EXTREMAL DISKS AND EXTREMAL SURFACES OF GENUS THREE

Gou Nakamura

Abstract

A compact Riemann surface of genus $g \ge 2$ is said to be extremal if it admits an extremal disk, a disk of the maximal radius determined by g. If g = 2 or $g \ge 4$, it is known that how many extremal disks an extremal surface of genus g can admit. In the present paper we deal with the case of g = 3. Considering the side-pairing patterns of the fundamental polygons, we show that extremal surfaces of genus 3 admit at most two extremal disks and that 16 surfaces admit exactly two. Also we describe the group of automorphisms and hyperelliptic surfaces.

1. Introduction

Let S be a compact Riemann surface of genus $g \ge 2$ equipped with the metric induced by the hyperbolic metric of the unit disk $\Delta = \{z \in \mathbb{C}; |z| < 1\}$. The hyperbolic metric is derived from $ds = 2|dz|/(1-|z|^2)$. Then S is said to be extremal if a disk of radius R_g is isometrically embedded in S, where R_g is the maximal radius determined by g as follows ([2]):

$$\cosh R_g = \frac{1}{2\sin\beta_g},$$

where $\beta_g = \pi/(12g-6)$. The embedded disk in S of radius R_g is called an extremal disk.

We know several results on extremal surfaces ([2]): an extremal surface of genus g has a regular (12g - 6)-gon as a fundamental region; there are finitely many extremal disks for each extremal surface; an extremal disk is the projection of the disk inscribed in the (12g - 6)-gon.

Our concern is the following problem.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30F10; Secondary 30F35, 20H10.

Key words and phrases: extremal disk, extremal surface, the group of automorphisms, hyperelliptic surface, Weierstrass point.

This work was supported by Grant-in-Aid for Scientific Research (No. 15740095), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Received May 10, 2004; revised September 24, 2004.

PROBLEM. How many extremal disks does an extremal surface of genus g admit? Where are extremal disks embedded provided that an extremal surface admits more than one extremal disk?

In the case of $g \ge 4$, each extremal surface has a unique extremal disk ([4]). In the case of g = 2, there are 9 extremal surfaces up to conformal equivalence. One has 4 extremal disks, one has a unique extremal disk, and the others have two extremal disks. For each surface, the positions of embedded extremal disks are obtained ([6], [8]). In the case of g = 3, there are examples of an extremal surface which admits a unique extremal disk or two extremal disks ([4], [5]).

In the present paper we shall consider this problem for every extremal surface of genus 3.

As a fundamental polygon for an extremal surface of genus g we have a regular (12g-6)-gon. When we treat an extremal surface, the side-pairing pattern of the regular polygon plays an important role. If g=3, then the number of side-pairing patterns of the regular 30-gon which make a compact surface of genus 3 is 1726 ([1], [7]). In particular, there exist 927 side-pairing patterns up to mirror images. The 927 side-pairing patterns are explicitly given in [9]. Let P_j ($j=1,2,\ldots,927$) be a regular 30-gon in Δ centered at the origin endowed with the j-th side-pairing pattern in [9]. If the mirror image of P_j is a different side-pairing pattern from the original one, we denote it by P_j' . Then the set $\mathscr P$ consisting of all P_j and P_j' (if it exists) has 1726 elements. Let S_j and S_j' be the surfaces derived from P_j and P_j' , respectively. We denote by $\mathscr S$ the set of all S_j and S_j' (if it exists). Later, we shall show that the surfaces in $\mathscr S$ are distinct, so that $\#\mathscr S=1726$.

2. Finding extremal disks for g = 3

In the following of this paper, we shall deal with the case of g = 3 and abbreviate the radius $R = R_3$ and the angle $\beta = \beta_3$. Here $R \approx 2.247$.

Let P be a regular 30-gon in Δ centered at the origin endowed with a sidepairing pattern and S the surface derived from P. We denote by C_1, \ldots, C_{30} the sides of P (Figure 1), by v_n the vertex between C_{n-1} and C_n , and by w_n the middle point of the side C_n , where subscripts are regarded as modulo 30. The hyperbolic length of a side of P, denoted by s, is

$$s = 2 \sinh^{-1} \left(\frac{2}{\sqrt{3}} \sin \beta \sinh R \right) \approx 1.076,$$

and the hyperbolic length between a vertex and the center of P, denoted by l, is

$$l = \sinh^{-1}\left(\frac{2}{\sqrt{3}} \sinh R\right) \approx 2.388.$$

The polygon P determines side-pairing transformations A_1, \ldots, A_{30} , where A_n maps C_n onto some C_m . Since we take $v_1 = \tanh(l/2)e^{\beta i}$, $A_n = A_{n,m}$ is explicitly of the form

FIGURE 1. A Regular 30-gon

$$A_{n,m}(z) = \frac{i \cosh Re^{i(m-n)\beta}z - i \sinh Re^{i(m+n)\beta}}{i \sinh Re^{-i(m+n)\beta}z - i \cosh Re^{-i(m-n)\beta}}$$

In particular, $A_{15,m}: C_{15} \to C_m$ is of the form

$$A_{15,m}(z) = \frac{\cosh Re^{im\beta}z + \sinh Re^{im\beta}}{\sinh Re^{-im\beta}z + \cosh Re^{-im\beta}}.$$

Let $\pi: \Delta \to S$ denote the projection. Let $p \in S$ be the center of an extremal disk. We shall consider the set $\{\rho(z,w) \mid \pi^{-1}(p) \ni z, w \ (z \neq w)\}$, where $\rho(z,w)$ is the hyperbolic distance between z and w. Note that this set is independent of the choice of S and of p. We denote the elements of the set by $\rho_1, \rho_2, \dots (\rho_1 < \rho_2 < \dots)$.

Lemma 1. For $z \in P$, if $\pi(z)$ is the center of an extremal disk of S, then $\rho(z,A_k(z)) \in \{\rho_j\}_{j=1}^{\infty}$ for every $k=1,\ldots,30$. Precisely, it follows that $\rho(z,A_k(z)) \in \{\rho_1,\rho_2,\ldots,\rho_{20}\}$, where $\rho_1 \approx 4.494$, $\rho_2 \approx 5.852$, $\rho_3 \approx 6.642$, $\rho_4 \approx 7.190$, $\rho_5 \approx 7.603$, $\rho_6 \approx 7.645$, $\rho_7 \approx 7.926$, $\rho_8 \approx 8.185$, $\rho_9 \approx 8.295$, $\rho_{10} \approx 8.395$, $\rho_{11} \approx 8.565$, $\rho_{12} \approx 8.701$, $\rho_{13} \approx 8.768$, $\rho_{14} \approx 8.807$, $\rho_{15} \approx 8.888$, $\rho_{16} \approx 8.944$, $\rho_{17} \approx 8.977$, $\rho_{18} \approx 8.988$, $\rho_{19} \approx 9.132$, $\rho_{20} \approx 9.176$.

Remark 2. Let K be the Fuchsian group generated by the side-pairing transformations A_1, \ldots, A_{30} of P. Consider the tessellation $\{A(P) \mid A \in K\}$ of Δ . Then ρ_1 is the hyperbolic distance between the centers of P and $A_k(P)$. ρ_j (j=2,3,4,5,7,8,10,11,12,14,15,16,17,18) is given by a distance between the centers of P and $A_lA_k(P)$. ρ_j (j=6,9,11,13,18,19,20) is given by a distance between the centers of P and $A_mA_lA_k(P)$.

Proof of Lemma 1. The first statement is clear because $\pi(z)$ and $\pi(A_k(z))$ are the same center of an extremal disk. For any $z \in P$ and any side-pairing A_k ,

it follows that $\rho(z, A_k(z)) \le \rho(z, 0) + \rho(0, A_k(0)) + \rho(A_k(0), A_k(z)) = 2\rho(z, 0) + \rho(0, A_k(0)) \le 2l + 2R \approx 9.270$. Since $\rho_{21} \approx 9.357$, the second statement is proved.

LEMMA 3. Let K_n (n = 1, ..., 30) be a pentagon with vertices w_{n-1} , v_n , v_{n+1} , w_{n+1} and the origin (Figure 2). For a fixed n, if $\pi(z)$ $(z \in K_n)$ is the center of an extremal disk of S, then $\rho(z, A_n(z)) = \rho_1 = 2R$.

Proof. By Lemma 4 in [6] we have

$$\rho(z, A_n(z)) \le \max\{\rho(0, A_n(0)), \rho(w_{n-1}, A_n(w_{n-1})), \rho(v_n, A_n(v_n)), \\ \rho(v_{n+1}, A_n(v_{n+1})), \rho(w_{n+1}, A_n(w_{n+1}))\}.$$

Here $\rho(0, A_n(0)) = 2R \approx 4.494$ and $\rho(w_{n-1}, A_n(w_{n-1})) \leq \rho(w_{n-1}, 0) + \rho(0, A_n(v_n)) + \rho(A_n(v_n), A_n(w_{n-1})) = R + l + s/2 \approx 5.173$. Similarly, $\rho(w_{n+1}, A_n(w_{n+1})) \leq R + l + s/2$. Since $A_n(v_n)$ and $A_n(v_{n+1})$ are vertices of P, $\rho(v_n, A_n(v_n)) \leq P(v_n, v_{n+1}) = 2l \approx 4.776$ and also $\rho(v_{n+1}, A_n(v_{n+1})) \leq 2l$. Therefore $\rho(z, A_n(z)) < P(v_n, A_n(z)) = P(v$

FIGURE 2. K_n

Now we shall find a point of P such that its projection is the center of an extremal disk. First, we shall find a point z of K_n such that $\rho(z, A_n(z)) = \rho_1$, where $A_n = A_{n,m} : C_n \to C_m$ (cf. Lemma 3). Using a formula

$$\sinh \frac{1}{2}\rho(z, A_n(z)) = \cosh \rho(z, \operatorname{ax}(A_n)) \sinh \frac{1}{2}T_{A_n},$$

where $ax(A_n)$ and T_{A_n} denote the axis and the translation length of A_n , respectively, we can show that z with $\rho(z, A_n(z)) = \rho_1$ is on the following curves (cf. Theorem 3.4 in [8]):

$$L_n = L_{n,m} : \left| z - \frac{\tanh R}{2\cos(n-m)\beta} e^{i(n+m)\beta} \right| = \frac{\tanh R}{2|\cos(n-m)\beta|}$$

$$(m \neq n+15 \pmod{30}) \quad \text{or}$$

$$M_n = M_{n,m} : z = \frac{e^{2in\beta}}{\tanh R} - te^{i(n+m+15)\beta} \quad (t \in \mathbf{R}),$$

Two examples of $L_{n,m}$ and $M_{n,m}$ when (n,m) = (15,1) or (15,6) are given in Figure 3. Here, $M_{15,6}$, the dotted line, intersects with K_{15} only at the boundary of the polygon.

FIGURE 3. $L_{15.1}$, $M_{15.1}$, $L_{15.6}$, and $M_{15.6}$

For every n we draw L_n and M_n in K_n according to the side-pairings of P and find the intersection in $K_n \cap K_{n+1}$ of curves $L_n \cup M_n$ and $L_{n+1} \cup M_{n+1}$. Next, we select ζ from the intersection satisfying $\rho(\zeta, A_k(\zeta)) \in \{\rho_1, \rho_2, \dots, \rho_{20}\}$ for every k (cf. Lemma 1). Then $\zeta \in P$ is a candidate for the point whose projection is the center of an extremal disk.

Through this process for every polygon P_j $(j=1,\ldots,927)$ by computer, it turns out that there exist 12 polygons admitting more than one ζ (16 polygons in \mathcal{P}). They are P_{75} , P_{184} , P_{202} , P_{437} , P_{481} , P_{483} , P_{489} , P_{594} , P_{614} , P_{617} , P_{785} , P_{879} $(P'_{184}, P'_{202}, P'_{437}, P'_{489})$ and each of them has exactly two points (the one is the origin) (Figures 6, 7, 8, 9). For example, P_{75} has the intersection consisting of 6 points, but only two points 0 and $(2 \sin 3\beta)/\tanh R$ on the real axis are the candidates.

Put $p = \pi(\zeta)$ ($\zeta \neq 0$) and $o = \pi(0)$. In order to prove that p is the center of an extremal disk, it is sufficient to show that there exists an automorphism T of S such that T(p) = o because o is the center of an extremal disk. Put $\gamma(z) = (\zeta - z)/(1 - \overline{\zeta}z)$. Then γ induces an automorphism of S if and only if $\gamma A_k \gamma^{-1} \in K$ for every k, where $K = \langle A_1, A_2, \dots, A_{30} \rangle$, the Fuchsian group generated by the side-pairing transformations of P.

For each of the 12 polygons P_i , we shall show that $\gamma A_k \gamma^{-1}$ is an element of K.

$$P_{75}: \zeta = \frac{2 \sin 3\beta}{\tanh R},$$

$$P_{74,19} = A_{19,1}Y, \qquad \gamma A_{2,22} = A_{22,2}Y, \qquad \gamma A_{3,24} = A_{24,3}Y, \qquad \gamma A_{4,17} = A_{19,1}A_{25,21}Y, \qquad \gamma A_{5,9} = A_{8,28}A_{27,6}Y, \qquad \gamma A_{6,27} = A_{27,6}Y, \qquad \gamma A_{1,29} = A_{21,129}A_{28,8}Y, \qquad \gamma A_{13,26} = A_{28,8}Y, \qquad \gamma A_{10,16} = A_{15,30}A_{29,11}Y, \qquad \gamma A_{15,30} = A_{30,15}Y, \qquad \gamma A_{13,26} = A_{9,5}A_{29,11}Y, \qquad \gamma A_{14,20} = A_{19,1}A_{30,15}Y, \qquad \gamma A_{15,30} = A_{30,15}Y, \qquad \gamma A_{18,23} = A_{22,2}A_{1,19}Y, \qquad \gamma A_{21,25} = A_{24,3}A_{2,22}Y.$$

$$P_{184}: \zeta = \frac{2 \sin 4\beta}{\tanh R}i,$$

$$\gamma A_{1,5} = A_{4,10}A_{9,2}Y, \qquad \gamma A_{2,9} = A_{9,2}Y, \qquad \gamma A_{21,25} = A_{24,3}A_{2,22}Y.$$

$$\gamma A_{3,16} = A_{17,8}A_{6,23}Y, \qquad \gamma A_{11,15} = A_{28,7}A_{3,12}Y, \qquad \gamma A_{31,26} = A_{17,8}A_{6,23}Y, \qquad \gamma A_{11,15} = A_{28,7}A_{3,0,24}A_{7,28}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{9,2}Y, \qquad \gamma A_{12,29} = A_{17,8}A_{26,13}A_{7,28}Y, \qquad \gamma A_{12,19} = A_{28,7}A_{29,2}Y, \qquad \gamma A_{11,25} = A_{17,8}A_{26,13}A_{7,28}Y, \qquad \gamma A_{12,19} = A_{28,7}A_{29,2}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{3,2}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{3,2}Y, \qquad \gamma A_{12,19} = A_{28,7}A_{4,29}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{3,29}Y, \qquad \gamma A_{24,30} = A_{17,8}A_{10,14}Y, \qquad \gamma A_{2,2} = A_{9,2}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{3,26}Y, \qquad \gamma A_{11,25} = A_{17,8}A_{2,1}Y, \qquad \gamma A_{29} = A_{9,2}Y, \qquad \gamma A_{3,16} = A_{28,7}A_{3,26}Y, \qquad \gamma A_{11,25}A_{17,8}Y, \qquad \gamma A_{21,29}A_{28,7}Y, \qquad \gamma A_{3,16}A_{28,7}A_{3,26}Y, \qquad \gamma A_{3,17,8}A_{26,13}A_{7,28}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,27}Y, \qquad \gamma A_{3,16}A_{28,7}A_{3,26}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,27}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,29}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,29}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,29}Y, \qquad \gamma A_{21,29}A_{28,7}A_{28,29}Y, \qquad$$

 $\gamma A_{7.28} = A_{17.8} \gamma$

$$\begin{array}{c} \gamma A_{9,12} = A_{3,6}?, & \gamma A_{10,14} = A_{28,7}A_{4,30}?, \\ \gamma A_{13,16} = A_{28,7}A_{6,3}?, & \gamma A_{18,27} = A_{17,8}A_{7,28}?, \\ \gamma A_{20,24} = A_{17,8}A_{24,20}A_{7,28}?, & \gamma A_{21,25} = A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{3,6} = A_{9,12}?, & \gamma A_{3,17}, & \gamma A_{19,22} = A_{28,7}A_{5,17}, \\ \gamma A_{11,15} = A_{28,7}A_{5,17}, & \gamma A_{19,22}A_{8,17}?. \\ P_{483} : \zeta = \frac{2 \sin 4\beta}{\tanh R}i, \\ P_{483} : \zeta = \frac{2 \sin 4\beta}{\tanh R}i, & \gamma A_{10,24}A_{10,22}A_{10,22}A_{10,22}, & \gamma A_{20,24}A_{10,22}, & \gamma A_{20,24}A_{10,22}, & \gamma A_{20,24}A_{10,22}, & \gamma A_{20,24}A_{17,8}A_{20,27}, & \gamma A_{21,25}A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{14,30} = A_{17,8}A_{30,14}A_{7,28}?, & \gamma A_{18,27} = A_{17,8}A_{2,28}?, & \gamma A_{13,6}A_{22}A_{22}, & \gamma A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{12,2} = A_{17,8}A_{22}A_{20}A_{128}, & \gamma A_{21,25} = A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{13,6} = A_{28,7}A_{6,3}?, & \gamma A_{23,26}A_{7,28}?, & \gamma A_{23,26}A_{7,28}?, \\ \gamma A_{23,26} = A_{17,8}A_{19,22}A_{8,17}?. & \gamma A_{2,9} = A_{9,2}?, \\ \gamma A_{4,30} = A_{17,8}A_{10,14}?, & \gamma A_{2,9} = A_{9,2}?, \\ \gamma A_{20,24} = A_{17,8}A_{6,13}?, & \gamma A_{3,11} = A_{11,5}?, \\ \gamma A_{20,24} = A_{17,8}A_{24,20}A_{7,28}?, & \gamma A_{21,25} = A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{20,24} = A_{17,8}A_{20,42}, & \gamma A_{20,24} = A_{17,8}A_{20,27}, \\ \gamma A_{3,16} = A_{28,7}A_{4,30}?, & \gamma A_{11,2}A_{7,28}?, \\ \gamma A_{10,14} = A_{28,7}A_{4,30}?, & \gamma A_{11,2}A_{20,27}, \\ \gamma A_{10,14} = A_{28,7}A_{4,30}?, & \gamma A_{11,2}A_{22}A_{8,17}?. & \gamma A_{21,25} = A_{17,8}A_{25,21}A_{7,28}?, \\ \gamma A_{10,14} = A_{28,7}A_{4,30}?, & \gamma A_{11,2}A_{22}A_{23,26} = A_{17,8}A_{19,22}A_{8,17}?. & \gamma A_{21,25} = A_{21,7}A_{17,28}?, \\ \gamma A_{10,14} = A_{28,7}A_{4,30}?, & \gamma A_{21,25} = A_{21,7}A_{23,26}, & \gamma A_{23,26} = A_{17,8}A_{19,22}A_{8,17}?. & \gamma A_{21,25} = A_{21,7}A_{22}?, \\ \gamma A_{21,25} = A_{28,7}A_{23,26}A_{1,28}?, & \gamma A_{21,25} = A_{21,7}A_{22}?, & \gamma A_{21,25} = A_{21,7}A_{22}?, \\ \gamma A_{3,16} = A_{36,6}?, & \gamma A_{36,16}, & \gamma A_{36,16}, & \gamma A_{36,16}, & \gamma A_{36,16}, & \gamma A_{36,16},$$

$$P_{614}: \zeta = \frac{2 \sin 4\beta}{\tanh R} i,$$

$$\frac{\gamma A_{1,25} = A_{17,8} A_{15,21} A_{8,17} \gamma, \quad \gamma A_{2,29} = A_{17,8} A_{9,12} \gamma, \\ \gamma A_{4,10} = A_{10,4} \gamma, \quad \gamma A_{5,11} = A_{11,5} \gamma, \\ \gamma A_{8,17} = A_{28,7} \gamma, \quad \gamma A_{9,12} = A_{3,6} \gamma, \\ \gamma A_{14,20} = A_{28,7} A_{30,24} A_{7,28} \gamma, \quad \gamma A_{15,21} = A_{28,7} A_{1,25} A_{7,28} \gamma, \\ \gamma A_{19,22} = A_{28,7} A_{23,26} A_{7,28} \gamma, \quad \gamma A_{23,26} = A_{17,8} A_{19,22} A_{8,17} \gamma, \\ \gamma A_{3,6} = A_{9,12} \gamma, \\ \gamma A_{13,16} = A_{28,7} A_{6,3} \gamma, \\ \gamma A_{18,27} = A_{17,8} A_{7,28} \gamma, \\ \gamma A_{24,30} = A_{17,8} A_{2,014} A_{8,17} \gamma.$$

$$P_{617}: \zeta = \frac{2 \sin 4\beta}{\tanh R} i,$$

$$P_{41,15} = A_{28,7} A_{10,14} A_{8,17} \gamma, \quad \gamma A_{2,29} = A_{17,8} A_{9,12} \gamma, \quad \gamma A_{3,6} = A_{9,12} \gamma, \\ \gamma A_{4,20} = A_{28,7} A_{10,24} \gamma, \quad \gamma A_{5,21} = A_{28,7} A_{11,25} \gamma, \quad \gamma A_{7,28} = A_{17,8} \gamma, \\ \gamma A_{4,20} = A_{28,7} A_{10,24} \gamma, \quad \gamma A_{5,21} = A_{28,7} A_{11,25} \gamma, \quad \gamma A_{7,28} = A_{17,8} \gamma, \\ \gamma A_{4,21} = A_{28,7} \gamma, \quad \gamma A_{9,12} = A_{3,6} \gamma, \quad \gamma A_{10,24} = A_{17,8} A_{4,20} \gamma, \\ \gamma A_{11,25} = A_{17,8} A_{5,21} \gamma, \quad \gamma A_{13,16} = A_{28,7} A_{6,3} \gamma, \quad \gamma A_{10,24} = A_{17,8} A_{4,20} \gamma, \\ \gamma A_{11,25} = A_{17,8} A_{7,28} \gamma, \quad \gamma A_{19,22} = A_{28,7} A_{23,26} A_{7,28} \gamma, \quad \gamma A_{23,26} = A_{17,8} A_{19,22} A_{8,17} \gamma.$$

$$S_{785}: \zeta = \frac{1}{2 \tanh R \sin 7\beta},$$

$$\gamma A_{1,21} = A_{21,1} \gamma, \qquad \gamma A_{2,5} = A_{25,28} \gamma, \\ \gamma A_{4,27} = A_{27,4} \gamma, \qquad \gamma A_{6,20} = A_{21,1} A_{28,25} \gamma, \\ \gamma A_{11,17} = A_{15,30} A_{7,12} A_{29,9} \gamma, \qquad \gamma A_{13,19} = A_{21,1} A_{23,18} A_{1,21} \gamma, \\ \gamma A_{3,26} = A_{26,3} \gamma, \qquad \gamma A_{18,23} = A_{21,1} A_{23,18} A_{1,21} \gamma, \\ \gamma A_{3,26} = A_{26,3} \gamma, \qquad \gamma A_{11,22} = A_{21,1} A_{23,18} A_{1,21} \gamma, \\ \gamma A_{1,22} = A_{21,1} A_{30,15} \gamma, \qquad \gamma A_{14,22} = A_{21,1} A_{30,15} \gamma, \\ \gamma A_{11,24} = A_{12,4} \gamma, \qquad \gamma A_{6,16} = A_{16,6} \gamma, \qquad \gamma A_{7,20} = A_{20,7} \gamma, \\ \gamma A_{4,22} = A_{25,8} \gamma, \qquad \gamma A_{9,29} = A_{29,9} \gamma, \\ \gamma A_{14,22} = A_{25,8} A_{10,3} \gamma, \qquad \gamma A_{15,21} = A_{20,7} A_{10,13} = A_{25,8} A_{14,28} A_{6,16} \gamma, \\ \gamma A_{1,22} = A_{25,8} A_{10,9} \gamma, \qquad \gamma A_{24,25} = A_{29,9} A_{17,147,20} \gamma, \qquad \gamma A_{24,30} = A_{29,9} A_{2$$

Hence we arrive at the following theorem:

Theorem 4. The surfaces in $\mathcal S$ admitting more than one extremal disks are $S_{75},\ S_{184},\ S_{184}',\ S_{202},\ S_{202}',\ S_{437},\ S_{437}',\ S_{481},\ S_{483},\ S_{489},\ S_{489}',\ S_{594},\ S_{614},\ S_{617},\ S_{785},$ and S_{879} . Moreover, each of them has exactly two extremal disks.

We see that the 16 surfaces in Theorem 4 are respectively different by virtue of the following theorem.

Theorem 5. All surfaces in $\mathcal S$ differ from each other. Hence there are 1726 extremal surfaces of genus 3.

Proof. The proof of this theorem is similar to that of Theorem 1 in [6]. (When a surface admits two extremal disks, we have an automorphism T which interchanges the centers of extremal disks. Hence we can use T in place of the hyperelliptic involution J.)

3. The group of automorphisms and hyperelliptic surfaces

We shall determine the group of automorphisms and the hyperellipticity for each surface of \mathcal{S} . The next lemma is used for finding the fixed points of T.

Lemma 6. Let $P \in \mathcal{P}$ be a polygon with a point ζ $(\neq 0)$ whose projection is the center of an extremal disk. Let γ be $\gamma(z) = (\zeta - z)/(1 - \overline{\zeta}z)$ and B an element of $\langle A_1, \ldots, A_{30} \rangle$, the Fuchsian group generated by the side-pairings A_1, \ldots, A_{30} of P. If $B\gamma$ has a fixed point located in P, then B can be written as a product of at most two side-pairings of P.

Proof. Let z be a fixed point of $B\gamma$ in P. Since $\gamma(z) = B^{-1}(z)$, we have $\rho(0, B(0)) = \rho(0, B^{-1}(0)) \leq \rho(0, B^{-1}(z)) + \rho(B^{-1}(z), B^{-1}(0)) = \rho(0, \gamma(z)) + \rho(z, 0) = \rho(\zeta, z) + \rho(z, 0) \leq 2l + l \approx 7.164 < \rho_4$. Since B(0) is a pre-image of the center o of an extremal disk, $\rho(0, B(0)) = 0, \rho_1, \rho_2$, or ρ_3 . From Remark 2 it follows that B(0) is the center of a disk in the region $(\bigcup_{m,l} A_m A_l(P)) \cup (\bigcup_k A_k(P)) \cup P$. Therefore $B(0) = A_m A_l(0), A_k(0),$ or 0 for some m, l or k, hence $B = A_m A_l, A_k,$ or the identity. \square

We shall consider S_{75} and S_{184} as examples of a surface with two extremal disks.

 S_{75} : First, we shall show that the group of automorphisms $\operatorname{Aut}(S_{75})$ is isomorphic to the cyclic group \mathbb{Z}_2 of order 2. Let o and p be the centers of the extremal disks, where o is the projection of the origin and p is the projection of $\zeta = (2\sin 3\beta)/\tanh R$. We have already shown that S_{75} has an involution T which maps p to o. Suppose that S_{75} has another automorphism T'. Then T' either fixes o or interchanges o with p. If T'(o) = p, TT' fixes o. Then we can take a lift of TT' such that it fixes the origin. From the side-pairings of P_{75} it follows that P_{75} does not admit any non-trivial rotation around the origin. Hence the lift is the identity and T' = T. If T'(o) = o, then T' must be the identity of S_{75} . Thus $\operatorname{Aut}(S_{75}) = \mathbb{Z}_2$.

Next, we shall show that S_{75} is hyperelliptic. For this purpose, it is sufficient to find 2g + 2 = 8 fixed points of T, that is, T is the hyperelliptic involution. As mentioned before, we have a lift γ of T such that $\gamma(z) = (\zeta - z)/(1 - \overline{\zeta}z)$. A fixed point of T is the projection of a fixed point of S_{75} , where S_{75} is an element of S_{75} , where S_{75} is an element of S_{75} . We shall give S_{75} and the fixed points of S_{75} located in S_{75} below, where fixed points are approximate values.

В	Fixed points of $B\gamma$ in P_{75}
id	0.3560
$A_{1,19}$	-0.4254 - 0.5081i
$A_{2,22}$	-0.0413 - 0.7147i
$A_{3,24}$	0.2680 - 0.7160i
$A_{27,6}$	0.2680 + 0.7160i
$A_{28,8}$	-0.0413 + 0.7147i
$A_{29,11}$	-0.4254 + 0.5081i
$A_{30,15}$	-0.6358

As a consequence, T has 8 fixed points on S_{75} . Furthermore they are the Weierstrass points.

Similarly we can show that S_{483} , S_{489} , S'_{489} , S_{594} , S_{785} , S_{879} are hyperelliptic and they have the group of automorphisms \mathbb{Z}_2 . As reference we shall give the tables with respect to the Weierstrass points for these surfaces.

В	Fixed points of $B\gamma$ in P_{483}	В	Fixed points of $B\gamma$ in P_{489}
id	0.5349 <i>i</i>	id	0.5349 <i>i</i>
$A_{5,11}$	-0.4841 + 0.6249i	$A_{5,11}$	-0.4841 + 0.6249i
$A_{10,4}$	0.4841 + 0.6249i	$A_{6,13}$	-0.6057 + 0.3497i
$A_{1,15}A_{6,3}$	-0.7833 + 0.1067i	$A_{9,2}$	0.6057 + 0.3497i
$A_{14,30}A_{9,12}$	0.7833 + 0.1067i	$A_{25,21}A_{7,28}$	-0.2992 - 0.7317i
$A_{25,21}A_{7,28}$	-0.2992 - 0.7317i	$A_{20,24}A_{8,17}$	0.2992 - 0.7317i
$A_{20,24}A_{8,17}$	0.2992 - 0.7317i	$A_{26,23}A_{7,28}$	-0.6994i
$A_{26,23}A_{7,28}$	-0.6994i	$A_{15,1}A_{8,17}$	0.7833 + 0.1067i

В	Fixed points of $B\gamma$ in P_{594}	В	Fixed points of $B\gamma$ in P_{785}
id	0.2767 <i>i</i>	id	0.4644
$A_{3,13}$	-0.7206 + 0.3455i	$A_{1,21}$	-0.1458 - 0.6110i
$A_{5,16}$	-0.7299 - 0.1318i	$A_{3,26}$	0.5635 - 0.5575i
$A_{7,21}$	-0.2193 - 0.6527i	$A_{27,4}$	0.5635 + 0.5575i
$A_{8,24}$	0.2193 - 0.6527i	$A_{29,9}$	-0.1458 + 0.6110i
$A_{10,29}$	0.7299 - 0.1318i	$A_{30,15}$	-0.5515
$A_{12,2}$	0.7206 + 0.3455i	$A_{13,19}A_{30,15}$	-0.5571 - 0.5163i
$A_{19,23}A_{7,21}$	-0.8271i	$A_{17,11}A_{30,15}$	-0.5571 + 0.5163i
$A_{19,23}A_{7,21}$ B	$-0.8271i$ Fixed points of $B\gamma$ in P_{879}	A _{17,11} A _{30,15}	-0.5571 + 0.5163i
, ,	Fixed points	A _{17,11} A _{30,15}	-0.5571 + 0.5163i
В	Fixed points of $B\gamma$ in P_{879}	A _{17,11} A _{30,15}	-0.5571 + 0.5163i
B id	Fixed points of $B\gamma$ in P_{879} 0.3986 i	A ₁₇ , ₁₁ A ₃₀ , ₁₅	-0.5571 + 0.5163i
B id A _{4,12}	Fixed points of $B\gamma$ in P_{879} $0.3986i$ $-0.6211 + 0.4961i$	A _{17,11} A _{30,15}	-0.5571 + 0.5163i
B id A _{4,12} A _{6,16}	Fixed points of $B\gamma$ in P_{879} $0.3986i$ $-0.6211 + 0.4961i$ $-0.6743 - 0.1030i$	A _{17,11} A _{30,15}	-0.5571 + 0.5163i

 S_{184} : Let o and p be the centers of extremal disks. We know that S_{184} has an involution T obtained by $\gamma(z)=(\zeta-z)/(1-\overline{\zeta}z)$, where $\zeta=(2\sin 4\beta)i/\tan R$. First we shall show that T has 4 fixed points by considering the fixed points of $B\gamma$, where B is an element of $\langle A_1,\ldots,A_{30}\rangle$ of P_{184} . By Lemma 6 it is enough to consider B as a product of at most two side-pairings. Then we see that there are 4 points $z_1,\ z_2,\ z_3,\ z_4$ in P_{184} respectively fixed by some $B\gamma$.

0.6211 + 0.4961i

-0.7783i

 $A_{11,3}$

 $A_{18,23}A_{7,20}$

В	Fixed points of $B\gamma$ in P_{184}
id	$z_1 \approx 0.5349i$
$A_{9,2}$	$z_2 \approx 0.6057 + 0.3497i$

$A_{10,4}$	$z_3 \approx 0.4841 + 0.6249i$
$A_{25,21}A_{7,28}$	$z_4 \approx -0.2992 - 0.7317i$

Hence T has exactly 4 fixed points.

From the side-pairings of P_{184} , we see that the rotation of $2\pi/3$ around the origin induces an automorphism σ of S_{184} of order 3. Note that the fixed points of σ are o and p and that a non-trivial automorphism fixing o is σ or σ^2 . We shall show that T and σ generate the dihedral group D_3 of order 6, namely, they satisfy a relation $\sigma T \sigma T = 1$. Since $\sigma T \sigma T$ fixes o, it follows that $\sigma T \sigma T = 1, \sigma$ or σ^2 . If $\sigma T \sigma T = \sigma$, then $\sigma = 1$, a contradiction. If $\sigma T \sigma T = \sigma^2$, then $T \sigma T = \sigma$. For a fixed point q of T, this relation implies that $\sigma(q)$, $\sigma^2(q)$ are also fixed by T. Since q, $\sigma(q)$, $\sigma^2(q)$ are distinct, the fourth fixed point of T which is distinct from q, $\sigma(q)$, $\sigma^2(q)$ must be fixed by σ , that is, σ or σ 0 a contradiction. Hence the relation $\sigma T \sigma T = 1$ holds. Any automorphism T' of S_{184} satisfies $T' \in \langle \sigma \rangle$ or $T' \in T \langle \sigma \rangle$ according as $T'(\sigma) = \sigma$ 0 or $T'(\sigma) = \sigma$ 1, respectively. Consequently we have T1.

The involutions of S_{184} are T, σT , and $\sigma^2 T$. If q is a fixed point of σT , then T fixes $\sigma(q)$, so that $\sigma(q)$ is in $\{p_1,p_2,p_3,p_4\}$, the set of fixed points of T. Namely, $q=\sigma^2(p_j)$ for some j. Conversely, it is clear that $\sigma^2(p_j)$ is a fixed point of σT . Therefore σT has exactly 4 fixed points. In the same manner $\sigma^2 T$ has exactly 4 fixed points. Since every involution has just 4 fixed points, it is not the hyperelliptic involution. Hence we see that S_{184} is non-hyperelliptic. The pre-images of the fixed points of T, σT or $\sigma^2 T$ in P_{184} are shown in Figure 4.

Figure 4. Pre-images of the fixed points of $T(\bullet)$, $\sigma T(\odot)$, or $\sigma^2 T(\circ)$

Similarly S'_{184} , S_{202} , S'_{202} , S_{437} , S'_{437} , S_{481} , S_{614} , and S_{617} are non-hyperelliptic and they have the group of automorphisms D_3 . As reference we shall give the tables with respect to the fixed points of T.

В	Fixed points of $B\gamma$ in P_{202}	В	Fixed points of $B\gamma$ in P_{437}
id	z_1	id	z_1
$A_{9,2}$	z_2	$A_{6,13}$	$e^{2\pi i/3}z_2$
$A_{20,24}A_{8,17}$	$e^{4\pi i/3}z_3$	$A_{10,4}$	z_3
$A_{4,30}A_{9,2}$	$e^{2\pi i/3}z_4$	$A_{24,30}A_{9,22}$	$e^{2\pi i/3}z_4$
В	Fixed points of $B\gamma$ in P_{481}	В	Fixed points of $B\gamma$ in P_{614}
id	z_1	id	z_1
$A_{26,23}A_{7,28}$	$e^{4\pi i/3}z_2$	$A_{26,23}A_{7,28}$	$e^{4\pi i/3}z_2$
$A_{20,24}A_{8,17}$	$e^{4\pi i/3}z_3$	$A_{10,4}$	z_3
$A_{25,21}A_{7,28}$	z_4	$A_{5,11}$	$e^{4\pi i/3}z_4$
В	Fixed points of $B\gamma$ in P_{617}		
id	z_1		
$A_{26,23}A_{7,28}$	$e^{4\pi i/3}z_2$		
$A_{30,14}A_{7,28}$	$e^{2\pi i/3}z_3$		
$A_{15,1}A_{8,17}$	$e^{2\pi i/3}z_4$		

We shall consider S_{498} and S_{138} as examples of a surface with a unique extremal disk (Figure 5).

FIGURE 5. P_{498} and P_{138}

 S_{498} : From the side-pairings of P_{498} it follows that there exists a unique non-trivial automorphism of S_{498} induced by the rotation of angle π around the

origin. Since it is an involution with 8 fixed points, S_{498} is hyperelliptic and $Aut(S_{498}) = \mathbb{Z}_2$.

 S_{138} : Similarly we see that $Aut(S_{138}) = \mathbb{Z}_2$ and the involution of S_{138} has only 4 fixed points. Hence S_{138} is non-hyperelliptic.

In the same way we obtain hyperelliptic extremal surfaces of genus 3.

THEOREM 7. The hyperelliptic surfaces in \mathcal{S} are S_{75} , S_{483} , S_{489} , S'_{489} , S_{498} , S_{499} , S'_{499} , S_{500} , S_{570} , S_{594} , S_{785} , and S_{879} .

4. Main results

We shall classify the extremal surfaces of genus 3 according to our results in the preceding sections. Here, the surfaces S_{481} , S_{500} , and S_{137} have already appeared in [4, 5].

THEOREM 8. The surfaces in \mathcal{S} are classified as follows:

1. Extremal surfaces with two extremal disks: there are 16 surfaces (12 surfaces up to conformal or anti-conformal equivalence).

(1) Hyperelliptic surfaces

S	The centers of extremal disks	Aut S
S_{75}	$\pi(0), \ \pi\left(\frac{2\sin 3\beta}{\tanh R}\right)$	\mathbf{Z}_2
S_{483}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	\mathbf{Z}_2
S_{489}, S'_{489}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	\mathbf{Z}_2
S_{594}	$\pi(0), \ \pi\left(\frac{\sin\beta}{\tanh R\sin 2\beta}i\right)$	\mathbf{Z}_2
S_{785}	$\pi(0), \ \pi\left(\frac{1}{2\tanh R\sin 7\beta}\right)$	\mathbf{Z}_2
S_{879}	$\pi(0), \ \pi\left(\frac{\sin 2\beta}{\tanh R \sin 3\beta}i\right)$	\mathbf{Z}_2

(2) Non-hyperelliptic surfaces

S	The centers of extremal disks	Aut S
S_{184}, S'_{184}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3

S_{202}, S'_{202}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3
S_{437}, S'_{437}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3
S_{481}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3
S_{614}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3
S_{617}	$\pi(0), \ \pi\left(\frac{2\sin 4\beta}{\tanh R}i\right)$	D_3

- 2. Extremal surfaces with a unique extremal disk
 - (1) Surfaces with a non-trivial automorphism
 - (i) Hyperelliptic surfaces

S	Aut S
$S_{498}, S_{499}, S_{500}, S_{570}, S'_{499}$	\mathbf{Z}_2

(ii) Non-hyperelliptic surfaces: there are 97 surfaces (52 surfaces up to conformal or anti-conformal equivalence).

S	Aut S
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\mathbf{Z}_2
S_{315}, S'_{315}	\mathbf{Z}_3
S_{316}	\mathbf{Z}_6

(2) Surfaces only with the trivial automorphism: there are 1608 surfaces (859 surfaces up to conformal or anti-conformal equivalence).

S	Aut S
The other surfaces in $\mathcal S$	{1}

Acknowledgements. The author would like to thank the referee for the careful reading of the first submitted version of this paper.

FIGURE 6. Side-pairings, the centers of extremal disks (•) and the Weierstrass points (o) for hyperelliptic surfaces with two extremal disks

Figure 7. Side-pairings, the centers of extremal disks (\bullet) and the Weierstrass points (\circ) for hyperelliptic surfaces with two extremal disks

Figure 8. Side-pairings and the centers of extremal disks (\bullet) for non-hyperelliptic surfaces with two extremal disks

Figure 9. Side-pairings and the centers of extremal disks (\bullet) for non-hyperelliptic surfaces with two extremal disks

REFERENCES

- [1] R. BACHER AND A. VDOVINA, Counting 1-vertex triangulations of oriented surfaces, Discrete Math., 246 (2002), 13–27.
- [2] C. BAVARD, Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math., (6) 5 (1996), no. 2, 191–202.
- [3] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, 91. Springer-Verlag, New York, 1983.
- [4] E. GIRONDO AND G. GONZÁLEZ-DIEZ, On extremal discs inside compact hyperbolic surfaces, C. R. Acad. Sci. Paris, Sér. I, Math., 329 (1999), no. 1, 57–60.
- [5] E. GIRONDO AND G. GONZÁLEZ-DIEZ, On extremal Riemann surfaces and their uniformizing Fuchsian groups, Glasgow Math. J., 44 (2002), 149–157.
- [6] E. GIRONDO AND G. GONZÁLEZ-DIEZ, Genus two extremal surfaces: extremal discs, isometries and Weierstrass points, Israel J. Math., 132 (2002), 221–238.
- [7] L. MOSHER, A user's guide to the mapping class group: once punctured surfaces, Proc. of a Joint DIMACS/Geometry Center Workshop, 1994, DIMACS series in discrete mathematics and theoretical computer science, Vol. 25 (1996), 101–174.
- [8] G. NAKAMURA, The number of the extremal disks embedded in compact Riemann surfaces of genus two, Sci. Math. Japon., 56 (2002), no. 3, 481–492.
- [9] G. NAKAMURA, Generic fundamental polygons for surfaces of genus three, Kodai Math. J., 27 (2004), 88–104.

GOU NAKAMURA
SCIENCE DIVISION
CENTER FOR GENERAL EDUCATION
AICHI INSTITUTE OF TECHNOLOGY
YAKUSA-CHO, TOYOTA 470-0392
JAPAN

E-mail: gou@aitech.ac.jp