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Abstract

We estimate the upper box and Hausdor¤ dimensions of the Julia set of an ex-

panding semigroup generated by finitely many rational functions, using the thermo-

dynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the

existence and uniqueness of a conformal measure, for a finitely generated expanding

semigroup satisfying the open set condition.

1. Introduction

For a Riemann surface S, let EndðSÞ denote the set of all holomorphic
endomorphisms of S. This is a semigroup whose semigroup operation is the
functional composition. A rational semigroup is a subsemigroup of EndðCÞ
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial. Research on the
dynamics of rational semigroups was initiated by A. Hinkkanen and G. J. Martin
([HM1]), who were interested in the role of the dynamics of polynomial semi-
groups while studying various one-complex-dimensional moduli spaces for dis-
crete groups, and F. Ren’s group ([ZR], [GR]). For references on research into
rational semigroups, see [HM1], [HM2], [HM3], [ZR], [GR], [SSS], [Bo], [St1],
[St2], [St3], [S1], [S2], [S3], [S4], [S5], [S6], and [S7]. The research on the dy-
namics of rational semigroups can be considered a generalization of studies of
both the iteration of rational functions and self-similar sets constructed using it-
erated function systems of some similarity transformations in R2 in fractal geo-
metry. In both fields, the estimate of the upper (resp. lower) box dimension,
which is denoted by dimB (resp. dimB), and the Hausdor¤ dimension, which is
denoted by dimH , of the invariant sets (Julia sets or attractors) has been of great
interest and has been investigated for a long time. In this paper, we consider the
following: For a rational semigroup G, We set
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FðGÞ ¼ fx A C jG is normal in a neighborhood of xg; JðGÞ ¼ CnFðGÞ:
FðGÞ is called the Fatou set for G and JðGÞ is called the Julia set for G. We use
h f1; f2; . . .i to denote the rational semigroup generated by the family f fig. For
a finitely generated rational semigroup G ¼ h f1; . . . ; fmi, we set Sm ¼ f1; . . . ;mgN
(this is a compact metric space) and we use s : Sm ! Sm to denote the shift map,
which is ðw1;w2; . . .Þ 7! ðw2;w3; . . .Þ for w ¼ ðw1;w2;w3; . . .Þ A Sm. We define the
map ~ff : Sm � C ! Sm � C using

~ff ððw; xÞÞ ¼ ðsw; fw1
ðxÞÞ:

We call map ~ff the skew product map associated with the generator system
f f1; . . . ; fmg. For each w A Sm, we use Fw to denote the set of all the points
x A C that satisfy the fact that there exists an open neighborhood U of x such
that the family f fwn

� � � � � fw1
gn is normal in U . We set Jw ¼ CnFw and ~JJw ¼

fwg � Jw. Moreover, we set

~JJð ~ff Þ ¼ 6
w ASm

~JJw; ~FFð ~ff Þ ¼ ðSm � CÞn ~JJð ~ff Þ;

where the closure is taken in the product space Sm � C (this is a compact metric

space). We call ~FF ð ~ff Þ the Fatou set for ~ff and ~JJð ~ff Þ the Julia set for ~ff . For

each ðw; xÞ A Sm � C and n A N we set

ð ~ff nÞ0ððw; xÞÞ ¼ ð fwn
� � � fw1

Þ0ðxÞ:
Furthermore, we denote the first (resp. second) projection by p : Sm � C ! Sm

(resp. p
C
: Sm � C ! C). We say that a finitely generated rational semigroup

G ¼ h f1; . . . ; fmi is an expanding rational semigroup if JðGÞ0j and the skew
product map ~ff : Sm � C ! Sm � C associated with the generator system
f f1; . . . ; fmg is expanding along fibers, i.e., there exists a positive constant C and
a constant l > 1 such that for each n A N,

inf
z A ~JJð ~ff Þ

kð ~ff nÞ0ðzÞkbCln;

where we use k � k to denote the norm of the derivative with respect to the
spherical metric.

For a general rational semigroup G and a non-negative number t, we
say that a Borel probability measure t on C is t-subconformal (for G) if for
each g A G and for each Borel measurable set A in C, tðgðAÞÞa

Ð
A
kg 0k t

dt.
Moreover, we set sðGÞ ¼ infft j bt: t-subconformal measureg.

Furthermore, we say that a Borel probability measure t on JðGÞ is t-
conformal (for G) if for any Borel set A and g A G, if A; gðAÞH JðGÞ and
g : A ! gðAÞ is injective, then tðgðAÞÞ ¼

Ð
A
kg 0k t

dt.
For any sb 0 and x A C, we set Sðs; xÞ ¼

P
g AG

P
gðyÞ¼x kg 0ðyÞk�s. More-

over, we set SðxÞ ¼ inffsb 0 jSðs; xÞ < yg (If no s exists with Sðs; xÞ < y, then
we set SðxÞ ¼ y). We set s0ðGÞ ¼ inffSðxÞ j x A Cg. Note that if G has only
countably many elements, then sðGÞa s0ðGÞ (Theorem 4.2 in [S2]).

Then, under the above notations, we show the following:

391julia sets of expanding rational semigroups



Theorem 1.1 (Main Theorem A). Let G ¼ h f1; . . . ; fmi be a finitely gen-
erated expanding rational semigroup. Let ~ff : Sm � C ! Sm � C be the skew
product map associated with f f1; . . . ; fmg. Then, there exists a unique zero d of

the function: PðtÞ :¼ Pð ~ff j ~JJð ~ff Þ; t~jjÞ, where ~jj is the function on ~JJð ~ff Þ defined by:
~jjððw; xÞÞ ¼ �logðkð fw1

Þ0ðxÞkÞ for ðw; xÞ ¼ ððw1;w2; . . .Þ; xÞ A ~JJð ~ff Þ and Pð ; Þ denotes
the pressure. Furthermore, d satisfies the fact that there exists a unique probability
measure ~nn on ~JJð ~ff Þ such that M �

d ~nn ¼ ~nn, where Md is an operator on Cð ~JJð ~ff ÞÞ (the space
of continuous functions on ~JJð f Þ) defined by

Mdcððw; xÞÞ ¼
X

~ff ððw 0;yÞÞ¼ðw;xÞ

cððw 0; yÞÞ
kð fw 0

1
Þ0ðyÞkd

;

where w 0 ¼ ðw 0
1;w

0
2; . . .Þ A

P
m. Moreover, d satisfies

dimBðJðGÞÞa sðGÞa s0ðGÞa d ¼ ha~nnð ~ff Þ
�
Ð
~JJð ~ff Þ ~jja d~nn

a
logð

Pm
j¼1 degð fjÞÞ

�
Ð
~JJð ~ff Þ ~jja d~nn

;

where a ¼ liml!y Ml
dð1Þ and we denote the metric entropy of ð ~ff ; a~nnÞ by ha~nnð ~ff Þ.

The support for n :¼ ðp
C
Þ�~nn equals JðGÞ.

Furthermore, let AðGÞ ¼6
g AG gðfx AC j bh AG; hðxÞ ¼ x; jh 0ðxÞj < 1gÞ and

PðGÞ ¼6
g AG fall critical values of gg. Then, AðGÞUPðGÞHFðGÞ and for each

x A CnðAðGÞUPðGÞÞ, we have d is equal to:

inf tb 0

�����X
n AN

X
ðw1;...;wnÞ A f1;...;mg n

X
ð fw1 ��� fwn ÞðyÞ¼x

kð fw1
� � � fwn

Þ0ðyÞk�t < y

8<
:

9=
;:

Theorem 1.2 (Main Theorem B). Let G ¼ h f1; . . . ; fmi be a finitely gen-
erated expanding rational semigroup. Suppose that there exists a non-empty open
set U in C such that f �1

j ðUÞHU for each j ¼ 1; . . . ;m and f f �1
j ðUÞgmj¼1 are

mutually disjoint. Then, we have the following:
1. dimHðJðGÞÞ ¼ dimBðJðGÞÞ ¼ sðGÞ ¼ s0ðGÞ ¼ d, where d denotes the number

in Theorem 1.1.
2. n :¼ ðp

C
Þ�~nn is the unique d-conformal measure, where ~nn is the measure in

Theorem 1.1. Furthermore, n satisfies the fact that there exists a posi-
tive constant C such that for any x A JðGÞ and any positive number r with
r < diam C, we have

C�1
a

nðBðx; rÞÞ
rd

aC:

3. n satisfies nð f �1
i ðJðGÞÞV f �1

j ðJðGÞÞÞ ¼ 0, for each i; j A f1; . . . ;mg with
i0 j. Furthermore, for each ði; jÞ with i0 j, we have f �1

i ðJðGÞÞV
f �1
j ðJðGÞÞ is nowhere dense in f �1

j ðJðGÞÞ.
4. 0 < H dðJðGÞÞ < y, where H d denotes the d-dimensional Hausdor¤ mea-

sure with respect to the spherical metric. Furthermore, we have n ¼
H djJðGÞ

H dðJðGÞÞ .
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5. If there exists a t-conformal measure t, then t ¼ d and t ¼ n.
6. For any x A CnðAðGÞUPðGÞÞ, we have

dimHðJðGÞÞ ¼ d ¼ inf tb 0

�����X
g AG

X
gðyÞ¼x

kg 0ðyÞk�t < y

8<
:

9=
;:

Remark 1. In [S6], it is shown that if G ¼ h f1 . . . ; fmi is expanding
and there exists a non-empty open set U such that f �1

j ðUÞHU for each
j ¼ 1; . . . ;m, f fjðUÞgj are mutually disjoint and U 0 JðGÞ, then JðGÞ is porous
and dimBðJðGÞÞ < 2.

Remark 2. In addition to the assumption of Main Theorem B, if JðGÞHC,
then we can also show a similar result for the Euclidean metric.

For the precise notation, see the following sections. The proof of Main
Theorem A is given in section 3 and the proof of Main Theorem B is given in
section 5. The existence of a subconformal or conformal measure is deduced by
applying some of the results in [W1] and the thermodynamic formalism in ergodic
theory to the skew product map associated with the generator system. Since
generator maps are not injective in general and we do not assume the ‘‘cone
condition’’ (the existence of uniform cones) for the boundary of the open set,
much e¤ort is needed to estimate nðBðx; rÞÞ in Main Theorem B. Indeed, we cut
the closure of the open set into small pieces fKjg, and for a fixed s A N, let K
be the set of all ðg; kjÞ that satisfies that g is a well defined inverse branch of
ð fw1

� � � � fwu
Þ�1 defined on Kj for some ðw1; . . . ;wuÞ A f1; . . . ;mgu with ua s.

Then we introduce an equivalence class ‘‘@’’ in a subset G of K, and an order
‘‘a’’ in G=@. We obtain an upper estimate of the cardinality of the set of all
minimal elements of ðG=@;aÞ by a constant independent of r and x, which gives
us the key to estimate nðBðx; rÞÞ:

Note that in [MU1], it was discussed the case in which there are infinitely
many injective generator maps and the boundary of the open set satisfies the cone
condition.

The uniqueness of a conformal measure t is deduced from some results in
[W1] and an estimate of tðBðx; rÞÞ. Note that our definition of conformal mea-
sure di¤ers from that of [MU1] and [MU2]. In this paper, we do not require the
separating condition for the definition of conformal measure.

2. Preliminaries

In this section, we give the notation and definitions for rational semigroups
and the associated skew products that we need to give our main result.

2.1. Rational semigroups
We use the definition in [S5].

393julia sets of expanding rational semigroups



Definition 2.1. Let G be a rational semigroup. We set

F ðGÞ ¼ fz A C jG is normal in a neighborhood of zg; JðGÞ ¼ CnF ðGÞ:
FðGÞ is called the Fatou set for G and JðGÞ is called the Julia set for G. The
backward orbit G�1ðzÞ of z and the set of exceptional points EðGÞ are defined
by: G�1ðzÞ ¼ 6

g AG g�1ðzÞ and EðGÞ ¼ fz A C jaG�1ðzÞa 2g. For any subset

A of C, we set G�1ðAÞ ¼ 6
g AG g�1ðAÞ. We use h f1; f2; . . .i to denote the ra-

tional semigroup generated by the family f fig. For a rational map g, we use
JðgÞ to denote the Julia set of dynamics of g.

For a rational semigroup G, for each f A G, we have f ðF ðGÞÞHFðGÞ and
f �1ðJðGÞÞH JðGÞ. Note that we do not have this equality hold in general. If
aJðGÞb 3, then JðGÞ is a perfect set, aEðGÞa 2, JðGÞ is the smallest closed
backward invariant set containing at least three points, and JðGÞ is the closure
of the union of all repelling fixed points of elements of G, which implies that
JðGÞ ¼ 6

g AG JðgÞ. If a point z is not in EðGÞ, then for every x A JðGÞ,
x A G�1ðzÞ. In particular, if z A JðGÞnEðGÞ, then G�1ðzÞ ¼ JðGÞ. Further, for
a finitely generated rational semigroup G ¼ h f1; . . . ; fmi, if we use Gn to denote
the subsemigroup of G that is generated by n-products of generators f fjg, then
JðGnÞ ¼ JðGÞ. For more precise statements, see Lemma 2.3 in [S5], for which
the proofs are based on [HM1] and [GR]. Furthermore, if G is generated

by a precompact subset L of EndðCÞ, then JðGÞ ¼ 6
f AL f �1ðJðGÞÞ ¼

6
h AL h�1ðJðGÞÞ. In particular, if L is compact, then we have JðGÞ ¼

6
f AL f �1ðJðGÞÞ ([S3]). We call this property of a Julia set the backward self-

similarity.

Remark 3. Using the backward self-similarity, research on the Julia sets of
rational semigroups may be considered a generalization of research on self-similar
sets constructed using some similarity transformations from C to itself, which
can be regarded as the Julia sets of some rational semigroups. It is easily seen
that the Sierpiński gasket is the Julia set of a rational semigroup G ¼ h f1; f2; f3i
where fiðzÞ ¼ 2ðz� piÞ þ pi, i ¼ 1; 2; 3 with p1 p2 p3 being a regular triangle.

2.2. Associated skew products
We use the notation in [S5]. Let m be a positive integer. We use Sm to

denote the one-sided wordspace that is Sm ¼ f1; . . . ;mgN and use s : Sm ! Sm to
denote the shift map, which is ðw1; . . .Þ 7! ðw2; . . .Þ for w ¼ ðw1;w2;w3; . . .Þ A Sm.
For any w;w 0 A Sm, we set dðw;w 0Þ :¼

Py
n¼1ð1=2nÞ � cðwk;w

0
kÞ, where cðwk;w

0
kÞ ¼ 0

if wk ¼ w 0
k and cðwk;w

0
kÞ ¼ 1 if wk 0w 0

k. Then, ðSm; dÞ is a compact metric
space. Furthermore, the dynamics of s : Sm ! Sm is expanding with respect to
this metric d. That is, each inverse branch s�1

j of s�1 on Sm, which is defined by
s�1
j ððw1;w2; . . .ÞÞ ¼ ð j;w1;w2; . . .Þ for j ¼ 1; . . . ;m, satisfies dðs�1

j ðwÞ; s�1
j ðw 0ÞÞa

ð1=2Þ � dðw;w 0Þ.
Let G ¼ h f1; f2; . . . ; fmi be a finitely generated rational semigroup. We

define the map ~ff : Sm � C ! Sm � C using
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~ff ððw; xÞÞ ¼ ðsw; fw1
ðxÞÞ:

We call map ~ff the skew product map associated with the generator system

f f1; . . . ; fmg. ~ff is finite-to-one and an open map. We hold that point ðw; xÞ A
Sm � C satisfies f 0

w1
ðxÞ0 0 if and only if ~ff is a homeomorphism in a small

neighborhood of ðw; xÞ. Hence, the map ~ff has infinitely many critical points
in general.

Definition 2.2. For each w A Sm, we use Fw to denote the set of all the
points x A C that satisfy the fact that there exists an open neighborhood U of x
such that the family f fwn

� � � � � fw1
gn is normal in U . We set Jw ¼ CnFw and

~JJw ¼ fwg � Jw. Moreover, we set

~JJð ~ff Þ ¼ 6
w ASm

~JJw; ~FFð ~ff Þ ¼ ðSm � CÞn ~JJð ~ff Þ;

where the closure is taken in the product space Sm � C. We often write ~FF ð ~ff Þ
as ~FF and ~JJð ~ff Þ as ~JJ. We call ~FFð ~ff Þ the Fatou set for ~ff and ~JJð ~ff Þ the Julia set
for ~ff . Here, we remark that 6

w ASm

~JJw may not be compact in general. That

is why we consider the closure of that set in Sm � C (this is a compact space)
concerning the definition of the Julia set for ~ff .

For each ðw; xÞ A Sm � C and n A N we set

ð ~ff nÞ0ððw; xÞÞ ¼ ð fwn
� � � fw1

Þ0ðxÞ:
Furthermore, we denote the first (resp. second) projection by p : Sm � C ! Sm

(resp. p
C
: Sm � C ! C). Note that we have ~ff ð ~FF ð ~ff ÞÞ ¼ ~ff �1ð ~FF ð ~ff ÞÞ ¼ ~FFð ~ff Þ,

~ff ð ~JJð ~ff ÞÞ ¼ ~ff �1ð ~JJð ~ff ÞÞ ¼ ~JJð ~ff Þ and p
C
ð ~JJð ~ff ÞÞ ¼ JðGÞ. (For the fundamental prop-

erties of these sets, see Proposition 3.2 in [S5]. In addition, see [S3].)

Definition 2.3. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semi-
group. Let us fix the generator system f f1; . . . ; fmg. We set fw :¼ fw1

� � � � � fwk

for any w ¼ ðw1; . . . ;wkÞ A f1; . . . ;mgk. We set W ¼ 6
n ANf1; . . . ;mgn USm and

set W� ¼ 6
n ANf1; . . . ;mgn. For any w ¼ ðw1;w2; . . .Þ A W, we set jwj ¼ n if

w A f1; . . . ;mgn and jwj ¼ y if w A Sm. Furthermore, we set wjk :¼ ðw1; . . . ;wkÞ,
for any k A N with ka jwj. Moreover, for any w A W�, we set SmðwÞ :¼
fw 0 A Sm jw 0

j ¼ wj; j ¼ 1; . . . ; jwjg. For any w1 A W� and w2 A W, we set w1w2 ¼
ðw1

1 ; . . . ;w
1
jw1j;w

2
1 ;w

2
2 ; . . .Þ A W.

Notation. Let ðX ; dÞ be a metric space. For any subset A of X , we set
diam A :¼ supfdðx; yÞ j x; y A Ag. Let m be a Borel measure on X . We use
supp m to denote the support of m. For any Borel set A in X , we use mjA to
denote the measure on A such that mjAðBÞ ¼ mðBÞ for each Borel subset B of A.
We set L1ðmÞ ¼ fj : X ! R j

Ð
X
jjj dm < yg, with L1 norm. For any j A L1ðmÞ,

we sometimes use mðjÞ to mean
Ð
X
j dm. For any j A L1ðmÞ, we use jm to

denote the measure such that ðjmÞðAÞ ¼
Ð
A
j dm for any Borel set A. We set

CðXÞ ¼ fj : X ! R j continuousg. (If X is compact, then CðXÞ is the Banach
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space with the supremum norm.) For any subset A of X and any r > 0, we set
BðA; rÞ ¼ fy A X j dðy;AÞ < rg. For any subset A of X , we use int A to denote
the interior of A.

Remark 4. In this paper, we always use the spherical metric on C. How-
ever, we note that conjugating a rational semigroup G by a Möbius transfor-
mation, we may assume that JðGÞHC, and then for a neighborhood V of JðGÞ,
the identity map i : ðV ; dsÞ ! ðV ; deÞ is a bi-Lipschitz map, where ds and de
denote the spherical and Euclidean distance, respectively. In what follows, we
often use the above implicitly, especially when we need to use the facts in [F]
and [Pe].

3. Main Theorem A

In this section, we show Main Theorem A. We investigate the estimate of
the upper box and Hausdor¤ dimensions of Julia sets of expanding semigroups
using thermodynamic formalism in ergodic theory. For the notation used in
ergodic theory, see [DGS] and [W2].

Definition 3.1. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semi-
group. We say that G is an expanding rational semigroup if JðGÞ0j and
the skew product map ~ff : Sm � C ! Sm � C associated with the generator system
f f1; . . . ; fmg is expanding along fibers, i.e., there exists a positive constant C and
a constant l > 1 such that for each n A N,

inf
z A ~JJð ~ff Þ

kð ~ff nÞ0ðzÞkbCln;

where we use k � k to denote the norm of the derivative with respect to the
spherical metric.

Remark 5. By Theorem 2.6, Theorem 2.8, and Remark 4 in [S2], we see
that if G ¼ h f1; . . . ; fmi contains an element of degree at least two, each Möbius
transformation in G is neither the identity nor an elliptic element, and G is
hyperbolic, i.e., the postcritical set PðGÞ of G, which is defined as:

PðGÞ :¼ 6
g AG

fall critical values of gg;

is included in F ðGÞ, then G is expanding. Conversely, if G ¼ h f1; . . . ; fmi is
expanding, then G is hyperbolic and each Möbius transformation in G is lox-
odromic. Hence, the notion of expandingness does not depend on any choice of
a generator system for a finitely generated rational semigroup.

Lemma 3.2. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Suppose aJðGÞa 2. Then, aJðGÞ ¼ 1 and JðGÞ is a common re-
pelling fixed point of any fj.
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Proof. Suppose aJðGÞ ¼ 2 and let JðGÞ ¼ fz1; z2g. Then, fj is a Möbius
transformation, for each j ¼ 1; . . . ;m. Since G is expanding, each fj is lox-
odromic. We may assume that z1 is a repelling fixed point of f1. Then, since
f �1
1 ðJðGÞÞH JðGÞ, it follows that z2 is an attracting fixed point of f1. This is
a contradiction, however, since G is expanding. Hence, aJðGÞ ¼ 1. r

Definition 3.3. Let G be a rational semigroup and let t be a non-negative
number. We say that a Borel probability measure t on C is t-subconformal
(for G) if for each g A G and for each Borel measurable set A in C,
tðgðAÞÞa

Ð
A
kg 0k t

dt. Moreover, we set

sðGÞ ¼ infft j bt: t-subconformal measureg:

Definition 3.4. Let X be a compact metric space. Let f : X ! X be a
continuous map:

1. We use hð f Þ to denote the topological entropy of f (see p83 in [DGS]).
We use hmð f Þ to denote the metric entropy of f with respect to an in-
variant Borel probability measure m (see p60 in [DGS]).

2. Furthermore, let j : X ! R be a continuous function. Then, we use
Pð f ; jÞ to denote the pressure for the dynamics of f and the function
j (see p141 in [DGS]). According to a well known fact: the variational
principle (see p142 in [DGS]), we have

Pð f ; jÞ ¼ sup

�
hmð f Þ þ

ð
X

j dm

�
;

where the supremum is taken over all f -invariant Borel probability mea-
sures m on X . If an invariant probability measure m attains the su-
premum in this manner, then m is called an equilibrium state for ð f ; jÞ.
For more details on this notation and the variational principle, see [DGS]
and [W2].

3. For a real-valued continuous function j on X and for each n A N,
we define a continuous function Snj on X as ðSnjÞðzÞ ¼

Pn�1
j¼0 jð f jðzÞÞ.

Note that Pð f n;SnjÞ ¼ nPð f ; jÞ (see Theorem 9.8 in [W2]).

Definition 3.5. Let X be a compact metric space and let f : X ! X be
a continuous map satisfying the fact that there exists a number k A N such that
af �1ðzÞ ¼ k for each z A X . Let j be a continuous function on X . We define
an operator L ¼ Lj on CðX Þ using

LcðzÞ ¼
X

f ðz 0Þ¼z

expðjðz 0ÞÞcðz 0Þ:

This is called the transfer operator for ð f ; jÞ. Note that Ln
j equals the transfer

operator for ð f n;SnjÞ, for each n A N.

Lemma 3.6. Let G ¼ h f1; f2; . . . fmi be a finitely generated expanding ra-
tional semigroup. Let ~ff : Sm � C ! Sm � C be the skew product map associated
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with f f1; . . . ; fmg. Then, for each Hölder continuous function j on ~JJð ~ff Þ, the

transfer operator Lj for ð ~ff j ~JJð ~ff Þ; jÞ on Cð ~JJð ~ff ÞÞ satisfies the fact that there exists

a unique probability measure ~nn ¼ ~nnj on ~JJð ~ff Þ satisfying all of the following:

1. L�
j~nn ¼ expðPÞ~nn, where P ¼ Pð ~ff j ~JJð ~ff Þ; jÞ is the pressure of ð ~ff j ~JJð ~ff Þ; jÞ.

2. For each c A Cð ~JJð ~ff ÞÞ, 1

ðexpðPÞÞn L
n
jc� ~nnðcÞaj

����
����
~JJð ~ff Þ

! 0, n ! y, where

we set aj ¼ liml!y
1

ðexpðPÞÞ l
Ll
jð1Þ A Cð ~JJð ~ff ÞÞ and we use k � k ~JJð ~ff Þ to denote

the supremum norm on ~JJð ~ff Þ.
3. aj~nn is ~ff -invariant, exact (hence ergodic) and is an equilibrium state for

ð ~ff j ~JJð ~ff Þ; jÞ.
4. ajðzÞ > 0 for each z A ~JJð ~ff Þ.

Proof. According to the Koebe distortion theorem and since the dynamics
of s : Sm ! Sm is expanding, there exists a number s A N such that the map
~ff s : ~JJð ~ff Þ ! ~JJð ~ff Þ satisfies condition I on page 123 in [W1] (each of X0, X , and
X in [W1] corresponds to ~JJð ~ff Þ). Furthermore, by Proposition 3.2 (f ) in [S5]
and Lemma 3.2, we have the fact that ~ff s on ~JJð ~ff Þ satisfies condition II on page

125 in [W1]. The map m ! L�
jm=ðL�

jmÞð1Þ is continuous on the space Mð ~JJð ~ff ÞÞ
of Borel probability measures on ~JJð ~ff Þ. Hence, this map has a fixed point
~nn based on the Schauder-Tychono¤ fixed point theorem. Let l ¼ ðL�

j~nnÞð1Þ.
Then, L�

j~nn ¼ l~nn. Hence, we have ðLs
jÞ

�~nn ¼ l s~nn. By Theorem 8, Corollary 12,
and the statement on equilibrium states on page 140 in [W1], we get ls ¼
expðPð ~ff sj ~JJð ~ff Þ;SsjÞÞ ¼ expðsPð ~ff j ~JJð ~ff Þ; jÞÞ. Hence, we obtain l ¼ expðPÞ. The

other results also follow from Theorem 8, Corollary 12, and the statement on
equilibrium states on page 140 in [W1]. r

Notation. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semigroup.
Let ~ff : Sm � C ! Sm � C be the skew product map associated with f f1; . . . ; fmg.
Suppose that no critical point of ~ff exists in ~JJð ~ff Þ. Then, we define a function ~jj
on ~JJð ~ff Þ as: ~jjððw; xÞÞ :¼ �logkð fw1

Þ0ðxÞk for ðw; xÞ ¼ ððw1;w2; . . .Þ; xÞ A ~JJð ~ff Þ.

Lemma 3.7. Let G ¼ h f1; f2; . . . fmi be a finitely generated expanding ra-
tional semigroup. Then, using the above notation, we have the following:

1. The function PðtÞ ¼ Pð ~ff j ~JJð ~ff Þ; t~jjÞ on R is convex and strictly decreasing as

t increases. Furthermore, PðtÞ ! �y as t ! y.
2. There exists a unique zero db 0 of PðtÞ. Furthermore, if hð ~ff j ~JJð ~ff ÞÞ > 0

then d > 0.
3. There exists a unique probability measure ~nn ¼ ~nnd~jj on ~JJð ~ff Þ such that

M �
d ~nn ¼ ~nn, where Md is an operator on Cð ~JJð ~ff ÞÞ defined by

Mdcððw; xÞÞ ¼
X

~ff ððw 0; yÞÞ¼ðw;xÞ

cððw 0; yÞÞ
kð fw 0

1
Þ0ðyÞkd

:ð1Þ

Note that Md ¼ Ld~jj.
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4. d satisfies the fact that

d ¼ ha~nnð ~ff Þ
�
Ð
~JJð ~ff Þ ~jja d~nn

a
logð

Pm
j¼1 degð fjÞÞ

�
Ð
~JJð ~ff Þ ~jja d~nn

;ð2Þ

where a ¼ liml!y Ml
dð1Þ A Cð ~JJð ~ff ÞÞ.

Proof. Using the variational principle, we have PðtÞ ¼ supfhmð ~ff j ~JJð ~ff ÞÞ þÐ
~JJð ~ff Þ t~jj dmg, where the supremum is taken over all ~ff -invariant Borel probability

measures m on ~JJð ~ff Þ. In addition, note that by Theorem 6.1 in [S5], we deter-
mine that the topological entropy hð ~ff Þ of ~ff on Sm � C is less than or equal
to logð

Pm
j¼1 degð fjÞÞ. By the variational principle: hð ~ff Þ ¼ supfhmð ~ff Þ j ~ff�m ¼ mg

(see p138 in [DGS] or Theorem 8.6 in [W2]); it follows that

hmð ~ff Þa log
Xm
j¼1

ðdegð fjÞÞ
 !

for any ~ff -invariant Borel probability measure m on ~JJð ~ff Þ. Combining this with
the fact that the dynamics of ~ff on ~JJð ~ff Þ is expanding, we see that the function
PðtÞ on R is convex, strictly decreasing as t increases, and PðtÞ ! �y as t ! y.
Hence, there exists a unique number d A R satisfying PðdÞ ¼ 0. Since Pð0Þ ¼
hð ~ff j ~JJð ~ff ÞÞ, we have d > 0 if hð ~ff j ~JJð ~ff ÞÞ > 0. The statements 3 and 4 follow from
Lemma 3.6 and this argument. r

Definition 3.8. We define an operator M̂Md acting on the space of all Borel
measurable functions on ~JJð ~ff Þ using the same formula as that for Md. (See (1)).

We now show that M̂Md acts on L1ð~nnÞ and that M̂Md on L1ð~nnÞ is a bounded op-
erator, where ~nn ¼ ~nnd~jj.

Lemma 3.9. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Using the above notation, we have the following:

1. Let A be a Borel set in ~JJð ~ff Þ. If ~nnðAÞ ¼ 0, then ~nnð ~ff �1ðAÞÞ ¼ 0.

2. Let c be a Borel measurable function on ~JJð ~ff Þ. Let fcngn be a sequence
of Borel measurable functions on ~JJð ~ff Þ. Suppose cnðzÞ ! cðzÞ for almost

every z A ~JJð ~ff Þ with respect to ~nn. Then, we have ðM̂MdcnÞðzÞ ! ðM̂MdcÞðzÞ
for almost every z A ~JJð ~ff Þ with respect to ~nn.

3. If c A L1ð~nnÞ, then M̂Mdc A L1ð~nnÞ. Furthermore, M̂Md is a bounded operator
on L1ð~nnÞ and the operator norm kM̂Mdk is equal to 1.

Proof. Let m ¼ a~nn, where a ¼ liml!y Ml
d1. Then, by Lemma 3.6-3, we

have ~ff�m ¼ m. Furthermore, by Lemma 3.6-4, m and ~nn are absolutely continuous
with respect to each other. Hence, we obtain the statement 1, and the statement
2 follows easily from this.
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We now show the statement 3. First, we show the following claim:

Claim. For any c A Cð ~JJð ~ff ÞÞ, we have
Ð
jM̂Mdcj d~nna

Ð
jcj d~nn.

To show this claim, let c A Cð ~JJð ~ff ÞÞ. Let cþ ¼ maxfc; 0g and c� ¼
�minfc; 0g. Then, we have c ¼ cþ � c� and jcj ¼ cþ þ c�. Since M �

d ~nn ¼ ~nn,
we obtain

Ð
jM̂Mdcj d~nn ¼

Ð
jMdc

þ �Mdc
�j d~nna

Ð
Mdc

þ d~nnþ
Ð
Mdc

� d~nn ¼
Ð
cþ þ

c� d~nn ¼
Ð
jcj d~nn. Hence, the above claim holds.

Now, let c be a general element of L1ð~nnÞ. Let fcngn be a sequence in
Cð ~JJð ~ff ÞÞ such that cn ! c in L1ð~nnÞ. We may assume that cnðzÞ ! cðzÞ for

almost every z A ~JJð ~ff Þ with respect to ~nn. Then, according to the statement 2,

we have ðM̂MdcnÞðzÞ ! ðM̂MdcÞðzÞ for almost every z A ~JJð ~ff Þ with respect to ~nn.
Using this claim, fM̂Mdcngn is a Cauchy sequence in L1ð~nnÞ. Hence, it follows
that M̂Mdc A L1ð~nnÞ. Furthermore, we have

Ð
jM̂Mdcj d~nn ¼ limn!y

Ð
jM̂Mdcnj d~nna

limn!y

Ð
jcnj d~nn ¼

Ð
jcj d~nn. Hence, kM̂Mdka 1. Since

Ð
M̂Md1 d~nn ¼

Ð
1 d~nn ¼ 1, we

obtain kM̂Mdk ¼ 1. r

We now show that the measure ~nn ¼ ~nnd~jj is ‘‘conformal’’.

Lemma 3.10. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational

semigroup. Let k A N and let A be a Borel set in ~JJð ~ff Þ such that ~ff k : A ! ~ff kðAÞ
is injective. Then, using the above notation, we have ~nnð ~ff kðAÞÞ ¼

Ð
A
kð ~ff kÞ0kd

d~nn.

Proof. We have Mk
d ~nn ¼ ~nn and Mk

d is a transfer operator for ð ~ff k; dSk ~jjÞ.
By Proposition 2.2 in [DU] and Lemma 3.9-3, we obtain the statement. r

Lemma 3.11. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Then, with our notation, the probability measure n :¼ ðp

C
Þ�ð~nnÞ is d-

subconformal.

Proof. First, note that by Lemma 3.10, it follows that for any Borel
set B in Sm � C we have ~nnð ~ff kðBÞÞa

P
j ~nnð ~ff kðBjÞÞ ¼

P
j

Ð
Bj
kð ~ff kÞ0kd

d~nn ¼Ð
B
kð ~ff kÞ0kd

d~nn, where B ¼
P

j Bj is a measurable partition such that ~ff kjBj
is

injective for each j. Hence, for any Borel set A in C and any w A W�

with jwj ¼ k, it follows that nð fwðAÞÞ ¼ ~nnðp�1
C
ð fwðAÞÞÞ ¼ ~nnð ~ff kðSmðwÞ � AÞÞaÐ

SmðwÞ�A
kð ~ff kÞ0kd

d~nna
Ð
A
kð fwÞ0kd

dn. r

We now consider the Poincaré series and critical exponent for a rational
semigroup.

Definition 3.12. Let G be a rational semigroup. We set

AðGÞ ¼ 6
g AG

gðfz A C j bh A G; hðzÞ ¼ z; jh 0ðzÞj < 1gÞ:
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For any sb 0 and x A C, we set Sðs; xÞ ¼
P

g AG

P
gðyÞ¼x kg 0ðyÞk�s. Further-

more, we set SðxÞ ¼ inffsb 0 jSðs; xÞ < yg (If no s exists with Sðs; xÞ < y,
then we set SðxÞ ¼ y). We set s0ðGÞ ¼ inffSðxÞ j x A Cg.

If G is generated by finite elements f f1; . . . ; fmg, then for any x A C and
tb 0, we set Tðt; xÞ ¼

P
w AW�

P
fwðyÞ¼x kð fwÞ

0ðyÞk�t and TðxÞ ¼ infftb 0 j
Tðt; xÞ < yg (If no t exists with Tðt; xÞ < y, then we set TðxÞ ¼ y). Note that
SðxÞaTðxÞ.

Lemma 3.13. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semi-
group. Let ~ff : Sm � C ! Sm � C be a skew product map associated with
f f1; . . . ; fmg. Let z A ~FFð ~ff Þ be a point. Then, there exists a number n A N such

that p
C
ð ~ff nðzÞÞ A FðGÞ.

Proof. Let z A ~FFð ~ff Þ be a point. Then, there exists a word w A W� and
an open neighborhood V of p

C
ðzÞ in C such that z A SmðwÞ � V H ~FF ð ~ff Þ. Let

n ¼ jwj. Then, ~FF ð ~ff ÞI ~ff nðSmðwÞ � VÞ ¼ Sm � fwðVÞ. Since p
C
~JJð ~ff Þ ¼ JðGÞ

(Proposition 3.2 in [S5]), it follows that fwðVÞHF ðGÞ. Hence, p
C
~ff nðzÞ ¼

fwðpCðzÞÞ A fwðVÞHFðGÞ. r

Lemma 3.14. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Let ~ff : Sm � C ! Sm � C be a skew product map associated with
f f1; . . . ; fmg. Let z A Sm � C be a point with x :¼ p

C
ðzÞ A CnAðGÞ. Then, for

each open neighborhood V of ~JJð ~ff Þ in Sm � C, there exists a number l A N such
that 6

nbl
ð ~ff nÞ�1ðzÞHV . Furthermore, we have AðGÞUPðGÞHF ðGÞ and if

x A CnðAðGÞUPðGÞÞ, then TðxÞ < y.

Proof. By Remark 5, we have PðGÞHFðGÞ. Next we show AðGÞHFðGÞ.
Since G is expanding, then using the Koebe distortion theorem and p

C
ð ~JJð ~ff ÞÞ ¼

JðGÞ (Proposition 3.2 in [S5]), we obtain that there exist an n A N and a number
e > 0 such that for each a A JðGÞ and each w A W� with jwj ¼ n, we can take
well-defined inverse branches of f �1

w on Bða; eÞ and any inverse branch g of f �1
w

on Bða; eÞ satisfies gðBða; eÞÞHB gðaÞ; 12 e
� �

and kg 0ðyÞka 1
2 for each y A Bða; eÞ.

Taking a small enough e, it follows that for each a A JðGÞ and each w A W�, we
can take well-defined inverse branches g of f �1

w on Bða; eÞ and we have

supfkg 0ðyÞk j y A Bða; eÞ; a A JðGÞ; g: a branch of f �1
w ; jwj ¼ ng ! 0

as n ! y. Let y A C be a point such that gðyÞ ¼ y and jg 0ðyÞj < 1 for some
g A G. Suppose that there exist an element h A G and a point a A JðGÞ such that
hðyÞ A Bða; eÞ. Let gn be a well-defined inverse branch of ðhgnÞ�1 on Bða; eÞ such
that gnðhgnðyÞÞ ¼ gnðhðyÞÞ ¼ y. Then jg 0nðyÞj ! y as n ! y. This contradicts

the previous argument. Hence AðGÞHCnBðJðGÞ; eÞHF ðGÞ:
Next, suppose that there exists a sequence ðzjÞ in ~FFð ~ff Þ such that ~ff nj ðzjÞ ¼ z

and zj ! zy A ~FF ð ~ff Þ where nj A N with nj ! y as j ! y. Then, by Lemma
3.13, there exists a number n A N such that p

C
ð ~ff nðzyÞÞ A FðGÞ. Let xj ¼

p
C
ð ~ff nðzjÞÞ for each j A N and let xy ¼ p

C
~ff nðzyÞ. Then, for each j with nj > n,
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there exists an element gj A G such that gjðxjÞ ¼ x. Let a ¼ dðx;AðGÞÞ. Since

xj ! xy A FðGÞ, we have a j j dðgjðxyÞ; xÞ < a

2

� �
¼ y.

By contrast, we have supfdð fwðxyÞ;AðGÞÞ j jwj ¼ ng ! 0 as n ! y. For,
if PðGÞ0j, the above follows from Theorem 1.34 in [S3]. Even if PðGÞ ¼ j,
since G is expanding, by the Koebe distortion theorem, then for each z A FðGÞ,
6

g AG gðzÞHFðGÞ. Using the same argument as in the proof of Theorem 1.34

in [S3], we obtain the above.
Hence, we obtain a contradiction. Therefore, we have shown that for each

open neighborhood V of ~JJð ~ff Þ in Sm � C, there exists a number l A N such
that 6

nbl
ð ~ff nÞ�1ðzÞHV . If x A CnðAðGÞUPðGÞÞ, then since G is expanding,

combining the above result with the Koebe distortion theorem, we obtain
TðxÞ < y. r

Definition 3.15. Let E be a subset of C, tb 0 a number and b > 0 a
number. We set

Ht
bðEÞ :¼ inf

Xy
i¼1

ðdiamðUiÞÞ t j diamðUiÞa b;EH 6
y

i¼1

Ui

( )

and HtðEÞ ¼ limb!0 H
t
bðEÞ with respect to the spherical metric on C. HtðEÞ

is called the t-dimensional (outer) Hausdor¤ measure of E with respect to the
spherical metric. Note that HtðEÞ is a Borel regular measure on C (see [R]).
We set dimHðEÞ :¼ supftb 0 jHtðEÞ ¼ yg ¼ infftb 0 jHtðEÞ ¼ 0g. dimHðEÞ
is called the Hausdor¤ dimension of E. Furthermore, let NrðEÞ be the smallest
number of sets of spherical diameter r that can cover E. We set dimBðEÞ ¼

lim sup
r!0

log NrðEÞ
�log r

. dimBðEÞ is called the upper box dimension of E.

Lemma 3.16. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Let t be a t-subconformal measure. Then, there exists a positive
constant c such that for each r with 0 < r < diam C and each x A JðGÞ, we have
tðBðx; rÞÞb crt. Furthermore, HtjJðGÞ is absolutely continuous with respect to t,
HtðJðGÞÞ < y and dimBðJðGÞÞa t.

Proof. Let t be a t-subconformal measure. Using the argument in the
proof of Theorem 3.4 in [S2], we find that there exists a positive constant c such
that for each r with 0 < r < diam C and each x A JðGÞ, tðBðx; rÞÞb crt. (Note
that for an estimate of this type, we need only expandingness and we do not
need the strong open set condition used in [S2].) By Proposition 2.2 in [F], we
find that HtjJðGÞ is absolutely continuous with respect to t. In particular,
HtðJðGÞÞ < y. Furthermore, by Theorem 7.1 in [Pe], we get dimBðJðGÞÞa t.

r

Using these arguments, we now demonstrate Main Theorem A.
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Proof of Main Theorem A. By Lemma 3.7, we have that the function PðtÞ
has a unique zero d, there exists a unique probability measure ~nn on ~JJð f Þ such that
M �

d ~nn ¼ ~nn, and d satisfies (2).

By Lemma 3.16, dimBðJðGÞÞa sðGÞ. By Lemma 3.14, we have AðGÞU
PðGÞHF ðGÞ. Let x A CnðAðGÞUPðGÞÞ be a point. According to Theorem 4.2
in [S2] and the fact that SðxÞaTðxÞ < y (Lemma 3.14), we obtain sðGÞa
s0ðGÞaSðxÞaTðxÞ.

We show d ¼ TðxÞ. We consider the following two cases:

Case 1. TðTðxÞ; xÞ ¼ y.

Case 2. TðTðxÞ; xÞ < y.

Suppose we have Case 1. Let z A Sm � C be a point with p
C
ðzÞ ¼ x. Let tn be

a sequence of real numbers such that tn > TðxÞ for each n A N and tn ! TðxÞ.
For each n A N, let mn be a Borel probability measure on Sm � C defined by:

mn ¼
1

Tðtn; xÞ
X
p AN

X
~ff pðz 0Þ¼z

kð ~ff pÞ0ðz 0Þk�tndz 0 ;

where dz 0 denotes the Dirac measure concentrated at z 0. Since the space of Borel
probability measures on Sm � C is compact, we may assume that there exists a
Borel probability measure my on Sm � C such that mn ! my as n ! y, with
respect to the weak topology. Then, by Lemma 3.14, we have supp my H ~JJð ~ff Þ.
We now show the following claim:

Claim 1. For any Borel set A in ~JJð ~ff Þ such that ~ff : A ! ~ff ðAÞ is injective,
we have myð ~ff ðAÞÞ ¼

Ð
A
kð ~ff Þ0kTðxÞ

dmy.

To show this claim, let A be a Borel set in Sm � C such that ~ff : A ! ~ff ðAÞ is

injective. Then, mnð ~ff ðAÞÞ ¼
Ð
A
kð ~ff Þ0k tn dmn �

1

Tðtn; xÞ
að ~ff �1ðzÞVAÞ. If A sat-

isfies that myðq ~ff ðAÞÞ ¼ myðqAÞ ¼ 0, then letting n ! y in the above, it follows

that myð ~ff ðAÞÞ ¼
Ð
A
kð ~ff Þ0kTðxÞ

dmy.
Now let B be a general Borel set in ~JJð ~ff Þ such that ~ff : B ! ~ff ðBÞ is in-

jective. Then, let B ¼
P

j AN Bj be a countable disjoint union of Borel sets Bj

satisfying the fact that for each j A N, there exists an open neighborhood Wj of
Bj in Sm � C such that ~ff : Wj ! ~ff ðWjÞ is a homeomorphism. Let j be a fixed
number and K a fixed compact subset of Wj. Then, for each n A N, there
exists a number en > 0 such that the set Vn :¼ fz A Sm � C j dðz;KÞ < eng satisfies

Vn HWj, myðqVnÞ ¼ myðqð ~ff ðVnÞÞÞ ¼ 0, myð ~ff ðVnÞn ~ff ðKÞÞ < 1

n
and myðVnnKÞ < 1

n
.

For these sets Vn, by the previous argument, we have myð ~ff ðVnÞÞ ¼Ð
Vn
kð ~ff Þ0kTðxÞ

dmy. Letting n ! y, we obtain myð ~ff ðKÞÞ ¼
Ð
K
kð ~ff Þ0kTðxÞ

dmy.
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Next, for each l A N, we can take a compact subset Kl of Bj such that

myðBjnKlÞ <
1

l
and myð ~ff ðBjÞn ~ff ðKlÞÞ <

1

l
. For these sets Kl , using the above

argument, we have myð ~ff ðKlÞÞ ¼
Ð
Kl
kð ~ff Þ0kTðxÞ

dmy. Letting l ! y, we obtain

myð ~ff ðBjÞÞ ¼
Ð
Bj
kð ~ff Þ0kTðxÞ

dmy. Since B ¼
P

j Bj and ~ff is injective on B, we

obtain myð ~ff ðBÞÞ ¼
Ð
B
kð ~ff Þ0kTðxÞ

dmy. Hence, we have shown Claim 1.
Using Claim 1 and Proposition 2.2 in [DU], it follows that L�

TðxÞ~jjmy ¼ my.
We now show that d ¼ TðxÞ. Suppose d < TðxÞ. Then, by Lemma 3.7-1,

we have PðTðxÞÞ < 0. Then, for each c A Cð ~JJð ~ff ÞÞ, we have myðcÞ ¼

ðexp PðTðxÞÞÞ l � my
LTðxÞ~jjc

ðexpðPðTðxÞÞÞÞ l

 !
! 0 as l ! y, by Lemma 3.6-2. Hence,

myðcÞ ¼ 0 and this implies a contradiction. Suppose TðxÞ < d. Then, by a
similar argument to the one above, we get a contradiction. Hence, TðxÞ ¼ d.

We now consider Case 2: TðTðxÞ; xÞ < y. Let z A Sm � C be a point with
x ¼ p

C
ðzÞ. Then, we take Patterson’s function ([Pa]) F: i.e., F is a continuous,

non-decreasing function from Rþ :¼ ft A R j tb 0g to Rþ that satisfies the fol-
lowing:

1. QðtÞ :¼
P

n

P
~ff nðz 0Þ¼z Fðkð ~ff nÞ0ðz 0ÞkÞkð ~ff nÞ0ðz 0Þk�t converges for each t >

TðxÞ and does not converge for each taTðxÞ.
2. For each e > 0, there is a number r0 A Rþ such that FðrsÞa seFðrÞ for

each r > r0 and each s > 1.
Let tn be a sequence of R such that tn > TðxÞ for each n A N, tn ! TðxÞ as
n ! y and the measures:

tn :¼
1

QðtnÞ
X
p

X
~ff pðz 0Þ¼z

Fðkð ~ff pÞ0ðz 0ÞkÞkð ~ff pÞ0ðz 0Þk�tndz 0

tend to a Borel probability measure ty on Sm � C as n ! y. Then, by Lemma
3.14, we have supp ty H ~JJð ~ff Þ. Furthermore, combining the argument in the
proof of Claim 1 in Case 1 with the properties of F, we find that for each Borel
set A in ~JJð ~ff Þ such that ~ff : A ! ~ff ðAÞ is injective, tyð ~ff ðAÞÞ ¼

Ð
A
kð ~ff Þ0kTðxÞ

dty.
Combining this with the argument used in Case 1, we obtain d ¼ TðxÞ.

Since G is expanding and n is d-subconformal (Lemma 3.11), using an ar-
gument in the proof of Theorem 4.4 in [S2], we obtain supp nI JðGÞ. Hence,
supp n ¼ JðGÞ.

Hence, we have shown Main Theorem A. r

Corollary 3.17. Let G ¼ h f1; f2; . . . fmi be a finitely generated expanding

rational semigroup. Then, dimBðJðGÞÞa da
logð

Pm
j¼1 degð fjÞÞ
log l

, where l denotes
the number in Definition 3.1.

Proof. By Main Theorem A and (2), we have
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dimBðJðGÞÞa da
logð

Pm
j¼1 degð fjÞÞ

�
Ð
~JJð ~ff Þ ~jja d~nn

¼
n logð

Pm
j¼1 degð fjÞÞ

�
Ð
~JJð ~ff Þ Sn ~jja d~nn

a
n logð

Pm
j¼1 degð fjÞÞ

log C þ n log l
;

for each n A N. Letting n ! y, we obtain the result. r

4. Conformal measure

In this section we introduce the notion of ‘‘conformal measure’’, which is
needed in Main Theorem B.

Definition 4.1. 1. Let G be a rational semigroup. Let t A R with tb 0.
We say that a Borel probability measure t on JðGÞ is t-conformal (for G)
if for any Borel set A and g A G, if A; gðAÞH JðGÞ and g : A ! gðAÞ is
injective, then

tðgðAÞÞ ¼
ð
A

kg 0k t
dt:

2. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semigroup. We say
that a Borel probability measure m on JðGÞ satisfies the separating con-
dition for f f1; . . . ; fmg if mð f �1

i ðJðGÞÞV f �1
j ðJðGÞÞÞ ¼ 0 for any ði; jÞ with

i; j A f1; . . . ;mg and i0 j.

We show some fundamental properties of conformal measures.

Lemma 4.2. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semigroup.
Let t be a t-conformal measure. Then, t is a t-subconformal measure.

Proof. Let A be a Borel set in C and g an element of G. Let JðGÞ ¼
P

Bi

be a measurable partition of JðGÞ such that we can take the well-defined inverse
branches of g�1 on Bi, for each i (we divide JðGÞ into fBig so that for a critical
value c A JðGÞ of g, there exists an i such that Bi ¼ fcg). Let fCi; jgj be the
images of Bi using the inverse branches of g�1 so that g : Ci; j ! Bi is bijec-
tive for each j. Then, we have

tðgðAÞÞ ¼ tðgðAÞV JðGÞÞ ¼
X
i

tðgðAÞVBiÞa
X
i; j

tðgðAVCi; jÞÞ

¼
X
i; j

ð
AVCi; j

kg 0k t
dt ¼

ð
AVUi; jCi; j

kg 0k t
dta

ð
A

kg 0k t
dt:

Hence, t is t-subconformal. r
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Lemma 4.3. Let G be a rational semigroup. Let t be a Borel probability
measure on JðGÞ, g A G an element, and V an open set in C with V V g�1ðJðGÞÞ0
j. Suppose that g : V ! gðVÞ is a homeomorphism and that for any Borel set A
in V V g�1ðJðGÞÞ, tðgðAÞÞ ¼

Ð
A
kg 0k t

dt. Let h :¼ ðgjV Þ
�1 : gðVÞ ! V . Then,

we find that for any Borel set B in gðVÞV JðGÞ, tðhðBÞÞ ¼
Ð
B
kh 0k t

dt.

Proof. Let m :¼ h�ðtjgðVÞVJðGÞÞ. Then, by the assumption, dm ¼ kg 0k t
dt 0,

where t 0 ¼ tjVVg�1JðGÞ. Let B be a Borel set in gðVÞV JðGÞ. Then, tðhðBÞÞ ¼Ð
hðBÞ kg 0k�t � kg 0k t

dt ¼
Ð
hðBÞ kg 0k�t

dm ¼
Ð
B
kg 0k�t � h dt ¼

Ð
B
kh 0k t

dt. r

Lemma 4.4. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semigroup.
Let ~ff : Sm � C ! Sm � C be the skew product map associated with f f1; . . . ; fmg.
Let ~tt be a Borel probability measure on ~JJð ~ff Þ, n A N an integer, and V an open set
in Sm � C such that V V ~JJð ~ff Þ0j. Suppose that ~ff n : V ! ~ff nðVÞ is a homeo-

morphism and that for any Borel set A in ~JJð ~ff Þ, ~ttð ~ff nðAÞÞ ¼
Ð
A
kð ~ff nÞ0k t

d~tt. Let
h ¼ ð ~ff njV Þ

�1 : ~ff nðVÞ ! V . Then, we obtain the result that for any Borel set B in
~ff nðVÞV ~JJð ~ff Þ, ~ttðhðBÞÞ ¼

Ð
B
kð ~ff nÞ0ðhÞk�t

d~tt.

Proof. This lemma can be shown using the same method as in the proof of
Lemma 4.3. r

Lemma 4.5. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semigroup.
Let t be a t-conformal measure satisfying the separating condition for f f1; . . . ; fmg.
Suppose that for any g A G, if c is a critical point of g with gðcÞ A JðGÞ, then
tðfcgÞ ¼ 0. Then, for any k A N, tð f �1

w ðJðGÞÞV f �1
w 0 ðJðGÞÞÞ ¼ 0 for any w ¼

ðw1; . . . ;wkÞ, w 0 ¼ ðw 0
1; . . . ;w

0
kÞ A f1; . . . ;mgk

with w0w 0.

Proof. Let w ¼ ðw1; . . . ;wkÞ, w 0 ¼ ðw 0
1; . . . ;w

0
kÞ A f1; . . . ;mgk with w0w 0.

Let 1a ua k be the maximum such that wu 0w 0
u. If u ¼ k, then tð f �1

w ðJðGÞÞV
f �1
w 0 ðJðGÞÞÞa tð f �1

wk
ðJðGÞÞV f �1

w 0
k
ðJðGÞÞÞ ¼ 0. Suppose that u < k. Let g ¼

fwuþ1
� � � fwk

¼ fw 0
uþ1

� � � fw 0
k
. Then, f �1

w ðJðGÞÞV f �1
w 0 ðJðGÞÞH g�1ð f �1

wu
ðJðGÞÞV

f �1
w 0
u
ðJðGÞÞÞ. By Lemma 4.3, we have tðg�1ð f �1

wu
ðJðGÞÞV f �1

w 0
u
ðJðGÞÞÞÞ ¼ 0.

Hence, we obtain tð f �1
w ðJðGÞÞV f �1

w 0 ðJðGÞÞÞ ¼ 0. r

Definition 4.6. Let G ¼ h f1; . . . ; fmi be a rational semigroup. Suppose
that for each g A G, no critical value of g exists in JðGÞ. Let t A R. We define
an operator Nt : CðJðGÞÞ ! CðJðGÞÞ as follows:

ðNtcÞðzÞ ¼
Xm
j¼1

X
fjðyÞ¼z

k f 0
j ðyÞk

�tcðyÞ for each c A CðJðGÞÞ:

Lemma 4.7. Let G ¼ h f1; . . . ; fmi be a rational semigroup. Suppose that for

each g A G, no critical value of g exists in JðGÞ. Let ~ff : Sm � C ! Sm � C be
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the skew product map associated with f f1; . . . ; fmg. Then, we have the following
commutative diagram:

CðJðGÞÞ ���!Nt
CðJðGÞÞ

ðp
C
Þ�
???y

???yðp
C
Þ�

Cð ~JJð ~ff ÞÞ ���!
Lt~jj

Cð ~JJð ~ff ÞÞ:

Proof. Let c A Cð ~JJð ~ff ÞÞ and ðw; xÞ A ~JJð ~ff Þ. Then, ððp
C
Þ�NtcÞððw; xÞÞ ¼

ðNtcÞðxÞ ¼
Pm

j¼1

P
fjðyÞ¼x k f 0

j ðyÞk
�tcðyÞ. Conversely, ðLt~jjðpCÞ

�cÞððw; xÞÞ ¼P
~ff ððw 0;yÞÞ¼ðw;xÞ k f 0

w 0
1
ðyÞk�tððp

C
Þ�cÞððw 0; yÞÞ ¼

Pm
j¼1

P
fjðyÞ¼x k f 0

j ðyÞk
�tcðyÞ. r

Lemma 4.8. Let G ¼ h f1; . . . ; fmi be a rational semigroup. Suppose that for
each g A G, no critical value of g exists in JðGÞ. Then, we have the following:

1. Let t be a t-conformal measure. Then, we have N �
t tb t; i.e., for each

c A CðJðGÞÞ such that 0acðzÞ for each z A JðGÞ, we have ðN �
t tÞðcÞb

tðcÞ.
2. If t is a t-conformal measure satisfying the separating condition for

f f1; . . . ; fmg, then N �
t t ¼ t.

3. If t is a t-conformal measure satisfying N �
t t ¼ t, then t satisfies the sep-

arating condition for f f1; . . . ; fmg.

Proof. Let JðGÞ ¼
Pu

i¼1 Bi be a measurable partition of JðGÞ such that for
each j ¼ 1; . . . ;m and i ¼ 1; . . . ; u, we can take the well-defined inverse branches
of f �1

j on Bi. Then, for any Borel probability measure t on JðGÞ and any
c A CðJðGÞÞ, we haveð

Ntc dt ¼
ðXm

j¼1

X
fjðyÞ¼z

k f 0
j ðyÞk

�tcðyÞ dtðzÞ

¼
X
j

X
i

X
g

ð
Bi

k f 0
j ðgðzÞÞk

�tcðgðzÞÞ dtðzÞ;

where g runs over all inverse branches of f �1
j on Bi. Suppose that t is t-

conformal. Then, we haveð
Bi

k f 0
j ðgðzÞÞk

�tcðgðzÞÞ dtðzÞ ¼
ð
gðBiÞ

k f 0
j ðxÞk

�tcðxÞ dðg�ðtjBi
ÞÞðxÞ

¼
ð
gðBiÞ

k f 0
j ðxÞk

�tcðxÞ � k f 0
j ðxÞk

t
dtðxÞ

¼
ð
gðBiÞ

cðxÞ dtðxÞ:
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Hence,
Ð
Ntc dt ¼

P
j

P
i

P
g

Ð
gðBiÞ c dt, which is larger than or equal toÐ

JðGÞ c dt if 0acðzÞ for each z A JðGÞ, since JðGÞ ¼ 6m

j¼1
f �1
j ðJðGÞÞ (Lemma

1.1.4 in [S1]). Furthermore, if t is a t-conformal measure satisfying the
separating condition for f f1; . . . ; fmg, then for each c A CðJðGÞÞ, we haveÐ
Ntc dt ¼

P
j

P
i

P
g

Ð
gðBiÞ c dt ¼

Ð
JðGÞ c dt, by JðGÞ ¼ 6m

j¼1
f �1
j ðJðGÞÞ.

We now show the statement 3. Let t be a t-conformal measure sat-
isfying N �

t t ¼ t. Let c A CðJðGÞÞ be an element with cðxÞb 0 for each
x A JðGÞ. Then, by the above argument, it follows that

Ð
JðGÞ Ntc dt ¼P

j

P
i

P
g

Ð
gðBiÞ c dtb

Ð
JðGÞ c dt, where g runs over all inverse branches of f �1

j

on Bi. Since N �
t t ¼ t, we have the equality shown above. Hence, t satisfies the

separating condition for f f1; . . . ; fmg. r

Lemma 4.9. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup. Let d be the number in Lemma 3.7, tb 0 a number, and ~nnt~jj the Borel
probability measure on ~JJð ~ff Þ that is obtained in Lemma 3.6 (the unique fixed point
of L�

t~jj). Let nt :¼ ðp
C
Þ�~nnt~jj. Then, we have the following:

1. n :¼ nd satisfies N �
d n ¼ n.

2.
1

ðexpðPðtÞÞÞ l
N l

tc ! ntðcÞ � liml!y N l
t 1 in CðJðGÞÞ, where PðtÞ ¼

Pð ~ff j ~JJð ~ff Þ; t~jjÞ.
3. If t is a Borel probability measure on JðGÞ such that N �

t t ¼ t, then t ¼ d
and t ¼ n.

Proof. By Lemma 4.7, we obtain the statement 1. Since p
C
ð ~JJð ~ff ÞÞ ¼ JðGÞ

(Proposition 3.2 in [S5]), we find that ðp
C
Þ� : CðJðGÞÞ ! Cð ~JJð ~ff ÞÞ is an isometry

with respect to the supremum norms. Hence, by Lemma 3.6 and Lemma 4.7,

we find that

�
1

ðexpðPðtÞÞÞ l
N l

tc

�
l AN

is a Cauchy sequence in CðJðGÞÞ. Let c0 ¼

liml!y
1

ðexpðPðtÞÞÞ l
N l

tc. Then, by Lemma 3.6, we obtain

ðp
C
Þ�c0 ¼ lim

l!y

1

ðexpðPðtÞÞÞ l
Ll
t~jjðpCÞ

�c

¼ ~nnt~jjððpCÞ
�
cÞ � at~jj

¼ ntðcÞ � lim
l!y

Ll
t~jjðpCÞ

�1

¼ ðp
C
Þ� ntðcÞ � lim

l!y
N l

t 1

� 	
:

Hence, we obtain c0 ¼ ntðcÞ � liml!y N l
t 1.

Now, let t be a Borel probability measure on JðGÞ such that
N �

t t ¼ t. Then for any c A CðJðGÞÞ, we have tðcÞ ¼ ððN l
t Þ

�tÞðcÞ ¼ tðN l
t cÞ ¼

408 hiroki sumi



ððexpðPðtÞÞÞ lÞ � t
�

1

ðexpðPðtÞÞÞ l
N l

tc

	
for any l A N. Since

1

ðexpðPðtÞÞÞ l
N l

tc !

ntðcÞ � liml!y N l
t 1 and N �

t t ¼ t, we have t

�
1

ðexpðPðtÞÞÞ l
N l

t c

	
! ntðcÞ as

l ! y. Hence, it must be true that PðtÞ ¼ 0, otherwise, we have tðcÞ ¼ 0 for
all c or tðcÞ is not bounded, both of which produce a contradiction. Hence, it
follows that t ¼ d. Further, by the above argument, we obtain tðcÞ ¼ ndðcÞ for
any c A CðJðGÞÞ. r

Lemma 4.10. Let G ¼ h f1; f2; . . . fmi be a finitely generated expanding
rational semigroup. Then, under the notation in Lemma 4.9, we have the fol-
lowing:

1. If there exists a t-conformal measure t, then sðGÞa ta d.
2. If there exists a t-conformal measure t satisfying the separating condition

for f f1; . . . ; fmg, then t ¼ d and t ¼ n.

Proof. First, we show the statement 1. By Lemma 4.8, we have N �
t tb t.

Hence, for each c A CðJðGÞÞ such that 0acðzÞ for each z A JðGÞ, we have
tðN l

tcÞb tðcÞ for each l A N. Suppose that t > d. Then, by Lemma 3.7-1,

PðtÞ < 0. Hence, we obtain tðN l
tcÞ ¼ ðexpðPðtÞÞÞ l � t

�
N l

t t

ðexpðPðtÞÞÞ l

	
! 0 as

l ! y, by Lemma 4.9-2. Hence, tðcÞ ¼ 0 for each c A CðJðGÞÞ such that
0acðzÞ for each z A JðGÞ. This is a contradiction, since tð1Þ ¼ 1. Hence,
ta d must hold. By Lemma 4.2, we have sðGÞa t. Hence, the statement 1
holds.

Next, we show the statement 2. By Lemma 4.8-2, we have N �
t t ¼ t.

Hence, by Lemma 4.9-3, it follows that t ¼ d and t ¼ n. r

Lemma 4.11. Let G be a rational semigroup and tb 0 a number. Suppose

that 0 < HtðJðGÞÞ < y. Let t ¼
HtjJðGÞ

HtðJðGÞÞ . Then, t is a t-conformal measure.

Proof. Suppose that t ¼ 0. Then, each point z A C satisfies H 0ðfzgÞ ¼ 1.
Since we assume 0 < HtðJðGÞÞ < y, it follows that 1aaðJðGÞÞ < y. Then,
G consists of degree 1 maps and it is easy to see that t is 0-conformal.

Suppose that t > 0. Then, Ht has no point mass. Let g A G be an element.
Step 1: For a critical point c of g in JðGÞ, we have 0 ¼ tðgðfcgÞÞ ¼Ð

fcg kg 0k t
dt.

Step 2: Let W be a non-empty open set in C such that g : W ! gðWÞ is
a di¤eomorphism. Let K be a compact subset of W and c > 0 a number. Let
A be a Borel set such that AH fz A g�1ðJðGÞÞ j dðz;AÞ < cgHK V g�1ðJðGÞÞ.
Then, we show the following claim:

Claim 1. We have HtðgðAÞÞ ¼
Ð
A
kg 0k t

dH t.
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To show this claim, let e > 0 be a given number. Let K ¼
P l

i¼1 Ki be a
disjoint union of Borel sets Ki, fzigli¼1 a set with zi A Ki for each i, and x > 0 a
real number, such that:

1. 1� ea
kg 0ðzÞk
kg 0ðziÞk

a 1þ e, for each z A BðKi; xÞ, and

2. ð1� eÞkg 0ðziÞk diam Ca diam gðCÞa ð1þ eÞkg 0ðziÞk diam C, for each
subset C of BðKi; xÞ.

Let i A N ð1a ia lÞ be a fixed number. Let b be a number with 0 < b < x.
Let fUpgyp¼1 be a sequence of sets such that AVKi H6y

p¼1
Up, AVKi VUp 0j

for each p A N and diam Up a b for each p A N. Then, since b < x, we have
Up HBðKi; xÞ for each p A N. Hence, we obtain gðAVKiÞH6y

p¼1
gðUpÞ,

diam gðUpÞa ð1þ eÞkg 0ðziÞk diam Up for each p A N and
Py

p¼1ðdiam gðUpÞÞ t a
ð1þ eÞ tkg 0ðziÞk tPy

p¼1ðdiam UpÞ t. This implies that Ht
ð1þeÞkg 0ðziÞkbðgðAVKiÞÞa

ð1þ eÞ tkg 0ðziÞk tPy
p¼1ðdiam UpÞ t. Hence, we obtain Ht

ð1þeÞkg 0ðziÞkbðgðAVKiÞÞa
ð1þ eÞ tkg 0ðziÞk t

H t
bðAVKiÞ. Then, we obtain HtðgðAVKiÞÞa ð1þ eÞ tkg 0ðziÞk t�

HtðAVKiÞ, letting b ! 0. Similarly, we obtain HtðAVKiÞa ð1� eÞ�tkg 0ðziÞk�t�
HtðgðAVKiÞÞ. Hence, it follows that ð1� eÞ tkg 0ðziÞk t

H tðAVKiÞaHtðgðAV
KiÞÞa ð1þ eÞ tkg 0ðziÞk t

H tðAVKiÞ. Moreover, ð1� eÞ tkg 0ðziÞk t �HtðAVKiÞaÐ
AVKi

kg 0k t
dH t a ð1þ eÞ tkg 0ðziÞk t

H tðAVKiÞ. Hence, we obtain

HtðgðAVKiÞÞ �
ð
AVKi

kg 0k t
dH t

����
����a ðð1þ eÞ t � ð1� eÞ tÞkg 0ðziÞk t

H tðAVKiÞ:

This implies that jHtðgðAÞÞ �
Ð
A
kg 0k t

dH tja ðð1þ eÞ t � ð1� eÞ tÞ �
maxz AK kg 0ðzÞk t �

P l
i¼1 H

tðAVKiÞ. Since this inequality holds for each e > 0, it

follows that HtðgðAÞÞ ¼
Ð
A
kg 0k t

dH t. Hence, we have shown Claim 1.
Step 3: Let B be a general Borel subset of g�1ðJðGÞÞ such that g : B ! gðBÞ

is injective. Let B ¼
Pq

u¼1fcug q
Py

v¼1 Bv be a disjoint union of Borel sets
such that each cu is a critical point of g (if one exists) and for each Bv there
exists an open set Wv in C such that Bv HWv and g : Wv ! gðWvÞ is
a di¤eomorphism. Then, by Steps 1 and 2, we obtain 0 ¼ tðfgðcuÞgÞ ¼Ð
fcug kg

0k t
dt for each u, and tðgðBvÞÞ ¼

Ð
Bv
kg 0k t

dt for each v. Combining this
result with the fact that g : B ! gðBÞ is injective, it follows that tðgðBÞÞ ¼Pq

u¼1 tðfgðcuÞgÞ þ
Py

v¼1 tðgðBvÞÞ ¼
Py

v¼1

Ð
Bv
kg 0k t

dt ¼
Ð
B
kg 0k t

dt.
Hence, we have shown Lemma 4.11. r

Lemma 4.12. Let G be a rational semigroup. Let t be a t-subconformal
measure for some t A R. Suppose that supp t ¼ JðGÞ. Let g A G. Then, each
Borel subset A of g�1ðJðGÞÞ with tðAÞ ¼ 0 has no interior points with respect to
the induced topology on g�1ðJðGÞÞ.

Proof. Suppose there exists an open set U of C such that AIU V
g�1ðJðGÞÞ0j. Then, it follows that tðgðUÞÞ ¼ tðgðUÞV JðGÞÞ ¼ tðgðU V
g�1ðJðGÞÞÞÞa

Ð
UVg�1ðJðGÞÞ kg 0k t

dt ¼ 0. This is a contradiction because we as-

sume supp t ¼ JðGÞ. r
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The following proposition is needed to show Main Theorem B.

Proposition 4.13. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding
rational semigroup. Let ~ff : Sm � C ! Sm � C be the skew product map asso-
ciated with f f1; . . . ; fmg. Let d be a number in Lemma 3.7. Let n :¼ ðp

C
Þ�ð~nnd~jjÞ.

Suppose that 0 < H dðJðGÞÞ. Then, we have H dðJðGÞÞ < y, n ¼
H djJðGÞ

H dðJðGÞÞ , and

n is a d-conformal measure satisfying the separating condition with respect to
f f1; . . . ; fmg. Furthermore, f �1

i ðJðGÞÞV f �1
j ðJðGÞÞ is nowhere dense in f �1

j ðJðGÞÞ,
for each ði; jÞ with i0 j.

Proof. By Lemma 3.11 and Lemma 3.16, we obtain that n is a d-
subconformal measure, H djJðGÞ is absolutely continuous with respect to n, and

HtðJðGÞÞ < y. Let t :¼
H djJðGÞ

H dðJðGÞÞ . Let j A L1ðnÞ be the density function such

that tðAÞ ¼
Ð
A
j dn for any Borel subset A of JðGÞ. We show the following

claim:

Claim 1. We have ðj � p
C
� ~ff ÞðzÞb ðj � p

C
ÞðzÞ for almost every z A ~JJð ~ff Þ

with respect to ~nn :¼ ~nndj.

To show this claim, let j ð1a jamÞ be a number and A an open subset
of JðGÞ such that we can take a well-defined inverse branch g of f �1

j on
A. By Lemma 4.11, t is d-conformal. Hence, for each Borel subset B of A,
we have tðBÞ ¼

Ð
gðBÞ k f 0

j k
d
dt ¼

Ð
gðBÞ k f 0

j k
d
j dn. Moreover, by Lemma 3.11, we

have n is d-subconformal. Hence, we obtain tðBÞ ¼
Ð
B
j dn ¼

Ð
A
ðj � fj � gÞ �

ð1gðBÞ � gÞ dn ¼
Ð
A
ðj � fjÞ � 1gðBÞ dðg�ðnjAÞÞa

Ð
gðBÞ k f 0

j k
dððj � fjÞÞ dn. Hence, we

obtain jðxÞa ðj � fjÞðxÞ for almost every x A gðAÞ with respect to n. It fol-
lows that for each j ¼ 1; . . . ;m, we have jðxÞa ðj � fjÞðxÞ for almost every
x A f �1

j ðJðGÞÞ with respect to n. This implies that for each j ¼ 1; . . . ;m, we
have ðj � p

C
ÞðzÞa ðj � fj � pCÞðzÞ for almost every z A p�1

C
f �1
j ðJðGÞÞ with re-

spect to ~nn. Since ~JJð ~ff Þ ¼ 6m

j¼1
Smð jÞV ~JJð ~ff Þ and Smð jÞV ~JJð ~ff ÞH p�1

C
ð f �1

j ðJðGÞÞÞ
(the latter follows from p

C
~ff ððw; xÞÞ ¼ fjðxÞ ¼ fjðpCððw; xÞÞÞ for each ðw; xÞ A

Smð jÞV ~JJð ~ff Þ), it follows that ðj � p
C
ðzÞÞa ðj � p

C
� ~ff ÞðzÞ for almost every

z A ~JJð ~ff Þ with respect to ~nn. Hence, we have shown Claim 1.
By Claim 1, we have ðj � p

C
ðzÞÞa ðj � p

C
� ~ff ÞðzÞ for almost every z A ~JJð ~ff Þ

with respect to a~nn, where a is the function in Lemma 3.7. Let c ¼

j � p
C
. Then, we obtain for each n A N, cðzÞa 1

n

Pn�1
j¼0 c � ~ff jðzÞ for almost

every z with respect to a~nn. Note that by Lemma 3.6-3, the measure a~nn is ~ff -
invariant. Hence, by Birkho¤ ’s ergodic theorem (see [DGS]), we have cðzÞa

limn!y
1

n

Pn�1
j¼0 ðc � ~ff jÞðzÞ for almost every z with respect to a~nn. Since

Ð
ca d~nn ¼
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Ð
limn!y

1

n

Pn�1
j¼0 ðc � ~ff jÞðzÞa d~nnðzÞ, which follows from Birkho¤ ’s ergodic theorem

again, it follows that cðzÞ ¼ limn!y
1

n

Pn�1
j¼0 ðc � ~ff jÞðzÞ for almost every z with

respect to a~nn. Since a~nn is ergodic (Lemma 3.6-3), then there exists a constant c

such that limn!y
1

n

Pn�1
j¼0 ðc � ~ff jÞðzÞ ¼ c for almost every z with respect to a~nn.

Hence, it follows that cðzÞ ¼ c for almost every z with respect to ~nn. Since t and
n are probability measures, it follows that c ¼ 1. Hence, t ¼ n. Since N �

d n ¼ n
(Lemma 4.9-1) and t is d-conformal (Lemma 4.11), by Lemma 4.8-3 it follows
that n ¼ t is a d-conformal measure satisfying the separating condition with re-
spect to f f1; . . . ; fmg. Since supp n ¼ JðGÞ (Main Theorem A), by Lemma 4.12,
it follows that f �1

i ðJðGÞÞV f �1
j ðJðGÞÞ is nowhere dense in f �1

j ðJðGÞÞ for each
ði; jÞ with i0 j.

Hence, we have shown Proposition 4.13. r

Example 4.14. Let f1ðzÞ ¼ z2, f2ðzÞ ¼
z2

4
and f3ðzÞ ¼

z2

3
. Let G ¼

h f1; f2; f3i and ~ff : S3 � C ! S3 � C be the skew product map with respect to
f f1; f2; f3g. Then, it is easy to see Jðh f1; f2iÞ ¼ fz j 1a jzja 4g. Since
f �1
3 ðJðh f1; f2iÞÞ ¼ fz j

ffiffiffi
3

p
a jzja 2

ffiffiffi
3

p
gH Jðh f1; f2iÞ, we have JðGÞ ¼ fz j 1a

jzja 4g. Then, PðGÞ ¼ f0;ygHFðGÞ. By Theorem 2.6 in [S2], we find that
G is expanding. Furthermore, we have 0 < H 2ðJðGÞÞ < y and H 2ð f �1

1 ðJðGÞÞV
f �1
3 ðJðGÞÞÞ > 0. Hence, by Proposition 4.13, the number d in Lemma 3.7 for ~ff
satisfies d > 2.

5. Main Theorem B

In this section, we demonstrate Main Theorem B. First, we need the fol-
lowing notation.

Definition 5.1. Let G ¼ h f1; . . . ; fmi be a finitely generated rational semi-
group. Let U be a non-empty open set in C. We say that G satisfies the
open set condition with U with respect to the generator system f f1; . . . ; fmg if
f �1
j ðUÞHU for each j ¼ 1; . . . ;m and f f �1

j ðUÞgmj¼1 are mutually disjoint.

Lemma 5.2. 1. If a rational semigroup G ¼ h f1; . . . ; fmi satisfies the open set
condition with U and aJðGÞb 3, then JðGÞHU .

2. If a rational semigroup G ¼ h f1; . . . ; fmi is expanding and if G satisfies the
open set condition with U , then JðGÞHU .

Proof. By Lemma 2.3 (f ) in [S5] and Lemma 3.2, it is easy to see the
statement. r

To show Main Theorem B, we need the following key lemma.
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Lemma 5.3. Let G ¼ h f1; . . . ; fmi be a finitely generated expanding rational
semigroup satisfying the open set condition with an open set U with respect to
f f1; . . . ; fmg. Then, we have the following.

1. There exists a positive constant C such that for each r with 0 < r < diam C
and each x A JðGÞ, we have C�1rd a nðBðx; rÞÞaCrd. Furthermore, 0 <

H dðJðGÞÞ < y and dimHðJðGÞÞ ¼ dimBðJðGÞÞ ¼ d.
2. Suppose that there exists a t-conformal measure t. Then, there exists a

positive constant C0 such that for any r with 0 < r < diam C and any
x A JðGÞ, we have C�1

0 rt a tðBðx; rÞÞaC0r
t. Furthermore, we have 0 <

HtðJðGÞÞ < y and dimHðJðGÞÞ ¼ t ¼ d. Moreover, n and t are abso-
lutely continuous with respect to each other.

To show this lemma, we need several other lemmas (Lemma 5.4–Lemma
5.15). We suppose the assumption of Lemma 5.3, until the end of the proof of
Lemma 5.3.

Preparation to show Lemma 5.3.
1. First, we may assume that U VPðGÞ ¼ j. For, let V be a e0-neighborhood

of PðGÞ with respect to the hyperbolic metric on F ðGÞ. Then, for
each g A G, we have gðVÞHV , which implies that W :¼ UnV satisfies
f �1
j ðWÞHW , for each j ¼ 1; . . . ;m, and f f �1

j ðWÞgj are mutually dis-
joint. Hence we may assume the above.

Assuming that U VPðGÞ ¼ j, take a number e > 0 such that
BðU ; 2eÞVPðGÞ ¼ j. Then for each y A U and any g A G, we can take
well-defined inverse branches of g�1 on Bðy; 2eÞ.

2. Let U ¼
Pk

j¼1 Kj be a measurable partition such that for each j ¼
1; . . . ; k, we have int Kj 0j and diam Kj a

1
10 e. We take a point zj A Kj,

for each j ¼ 1; . . . ; k.
3. To show Lemma 5.3, we may assume that: for each j ¼ 1; . . . ; k and each

w A W�, if g is an inverse branch of f �1
w on Bðzj; 2eÞ, then we have

diam gðAÞa 1

10

� 	jwj
� diam A;ð3Þ

for each subset A of Bðzj; 2eÞ. For, for each n A N, Gn (see the notation in
section 2.1) satisfies JðGnÞ ¼ JðGÞ. Further, if we use nn to denote the
Borel probability measure on JðGnÞ ¼ JðGÞ constructed by the generator
system f fw j jwj ¼ ng of Gn, for which the construction method is the same
as that for n from f fjg, then nn satisfies ðNn

dn
Þ�nn ¼ nn for some dn A R.

Since n satisfies ðNn
d Þ

�n ¼ n, by Lemma 4.9 we obtain dn ¼ d and nn ¼ n.
Moreover, since G is expanding, by the Koebe distortion theorem there
exist numbers e 0 > 0 and n A N such that if g is a well-defined inverse
branch of f �1

w on Bðz; 2e 0Þ, where jwj ¼ n and z A JðGÞ, then for any
subset A of Bðz; 2e 0Þ, diam gðAÞa 1

10 diam A. Let U 0 :¼ U VBðJðGÞ; e 0Þ.
Then, for each w A f1; . . . ;mgn, f �1

w ðU 0ÞHU 0 and f f �1
w ðU 0Þgw:jwj¼n are

mutually disjoint. Hence, we may assume the above.
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4. Let r > 0 be fixed. There exists a number s A N with sb 3 such that
for each j ¼ 1; . . . ; k and each w A W� with jwjb s� 1, we have
diam gðKjÞa r, for each well-defined inverse branch g of f �1

w on Bðzj; 2eÞ.
We fix such an s. Let A be the set of all ðg;KjÞ that satisfies
j A f1; . . . ; kg, g is a well-defined inverse branch of f �1

w on Bðzj; 2eÞ for
some w A f1; . . . ;mgs, and gðKjÞVBðx; rÞ0j.

Then, we have the following:

Lemma 5.4. Bðx; rÞV JðGÞ ¼ Bðx; rÞV6ðg;KjÞ AA gðJðGÞVKjÞ.

Proof. Since JðGÞ ¼ 6m

j¼1
f �1
j ðJðGÞÞ (Lemma 2.4 in [S5]) and JðGÞHU

(Lemma 5.2), it is easy to see the statement. r

Definition 5.5. 1. Let ðg;KjÞ A A be any element such that g is an inverse
branch of f �1

w , where w ¼ ðw1; . . . ;wsÞ A f1; . . . ;mg s. Then, we decom-
pose g as g ¼ g1 � � � gs, where, for each i ¼ 1; . . . ; s, we use gi to denote the
inverse branch of f �1

wi
on Bðgiþ1 � � � gsðzjÞ; 2eÞ.

2. For each A ¼ ðg;KjÞ A A, let lðAÞ be the minimum of l A N that satisfies
3a la s and if gl � � � gsðKjÞVKi 0j, then diam g1 � � � gl�1ðKiÞa r. Note
that by (3), we have g1 � � � gl�1 is defined on Ki with gl � � � gsðKjÞVKi 0
j. Moreover, note that according to the choice of s, lðAÞ exists, for each
A A A.

Lemma 5.6. Let A ¼ ðg;KjÞ A A. If

r < minfdiam g 01ðKiÞ j ðg 0;KtÞ A A; i A f1; . . . ; kg;Ki HBðg 02 � � � g 0sðztÞ; 2eÞg;ð4Þ
then there exists an element Ki such that glðAÞ�1 � � � gsðKjÞVKi 0j and
diam g1 � � � glðAÞ�2ðKiÞ > r.

Proof. If lðAÞb 4, then it is trivial. If lðAÞ ¼ 3, then by (4), the above is
true. r

Remark 6. For the rest, we assume (4). To show Lemma 5.3, we may
make this assumption.

Definition 5.7. For any A ¼ ðg;KjÞ A A, we set

GA :¼ fðg1 � � � glðAÞ�1;KiÞ j glðAÞ � � � gsðKjÞVKi 0jg:
Further, we set G ¼ 6

A AA GA (disjoint union).
Let B1 and B2 be two elements in G with B1 ¼ ðg1 � � � glðAÞ�1;Ki1Þ A GA and

B2 ¼ ðg 01 � � � g 0lðA 0Þ�1;Ki2Þ A GA 0 , where A ¼ ðg;KjðAÞÞ A A and A 0 ¼ ðg 0;KjðA 0ÞÞ A A.
Then,

1. We write B1 @B2 if and only if Ki1 ¼ Ki2 and g1 � � � glðAÞ�1 ¼ g 01 � � � g 0lðA 0Þ�1

on BðglðAÞ � � � gsðzjðAÞÞ; 2eÞVBðg 0lðA 0Þ � � � g 0sðzjðA 0ÞÞ; 2eÞ. Note that this @ is

an equivalence relation on G, by (3) and the uniqueness theorem.
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2. We write B1 2B2 if and only if

g1 � � � glðAÞ�1ðint Ki1ÞV g 01 � � � g 0lðA 0Þ�1ðint Ki2Þ0j

and lðAÞa lðA 0Þ.

For any two elements B and B 0 in G, we write B22B 0 if and only if there
exists a sequence fBlgv

l¼1 in G such that B ¼ B1 2 � � �2Bv ¼ B 0.

Lemma 5.8. Let B1 and B2 be two elements in G with B1 ¼ ðg1 � � � glðAÞ�1;

Ki1Þ A GA and B2 ¼ ðg 01 � � � g 0lðA 0Þ�1;Ki2Þ A GA 0 , where A ¼ ðg;KjðAÞÞ A A and A 0 ¼
ðg 0;KjðA 0ÞÞ A A. Suppose that B1 2B2. Then, we have the following.

1. If lðAÞ ¼ lðA 0Þ, then B1 @B2.
2. If lðAÞ < lðA 0Þ, then

(a) int Ki1 V g 0lðAÞ � � � g 0lðA 0Þ�1ðint Ki2Þ0j and
(b) g1 � � � glðAÞ�1 ¼ g 01 � � � g 0lðAÞ�1 on BðglðAÞ � � � gsðzjðAÞÞ; 2eÞVBðg 0lðAÞ � � �

g 0sðzjðA 0ÞÞ; 2eÞ.

Proof. First, we show 2. Under the assumption of 2, suppose that
g1 � � � glðAÞ�1 is an inverse branch of f �1

w1
� � � f �1

wlðAÞ�1
and that g 01 � � � g 0lðA 0Þ�1 is an

inverse branch of f �1
w 0
1
� � � f �1

w 0
lðA 0 Þ�1

. By the open set condition, it follows that

wj ¼ w 0
j , for each j ¼ 1; . . . ; lðAÞ � 1. Hence, 2a holds.

Next, take a point z A g1 � � � glðAÞ�1ðint Ki1ÞV g 01 � � � g 0lðA 0Þ�1ðint Ki2Þ. Let a :¼
fwlðAÞ�1

� � � fw1
ðzÞ. Then, we have a A int Ki1 V g 0lðAÞ � � � g 0lðA 0Þ�1ðint Ki2Þ. Further-

more, each of g1 � � � glðAÞ�1 and g 01 � � � g 0lðAÞ�1 is a well-defined inverse branch of

ð fwlðAÞ�1
� � � fw1

Þ�1 on Bða; eÞ and maps a to z. Hence, they are equal on Bða; eÞ.
By the uniqueness theorem, we obtain 2b.

We can show 1 using the same method as above. r

Lemma 5.9. If B and B 0 are two elements of G such that B22B 0 and
B 0 22B, then B@B 0.

Proof. There exists a sequence fBjgvj¼1 in G such that B ¼ B1 2 � � �2Bu ¼
B 0 2 � � �2Bv ¼ B. Suppose Bj A GAj

, for each j ¼ 1; . . . ; v. Then we have
lðA1Þa � � �a lðAvÞ ¼ lðA1Þ. By Lemma 5.8, we obtain Bj @Bjþ1, for each
j ¼ 1; . . . ; u� 1. r

Lemma 5.10. If B1 @B2, B3 @B4 and B1 2B3, then B2 2B4.

Proof. This is easy to see, from the definitions of ‘‘@’’ and ‘‘2’’, by using
(3). r

Definition 5.11. For any B A G, we use ½B� A G=@ to denote the equiva-
lence class of B, with respect to the equivalence relation @ in G.

Let ½B1� and ½B2� be two elements of G=@, where B1;B2 A G. We write
½B1�2 ½B2� if and only if B1 2B2. Note that this is well defined by Lemma
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5.10. Furthermore, we write ½B1�a ½B2� if and only if B1 22B2. Note that
this is also well defined by Lemma 5.10 and that the ‘‘a’’ determines a partial
order in G=@, by Lemma 5.9.

Lemma 5.12. Let q A N be an integer with qb 2. Let fBjgqj¼1 be a sequence
in G such that B1 2 � � �2Bq and Bj SBjþ1, for each j ¼ 1; . . . ; q� 1. Suppose
that for each j ¼ 1; . . . ; q, we have Bj A GAj

, Aj ¼ ðg j;Ktj Þ A A and Bj ¼
ðg j

1 � � � g
j

lðAjÞ�1;Kij Þ. Then, we have the following.

1. g
q

lðA1Þ � � � g
q

lðAqÞ�1ðKiqÞHB
�
Ki1 ;

Pq�1
j¼1

1
10

� � j 1
10 e
�

2. g11 � � � g1lðA1Þ�1 ¼ g
q
1 � � � g

q

lðA1Þ�1 on V :¼ Bðg1lðA1Þ � � � g
1
s ðzt1Þ; 2eÞVBðgq

lðA1Þ � � �
gqs ðztqÞ; 2eÞ. (Note that by 1, we have V 0j.)

Proof. We will show the statement by induction on q. If q ¼ 2, then
the statement follows from Lemma 5.8 and (3). Let qb 3. Suppose that the
statement holds for each q 0 with 2a q 0 a q� 1. By Lemma 5.8, we have
lðAjÞ < lðAjþ1Þ, for each j ¼ 1; . . . ; q� 1. By the hypothesis of induction, we
have the following claim.

Claim 1.
1. g

q

lðA2Þ � � � g
q

lðAqÞ�1ðKiqÞHB
�
Ki2 ;

Pq�2
j¼1

1
10

� � j 1
10 e
�
.

2. g21 � � � g2lðA2Þ�1 ¼ g
q
1 � � � g

q

lðA2Þ�1 on Bðg2lðA2Þ � � � g
2
s ðzt2Þ; 2eÞVBðgq

lðA2Þ � � � g
q
s ðztqÞ;

2eÞ.

Combining Claim 1 with (3), we obtain

g
q

lðA1Þ � � � g
q

lðAqÞ�1ðKiqÞHB g2lðA1Þ � � � g
2
lðA2Þ�1ðKi2Þ;

Xq�1

j¼2

1

10

� 	j
1

10
e

 !
:ð5Þ

Moreover, by Lemma 5.8 and (3), we have g2lðA1Þ � � � g
2
lðA2Þ�1ðKi2ÞHB Ki1 ;

1
10

1
10 e

� �
.

Hence, we obtain

g
q

lðA1Þ � � � g
q

lðAqÞ�1ðKiqÞHB Ki1 ;
Xq�1

j¼1

1

10

� 	j
1

10
e

 !
:ð6Þ

Hence, the statement 1 in our lemma holds for q.
Next, we will show that the statement 2 in our lemma holds for q. Let us

consider 2 in Claim 1. By the open set condition, for each j ¼ 1; . . . ; lðA1Þ � 1,
there exists a number aj A f1; . . . ;mg such that each of g2j and g

q
j is an inverse

branch of f �1
aj

. Hence, we obtain

g2lðA1Þ � � � g
2
lðA2Þ�1 ¼ g

q

lðA1Þ � � � g
q

lðA2Þ�1ð7Þ
on V0 :¼ Bðg2lðA2Þ � � � g

2
s ðzt2Þ; 2eÞVBðgq

lðA2Þ � � � g
q
s ðztqÞ; 2eÞ.

Let b :¼ g2lðA1Þ � � � g
2
lðA2Þ�1 ¼ g

q

lðA1Þ � � � g
q

lðA2Þ�1 on V0. Then by 2 in Claim 1, we

obtain g21 � � � g2lðA1Þ�1 ¼ g
q
1 � � � g

q

lðA1Þ�1 on bðV0Þ. Hence, by the uniqueness theo-
rem, we get

416 hiroki sumi



g21 � � � g2lðA1Þ�1 ¼ g
q
1 � � � g

q

lðA1Þ�1ð8Þ
on Bðg2lðA1Þ � � � g

2
s ðzt2Þ; 2eÞVBðgq

lðA1Þ � � � g
q
s ðztqÞ; 2eÞ.

Moreover, by Lemma 5.8, we have the following claim.

Claim 2.
1. int Ki1 V g2lðA1Þ � � � g

2
lðA2Þ�1ðint Ki2Þ0j.

2. g11 � � � g1lðA1Þ�1 ¼ g21 � � � g2lðA1Þ�1 on Bðg1lðA1Þ � � � g
1
s ðzt1Þ; 2eÞVBðg2lðA1Þ � � � g

2
s ðzt2Þ;

2eÞ.

Combining 1 in Claim 2 with (3), we obtain

dðg1lðA1Þ � � � g
1
s ðzt1Þ; g2lðA1Þ � � � g

2
s ðzt2ÞÞa

1

5
e:ð9Þ

Furthermore, by (6) and (3), we obtain

dðgq
lðA1Þ � � � g

q
s ðztqÞ; g1lðA1Þ � � � g

1
s ðzt1ÞÞa

1

10
eþ 1

10
eþ

Xq�1

j¼1

1

10

� 	j
1

10
ea

3

10
e:ð10Þ

Hence, by (9) and (10), we get W :¼ 7
j¼1;2;q

Bðg j

lðA1Þ � � � g
j
s ðztj Þ; 2eÞ0j. By 2

in Claim 2 and (8), then on W , g11 � � � g1lðA1Þ�1 ¼ g
q
1 � � � g

q

lðA1Þ�1. Hence, by the

uniqueness theorem, it follows that g11 � � � g1lðA1Þ�1 ¼ g
q
1 � � � g

q

lðA1Þ�1 on Bðg1lðA1Þ � � �
g1s ðzt1Þ; 2eÞVBðgq

lðA1Þ � � � g
q
s ðztqÞ; 2eÞ. Hence, the statement 2 in our lemma holds

for q. Hence, the induction is completed. r

Lemma 5.13. Using the same assumption as for Lemma 5.12, it holds that

g
q

lðA1Þ � � � g
q
s ðKtqÞHB Ki1 ;

1
5 e

� �
.

Proof. By Lemma 5.12 and (3), we obtain

g
q

lðA1Þ � � � g
q
s ðKtqÞHB Ki1 ;

Xy
j¼1

1

10

� 	j
 !

1

10
eþ 1

10
e

 !
HB Ki1 ;

1

5
e

� 	
: r

Definition 5.14. Let f½m1�; . . . ; ½mp�g be the set of all minimal elements of
ðG=@;aÞ, where, for each i ¼ 1; . . . ; p, mi A GRi

, Ri ¼ ðg i;KuiÞ A A and mi ¼
ðg i1 � � � g ilðRiÞ�1;KviÞ. Furthermore, for any i ¼ 1; . . . ; p, we use h i : p�1

C
ðBðg ilðRiÞ � � �

g isðzuiÞ; 2eÞÞ ! Sm � C to denote the inverse branch of ð ~ff lðRiÞ�1Þ�1 such that
h iððw; yÞÞ ¼ ðwiw; g i1 � � � g ilðRiÞ�1ðyÞÞ for each ðw; yÞ A p�1

C
ðBðg ilðRiÞ � � � g

i
sðzuiÞ; 2eÞÞ,

where wi A W� is a word satisfying jwij ¼ lðRiÞ � 1 and g i1 � � � g ilðRiÞ�1 is an inverse
branch of f �1

wi .

Lemma 5.15. 1. p�1
C
ðBðx; rÞÞV ~JJð ~ff ÞH6p

i¼1
h i
�
p�1
C

�
B Kvi ;

1
5 e

� ��
V ~JJð ~ff Þ

�
.

2. Bðx; rÞV JðGÞH6p

i¼1
g i1 � � � g ilðRiÞ�1

�
B Kvi ;

1
5 e

� �
V JðGÞ

�
.
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Proof. Let ðw; zÞ A p�1
C
ðBðx; rÞÞV ~JJð ~ff Þ be a point. By Lemma 5.2, there

exists a number j such that p
C
~ff sððw; zÞÞ A Kj. Let h : p�1

C
Bðzj; 2eÞ ! Sm � C

be an inverse branch of ð ~ff sÞ�1 such that hððw 0; x 0ÞÞ ¼ ððwjsÞ � w 0; gðx 0ÞÞ where g

is an inverse branch of f �1
wjs . Then, we have ðw; zÞ A hðp�1

C
ðBðzj ; 2eÞÞÞ and A :¼

ðg;KjÞ A A. Let B ¼ ðg1 � � � glðAÞ�1;Ki1Þ A GA be an element. Then, there exists a
number i with 1a ia p such that ½mi�a ½B�. We will show the following claim:

Claim 1. ðw; zÞ A h i
�
p�1
C

�
B Kvi ;

1
5 e

� ��
V ~JJð ~ff Þ

�
.

To show this claim, we consider the following two cases:

Case 1. B@mi

Case 2. There exists a sequence ðBjÞqj¼1 in G such that mi ¼ B1 2B2 2

� � �2Bq ¼ B and Bj SBjþ1 for each j ¼ 1; . . . q� 1.

Suppose that we have Case 2. Let y ¼ p
C
ð ~ff sððw; zÞÞÞ A Kj V JðGÞ.

Then, we have z ¼ gðyÞ ¼ g1 � � � glðRiÞ�1 � glðRiÞ � � � gsðyÞ. By Lemma 5.13, we have

glðRiÞ � � � gsðyÞ A B Kvi ;
1
5 e

� �
V JðGÞ. Furthermore, by Lemma 5.12-2, we have

g1 � � � glðRiÞ�1 ¼ g i1 � � � g ilðRiÞ�1 on B Kvi ;
1
5 e

� �
. Combining this with B Kvi ;

1
5 e

� �
V

U 0j and the open set condition, we get w j ðlðRiÞ � 1Þ ¼ wi. By these ar-

guments, we obtain ðw; zÞ ¼ h ið ~ff lðRiÞ�1ððw; zÞÞÞ A h i
�
p�1
C

�
B Kvi ;

1
5 e

� �
V ~JJð ~ff Þ

�
.

Suppose that we have Case 1. Then, by the open set condition, the
statement in Claim 1 is true. Hence, we have shown Claim 1.

By Claim 1, it follows that the statement of our lemma is true. r

We now demonstrate Lemma 5.3.

Proof of Lemma 5.3. Let A ¼ ðg;KjÞ A A and B ¼ ðg1 � � � glðAÞ�1;KiÞ A GA.
By Lemma 5.6 and Remark 6, there exists a number u A N with 1a ua k such
that glðAÞ�1 � � � gsðKjÞVKu 0j and diam g1 � � � glðAÞ�2ðKuÞ > r. Then, by the Koebe

distortion theorem, there exists a positive constant C1 ¼ C1ðminj diam Kj; eÞ,
which is independent of r, s and x A JðGÞ, such that kðg1 � � � glðAÞ�2Þ

0ðzÞkbC1r
for each z A BðglðAÞ�1 � � � gsðzjÞ; eÞ. Hence, there exists a positive constant C2 ¼
C2ðC1;GÞ such that

kðg1 � � � glðAÞ�1Þ
0ðzÞkbC2r;

for each z A BðglðAÞ � � � gsðzjÞ; eÞ. Combining this with

Ki HB glðAÞ � � � gsðzjÞ;
1

5
e

� 	
;

which follows from (3), we obtain kðg1 � � � glðAÞ�1Þ
0ðzÞkbC2r, for each z A Ki.

Hence, it follows that there exists positive constant C3, which is independent of r,
s and x A JðGÞ, such that
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meas2ðg1 � � � glðAÞ�1ðint KiÞÞbC3r
2;ð11Þ

where meas2 denotes the 2-dimensional Lebesgue measure. We now show the
following claim:

Claim. g i1 � � � g ilðRiÞ�1ðint KviÞHBðx; 3rÞ, for each i ¼ 1; . . . ; p.

To show this claim, since g i1 � � � g isðKuiÞVBðx; rÞ0j and g ilðRiÞ � � � g
i
sðKuiÞV

Kvi 0j, we obtain g i1 � � � g ilðRiÞ�1ðKviÞVBðx; 2rÞ0j. Combining this with the fact

that diamðg i1 � � � g ilðRiÞ�1ðKviÞÞa r, it follows that the above claim holds.
Since f½m1�; . . . ; ½mp�g is the set of minimal elements of ðG=@;aÞ, we find that

fg i1 � � � g ilðRiÞ�1ðint KviÞg
p
i¼1 are mutually disjoint. Hence, by (11) and the claim,

we obtain

pa
meas2ðBðx; 3rÞÞ

C3r2
aC4;ð12Þ

where, C4 is a positive constant independent of r, s and x A JðGÞ. Furthermore,
by the definition of lðAÞ, we have diam g1 � � � glðAÞ�1ðKiÞa r. Hence, by the
Koebe distortion theorem, there exists a positive constant C5, which is inde-
pendent of r and x A JðGÞ, such that

kðg1 � � � glðAÞ�1Þ
0ðzÞkaC5r;ð13Þ

for each z A B Ki;
1
5 e

� �
. Hence, by Lemma 5.15, Lemma 3.10, Lemma 4.4, (12)

and (13), we obtain

nðBðx; rÞÞ ¼ ~nnðp�1
C
ðBðx; rÞÞV ~JJð ~ff ÞÞ

a
Xp
i¼1

~nn h i p�1
C

B Kvi ;
1

5
e

� 	� 	
V ~JJð ~ff Þ

� 	� 	

¼
Xp
i¼1

ð
p�1

C
ðBðKvi

; ð1=5ÞeÞÞV ~JJð ~ff Þ
kðg i1 � � � g ilðRiÞ�1Þ

0ðp
C
ðzÞÞkd

d~nnðzÞ

aC4C
d
5 r

d:

Similarly, if t is a t-conformal measure, then by Lemma 5.15, Lemma 4.3, (12),
and (13), we obtain

tðBðx; rÞÞ ¼ tðBðx; rÞV JðGÞÞ

a
Xp
i¼1

t g i1 � � � g ilðRiÞ�1 B Kvi ;
1

5
e

� 	
V JðGÞ

� 	� 	

¼
Xp
i¼1

ð
BðKvi

; ð1=5ÞeÞVJðGÞ
kðg i1 � � � g ilðRiÞ�1Þ

0k t
dt

aC4 � Ct
5 � rt:
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By Lemma 3.11 and Lemma 3.16, we find that a positive constant C 0 exists such
that for each r with 0 < r < diam C and x A JðGÞ, we have nðBðx; rÞÞbC 0rd.
Hence, it follows that a positive constant C6 exists such that for each r with
0 < r < diam C and each x A JðGÞ, we have C�1

6 rd a nðBðx; rÞÞaC6r
d. Hence,

by Proposition 2.2 in [F] and Main Theorem A, we obtain 0 < H dðJðGÞÞ < y
and dimHðJðGÞÞ ¼ dimBðJðGÞÞ ¼ d.

Similarly, if t is a t-conformal measure, then by Lemma 4.2, t is t-
subconformal. By Lemma 3.16, we find that a positive constant C7 exists such
that for each r > 0 and x A JðGÞ, we have tðBðx; rÞÞbC7r

t. Hence, it follows
that a positive constant C8 exists such that for each r > 0 and x A JðGÞ, we have
C�1

8 rt a tðBðx; rÞÞaC8r
t. Hence, by Proposition 2.2 in [F], we obtain 0 <

HtðJðGÞÞ < y and dimHðJðGÞÞ ¼ t ¼ d. Then, we find that a positive constant
C9 exists such that for each x A JðGÞ and each r > 0, we have C�1

9 tðBðx; rÞÞa
nðBðx; rÞÞaC9tðBðx; rÞÞ. Hence, by the Besicovitch covering lemma (p294 in
[Pe]), we find that n and t are absolutely continuous with respect to each other.
Hence, we have shown Lemma 5.3. r

We now demonstrate Main Theorem B.

Proof of Main Theorem B. By Lemma 5.3, we find a positive constant
C exists such that for each r with 0 < r < diam C and each x A JðGÞ, we have
C�1rd a nðBðx; rÞÞaCrd. Furthermore, dimHðJðGÞÞ ¼ dimBðJðGÞÞ ¼ sðGÞ ¼
s0ðGÞ ¼ d. Combining this with Main Theorem A, we see that for each x A
CnðAðGÞUPðGÞÞ, we have dimHðJðGÞÞ ¼ SðxÞ ¼ TðxÞ ¼ d.

By Lemma 5.3 and Proposition 4.13, we obtain n ¼
H djJðGÞ

H dðJðGÞÞ , n is a d-

conformal measure satisfying the separating condition for f f1; . . . ; fmg, and
f �1
i ðJðGÞÞV f �1

j ðJðGÞÞ is nowhere dense in f �1
j ðJðGÞÞ for each ði; jÞ with i0 j.

Let t be a t-conformal measure. Then, by Lemma 5.3, we have t ¼ d and
t is absolutely continuous with respect to n. Since n satisfies the separating
condition for f f1; . . . ; fmg, it follows that t also satisfies the separating condition
for f f1; . . . ; fmg. Combining this with Lemma 4.10-2, we obtain t ¼ n.

Hence, we have shown Main Theorem B. r

6. Examples

Example 6.1. 1. Let G ¼ h f1; f2i where f1ðzÞ ¼ z2 and f2ðzÞ ¼ 2:3ðz� 3Þþ
3. Then, we can see easily that fjzj < 0:9gHFðGÞ and G is expanding.
By the corollary 3.17, we get

dimBðJðGÞÞa log 3

log 1:8
< 2:

In particular, JðGÞ has no interior points. In [S3], it was shown that if a
finitely generated rational semigroup satisfies the open set condition with
an open set U , then the Julia set is equal to the closure of the open set
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U or has no interior points. Note that the fact that the Julia set of the
above semigroup G has no interior points was shown by using analytic
quantity only. It appears to be true that G does not satisfy the open set
condition.

2. Let G ¼ z3

4
; z2 þ 8

� �
. Then, we can easily see that fjzj < 2gHF ðGÞ

and G is expanding. Hence, we have

dimB JðGÞa log 5

log 3
< 2:

In particular, JðGÞ has no interior points.

Example 6.2. Let p1, p2 and p3 A C be mutually distinct points such that
p1p2 p3 makes a regular triangle. Let U be the inside part of the regular triangle.
Let fiðzÞ ¼ 2ðz� piÞ þ pi for each i ¼ 1; 2; 3. Let Dðx; rÞ be a Euclidean disk

with radius r in Un63

i¼1
f �1
i ðUÞ, where x denotes the barycenter of the regu-

lar triangle p1p2 p3. Let g be a polynomial such that JðgÞ ¼ qDðx; rÞ. Let

f4ðzÞ ¼ gsðzÞ, where s A N is a large number such that f �1
4 ðUÞHUn63

i¼1
f �1
i ðUÞ.

Let G ¼ h f1; f2; f3; f4i. Then, G satisfies the open set condition with U with
respect to f fig. Furthermore, G is hyperbolic. Hence, G is expanding, by
Theorem 2.6 in [S2]. Hence, G satisfies the assumption in Main Theorem B.
(Note that Jðh f1; f2; f3iÞ is the Sierpiński gasket.)

Example 6.3. For any b with 0 < ba 0:1, there exists an a with 0:2 < aa 1
such that G ¼ haðz� bÞ3 þ b; z2i satisfies that ð1ÞG is expanding, ð2ÞG satisfies

the open set condition with U ¼ z A C
��jz� bj < 1ffiffiffi

a
p ; jzj > 1

� �
, ð3ÞJðGÞ is con-

nected, and ð4ÞJðGÞ is porous (hence d ¼ dimHðJðGÞÞ ¼ dimBðJðGÞÞ < 2).
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