z). Then, we take Patterson’s function ([Pa]) ®: i.e., ® is a continuous,
non-decreasing function from R, :={reR|7> 0} to R, that satisfies the fol-
lowing: R ~
L0(1) = 32, o= UM D™ ()" converges for each >
T (x) and does not converge for each r < T(x).
2. For each ¢ > 0, there is a number ry € R, such that ®(rs) < s°®(r) for
each r > ry and each s > 1.
Let 7, be a sequence of R such that ¢, > T(x) for each neN, t, — T(x) as
n — oo and the measures:

Z Z I NI )6

P fﬂ

— 0 as / — oo, by Lemma 3.6-2. Hence,

n

tend to a Borel probability measure 7., on X, x C asn — co. Then, by Lemma
3.14, we have SUpp 7o, © J( f ). Furthermore, combining the argument in the
proof of Claim 1 in Case 1 with the propertles of @, we ﬁnd that for each Borel
set A in J(f) such that f: A — f(A4) is injective, 7., (f = [ It/ Y d,.
Combining this with the argument used in Case 1, we obtaln 0= (x).

Since G is expanding and v is d-subconformal (Lemma 3.11), using an ar-
gument in the proof of Theorem 4.4 in [S2], we obtain supp v > J(G). Hence,
supp v = J(G).

Hence, we have shown Main Theorem A. O

COROLLARY 3.17. Let G =< fi, f>,---fmy be a finitely generated expanding
log (3", deg(f)))
log 4

rational semigroup. Then, dimp(J(G)) < 6 < , where A denotes

the number in Definition 3.1.

Proof. By Main Theorem A and (2), we have
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log(3°72, deg(f))

dimp(J(G)) <6 <

fJ Go dv
_ s de)
N fJ S,go dv

_ nlog(y3)", deg($))
~ logC+nlogi
for each n e N. Letting n — oo, we obtain the result. O

4. Conformal measure

In this section we introduce the notion of “conformal measure”, which is
needed in Main Theorem B.

DerFmNITION 4.1. 1. Let G be a rational semigroup. Let 1€ R with 7> 0.
We say that a Borel probability measure 7 on J(G) is t-conformal (for G)
if for any Borel set 4 and g€ G, if 4,9(4) = J(G) and g: 4 — g(A) is
injective, then

<o) = [ o' d.

2. Let G={f1,..., fmy be a finitely generated rational semigroup. We say
that a Borel probability measure x# on J(G) satisfies the separating con-

dition for {fi,..., f,,} if u(f;'(J(G)) N f;'(J(G))) = 0 for any (i, j) with
i,je{l,...,m} and i # j.

We show some fundamental properties of conformal measures.

Lemma 4.2. Let G ={fi,..., fmy be a finitely generated rational semigroup.
Let 7 be a t-conformal measure. Then, T is a t-subconformal measure.

Proof. Let A be a Borel set in C and g an element of G. Let J(G) =Y B;
be a measurable partition of J(G) such that we can take the well-defined inverse
branches of g~!' on B;, for each i (we divide J(G) into {B;} so that for a critical
value ¢ e J(G) of g, there exists an i such that B; = {c}). Let {C;;}; be the
images of B; using the inverse branches of g~' so that g: C;; — B; is bijec-
tive for each j. Then, we have

Hg(4) = o A)19(6)) = 3 e(a(4) N ) < -l N )

—Zj e dr—L

Hence, 7 is z-subconformal. O

o)l dx sj o]l d.
A

i, jCi.j
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LemmA 4.3. Let G be a rational semigroup. Let t© be a Borel probability
measure on J(G), g € G an element, and V an open set in C with VN g~ (J(G)) #
0. Suppose that g : V — g(V) is a homeomorphism and that for any Borel set A
in Vg (J(G), tg(4) =], gl dx. uzh—w|> g(V) = V. Then,
we find that for any Borel set B in g(V)NJ(G), t(h( IB||h’||’ dr.

Proof Let g := h.(clyynyq)- Then, by the assumption, du=||g'|" d7’,
where ' = 1yn,-1(6)- Let B be a Borel set in g(V)NJ(G). Then, t(h(B)) =
o 9717 g1 7 = Jy g1 i = [y g/ o bz = [, ) d. 0

LemMA 44. Let G =<{fi,..., fm) be a finitely generated rational semigroup.
Let [:%,xC— 3%, xC be the skew product map associated with {fi,..., fn}.
Let T be a Borel probability measure on J(f),neN an integer, and V an open set
in T x C such that VNJ(f) #0. Suppose that f”' V—>f”( V) is a homeo-
morphism and that for any Borel set A in J(f), 7 =/, F™||" di. Let
h=(f"] V)_ f” V — V. Then we obtain the result lhat for any Borel set B in

FrOINT). #RE) = [, 17 )] d

Proof. This lemma can be shown using the same method as in the proof of
Lemma 4.3. |

LemMma 4.5. Let G =<{fi,..., fmy be a finitely generated rational semigroup.
Let © be a t-conformal measure satisfying the separating condition for {fi,..., fn}.
Suppose that for any g€ G, if ¢ is a critical point of g with g(c) € J(G), then
t({c}) =0. Then, for any keN, (f;7'(J(G)Nf1(J(G))) =0 for any w=
Wiy wie), w=(wi,...,wp) € (1,...,m}* with w#w'.

Proof. Let w= (wi,...,wr), w = (wi,...,w)e{l,... ,m}k with w # w'.
Let 1 < u < k be the maximum such that w, # w/. If u =k, then z(f; 1 (J(G))N
£J(G)) < (1,1 (J(G)) ﬂf‘t (J(G))) =0. Suppose that u<k Let g=
s Juw = Fur_ - fu. Then, LAI@)NLHI(G) < g7 (A, (IT(G)N
fn‘l(J(G))). By Lemma 4.3, we have (¢ '(f,'(J(G)) ﬂfn‘l(J(G)))) =0.
Hence, we obtain 7(f;(J(G)) N £:1(J(G))) = 0. O

DeFINITION 4.6. Let G =<fi,..., fi,) be a rational semigroup. Suppose
that for each g € G, no critical value of ¢ exists in J(G). Let reR. We define
an operator N, : C(J(G)) — C(J(G)) as follows:

v, fijW 7W(y) for each ¥ e CUI(G)).

J=1 £y

LemMA 4.7, Let G = fi,..., fm> be a rational semigroup. Suppose that for
each g € G, no critical value of g exists in J(G). Let f:Z,xC—%,xC be
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the skew product map associated with {fi,..., fu}. Then, we have the following
commutative diagram:

Proof. Let Y e C(J(f)) and (w,x)eJ(f). Then, ((ng)
(N (x) = 35700 Doy 1 N0 (). Conversely, (st(n =
D (', 3))=(m, IIf,é;<y)||‘ (( c)*w)((W’vy)) D 2= I O (). O

LemMma 4.8. Let G =<{f1,..., fm) be a rational semigroup. Suppose that for
each g € G, no critical value of g exists in J(G). Then, we have the following:
1. Let © be a t-conformal measure. Then, we have Nt > t; ie., for each

v e C(J(G)) such that 0 < y(z) for each z e J(G), we have (N]t)(y) =

().

2. If © is a t-conformal measure satisfying the separating condition for

{fh ce aﬁn}; then N,*T =T.

3. If © is a t-conformal measure satisfying Nt = t, then T satisfies the sep-
arating condition for {fi,..., fm}

Proof. Let J(G) =Y., B; be a measurable partition of J(G) such that for

each ] =1,...,mand i =1,...,u, we can take the well-defined inverse branches

of f on B;. Then, for any Borel probability measure  on J(G) and any
Ve C( (G)), we have

JN’W’:JXm: Z I D" (p) d(z)
J=1fi(
-3 ZJ 1 GE ) de),

i b i
where p runs over all inverse branches of ];-*1 on B;. Suppose that 7 is t-
conformal. Then, we have

JB‘ 15 ™ (1(2)) di(z) = 5 LA GOl ™" () d (. (2],)) (%)

B 1A GO () - 1A ()1l de(x)
Jys)

= W(x) dz(x).

Jy(B:)
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Hence, [Npgpdr=373575", j y¥ dt, which is larger than or equal to
jJ Y odr if 0 <y(2) For cach zeJ(G), since J(G) = U}il fj'.’l(J(G)) (Lemma
1.1 4 in [S1]). Furthermore, if 7 is a r-conformal measure satisfying the
separating condition for {fi,...,fn}, then for each ¥ e C(J(G)), we have
J Ny dr = Z/ > Zy fy(B,) Ydr = L(G) Y dr, by J(G) = U;il ffl

We now show the statement 3. Let 7 be a t-conformal measure sat-
isfying Njt=71. Let Y€ C(J(G)) be an element with ¥(x) >0 for each
x e J(G). Then, by the above argument, it follows that L G N dr =
Dduidy f},<Bi)tp dt > L Y dt, where y runs over all inverse branches of fi~ !
on B;. Since Nt =1, we have the equality shown above. Hence, 7 satisfies the
separating condition for {fi,..., fu}. O

LeEmMMA 4.9. Let G={fi,..., fmy be a finitely generated expanding rational
semigroup. Let 6 be the number in Lemma 3.1, t > 0 a number, and V.5 the Borel
probability measure on J( f ) that is obtained in Lemma 3.6 (the unique fixed point
of Liz). Let vi:=(ng), V. Then, we have the following:

— r Ky
l. v :=vs satisfies N§v=v.

1
2. ————— Ny = () limi_.e N/1 in  C(J(G)), where P(1)=
(eXP(P(t)))
P(fl519)-
3. If tis a Borel probability measure on J(G) such that N}t =1, then t =0
and t=v.

Proof. By Lemma 4.7, we obtain the statement 1. Since nC(J (f) = J(G)
(Proposition 3.2 in [S5]), we find that (7g)" : C(J(G)) — C(J(f)) is an isometry
with respect to the supremum norms. Hence, by Lemma 3.6 and Lemma 4.7,

we find that { is a Cauchy sequence in C(J(G)). Let y,=

—— N/ }
(exp(P(1)))’ i’ leN
lim;_ o, %Nﬁp. Then, by Lemma 3.6, we obtain
(exp(P(1)))
U = lim T ()
(nc) lp() - 1132 (eXp(P(l)))le(nC) lﬁ
= f’t@((”(‘;)*lﬁ) " Ot
= v, () -llim Lt’q;(né)*l
— (né)*( (¢) - im N,/ 1)

l— o0

Hence, we obtain , = v,(i) - lim;_,, N/1.
Now, let 7 be a Borel probability measure on J(G) such that
Nyt =1. Then for any y € C(J(G)), we have (i) = (N)*2)(y) = «(N]y) =
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N7 1 ! i 1 hy —
((exp(P(1)))") ((exp(P(t)))lN[lp) for any /e N. Since (exp(P(t)))lN[lp
v -1i / =1, W ve T L -V
(Y) -lim_, N/1 and N, , we have <(exp(P(t)))/Ntw) () as

| — oo. Hence, it must be true that P(z) =0, otherwise, we have 7(y) = 0 for
all ¥ or z(y) is not bounded, both of which produce a contradiction. Hence, it
follows that t =J. Further, by the above argument, we obtain t(y) = vs() for

O

any € C(J(G)).

Lemma 4.10. Let G=<f1,/2,..-fmy be a finitely generated expanding
rational semigroup. Then, under the notation in Lemma 4.9, we have the fol-
lowing:

1. If there exists a t-conformal measure T, then s(G) <1t <.

2. If there exists a t-conformal measure T satisfying the separating condition

Jor {fi,..., fu}, then t =06 and 7 =v.

Proof.  First, we show the statement 1. By Lemma 4.8, we have N, 't > 7.
Hence, for each y € C(J(G)) such that 0 < y/(z) for each ze J(G), we have
t(NI) = () for each /e N. Suppose that ¢>6. Then, by Lemma 3.7-1,

!
P(r) < 0. Hence, we obtain z(N/}) = (exp(P(1)))’ - T(Ll) —0
(exp(P(1)))

| — oo, by Lemma 4.9-2. Hence, t(y) =0 for each € C(J(G)) such that
0 <y(z) for each zeJ(G). This is a contradiction, since 7(l1) =1. Hence,
t <0 must hold. By Lemma 4.2, we have s(G) <t Hence, the statement 1
holds.

Next, we show the statement 2. By Lemma 4.8-2, we have N;7=r1.

Hence, by Lemma 4.9-3, it follows that 1 =0 and 7 =v. O
LemMA 4.11. Let G be a rational semigroup and t > 0 a number. Suppose

Ht
that 0 < H'(J(G)) < 0. Let 7= % Then, t is a t-conformal measure.

Proof. Suppose that t=0. Then, each point z e C satisfies H’({z}) = 1.
Since we assume 0 < H'(J(G)) < oo, it follows that 1 < #(J(G)) < 0. Then,
G consists of degree 1 maps and it is easy to see that 7 is 0-conformal.

Suppose that 1 > 0. Then, H' has no point mass. Let g € G be an element.

Step 1: For a critical point ¢ of g in J(G), we have 0=1(g9({c})) =
f{év} lg'l" dx. _

Step 2: Let W be a non-empty open set in C such that g: W — g(W) is
a diffeomorphism. Let K be a compact subset of W and ¢ > 0 a number. Let
A be a Borel set such that 4 = {ze g ' (J(G))|d(z,4) < c} =« KNg ' (J(G)).
Then, we show the following claim:

CrLamt 1. We have H'(g(A4)) = [, |l¢'||' dH".
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To show this claim, let & >0 be a given number. Let K = Z, 1 Ki be a
disjoint union of Borel sets Kj, {z; }l , a set with z; € K; for each 7, and ¢ >0 a
real number, such that:

!
I.1—-¢< |||g/(( ))||| < 1+e¢, for each z € B(K;,&), and
2. (I —¢)|lg'(z))] diam C < diam g(C) < (1 +¢)||g’(z;)|| diam C, for each
subset C of B(K;,¢&).
Let ieN (1 <i<]) be a fixed number. Let f be a number with 0 < f < &.
Let {U,},~, be a sequence of sets such that ANK; < U;C , ANK;NU, #0
for each peN and diam U, < f for each pe N. Then, smce p <&, we have
U, c B(K;,&) for each p eN Hence, we obtain g(AﬂK) U _19(Up),
dlam g(U ) < ( +¢)llg'(z:)|| diam U, for each peN and )~ (diam g( )" <
(1+&) g’z >y (diam U,". Thls implies that H1+£)Hq eI (g(AﬂKi) <
(1+&)g' )] >y (diam U,)'. Hence, we obtain H’ Lol ‘)l ( (ANK;)) <
(l +6) g’ (z)||"H} (4NK;). Then, we obtain H( (4ANKy)) < ) llg’ (z;
H'(ANK;), lettlng fp — 0. Similarly, we obtain H'(4 ﬂK) (1 =& |lg"(z)] "
H'(g(ANK;)). Hence, it follows that (1—e¢)'|g’(z)||'H(AN 1) < H'(g(
K)) <(1 +s)l||g’(z,~)||IH’(A NK;). Moreover, (1 —¢)'|l¢’(z)|" - H'(ANK;
Lang, N9’ II" dH" < (1 +€)"[lg’(z)|I'"H'(ANK;). Hence, we obtain

—
AN D

<((1+9)" = (1-2))lg')I'H' (AN K;).

H'((AnK) - | ') ast’
ANK;

This 1mphes that |H'(g(4) — [, lg'l" dH'| < (1 +&)" — (1 —¢)")-
max..x [|lg'(2)|" Z, 1H (ANK; ) Since this inequality holds for each ¢ > 0, it
follows that H'(g(A4)) = [,|l¢’|" dH'. Hence, we have shown Claim 1.

Step 3: Let B be a general Borel subset of g~!(J(G)) such that g : B — g(B)
is injective. Let B=3Y 7 {c,} 1> ", B, be a disjoint union of Borel sets
such that each ¢, is a critical point of g (if one exists) and for each B, there
exists an open set W, in C such that B,c W, and g¢g: W, — g(W,) is
a dlffeomorphlsm Then, by Steps 1 and 2, we obtain 0=1({g(c,)}) =
Jien 9’ |" dr for each u, and t(g(B = Jp llg’ |" dt for each v. Combining this
result with the fact that g: B — g(B) 1s injective, it follows that 7(g(B)) =
S0 w{ge)y) + 20 w(9(B)) = S [ 19’ de = [, ')l dx.

Hence, we have shown Lemma 4.11. O

Lemma 4.12. Let G be a rational semigroup. Let t be a t-subconformal
measure for some t€R. Suppose that supp t=J(G). Let g€ G. Then, each
Borel subset A of g~'(J(G)) with ©(A) = 0 has no interior points with respect to
the induced topology on g~'(J(G)).

Proof. Suppose there exists an open set U of C such that 4 > UN
g '(J(G)) #0. Then, it follows that z(g(U))=1(g(U)NJ(G))=z(g(UN
g 'J(G)))) < Jung10(6)) llg'll' dz = 0. This is a contradiction because we as-
sume supp 7 = J(G). ]
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The following proposition is needed to show Main Theorem B.

ProrosiTioN 4.13. Let G =<{f1,...,fm) _be a finitely generated expanding
rational semigroup. Let f:%, x C— X, x C be the skew product map asso-
ciated with {f1,..., fm}. Let 6 be a number in Lemma 3.7. Let v := (ng),(Vs;)-

)

i i H; 6

s o _
Suppose that 0 < H°(J(G)). Then, we have H°(J(G)) < o0, v = (G’ and
v is a O-conformal measure satisfying the separating condition with respect to
{fi, s fm}. Furthermore, f71(J(G)) ﬂj;’l(J(G)) is nowhere dense in j;’l(J(G)),
for each (i, j) with i # j.

Proof. By Lemma 3.11 and Lemma 3.16, we obtain that v is a J-
subconformal measure, H°| J(G) 18 absolutely continuous with respect to v, and
H'(J(G)) < 0. Lett: —M.

H(J(G)) _
that 7(4) = [, ¢ dv for any Borel subset 4 of J(G). We show the following
claim:

Let ¢ € L'(v) be the density function such

Cramm 1. We have (porng o f)(z) > (po ng)(z) for almost every z e J(f)
with respect to v := ¥y,

To show this claim, let j (1 < j <m) be a number and 4 an open subset
of J(G) such that we can take a well-defined inverse branch y of f
A. By Lemma 4.11, 7 1s o-conformal. Hence for each Borel subset B of A
we have 7(B) = Jus Hf |° dr = Sy IF %0 db. Moreover by Lemma 3.11, we
have v is 5subconf0rmal Hence we obtain (B fB(pdv—fA goof/oy)
(Lygy 07) dv= [, (00 f;) - Lz d(r.(V]4)) < [y I15/11° (( ©fj)) dv. Hence, we
obtain ¢(x) < (po f;)(x) for almost every xey(A) with respect to v. It fol-
lows that for each j=1,...,m, we have ¢(x) < (po f;j)(x) for almost every
xX€f~ '(J(G)) with respect to v. This implies that for each j=1,...,m, we
have’ (pong)(z) < (¢of]'o7'cc)(z) for almost every zenz'f(J(G)) with re-

spect to v. Since J(f) = ()" Zn J(f) and Z,(j )ﬂJ(f) n! (f71(J(G))

(the latter follows from ncf((w x)) Ji(x) = fi(ra((w,x))) for each (w,x)e
(] )ﬂ](f)), it follows that (pong(z)) < (pomgo f)(z) for almost every
zeJ(f) with respect to #. Hence, we have shown Claim 1. o

By Claim 1, we have (po7ng(z)) < (pongo f)(z) for almost every z € J(f)
with respect to av, where o is the function in Lemma 3.7. Let y =

. | G <
pong. Then, we obtain for each neN, Y(z) s; Jiolt//off(z) for almost

every z with respect to av. Note that by Lemma 3.6-3, the measure ov is f -
invariant. Hence, by Birkhoff’s ergodic theorem (see [DGS]), we have ¥(z) <

1 . .
lim,, o — Z (xp f7)(z) for almost every z with respect to . Since o dv =
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1 .
[ lim,,— ZZ;ZOI (Y o f7)(z)a dv(z), which follows from Birkhoff’s ergodic theorem

o . | = .
again, it follows that y(z) = llm,,am—zj’,’:ol(xp o f7/)(z) for almost every z with
n
respect to ob. Since av is ergodic (Lemma 3.6-3), then there exists a constant ¢
. | Zi . -
such that hm,,_,wzzjzol(n//o f7/)(z) = ¢ for almost every z with respect to ab.

Hence, it follows that y(z) = ¢ for almost every z with respect to ¥. Since 7 and
v are probability measures, it follows that ¢ =1. Hence, 7 =v. Since Njv=v
(Lemma 4.9-1) and t is d-conformal (Lemma 4.11), by Lemma 4.8-3 it follows
that v =7 is a J-conformal measure satisfying the separating condition with re-
spect to {f1,...,fm}. Since supp v =J(G) (Main Theorem A), by Lemma 4.12,
it follows that f;-'(J(G))N f;7!(J(G)) is nowhere dense in f;'(J(G)) for each
(i, j) with i # j.

Hence, we have shown Proposition 4.13. O

2

2
Example 4.14. Let fi(z) = 2%, fz(z):% and fi(z)=7. Let G=

{fisfo, f3> and f 133 x € — 33 x C be the skew product map with respect to
{f1, />, /3}. Then, it is easy to see J({fi1,/fo))={z|1l <|z| <4}. Since
S ) = {21V < |2 <2V3) < J((fr, /o), we have J(G) = {z]1 <
|z| <4}. Then, P(G) ={0,0} = F(G). By Theorem 2.6 in [S2], we find that
G is expanding. Furthermore, we have 0 < H*(J(G)) < co and H*(f;7'(J(G))N
/5 YJ(G))) > 0. Hence, by Proposition 4.13, the number ¢ in Lemma 3.7 for f
satisfies 6 > 2.

5. Main Theorem B

In this section, we demonstrate Main Theorem B. First, we need the fol-
lowing notation.

DermNiTION 5.1. Let G = {fi,..., finy be a finitely generated rational semi-
group. Let U be a non-empty open set in C. We say that G satisfies the
open set condition with U with respect to the generator system {fj,..., f,} if
j;fl(U) < U for each j=1,...,m and {]jfl(U)};”:1 are mutually disjoint.

Lemma 5.2. 1. If a rational semigroup G = {fi,..., fmy satisfies the open set

condition with U and #J(G) > 3, then J(G) = U.
2. If a rational semigroup G = {fi,..., fmy is expanding and if G satisfies the
open set condition with U, then J(G) < U.

Proof. By Lemma 2.3 (f) in [S5] and Lemma 3.2, it is easy to see the
statement. O

To show Main Theorem B, we need the following key lemma.
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LemMA 5.3. Let G=<{fi,..., fmy be a finitely generated expanding rational
semigroup satisfying the open set condition with an open set U with respect to
{fi,.--sfm}. Then, we have the following.

1. There exists a positive constant C such that for each r with 0 < r < diam C
and each x € J(G), we have C~'r® <v(B(x,r)) < Cr’. Furthermore, 0 <
H’(J(G)) < 0 and dimy(J(G)) = dimp(J(G)) = 4.

2. Suppose that there exists a t-conformal measure t. Then, there exists a
positive constant Co such that for any r with 0 <r < diam C and any
x e J(G), we have Cy'r' <t(B(x,r)) < Cor'. Furthermore, we have 0 <
H'(J(G)) < o and dimy(J(G)) =t=0J. Moreover, v and t are abso-
lutely continuous with respect to each other.

To show this lemma, we need several other lemmas (Lemma 5.4-Lemma
5.15). We suppose the assumption of Lemma 5.3, until the end of the proof of
Lemma 5.3.

Preparation to show Lemma 5.3.

1. First, we may assume that UN P(G) = @. For, let V be a g-neighborhood
of P(G) with respect to the hyperbolic metric on F(G). Then, for
each g e G, we have g(V) = V, which implies that W := U\V satisfies
Si7'(W) e W, for each j=1,...,m, and {f7'(W)}, are mutually dis-
joint. Hence we may assume the above. '

Assuming that UNP(G) =0, take a number &> 0 such that
B(U,2¢)N P(G) = 0. Then for each ye U and any g € G, we can take
well-defined inverse branches of g~' on B(y,2e).

2. Let U= Z;‘:] K; be a measurable partition such that for each ;=
1,...,k, we have int K; # 0 and diam K; < §e. We take a point z; € K;,
for each j=1,... k.

3. To show Lemma 5.3, we may assume that: for each j =1,...,k and each
we W™, if y is an inverse branch of f;! on B(zj,2¢), then we have

10

for each subset 4 of B(z;,2¢). For, for each n € N, G, (see the notation in
section 2.1) satisfies J(G,) = J(G). Further, if we use v" to denote the
Borel probability measure on J(G,) = J(G) constructed by the generator
system { f,, | [w| = n} of G,, for which the construction method is the same
as that for v from {f;}, then v" satisfies (N )"v" =" for some J, € R.
Since v satisfies (N}')"v =v, by Lemma 4.9 we obtain J, =J and v" = v.
Moreover, since G is expanding, by the Koebe distortion theorem there
exist numbers ¢ >0 and n e N such that if y is a well-defined inverse
branch of f! on B(z,2¢'), where |w| =n and z e J(G), then for any
subset 4 of B(z,2¢'), diam y(4) < {; diam 4. Let U':= UNB(J(G),¢).
Then, for each we {1,...,m}", f,'(U') =« U’ and {f,;'(U")},.=, are
mutually disjoint. Hence, we may assume the above.

[w
(3) diam y(4) < <> | -diam 4,
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4. Let r >0 be fixed. There exists a number se N with s >3 such that
for each j=1,...,k and each we #™ with |w| >s—1 we have
diam y(K;) <, for each well-defined inverse branch y of f; ! on B(z;,2¢).
We fix such an s. Let o/ be the set of all (y,K;) that satisfies
je{l,....,k}, y is a well-defined inverse branch of f,! on B(z;,2¢) for
some we {l,...,m}’, and y(K;) N B(x,r) # 0.

Then, we have the following:
Lemma 5.4. B(x,r)NJ(G) = B(x,r) N, g, 7(J(G)NK;).

Proof.  Since J(G) = )", /;'(J(G)) (Lemma 2.4 in [S5]) and J(G) = U
(Lemma 5.2), it is easy to see the statement. O

DErFINITION 5.5. 1. Let (y,K;) € o7 be any element such that y is an inverse

branch of f,!, where w= (wy,...,w,) € {l,...,m}’. Then, we decom-
pose y as y =y, ---y,, where, for each i =1,...,s, we use y; to denote the
inverse branch of fwjl on B(yiy---y,(z),2e).

2. For each 4 = (y,K;) € o, let I(A) be the minimum of / € N that satisfies

3<l<sand1fy, (K)ﬂK;é(Z) then diam y, ---y,_ 1(K)<r Note
that by (3), we have y1--v- is defined on K; with y;---y(Kj) NK; #
(. Moreover, note that accordlng to the choice of s, /(A) ex1sts for each
Ae .

LeMMmA 5.6. Let A= (y,K;)e . If
(4) r<min{diam y{(K;) | (y',K;) € i€ {l,...,k},K; = B(y5---7.(z1),2¢)},

then there exists an element K; such that yyg_;---7,(K)NK; #0 and
diam y; -+ -y 4o (Ki) > 7.

Proof. 1f I(A) =4, then it is trivial. If /(4) = 3, then by (4), the above is
true. [l

Remark 6. For the rest, we assume (4). To show Lemma 5.3, we may
make this assumption.

DErFINITION 5.7. For any 4 = (y,Kj) € o/, we set

L= {01 2iea—1 K [7cay - 75(Kp) N Ki # 0}
Further, we set [ =), T4 (dlSJomt union).
Let B; and B, be two elements in I' with By = (3, -~ y4)_1, Ky) € Iy and
By = (71 Va1, Ki,) € T, where 4 = (y,Kj)) € o/ and 4’ = ( ", Kjun) € .
Then,
1. We write By ~ B, if and only if K;; = K, and y; -+~ y;4-1 = 7] ~--yl’(A,)71
on B(y,(A)-"y‘y(zj(A)),26)ﬂB(yl’(A,)- ys(z,Ar) 2¢). Note that this ~ is
an equivalence relation on I', by (3) and the uniqueness theorem.
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2. We write B; < B, if and only if
V1 Vieay—r (It K ) Nyp -y (int Kiy) # 0
and /(4) < [(A").

For any two elements B and B’ in T, we write B <<X B’ if and only if there
exists a sequence {B;},_, in I' such that B=B; <---< B, =B

LEMMA 5.8. Let By and By be two elements in T with By = (y; -+ 74—
Ki)ely and B, = (y; - ~~yl’(A,)_1,Kiz) ey, where A = (y,Kju)) € .o and A’ =
(7', Kjuy) € 4. Suppose that By X By. Then, we have the followmg

1. If l(A) = I(A/), then B; ~ Bs.

2. If 1(A) < I(A4"), then

(a) int Kil ﬂyl’(A) . V/(A') (int K;,) # 0 and /
®) vi- Vi1 =21 Vi on By vs(Zia) 26) N B(yy g
), 2).

Proof. First, we show 2. Under the assumption of 2, suppose that

71" Vi1 18 an inverse branch of M . “T,(IAH and that y{~--y,’(A,>71 is an
inverse branch of fw1 f”1 . By the open set condition, it follows that
1

-1
Wi = w/f, for each j=1,.. Z() A) —1. Hence, 2a holds.

Next, take a point z € py -y g1 (int Ki) Vyj---yp 4 (int Kyy).  Let a:=
Sy 1 S (2). Then, we have aeint Ky Nyj -7y (int Ky).  Further-
more, each of y; -y, 4y and y] ---y,’(A)f1 is a well-defined inverse branch of
(S -~ fu)"" on B(a,¢) and maps a to z. Hence, they are equal on B(a,).
By the uniqueness theorem, we obtain 2b.

We can show 1 using the same method as above. O

LemMa 5.9. If B and B’ are two elements of T such that B<<X B’ and
B' <X B, then B~ B'.

Proof There exists a sequence {B; }” , in T" such that B=B, < --- < B, =
B << BL = B. Suppose Bjely, for each j=1,...,0. Then we have
I( ) <---<l(4,) =1(A). By Lemma 5. 8, we obtam B ~ Bj;1, for each
j=1,...,u—1. O

Lemma 5.10. If Bl ~ Bz, B3 ~ B4 and Bl < B3, then Bz < B4.

Proof. This is easy to see, from the definitions of “~” and “<”, by using
(3). O

DeriNiTION 5.11. For any Be T, we use [B] € '/~ to denote the equiva-
lence class of B, with respect to the equivalence relation ~ in I.

Let [B;] and [B;] be two elements of I'/~, where Bj,B,eI'. We write
[Bi] X [By] if and only if B; < B,. Note that this is well defined by Lemma
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5.10. Furthermore, we write [Bj] < [B:] if and only if B; << B,. Note that
this is also well defined by Lemma 5.10 and that the “<” determines a partial
order in I'/~, by Lemma 5.9.

LemMa 5.12. Let q € N be an integer with ¢ > 2. Let {B; }q be a sequence
in T such that By < --- < By and B; + Bj,1, for each j=1,...,q—1. Suppose
that for each j= 1 .., q, we have Biely, 4;= (y/, K,}) eo and Bj=

(y1 yl(A/) 1K) Then, we have the followfng.
~1(1\/1
L g1 () < B S G 50
29 Yy = o on V= B0y 7y (20),26) NBO, )

A1)—
v4(z,), 28). (Note that by 1, we have V ;é(Z))

Proof. We will show the statement by induction on ¢. If ¢ =2, then
the statement follows from Lemma 5.8 and (3). Let ¢ > 3. Suppose that the
statement holds for each ¢’ with 2 <¢'<g—1. By Lemma 5.8, we have
[(Aj) <I(Aj11), for each j=1,...,¢—1. By the hypothesis of induction, we
have the following claim.

CrLam 1. s )
- J

1. yqu(Az) ’ '2’ qu(Aq)fl(K’b) CqB<Ki2’ Zj"]:I (%) %8)

2' yl.”yl(A'_;)—l:yl.” )

2¢).
Combining Claim 1 with (3), we obtain
q-1 J
5 q q K Bl 2 2 K 1y'1
(5) VI(A])"'VI(Aq)—l( iq) < y[(Al)'“y/(Az)fl( iz)ajzz 10 EE .

Moreover, by Lemma 5.8 and (3), we have yj .\ 74, 1 (Ki) = B(Kis g 19¢)-
Hence, we obtain

q—1 J
1\'1
q q . i Y ET
(6) yl(Al)yl(Aq)_l(Klq) CB(K“)]ZI<10> 108)

Hence, the statement 1 in our lemma holds for g.

Next, we will show that the statement 2 in our lemma holds for ¢. Let us
consider 2 in Claim 1. By the open set condition, for each j=1,...,/(4,) — 1,
there exists a number o; € {1,...,m} such that each of yjz and p/ is an inverse
branch of f . Hence, we obtam ‘

2 2
(7) Vitan " M1 = Vi) Va1

on Vp:= B(VIZ(A ) (), 28 )mB(Vz Ar) " ~9d(z1,), 28).
Let ﬂ yf( 4 V12A2)71 Viay " Va1 o0 Vo Then by 2 in Claim 1, we
obtain y?- Vi1 = yf’~--y]"( _, on B(¥). Hence, by the uniqueness theo-

rem, we get

=
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(8) P MR-t = M Vi

on B(ylz(Al) 2 (z4), 28) ﬂB(yl(Al> cyd(zy,), 2¢).
Moreover, by Lemma 5.8, we have the following claim.

CLAIM 2.
1. int K',1 N yl( A ';’IZ(AZ),l(int Kiz) # 0.

2. gl) Vl( )_1:71"'V12(A1)-1 on B(VII(AI) 73 (20), ZC)HB( A1) 95 (2n),
&

Combining 1 in Claim 2 with (3), we obtain

| —
™

) d(V/l(Al)"'V.yl(ztl)aylz(Al)"'Vsz(ztz)) =
Furthermore, by (6) and (3), we obtain

3
1
(10) d(y]q<Al> yl]( lt/) yl(Al) ys (Zfl)) - 8+_8+Z(10) - 10

Hence, by (9) and (10), we get W := ﬂj:quB(y,(A])--~y§(z,j),2£) #0. By 2
in Claim 2 and (8), then on W, y{---yj, =974, 1~ Hence, by the
uniqueness theorem, it follows that y| ---y}(Al)_l :V?"'V/(](A])fl on B(y}(Al)---
rH(z4), 2¢) ﬂB(y,"(Al) ---y8(z,,),2¢). Hence, the statement 2 in our lemma holds
for g. Hence, the induction is completed. O

LeEMMA 5.13. Using the same assumption as for Lemma 5.12, it holds that
Vi 7A(K,) © B(Ky o).

Proof. By Lemma 5.12 and (3), we obtain

g S AVAY 1
y/(AI),_,y;I(qu) CB<KZ'17 (E (10> >108+106> CB(Ki1a58>. [
j=1

DerINITION 5.14. Let {[my],...,[m,|} be the set of all minimal elements of
(T / ,_), where, for each i=1,...,p, mely, R =y K, )e szi and m; =
1 Viry-10 K, ) Furthermore, for any i=1,..., p, we use 77 (B(yl< R)

7(z4),2¢)) — Z,y x C to denote the inverse branch of ( fIR )71 such that
n'((w,y)) = (Ww, 71+ pjpy-1(y)) for each (w,y)e C (B(V/< Ry Vs(2u)s 28)),
where w' e W* is a word satisfying |w'| = /(R;) — 1 and y} - Vi(ry—1 1S an inverse
branch of

n’ :

Lemma 5.15. 1@(( ))m.i(f) L' (ng! (B(Koye)) NI(f)).
2. B(x,r)NJ(G) = UL 71+ vigy 1 (B(Ky 58) NI (G)).
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Proof. Let (w,z) enCI(B(x, r)NJ(f) be a point. By Lemma 5.2, there
exists a number j such that ngf*((w,z)) € K;. Let 5: nz' B(zj,2¢) — Z, x C
be an inverse branch of (f*)™' such that 7((w’,x")) = ((w|s) - w’,y(x")) where y
is an inverse branch of f!. Then, we have (w,z) e n(nz'(B(z,2¢))) and 4 :=
(7, Kj) €/ Let B=(y; - yyq-1,Ki) € Iy be an element. Then, there exists a
number i with 1 <i < p such that [m;] < [B]. We will show the following claim:

Cram 1. (1v,z)e;7i(7tél(B(Kl,5 &) NJI(f)).
To show this claim, we consider the following two cases:
CASE 1. B~ m;

CASE 2. There exists a sequence (B; )j , in I" such that m; = B < B, X

X B,=B and B; + Bjy; for each j=1,...q— 1.

Suppose that we have Case 2. Let y:né(fs((w,z))) e K;NJ(G).
Then, we have z = y(y) =71 ViRr)—1 " ViRt 7s(). By Lemma 5.13, we have
y,(Ri)~~~y(y)eB( oS )ﬂJ(G). Furthermore, by Lemma 5.12-2, we have
YL R)-1 = V10 iRy O B(K,,,te). Combining this with B(K,, te)N
U ;ﬁ(b and the open set condition, we get w|(/(R )— 1) = w By these ar-
guments, we obtain (w,z) = n'(f'®)=1((w,z2))) € n'(n o (B(Ky.3 Le)NJ(f)).

Suppose that we have Case 1. Then, by the open set condition, the
statement in Claim 1 is true. Hence, we have shown Claim 1.
By Claim 1, it follows that the statement of our lemma is true. O

We now demonstrate Lemma 5.3.

Proof of Lemma 5.3. Let A= (y,K;)e.o/ and B= (y; - y;0-1,Ki) € [4.
By Lemma 5.6 and Remark 6, there exists a number u € N w1th 1 <u <k such
that yy g1 -~ 75(Kj) N K, # 0 and diam p; -+ y;4)_»(Ky) > r. Then, by the Koebe
distortion theorem, there exists a positive constant C; = C1 (min; diam Kj, ¢),
which is independent of r, s and x € J(G), such that [[(y; -2 ) (@) = Cyr
for each z € B(y; 41 7,(z),¢). Hence, there exists a positive constant Cp =
C,(Cy, G) such that

11 vi-1) (@) = Car,
for each z e B(y,4)--7,(z),¢). Combining this with

1
K < B(V/(A) e y‘Y(Zf)’§8>7

which follows from (3), we obtain ||(y, ---y,(A),l)'(z)H > Cyr, for each z e K.
Hence, it follows that there exists positive constant Cj, which is independent of r,
s and x € J(G), such that
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(11) measy (yy - - 741 (int Kj)) > Cir?,

where meas, denotes the 2-dimensional Lebesgue measure. We now show the
following claim:

CLamm. 9} - --y;(Rl_)fl(int K,) = B(x,3r), for each i=1,...,p.

To show this claim, since pi---y/(K,)NB(x,r) #0 and yl(R cpl(Ky) N
Ky, # 0, we obtain y{ -y} (K, )ﬂB(x 2r) #0. Combining this w1th the fact

that diam(y! - y,( R) (K, )) <r, it follows that the above claim holds.
Slnce {[ml} [mp]} is the set of minimal elements of (I'/~, <), we find that
{ri-- (1ntK )}, are mutually disjoint. Hence, by (11) and the claim,

we obtain

(12) p< measy(B(x, 3r))

C3V2 = C47

where, C4 is a positive constant independent of r, s and x € J(G). Furthermore,
by the definition of /(4), we have diamy,---y;4_;(K;) <r. Hence, by the
Koebe distortion theorem, there exists a positive constant Cs, which is inde-
pendent of r and x € J(G), such that

(13) 117y @) < Cor,

for each z € B(K;,t¢). Hence, by Lemma 5.15, Lemma 3.10, Lemma 4.4, (12)
and (13), we obtain

v(B(x,r)) = ¥(ng' (B(x,r)NJ

G gy D) e @)1 di(z)
nJi

< C4C§5}’o

Similarly, if 7 is a f-conformal measure, then by Lemma 5.15, Lemma 4.3, (12),
and (13), we obtain

7(B(x,r)) = t(B(x,r) NJ(G))

i=1 J B(Ky;, (1/5)e)NJ (G)
< Cy- C5 -l
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By Lemma 3.11 and Lemma 3.16, we find that a positive constant C’ exists such
that for each r with 0 < r < diam C and x € J(G), we have v(B(x,r)) > C'r.
Hence, it follows that a positive constant Cg exists such that for each r with
0 < r < diam C and each x € J(G), we have Cg'r’ <v(B(x,r)) < Cer’. Hence,
by Proposition 2.2 in [F] and Main Theorem A, we obtain 0 < H°(J(G)) < o
and dimy(J(G)) = dimp(J(G)) = 6.

Similarly, if 7 is a t-conformal measure, then by Lemma 4.2, 7 is t-
subconformal. By Lemma 3.16, we find that a positive constant C; exists such
that for each r > 0 and x € J(G), we have t(B(x,r)) > C7r’. Hence, it follows
that a positive constant Cg exists such that for each r > 0 and x € J(G), we have
Cg'r' < 7(B(x,r)) < Csr'. Hence, by Proposition 2.2 in [F], we obtain 0 <
H'(J(G)) < oo and dimy(J(G)) =t =49. Then, we find that a positive constant
Cy exists such that for each x € J(G) and each r >0, we have Cy't(B(x,r)) <
v(B(x,r)) < Cor(B(x,r)). Hence, by the Besicovitch covering lemma (p294 in
[Pe]), we find that v and ¢ are absolutely continuous with respect to each other.
Hence, we have shown Lemma 5.3. O

We now demonstrate Main Theorem B.

Proof of Main Theorem B. By Lemma 5.3, we find a positive constant
C exists such that for each r with 0 < r < diam C and each x € J(G), we have
C ' <v(B(x,r)) < Cr’. Furthermore,  dimy(J(G)) = dimp(J(G)) = s(G) =
50(G) = 0. Combining this with Main Theorem A, we see that for each xe
C\(4(G)U P(G)), we have dimy(J(G)) = S(x) = T(x) =9.

HJ
By Lemma 5.3 and Proposition 4.13, we obtain v :}%, v is a o-
conformal measure satisfying the separating condition for {fi,...,f,}, and

S71UJ(G) N f71(J(G)) is nowhere dense in f;~'(J(G)) for each (i, j) with i # j.
Let 7 be a t-conformal measure. Then, by Lemma 5.3, we have r = and
7 is absolutely continuous with respect to v. Since v satisfies the separating

condition for {fi,..., f}, it follows that 7 also satisfies the separating condition
for {fi,...,fm}. Combining this with Lemma 4.10-2, we obtain 7= v.
Hence, we have shown Main Theorem B. O

6. Examples

Example 6.1. 1. Let G = {fi, > where fi(z) = z? and f>(z) =2.3(z — 3) +
3. Then, we can see easily that {|z] < 0.9} = F(G) and G is expanding.
By the corollary 3.17, we get

log 3
< —— <2
log 1.8
In particular, J(G) has no interior points. In [S3], it was shown that if a

finitely generated rational semigroup satisfies the open set condition with
an open set U, then the Julia set is equal to the closure of the open set

dimp(J(G))
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U or has no interior points. Note that the fact that the Julia set of the
above semigroup G has no interior points was shown by using analytic
quantity only. It appears to be true that G does not satisfy the open set

condition.
3
2. Let G= <ZZ,22+8>. Then, we can easily see that {|z| <2} < F(G)
and G is expanding. Hence, we have
- log 5
< 2.
dimp J(G) < 10g 3 <

In particular, J(G) has no interior points.

Example 6.2. Let p;, p, and p3 € C be mutually distinct points such that
p1p2p3 makes a regular triangle. Let U be the inside part of the regular triangle.
Let fi(z) =2(z— pi) + pi for each i=1,2,3. Let D(x,r) be a Euclidean disk
with radius r in U\Uf:1 f7Y(U), where x denotes the barycenter of the regu-
lar triangle p;pops. Let g be a polynomial such that J(g) = 0D(x,r). Let
fa(z) = g*(z), where s € N is a large number such that f;!(U) = U\U;l 7).
Let G =<f1, /2, f3, fay. Then, G satisfies the open set condition with U with
respect to {f;}. Furthermore, G is hyperbolic. Hence, G is expanding, by
Theorem 2.6 in [S2]. Hence, G satisfies the assumption in Main Theorem B.
(Note that J(<fi, f2, f3)) is the Sierpinski gasket.)

Example 6.3. For any b with 0 < b < 0.1, there exists an a with 0.2 <a <1
such that G = <{a(z — b)’ + b,z%) satisfies that (1)G is expanding, (2)G satisfies

the open set condition with U = {ze Cllz—b| < \/1_, |z] > 1}, (3)J(G) is con-
a
nected, and (4)J(G) is porous (hence § = dimy(J(G)) = dimp(J(G)) < 2).
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