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EXTREMAL DISKS AND EXTREMAL SURFACES OF GENUS THREE
Gou NAKAMURA

Abstract

A compact Riemann surface of genus g > 2 is said to be extremal if it admits an
extremal disk, a disk of the maximal radius determined by g. If g=2 or g >4, it is
known that how many extremal disks an extremal surface of genus g can admit. In the
present paper we deal with the case of g =3. Considering the side-pairing patterns of
the fundamental polygons, we show that extremal surfaces of genus 3 admit at most two
extremal disks and that 16 surfaces admit exactly two. Also we describe the group of
automorphisms and hyperelliptic surfaces.

1. Introduction

Let S be a compact Riemann surface of genus g > 2 equipped with the
metric induced by the hyperbolic metric of the unit disk A= {z e C;|z| < 1}.
The hyperbolic metric is derived from ds = 2|dz|/(1 — |z|*). Then S is said to be
extremal if a disk of radius R, is isometrically embedded in S, where R, is the
maximal radius determined by g as follows ([2]):

1
COSh Rg = m,
4

where f, = /(129 —6). The embedded disk in S of radius R, is called an
extremal disk.

We know several results on extremal surfaces ([2]): an extremal surface of
genus ¢ has a regular (12g — 6)-gon as a fundamental region; there are finitely
many extremal disks for each extremal surface; an extremal disk is the projection
of the disk inscribed in the (12g — 6)-gon.

Our concern is the following problem.
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ProBLEM. How many extremal disks does an extremal surface of genus g
admit? Where are extremal disks embedded provided that an extremal surface
admits more than one extremal disk?

In the case of g > 4, each extremal surface has a unique extremal disk ([4]).
In the case of g =2, there are 9 extremal surfaces up to conformal equivalence.
One has 4 extremal disks, one has a unique extremal disk, and the others have
two extremal disks. For each surface, the positions of embedded extremal disks
are obtained ([6], [8]). In the case of g = 3, there are examples of an extremal
surface which admits a unique extremal disk or two extremal disks ([4], [5]).

In the present paper we shall consider this problem for every extremal
surface of genus 3.

As a fundamental polygon for an extremal surface of genus g we have
a regular (12g — 6)-gon. When we treat an extremal surface, the side-pairing
pattern of the regular polygon plays an important role. If g =3, then the
number of side-pairing patterns of the regular 30-gon which make a compact
surface of genus 3 is 1726 ([1], [7]). In particular, there exist 927 side-pairing
patterns up to mirror images. The 927 side-pairing patterns are explicitly given
in [9]. Let P; (j=1,2,...,927) be a regular 30-gon in A centered at the origin
endowed with the j-th side-pairing pattern in [9]. If the mirror image of P; is a
different side-pairing pattern from the original one, we denote it by P; . Then the
set 2 consisting of all P; and P} (if it exists) has 1726 elements. Let S; and S;
be the surfaces derived from P; and P]f, respectively. We denote by ¥ the set
of all S; and S/ (if it exists). Later, we shall show that the surfaces in % are
distinct, so that #& = 1726.

2. Finding extremal disks for g =3

In the following of this paper, we shall deal with the case of g =3 and
abbreviate the radius R = R; and the angle f = f;. Here R~ 2.247.

Let P be a regular 30-gon in A centered at the origin endowed with a side-
pairing pattern and S the surface derived from P. We denote by Ci,...,Cs
the sides of P (Figure 1), by v, the vertex between C,_; and C,, and by w, the
middle point of the side C,, where subscripts are regarded as modulo 30. The
hyperbolic length of a side of P, denoted by s, is

2
s=2sinh™! <— sin f§ sinh R) ~ 1.076,

it
and the hyperbolic length between a vertex and the center of P, denoted by /, is

[ = sinh™! (\% sinh R) ~ 2.388.

The polygon P determines side-pairing transformations Ay, ..., A3, where 4,
maps C, onto some C,,. Since we take vy = tanh(//2)ef, 4, = Ay s explicitly
of the form
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FiGure 1. A Regular 30-gon

Ay (2) = cosh Re'" Pz — i sinh Rettn o7
nom\Z) = T - N . .
' i sinh Re—im+mBz _ j cosh Re—i(m-n)B

In particular, A5, : Cis — C,, is of the form

cosh Re™Pz + sinh Re™P

Aism(z) = sinh Re=™Fz + cosh Re="F"

Let 7 : A — S denote the projection. Let p € S be the center of an extremal
disk. We shall consider the set {p(z,w)|n~'(p) 3z,w (z #w)}, where p(z,w)
is the hyperbolic distance between z and w. Note that this set is inde-
pendent of the choice of S and of p. We denote the elements of the set by

PrsPas - (p1 < py <)

LemMa 1. For ze P, if n(z) is the center of an extremal disk of S, then
p(z,Ax(z)) € {pj};il Jor every k=1,...,30. Precisely, it follows that p(z, Ax(z)) €
{p1:P2s -, P}, where py ®4.494, p, = 5.852, py3 = 6.642, p, = 7.190, ps ~ 7.603,
pe X T.645, prx7.926, pg~8.185, po~8.295, p,~8.395 p; ~8.565,
P1a ®8.701, p5~8.768, p4~8807, ps~8.888, p~8944, p;~8977,
P1s ~ 8.988, p1g = 9.132, pyy = 9.176.

Remark 2. Let K be the Fuchsian group generated by the side-pairing
transformations A, ..., A3 of P. Consider the tessellation {4(P)|A € K} of A.
Then p, is the hyperbolic distance between the centers of P and Ax(P).
p; (j=2,3,4,57,8,10,11,12,14,15,16,17,18) is given by a distance between
the centers of P and A;4x(P). p; (j=6,9,11,13,18,19,20) is given by a
distance between the centers of P and A,,4;Ax(P).

Proof of Lemma 1. The first statement is clear because 7(z) and n(Ax(z))
are the same center of an extremal disk. For any z € P and any side-pairing Ay,



114 GOU NAKAMURA

it follows that p(z, 4x(z)) < p(z,0) + p(0, 4% (0)) + p(Ak(0), Ax(z)) = 2p(z,0) +
p(0,4,(0)) <2/ 4+ 2R ~9.270. Since p,; ~ 9.357, the second statement is proved.
O

LemmA 3. Let K, (n=1,...,30) be a pentagon with vertices wy_1, Uy, Ui,
Wui1 and the origin (Figure 2). For a fixed n, if n(z) (z € K,,) is the center of an
extremal disk of S, then p(z,A,(z)) = p; = 2R.

Proof. By Lemma 4 in [6] we have

p(z,An(z)) < max{p(0, 4,(0)), p(Wn-1, Au(Wn-1)), p(0n, An(vn)),
p(vn+1 5 An(Un-H ))7p(wn+1 5 An(Wn+l))}'

Here p(0, 4,(0)) = 2R ~ 4.494 and p(w,_1, Ay(wp_1)) < p(wp_1,0) + p(0, 4, (vy,)) +
p(An(vn), Ay(wp—1)) = R+ 14 5/2~5.173. Similarly, p(wyi1, An(Wni1)) < R+
I+s/2. Since A,(v,) and A,(v,r1) are vertices of P, p(vy, An(vy)) <
P(Un, Upy15) = 21 = 4.776 and also p(vy41, An(vnt1)) < 2/, Therefore p(z, 4,(z)) <
P, ~5.852. Since n(z) is the center of an extremal disk, it follows that
A=) =pr. O

FIGURE 2. K,

Now we shall find a point of P such that its projection is the center of
an extremal disk. First, we shall find a point z of K, such that p(z, 4,(z)) = p;,
where A, = Apm: C, — Cy (cf. Lemma 3). Using a formula

1

sinh lp(z, A, (z)) = cosh p(z,ax(4,)) sinh 3

T
2 Ay

where ax(4,) and T,, denote the axis and the translation length of A,, re-
spectively, we can show that z with p(z,4,(z)) = p; is on the following curves
(cf. Theorem 3.4 in [8]):
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L,=L,, :|z— ﬁei(wmm _ _ tanhR
: 2 cos(n —m)p 2|cos(n — m)p|
(m#n+15 (mod 30)) or
621‘/1/)’ )
M, =M, :z _ tet(n+m+15)ﬁ ([ c R),

~tanh R

Two examples of L, ,, and M, , when (n,m) = (15,1) or (15,6) are given in
Figure 3. Here, M5, the dotted line, intersects with K5 only at the boundary
of the polygon.

\

e

FIGURE 3. L1571, M15<], L]5‘6, and M15‘6

For every n we draw L, and M, in K, according to the side-pairings of P
and find the intersection in K, N K, of curves L, UM, and L, UM,,. Next,
we select { from the intersection satisfying p({, Ax({)) € {p1,Pa,---, P20} for every
k (cf. Lemma 1). Then { € P is a candidate for the point whose projection is the
center of an extremal disk.

Through this process for every polygon P; (j=1,...,927) by computer,
it turns out that there exist 12 polygons admitting more than one { (16 poly-
gons in &). They are Prs, Pisa, P22, Pa3r, Pagi, Pas3, Pago, Psoa, Pe1a, Pe17, Piss,
P79 (Plgys Phyas Payy, Page) and each of them has exactly two points (the one is the
origin) (Figures 6, 7, 8, 9). For example, P;s has the intersection consisting of
6 points, but only two points 0 and (2 sin 3f)/tanh R on the real axis are the
candidates.

Put p=7n({) ({#0) and 0 =x(0). In order to prove that p is the center
of an extremal disk, it is sufficient to show that there exists an automorphism
T of S such that T(p) = o because o is the center of an extremal disk. Put
9(z) = ({ —z)/(1 = {z). Then p induces an automorphism of S if and only if
yAry~' € K for every k, where K = (A, A,,...,Az), the Fuchsian group
generated by the side-pairing transformations of P.
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For each of the 12 polygons P;, we shall show that y4;y~' is an element
of K.

f= 2 sin 3f
ST anh R’
yA1,19 = A19,17, yAz 20 = A 2y, VA3 24 = A24.37,
yAa 17 = Ar9,1 425,217, yAso = Ag8Ar76y,  yAs 27 = A2167,
yA7. 12 = A11,20428,8Y, yAsg 28 = A2g gy, yA10,16 = A15,30429, 1175
yA11,20 = Az, 117, yA13,26 = A9 5429, 117,  VA1a,20 = A19,1430,15),
yA1s.30 = A30,15), yA18,23 = Ap 241,19y, yA21,25 = A2s 342 27.
2 sin 4
Pigs: (= )
14 & tanh R &
yA1,5 = A4 10492, yA2 9 = As 2y,
yAa 10 = Aro,47, yAs 23 = A17,8A412,197,
yAs 17 = A2s.77, vA11,15 = Az 7451y,
yA13,26 = A17,8A46,237, yA14,20 = Azg 7A430,2447,287,
YA 25 = A17,8A2521A47,28), A2, = A17,8426,1347,28,
vA3 16 = A2s 749,27,
yA7,28 = A17,37,
yA12,19 = Azg 746,237,
yA1g,27 = A17,847,287,
yA24.30 = A17,8A420,1443,177.
2 sin 4
Poyp: (= )
202 & tanh R ~’
yA1,15 = Az 7A15,148,17y, PA29 = A9 27, yA3.16 = Ag,7A9,27,
yAa 30 = A17,8410,14), vAs 21 = A 741,257, yAe 23 = Az 7413,26),
yA7,28 = A17,8, yAg 17 = A7, yA10,14 = A2g, 744,30,
yA11,25 = A17,8A45,217, yA12,19 = A28,7A46,23), yA13,26 = A17,846,237,
yAis,27 = A17,847,287, vA20,24 = A17,8A424,2047,287, VA2,20 = A17,8A26,1347,287-
2 sin 4f
Pyy7: (= )
a7 tanh R b
vA1 15 = A13,6A25 11 49,20y, YA 19 = Azg 749 207,  yA3,26 = A17,849,22,
vA4.10 = A10,4), yAs 21 = Axg 7411257, vAe 13 = A13,67s
yA7.28 = A17.8), yAs 17 = A2s.7Y, yAg 20 = A2g. 743,267,
yA11,25 = A17,845217, yA12,29 = A17,846,137,  VA1a,20 = A2g,7411,2546,137,
vAt6,03 = Az 7143264708y, PA18,27 = A17,847,28y, VA24.30 = A17,8A20,14438,177.
2 sin 4f
Pyg1: (= )
w1 0= TR
yA1 s = Ais,1148,177, YAz 29 = A17,849,127,

yAa 30 = A17,8410,147, yA7,28 = A17,87,
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yA9 12 = A36),
yA13,16 = A2g,746,3),
yA20,24 = A17,8A24,20A47,287,

yA36 = Ao 12,

vA10,14 = A2s 744,307,
yA18,27 = A17,847,28,
yA21,25 = A17,8A25 2147,287,

vAg 17 = A2 77,

yA11,15 = Az, 745,17,
yA19,20 = Azg, 742326 47,287,
yA23 26 = A17,8419,22438,17)-

yA2 29 = A17,8A49,127,

yAs 11 = A5y,

yAg 12 = A36,

yA18,27 = A17,847,28,
yA21,25 = A17,8A25 2147,287,

yA19,20 = Azg,7A423,26A47,287,
yA23 26 = A17,8419,22438,17).

yA29 = A9 2y,

vAs 11 = A11,57,

yAs 17 = A2g,77,

yA18,27 = A17,847,287,
vA21 25 = A17,8A425,21 47,28,

yA19,20 = Azg,7A423,26A47,287,
yA23,26 = A17,8A419,220438,177-

e 2sin 4f
Pugz: (= anh R -
yA1,15 = A 7415148177,
yAa 10 = A1o,47,
yAs 17 = A2s.77,
yA14,30 = A17,8A430,14A47,28Y,
yA20,24 = A17,8A24,20A47,287,
yAs ¢ = Ao 127,
yA728 = A17.37,
yA13,16 = A2g,746,3),
. 2sin 4f
Pugo: (= @nh R ©
yA1 15 = Ag 7415148177,
yAa 30 = A17,8410,147,
yA7,28 = A17,87,
yA12,29 = A17,846,137,
yA20,24 = A17,8A424,2047,28,
vA3 16 = A2g,7A49,27,
yA6,13 = A13,67,
yA10,14 = A2g, 744,307,
sin f§ .
Psox: &= tanh R sin 28 b

yA1,4 = A11,147,
yAs 16 = Ates,57,
yAg 24 = Ars 3y,
yA11,14 = A1.47,
yA19,23 = Az 846,277,

yAz, 12 = A12,27,
yAe 27 = A13,97,
yAo 18 = A27.67,
yA1s,28 = A9, 1044.17,
yA20,25 = Aza,8A47,217,

yA3,13 = A13,37,

yA7 21 = A21.7Y,
yA10,20 = A29,10)>
yA17,30 = A14,1145,16),
yA22.26 = A18,9A47,217.

117
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o, 2 sin 44 .
Pz £ = @b R -
yA1 25 = A17,84152148 177, yA2,29 = A17,849, 127,
yAa 10 = Aro,47, vAs 11 = A1, 57,
yAg 17 = A2g.77, yA9 12 = A36,
yA14,20 = Azg 7A430,24A47,287, VA1521 = Az 741 2547 287,
yA19,20 = Azg 7423,26A47,287, VA23,26 = A17,8419,22458,177,
yAsz 6 = Ao 127,
yA7,28 = A17,37,
yA13,16 = A2g, 746,37,
yA1g,27 = A17,847,287,
yA24.30 = A17,8A420,1443,177-
e 2sin 4f
P70 (= anh R -
yA1 15 = Az 7415148177, VA2,29 = A17,849 127, yA3 6 = A9 127,
VA4 20 = Azg,7410,247, yAs 21 = Az 7411,257, yA7.28 = A17,87,
yAsg 17 = A7, yAs 12 = A367, yA10,24 = A17,8A44,207,
yAi1,25 = A17,845,217, yA13,16 = A28,746,3), yA1a,30 = A17,8430,1447,287,
yA18,27 = A17,8A47,28, vA19,20 = Aog 7423 26A7,287, VA2, = A17,8419,20A48,177-
S7gs: !
785 €= 2 tanh R sin 78’
yA1,21 = An 17, yAa s = Aas 237,
yAs 27 = A27.47, yAs,20 = A21,1A428,25Y,
yAsg 16 = A15,30429,97, yA9 20 = A29 97,
yA1,17 = A15,3047,12429,97,  yA13,19 = Aa1,1418,23430,157,
yA1s.30 = A30,157, yA13,23 = Az1,1A423,1841,217,
yA3,26 = A2 37,
yA7 12 = A9 29A12,7A429,97,
yA10,24 = As.2A429, 9,
vA14,20 = Az1,1430,15),
yA2s 28 = Az 5).
e sin 2f8 .
Pymo: €= tanh R sin 3ﬁl’
yA117 = Ais,6A410,137,  yA2,5 = A10,137, yA311 = A3y,
VA4 120 = A12,47, vAs 16 = Al6,67, yA7,20 = A20,77,
yAsg 25 = Ass 87, vAg 290 = A9 9, yA10,13 = Aa.57,
yA1a,08 = A 9As 2y,  yAis21 = A 746 167, yA18,23 = Azs 8 A14,28 46,167,

yA19,26 = Azs 8A720y, VA7 = A29,9A417,147,207, yA24,30 = A29,943,25).

Hence we arrive at the following theorem:
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THEOREM 4. The surfaces in & admitting more than one extremal disks are
S75, Sig4, Sigar 202, Sy, S437, Siz7, Sasi, Sags, Sasgo, Sigg, Sso4, Se14, Se17, S785,
and Ss79. Moreover, each of them has exactly two extremal disks.

We see that the 16 surfaces in Theorem 4 are respectively different by virtue of
the following theorem.

THEOREM 5. All surfaces in & differ from each other. Hence there are 1726
extremal surfaces of genus 3.

Proof. The proof of this theorem is similar to that of Theorem 1 in [6].
(When a surface admits two extremal disks, we have an automorphism 7 which
interchanges the centers of extremal disks. Hence we can use 7T in place of the
hyperelliptic involution J.) O

3. The group of automorphisms and hyperelliptic surfaces

We shall determine the group of automorphisms and the hyperellipticity for
each surface of &. The next lemma is used for finding the fixed points of 7.

LEMMA 6. Let Pe P be a polygon with a point { (#0) whose projection is

the center of an extremal disk. Let y be y(z) = ({ — z)/(1 — {z) and B an element
of {Ay,...,As0y, the Fuchsian group generated by the side-pairings Ay, ..., A3z of
P. If By has a fixed point located in P, then B can be written as a product of at
most two side-pairings of P.

Proof. Let z be a fixed point of By in P. Since y(z) = B !(z), we have
p(0, B(0)) = p(0, B1(0)) < p(0, B~!(2)) + p(B~'(2), B-(0)) = p(0,7(2)) + p(z,0) =
p(C,z)+p(z,0) <2I+1~7.164 < p,. Since B(0) is a pre-image of the center o
of an extremal disk, p(0, B(0)) =0, p,,p,, or p;. From Remark 2 it follows that
B(0) is the center of a disk in the region (|, ,4n4;(P))U (|, 4k(P))UP.
Therefore B(0) = A,,4;(0), A;(0), or 0 for some m, [ or k, hence B = A,,A4;, Ay,
or the identity. |

We shall consider S75 and Sjg4 as examples of a surface with two extremal
disks.

S7s: First, we shall show that the group of automorphisms Aut(S7s) is
isomorphic to the cyclic group Z, of order 2. Let 0o and p be the centers of the
extremal disks, where o is the projection of the origin and p is the projection
of { = (2sin 3f)/tanh R. We have already shown that S7s has an involution T’
which maps p to 0. Suppose that S;5 has another automorphism 7’. Then T’
either fixes o or interchanges o with p. If T'(0) = p, TT' fixes 0. Then we can
take a lift of TT’ such that it fixes the origin. From the side-pairings of Ps
it follows that P;s does not admit any non-trivial rotation around the origin.
Hence the lift is the identity and 7/ =T. If T'(0o) =0, then T’ must be the
identity of S75. Thus Aut(S75) = Zz.
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Next, we shall show that S7s is hyperelliptic. For this purpose, it is suf-
ficient to find 2g 4+ 2 = 8 fixed points of T, that is, T is the hyperelliptic in-
volution. As mentioned before, we have a lift y of T such that y(z) = ({ —z)/
(1 —¢z). A fixed point of T is the projection of a fixed point of By, where B is
an element of {Aj,..., A3 of P;s. We shall give B and the fixed points of By
located in P75 below, where fixed points are approximate values.

B Fixed points of By in Pys
id 0.3560
A 19 —0.4254 — 0.5081i
As 2 —0.0413 — 0.7147i
Az o4 0.2680 — 0.7160i
Ar7.6 0.2680 + 0.7160i
Adg g —0.0413 +0.7147i
Ao 11 —0.4254 4 0.5081i
Aso 15 —0.6358

As a consequence, 7 has 8 fixed points on S7s. Furthermore they are the
Weierstrass points.

Similarly we can show that Sag3, Saso, Sige, Ssos, S785, Sg79 are hyperelliptic
and they have the group of automorphisms Z,. As reference we shall give the
tables with respect to the Weierstrass points for these surfaces.

B Fixed points B Fixed points
of By in Pug3 of By in Pugy
id 0.5349i id 0.5349i
As 11 —0.4841 + 0.6249i As 11 —0.4841 + 0.6249i
Alo.4 0.4841 + 0.6249i A 13 —0.6057 + 0.3497i
Ay 15463 | —0.7833 4 0.1067i Ag > 0.6057 + 0.3497i

Atg30do 12 | 0.783340.1067i || Azs21A72s | —0.2992 — 0.7317i
Aps 1 A7 5 | —0.2992 — 0.7317i || Azg24ds 17 | 0.2992 —0.7317i
Ao ads 7 | 02992 — 0.7317i || A 234725 —0.6994i

Az 2347, —0.6994i AisiAgy7 | 0.7833 4 0.1067i
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Siga: Let 0o and p be the centers of extremal disks.

B Fixed points B Fixed points
of By in Psoq of By in Pqgs
id 0.2767i id 0.4644
Az 13 —0.7206 + 0.3455i Ay 21 —0.1458 — 0.6110i
As 16 —0.7299 — 0.1318i A3 26 0.5635 — 0.5575i
A7 —0.2193 — 0.6527i A7 4 0.5635 + 0.5575i
Ag 24 0.2193 — 0.6527i A 9 —0.1458 + 0.6110i
Aj0,29 0.7299 — 0.1318i A30,15 —0.5515
A1z 0.7206 + 0.3455 || A13,19430,15 | —0.5571 — 0.5163i
Ai9,23A47,21 —0.8271i Ai7,11 430,15 | —0.5571 4 0.5163i
B Fixed points
of By in Pgyy
id 0.3986i
Ag 12 —0.6211 + 0.4961i
As 16 —0.6743 — 0.1030i
A7, —0.3247 — 0.5246i
Asg 25 0.3247 — 0.5246i
Ag 29 0.6743 — 0.1030{
A s 0.6211 + 0.4961i
A1g,2347,20 —0.7783i

121

We know that Sjga

has an involution T obtained by y(z) = ({ —z)/(1 — {z), where { = (2 sin 48)i/
tanh R. First we shall show that T has 4 fixed points by considering the

fixed points of By, where B is an element of {4y, ..

., A30) of Pigg.

6 it is enough to consider B as a product of at most two side-pairings.
we see that there are 4 points zj, z, z3, z4 in Pjgq4 respectively fixed by some

By.

B Fixed points of By in Pjg4

id

z1 =~ 0.5349i

Ay >

25 = 0.6057 + 0.3497i

By Lemma
Then
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A1074 3 X 0.4841 + 0.6249i
A25,21A7y23 Zy X —0.2992 — 0.7317i

Hence T has exactly 4 fixed points.

From the side-pairings of Pjg4, we see that the rotation of 27/3 around the
origin induces an automorphism ¢ of Sig4 of order 3. Note that the fixed points
of ¢ are 0 and p and that a non-trivial automorphism fixing o0 is ¢ or ¢>. We
shall show that 7 and ¢ generate the dihedral group D; of order 6, namely, they
satisfy a relation 67T = 1. Since aToT fixes o, it follows that 67T = 1,0 or
. If 6ToT =0, then o =1, a contradiction. If ¢7¢T = ¢, then ToT = 0.
For a fixed point ¢ of T, this relation implies that ¢(q), 6>(q) are also fixed by
T. Since g, a(q), o*(q) are distinct, the fourth fixed point of 7 which is distinct
from ¢, o(q), o*(q) must be fixed by o, that is, o or p, a contradiction. Hence
the relation 6767 =1 holds. Any automorphism 7’ of Sig4 satisfies T’ e (o)
or T' € T{a) according as T'(0) =0 or T'(0o) = p, respectively. Consequently
we have Aut(Sis4) = Ds.

The involutions of Sig4 are T, ¢T, and ¢>T. If ¢ is a fixed point of T,
then T fixes a(q), so that a(q) is in {p1, p2, p3, pa}, the set of fixed points of 7.
Namely, ¢ = o*(p;) for some j. Conversely, it is clear that o*(p;) is a fixed
point of ¢T. Therefore ¢T has exactly 4 fixed points. In the same manner ¢>T
has exactly 4 fixed points. Since every involution has just 4 fixed points, it is not
the hyperelliptic involution. Hence we see that Sigs is non-hyperelliptic. The
pre-images of the fixed points of T, ¢T or ¢’T in Pjg4 are shown in Figure 4.

FIGURE 4. Pre-images of the fixed points of T'(e), aT(Q®), or >T(o)

Similarly S{¢4, S202, Sipps S437, Sas7. Sasi, Se14, and Sei7 are non-hyperelliptic
and they have the group of automorphisms D3;. As reference we shall give the
tables with respect to the fixed points of 7.
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B Fixed points B Fixed points
of By in Py of By in Py37
id Z1 id Z1
Ag > ) As 13 e¥3z,
A20,24A438,17 ez, A1o.4 z3
Aq 30492 e¥i/3z, Az4 304922 ez,
B Fixed points B Fixed points
of By in P481 of By in P6]4
id Z1 id Z1
Azs.23A47,28 eil3z, Asg 234728 eil3z,
A20,24A48,17 ez, Aio,4 z3
Ass 21 47,28 Z4 As 11 eil3zy
B Fixed points
of By in P617
id Z1
Az6.23A47,28 i3z,
A3zo,14A47,28 eil3zy
Ays. 143,17 ez,

We shall consider Syg and Sj3s as examples of a surface with a unique
extremal disk (Figure 5).

Pags P13s

FIGURE 5. P493 and P133

S4os: From the side-pairings of Pgog it follows that there exists a unique non-
trivial automorphism of Sy induced by the rotation of angle = around the
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origin. Since it is an involution with § fixed points, Sig is hyperelliptic and
Aut(S493) =17.

Si3g: Similarly we see that Aut(S)33) = Z, and the involution of Sj33 has
only 4 fixed points. Hence S)3g is non-hyperelliptic.

In the same way we obtain hyperelliptic extremal surfaces of genus 3.

THEOREM 7. The hyperelliptic surfaces in & are S7s, Sags, Sago, Sigg, Sa98,
S499, Sig9, Ss00, Ss70, Ssoa, S7ss, and Sgro.

4. Main results

We shall classify the extremal surfaces of genus 3 according to our results
in the preceding sections. Here, the surfaces Sig1, Ss00, and Sj37 have already
appeared in [4, 5].

THEOREM 8. The surfaces in & are classified as follows:
1. Extremal surfaces with two extremal disks: there are 16 surfaces (12
surfaces up to conformal or anti-conformal equivalence).
(1) Hyperelliptic surfaces

S The centers of extremal disks | Aut S
TR
O NE
Suse, Shgo | 7(0), n(zt;r;tf > z
Ss04 (0), n(tanhSIII; ﬁn 2B > Z
5785 0), n(2 tanh R sin 7ﬁ> Z
Sg79 7(0), n(%l) 7

(2) Non-hyperelliptic surfaces

S The centers of extremal disks | Aut S

Siss, Slgs | 7(0), n(zt:;‘;‘fz> D
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S202, S35 | 7(0), n(i:ﬁtg > ”
S137, Saz7 | 7(0), n(i:;lrlll‘;f > >
Sust (0), n(zt:ﬁltf ) >
Se14 7(0), n(i:;lltf ) >
Se17 7(0), (i;ﬁf ) >

2. Extremal surfaces with a unique extremal disk
(1) Surfaces with a non-trivial automorphism
(1) Hyperelliptic surfaces

S Aut S
Si98, Sa99, Ss00, Ss570, Sage | Lo

(i) Non-hyperelliptic surfaces: there are 97 surfaces (52 surfaces up to
conformal or anti-conformal equivalence).

S Aut S

S138, S139, S140, S1a1, S317, S344, S345, S357, S3s8, S350,
S360, S361, S362, 5377, S378, S379, S380, S398, Sa01, Sa02,
S405, Sa27, Sang, Sazz, Saze, Ss12, Ss13, Ss71, Ssga, Ssss,
Se69, S671, S672, S746, S748, Ss07, Ss08, S809, S810, 5831,
Sg832, S834, Ss3s, Ss37, Ssso, Sss2, Sgra, Sg75, S926, 5927,

!/ ! ! !/ ! !/ / !/ / !/ Z2
1,387 l/39a 1/40: l/4l> 3/44: 3,45> 3/577 3,587 3/597 %607

S3/61> S§62> S3/77: SS]78> S3/79: S§80> S3/98> Sé/lOl: SA}OZJ Sé/lOS:

54}32’ 54}397 S;lza 55/13: S§70’ S§71: S5l84’ S;SS’ S§71’ S7/46>

S7,48’ S§07= S&}OS’ S§09r SSIO’ S83lv S832> S835> S8507 S8523

5874’ S875> S926> S927

S315, Sis VA

S316 Z

(2) Surfaces only with the trivial automorphism: there are 1608 surfaces
(859 surfaces up to conformal or anti-conformal equivalence).
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S Aut S
The other surfaces in . | {1}

Acknowledgements. The author would like to thank the referee for the
careful reading of the first submitted version of this paper.

P75

FIGURE 6. Side-pairings, the centers of extremal disks (e) and the Weierstrass points (o) for hy-
perelliptic surfaces with two extremal disks
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Ps94

FIGURE 7. Side-pairings, the centers of extremal disks (e) and the Weierstrass points (o) for hy-
perelliptic surfaces with two extremal disks



128




EXTREMAL DISKS AND EXTREMAL SURFACES OF GENUS THREE 129

Psg1

Ay

Pe14

<

Pe17

FIGURE 9. Side-pairings and the centers of extremal disks (e) for non-hyperelliptic surfaces with two
extremal disks
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