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Abstract

Let G be the Green function for a domain DHRd with db 3. The Martin

boundary of D and the 3G inequality:

Gðx; yÞGðy; zÞ
Gðx; zÞ aAðjx� yj2�d þ jy� zj2�dÞ for x; y; z A D

are studied. We give the 3G inequality for a bounded uniformly John domain D,

although the Martin boundary of D need not coincide with the Euclidean bound-

ary. On the other hand, we construct a bounded domain such that the Martin

boundary coincides with the Euclidean boundary and yet the 3G inequality does not

hold.

1. Introduction

For a bounded Lipschitz domain DHRd with db 3, Cranston, Fabes and
Zhao [13] proved the following 3G inequality:

Gðx; yÞGðy; zÞ
Gðx; zÞ aA0ðjx� yj2�d þ jy� zj2�dÞ for x; y; z A D;ð1Þ

where G is the Green function for D and A0 is a positive constant depending
only on D. They used (1) for the conditional gauge theorem and the Schrö-
dinger equation. Their proof is based on the boundary Harnack principle, a
comparison principle among positive harmonic functions vanishing on a portion
of the boundary ([6, 15, 18]). The boundary Harnack principle also yields the
coincidence of the Martin boundary of D and the Euclidean boundary ([16]).
So, one might think that there is a relationship between the 3G inequality and the
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coincidence of the Martin and the Euclidean boundaries. We shall however see
that there is no direct connection between them. We shall prove the 3G in-
equality for a uniformly John domain, whose Martin boundary need not coincide
with the Euclidean boundary (Theorem 1). On the other hand, we shall provide
an example of a bounded domain in Rd with db 3, whose Martin boundary
coincides with the Euclidean boundary and for which the 3G inequality fails to
hold (Proposition 2).

Throughout the paper, let D be a bounded domain in Rd , db 3, and let
dDðxÞ ¼ distðx; qDÞ. For x; y A D, we define the internal metric or the inner
diameter distance rDðx; yÞ by

rDðx; yÞ ¼ inffdiamðgÞg;

where the infimum is taken over all curves g connecting x and y in D and
diamðgÞ stands for the diameter of g. The inner length distance lDðx; yÞ is
defined similarly by lDðx; yÞ ¼ infflðgÞg, where the infimum is taken over all
curves g connecting x and y in D and lðgÞ stands for the length of g. Obviously
jx� yja rDðx; yÞa lDðx; yÞ. If jx� yjamaxfdDðxÞ; dDðyÞg, then jx� yj ¼
rDðx; yÞ ¼ lDðx; yÞ. We say that D is a uniformly John domain if there exists
a constant A1 b 1 such that each pair of points x; y A D can be connected by a
curve gHD for which

minfjx� zj; jz� yjgaA1dDðzÞ for all z A g;

diamðgÞaA1rDðx; yÞ
ð2Þ

(Balogh and Volberg [7, 8]). We say that D is an inner uniform domain if there
exists a constant A2 b 1 such that each pair of points x; y A D can be connected
by a curve gHD for which

minflðgðx; zÞÞ; lðgðz; yÞÞgaA2dDðzÞ for all z A g;

lðgÞaA2lDðx; yÞ;

where gðx; zÞ is the subarc of g connecting x and z (Bonk, Heinonen and Koskela
[11]). In view of Väisälä [17], the family of uniformly John domains and that of
inner uniform domains coincide.

Under some additional assumptions, such as the the uniform perfectness
of the boundary or the existence of a strong barrier, Balogh-Volberg and Bonk-
Heinonen-Koskela studied the boundary Harnack principle and the Martin
boundary for these domains. In [4] Mizutani and the authors gave the boundary
Harnack principle and identified the Martin boundary of a bounded uniformly
John domain without any other additional assumptions. The Martin boundary
is the ideal boundary with respect to the internal metric rDðx; yÞ; it need not be
homeomorphic to the Euclidean boundary. In this note we show the following.

Theorem 1. Let D be a bounded uniformly John domain in Rd with
db 3. Then the 3G inequality (1) holds.
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In Section 3 we shall construct a bounded domain in Rd with db 3, such
that the Martin boundary coincides with the Euclidean boundary and yet the 3G
inequality does not hold.

Remark 1. There is a significant di¤erence between the planar case and
the case db 3. For the planar case Bass and Burdzy [10] established the 3G
inequality (with suitable modification of the right hand side) for an arbitrary
bounded domain.

2. Proof of Theorem 1

We shall use the following notation as in [4]. By the symbol A we denote a
positive constant depending only on the dimension d, whose value is unimportant
and may change even in the same line. We shall say that two positive functions
f1 and f2 are comparable, written f1A f2, if and only if there exists a constant
Ab 1 such that A�1f1 a f2 aAf1. The constant A will be called the constant of
comparison. By Bðx; rÞ we denote the open ball with center at x and radius r.

Let D� be the completion of D with respect to the internal metric. That
is, D� is the equivalence class of all rD-Cauchy sequences with equivalence
relation ‘‘@’’, where we say fxjg@ fyjg if fxjgU fyjg is a rD-Cauchy sequence.
The completion D� is a compact space. Let q�D ¼ D�nD, the boundary with
respect to rD. Take x� A D�. Suppose x� is represented by a rD-Cauchy se-
quence fxjg. Since fxjg is also a usual Cauchy sequence, it follows that xj
converges to some point x A D. The point x is independent of the represen-
tative sequence fxjg and uniquely determined by x�. We say that x� lies over
x A D. If x A D, then x and x� coincide. Define the projection p : D� ! D by
pðx�Þ ¼ x. Let Brðx�; rÞ be the open connected component of DVBðpðx�Þ; rÞ
which can be connected to x� in itself, i.e. for every x A Brðx�; rÞ there is an arc
gHBrðx�; rÞ starting from x and converging to x�. By definition rDðx�; xÞ < 2r
for x A Brðx�; rÞ; in other words

if rDðx�; xÞb 2r; then x A DnBrðx�; rÞ:ð3Þ
Let x� A q�D. Observe from (2) that

if there exists y A D with rDðx�; yÞb 2r; then there exists x A Brðx�; rÞ
with dDðxÞAr:

ð4Þ

In [4] Mizutani and the authors proved the following.

Theorem A. Let D be a bounded uniformly John domain. Then the Martin
compactification of D is homeomorphic to D� and each boundary point x� A q�D is
minimal.

This theorem was deduced as a corollary to a uniform boundary Harnack
principle, whose proof is based on the following estimate of the Green function
(cf. [3, Lemma 3] and [4, Lemma 3.2]).
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Lemma A. Let x� A q�D. Then

Gðx; yÞ
Gðx 0; yÞA

Gðx; y 0Þ
Gðx 0; y 0Þ for x; x 0 A Brðx�; rÞ and y; y 0 A DnBrðx�; 6rÞ

with constant comparison depending only on D.

In [4, Lemma 3.2], the above estimate was given actually for the Green
function for the intersection of D and Brðx�;ArÞ with A large enough. However,
for the case db 3, we see that the same estimate holds for the Green function for
D itself.

We also need the following lemma whose proof is easy and left to the reader.

Lemma 1. Let x; y A D. Then Gðx; yÞaArDðx; yÞ
2�d . Moreover, if

dDðxÞbA�1rDðx; yÞ and dDðyÞbA�1rDðx; yÞ, then Gðx; yÞbA�1rDðx; yÞ
2�d .

Proof of Theorem 1. We have observed jx� yja rDðx; yÞ. So, let us
prove the following slightly stronger form of the 3G inequality.

Gðx; yÞGðy; zÞ
Gðx; zÞ aAðrDðx; yÞ

2�d þ rDðy; zÞ
2�dÞ for x; y; z A D:ð5Þ

We will prove (5) according to the line of Bass’ proof of the 3G inequality. See
[9, Theorem 3.6] and its correction. Let c1 ¼ 1

39 and c2 ¼ 1
13 c1. By symmetry we

may assume that

rDðx; yÞa rDðy; zÞ:ð6Þ

Case 1. rDðx; yÞb c1rDðx; zÞ. Let r ¼ rDðx; zÞ. If dDðxÞb c2r, then we
let x1 ¼ x. If dDðxÞ < c2r, then we take x1 as follows: Let x 0 A qD with
jx� x 0j ¼ dDðxÞ. Since the line segment xx 0 is included in DVBðx 0; c2rÞ, we find
x� A q�D lying over x 0 such that x A Brðx�; c2rÞ. Then

rDðx�; yÞb rDðx; yÞ � rDðx; x�Þb ðc1 � c2Þr ¼ 12c2r;

rDðx�; zÞb rDðx; zÞ � rDðx; x�Þb ð1� c2Þr > 12c2r:

By (4) we can take x1 A Brðx�; c2rÞ with dDðx1ÞAc2r. Then x; x1 A Brðx�; c2rÞ
and y; z A DnBrðx�; 6c2rÞ by (3), so that Lemma A yields

Gðx; yÞ
Gðx1; yÞ

A
Gðx; zÞ
Gðx1; zÞ

:

Similarly, if dDðzÞb c2r, then we let z1 ¼ z. If dDðzÞ < c2r, then we take z 0 A qD
with jz� z 0j ¼ dDðzÞ and z� A q�D lying over z 0 such that z A Brðz�; c2rÞ. By (6)

rDðz�; yÞb rDðz; yÞ � rDðz; z�Þb ðc1 � c2Þr ¼ 12c2r;

rDðz�; x1Þb rDðx; zÞ � rDðx; x1Þ � rDðz; z�Þb ð1� 2c2Þr > 12c2r:
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Hence we find z1 A Brðz�; c2rÞ such that dDðz1ÞAc2r by (4). Then z; z1 A
Brðz�; c2rÞ and y; x1 A DnBrðz�; 6c2rÞ, so that Lemma A yields

Gðy; zÞ
Gðx1; zÞ

A
Gðy; z1Þ
Gðx1; z1Þ

:

Hence

Gðx; yÞGðy; zÞ
Gðx; zÞ A

Gðx1; yÞGðy; z1Þ
Gðx1; z1Þ

:

Now observe that dDðx1ÞAdDðz1ÞArDðx1; z1ÞAr, so that Gðx1; z1ÞAr2�d by
Lemma 1. Also, rDðx1; yÞArDðx; yÞb c1r and rDðy; z1ÞArDðy; zÞb rDðx; yÞ
by (6). Hence Lemma 1 yields

Gðx; yÞGðy; zÞ
Gðx; zÞ aA

rDðx; yÞ
2ð2�dÞ

r2�d
aArDðx; yÞ

2�d :

Thus (5) holds in this case.

Case 2. rDðx; yÞ < c1rDðx; zÞ. Let s ¼ rDðx; yÞ. By connectedness there
is w A D with rDðx;wÞ ¼ s=c1. Then

rDðy;wÞb rDðx;wÞ � rDðx; yÞ ¼
1

c1
� 1

� �
s > s ¼ rDðx; yÞ ¼ c1rDðx;wÞ;ð7Þ

so that Case 1 applies to the triplet x, y, w. Hence

Gðx; yÞGðy;wÞ
Gðx;wÞ aArDðx; yÞ

2�d :ð8Þ

We are now going to replace w with z.

Subcase 2a. s ¼ rDðx; yÞ > 1
2 dDðyÞ. Let y 0 A qD with jy� y 0j ¼ dDðyÞ.

Since the line segment yy 0 is included in DVBðy 0; 2sÞ, we find y� A q�D lying
over y 0 such that rDðy; y�Þ ¼ dDðyÞ < 2s. Then x; y A Brðy�; 3sÞ. Observe from
(7) that

rDðy�;wÞb rDðy;wÞ � rDðy; y�Þb 1

c1
� 3

� �
s ¼ 36s;

rDðy�; zÞb rDðx; zÞ � rDðx; yÞ � rDðy; y�Þb 1

c1
� 3

� �
s ¼ 36s;

so that w; z A DnBrðy�; 18sÞ by (3). Lemma A implies

Gðy;wÞ
Gðx;wÞA

Gðy; zÞ
Gðx; zÞ ;
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which together with (8) yields

Gðx; yÞGðy; zÞ
Gðx; zÞ A

Gðx; yÞGðy;wÞ
Gðx;wÞ aArDðx; yÞ

2�d :

Subcase 2b. s¼ rDðx; yÞa 1
2 dDðyÞ. Then Gðx; yÞAjx� yj2�d¼ rDðx; yÞ

2�d

by Lemma 1. If furthermore jy� zj > 3
4 dDðyÞ, then Gð� ; zÞ is positive and

harmonic in B y; 34 dDðyÞ
� �

, so that the Harnack inequality shows Gðx; zÞAGðy; zÞ
and hence

Gðx; yÞGðy; zÞ
Gðx; zÞ AGðx; yÞArDðx; yÞ

2�d :

If jy� zja 3
4 dDðyÞ, then jy� zj ¼ rDðy; zÞb rDðx; yÞ ¼ jx� yj by (6), so that

jx� zja jx� yj þ jy� zja 2jy� zj. Moreover, Gðy; zÞA jy� zj2�d and Gðx; zÞ
A jx� zj2�d ; and hence,

Gðx; yÞGðy; zÞ
Gðx; zÞ A

jx� yj2�d jy� zj2�d

jx� zj2�d
aAjx� yj2�d ¼ ArDðx; yÞ

2�d :

Thus (5) also holds in Case 2. The proof is complete. r

3. An example

Let us begin with an application of the 3G inequality.

Proposition 1. Let D be a domain of finite volume in Rd with db 3.
Suppose the 3G inequality (1) holds. Then the following Cranston-McConnell
inequality

sup
x AD

1

uðxÞ

ð
D

Gðx; yÞuðyÞ dya dV
1�2=d
d jDj2=dA0ð9Þ

holds for every nonnegative superharmonic function u in D, where Vd stands for the
volume of the unit ball in Rd .

Proof. Let Bð0;RÞ be the open ball with the same volume as D. Suppose
u is a Green potential

Ð
D
Gð� ; zÞ dmðzÞ of a measure m in D. Then (1) and

Fubini’s theorem yieldð
D

Gðx; yÞuðyÞ dy ¼
ð
D

dmðzÞ
ð
D

Gðx; yÞGðy; zÞ dy

aA0

ð
D

Gðx; zÞ dmðzÞ
ð
D

ðjx� yj2�d þ jy� zj2�dÞ dy

a 2A0uðxÞ
ð
Bð0;RÞ

jyj2�d
dy

¼ A0 dVdR
2uðxÞ ¼ A0 dV

1�2=d
d jDj2=duðxÞ:
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Thus (9) holds for a Green potential. Since every nonnegative superharmonic
function is approximated from below by Green potentials, the monotone con-
vergence theorem completes the proof. r

For an arbitrary planar domain D of finite area, Cranston and McConnell
[14] proved (9) with A0 bounded by the area of D up to an absolute multiplicative
constant. See [12] for a simple proof and [1, 5, 2] for an analytic proof and
some generalizations. Cranston and McConnell [14] provided also an example
of bounded domain in R3, failing to satisfy (9). We shall modify their example
to construct a bounded domain whose Martin boundary coincides with the
Euclidean boundary and which fails to satisfy the Cranston-McConnell inequality
(9). In view of Proposition 1, this domain also fails to satisfy the 3G inequality
(1).

Construction. Let Rn # 0 and Nn " y be a decreasing sequence of positive
numbers and an increasing sequence of positive integers such that

(i) Rnþ1 þ
Rnþ1

Nnþ1
aRn �

Rn

Nn

,

(ii)
Py

n¼1

Rn

Nn

� �2
Nd�1
n ¼ y.

For example, Rn ¼
1ffiffiffi
n

p and Nn ¼ 8n satisfy the above condition. In fact,

Rn �
Rn

Nn

� Rnþ1 þ
Rnþ1

Nnþ1

� �

b
1ffiffiffi
n

p � 1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1

4n
ffiffiffi
n

p ¼ 1ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ð

ffiffiffi
n

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Þ
� 1

4n
ffiffiffi
n

p

b
1

2ðnþ 1Þ
ffiffiffi
n

p � 1

4n
ffiffiffi
n

p ¼ 2n� ðnþ 1Þ
4nðnþ 1Þ

ffiffiffi
n

p > 0;

and

Rn

Nn

� �2
Nd�1
n ¼ 1

8n
ffiffiffi
n

p
� �2

ð8nÞd�1 ¼ 8d�3nd�4
b 8d�3n�1:

Let 0 < h < 1=4 be a constant depending only on the dimension such that we
can place Nd�1

n many mutually disjoint open balls of radius rn ¼ hRn=Nn with
centers on the sphere Sn ¼ fx A Rd : jxj ¼ Rng. Order these balls and call them
Bk
n , k ¼ 1; . . . ;Nd�1

n . In view of (i), we may assume that the family of the
doubles of Bk

n (n ¼ 1; . . . ;y and k ¼ 1; . . . ;Nd�1
n ) is mutually disjoint. Fix n

and connect each ball Bn
k to the next Bn

kþ1 for k ¼ 1; . . . ;Nd�1
n � 1, in order, by

a cylindrical tube lying in Bð0;Rn þ 2rnÞ. Then connect the last ball Bk
n with

k ¼ Nd�1
n to the first ball B1

nþ1 of the ðnþ 1Þ-th level by a cylindrical tube lying
in Bð0;Rn þ 2rnÞ. Moreover, each tube intersects its ball in circular caps
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subtending solid angle e < p=6 and the two caps in each ball (except the first) are
antipodal. We may assume that the tubes are mutually disjoint and the con-
nection is so smooth that the resultant domain D is locally Lipschitz apart from
the origin. Hence, we observe that the Martin boundary of D is homeomorphic
to the Euclidean boundary except for the origin. We shall show that there is a
unique minimal function h corresponding to the origin.

Proposition 2. Let D be as above. Then there is a unique minimal function
h corresponding to the origin. Moreover,ð

D

Gðx; yÞhðyÞ dy ¼ y:

Hence, the Martin boundary of D coincides with the Euclidean boundary and yet
the Cranston-McConnell inequality (9) and the 3G inequality (1) fail to hold.

We prepare the proof of Proposition 2 by stating the following boundary
Harnack principle for a specific Lipschitz domain. Since we consider near a
smooth boundary portion, the boundary Harnack principle can be proved easily.
See Figure 1.

Lemma 2. Let W ¼
�
x ¼ ðx1; . . . ; xdÞ : 14 < jxj < 1;�

ffiffi
3

p

2 < x1 < 0
�
, H ¼

x A W : x1 ¼ � 1
2

� �
and x� ¼ � 1

2 ; 0; . . . ; 0
� �

. If u and v are positive harmonic

functions on W such that u ¼ v ¼ 0 on
�
x ¼ ðx1; . . . ; xdÞ : jxj ¼ 1;�

ffiffi
3

p

2 < x1 < 0
�
,

then

uðxÞ
uðx�ÞA

vðxÞ
vðx�ÞA

dWðxÞ
dWðx�Þ for x A H:

Proof of Proposition 2. Let B0 ¼ Bðx0; r0Þ, B1 ¼ Bðx1; r1Þ, . . . be the
enumeration of fBk

n gn;k in order and let Tj be the tube connecting Bj and
Bjþ1. Our domain D looks like a long wiggling string of beads. Take jb 1.
We may assume by rotation that Bj and Tj intersect in a circular cap with center
at ð�rj; 0; . . . ; 0Þ þ xj. Translate and dilate W in Lemma 2 so that xj and

Figure 1. Boundary Harnack Principle for the shaded domain W.
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ð�rj; 0; . . . ; 0Þ þ xj correspond to the origin and ð�1; 0; . . . ; 0Þ, respectively. Let
Hj and x�

j correspond to H and x�, respectively. Observe that BjnHj consists of
two connected components. By B 0

j we denote the component containing xj. Let

Lj ¼ B0 UT0 UB1 UT1 U � � �UTj�1 UB 0
j and let Uj ¼ DnðLj UHjÞ. See Figure 2.

Fix x such that jx� xjj ¼ rj=4. Apply Lemma 2 to u ¼ Gðx; �Þ and v ¼
Gðx0; �Þ. Then

Gðx; yÞ
Gðx; x�

j Þ
A

Gðx0; yÞ
Gðx0; x�

j Þ
for y A Hj and hence for y A Uj

by the maximum principle. Since Gðx; x�
j ÞAr2�d

j , it follows that

Gðx; yÞ
Gðx0; yÞ

A
r2�d
j

Gðx0; x�
j Þ

for y A Uj :

Let Kðx; yÞ ¼ Gðx; yÞ=Gðx0; yÞ for x A D and y A Dnfx0g. The Martin kernel is
given as the limit of Kðx; yÞ when y tends to a boundary point. Let u and v be
Martin kernels at 0 with respect to x0. Then the above estimate implies

uðxÞAvðxÞA
r2�d
j

Gðx0; x�
j Þ

for jx� xjj ¼ rj=4 and hence for jx� xj ja rj=4ð10Þ

by the maximum principle. By the Harnack inequality

uðx�
j ÞAvðx�

j ÞA
r2�d
j

Gðx0; x�
j Þ

;

so that the boundary Harnack principle (Lemma 2) gives a constant A3 > 1 such
that

A�1
3 uðxÞa vðxÞaA3uðxÞð11Þ

for x A Hj and hence for x A Lj by the maximum principle. Since j is arbitrary,
we have (11) for all x A D.

Now, a standard technique ([3, Theorem 3]) shows that there exists a unique
minimal Martin kernel at 0. For the reader’s convenience we give a proof. Let

x*
j

H j

L jU j

T j–1T j T0

B'j
B0

x0x j

x

Figure 2. Counter example to the Cranston-McConnell inequality: a long wiggling string of beads.

2173g inequality for a uniformly john domain



H0 be the family of all positive harmonic functions u on D vanishing on qDnf0g,
bounded on DnBð0; rÞ for each r > 0 and taking value uðx0Þ ¼ 1. Obviously, a
Martin kernel at 0 belongs to H0. Since every u A H0 can be represented as an
integral over Martin kernels at 0, we see that (11) extends to u; v A H0. Let

c ¼ sup
u; v AH0
x AD

uðxÞ
vðxÞ :ð12Þ

Then 1a caA2
3 < y by (11). Let us show that c ¼ 1. Suppose to the

contrary c > 1. Take arbitrary u; v A H0. Then v1 ¼ ðcv� uÞ=ðc� 1Þ A H0, so
that ua cv1 ¼ cðcv� uÞ=ðc� 1Þ by (12). Hence ð2c� 1Þua c2v on D, which
would imply

c ¼ sup
u; v AH0
x AD

uðxÞ
vðxÞ a

c2

2c� 1
< c;

a contradiction. Thus c ¼ 1 and H0 is a singleton consisting of the Martin
kernel Kð� ; 0Þ at 0. Moreover, the Martin kernel Kð� ; 0Þ is minimal since there
is at least one minimal Martin kernel at 0.

Let h ¼ Kð� ; 0Þ be the Martin kernel at 0. Then (10) and the Harnack
inequality giveð

Bðxj ;rj=4Þ
Gðx0; yÞhðyÞ dyAGðx0; x�

j Þ
r2�d
j

Gðx0; x�
j Þ

rd
j Ar2j :

In view of Construction (ii), we obtain

ð
D

Gðx0; yÞhðyÞ dyb
Xy
j¼1

ð
Bðxj ;rj=4Þ

Gðx0; yÞhðyÞ dy ¼ y:

By the Harnack inequality the above integral diverges for every x A D in place of
x0 as well. The proof is complete. r
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Note added in proof.

Wolfhard Hansen informed the authors that he wrote related papers:

(i) Global comparison of perturbed Green functions, to appear in Math. Ann.

(ii) Uniform boundary Harnack principle and generalized triangle property, to appear in J. Funct.

Anal.

(iii) Simple counterexamples to the 3G-inequality, to appear in Expo. Math.

In particular, (iii) gave another simple example corresponding to that in Section 3 of this paper.
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