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Abstract

We show the existence of special curves which are ramified coverings of irrational
curves with surjective Wahl maps. We also show the failure of a key property of
Gaussian maps in positive characteristic, i.e. the Gherardelli’s lower bound for the rank
of a Gaussian map.

0. Introduction

In the last couple of decades, many works have been done to clarify the
structure (and in particular the rank) of certain linear maps, called Gaussian
maps. These maps capture many geometric informations on the geometry of
projective varieties, on their differential geometric properties and on their defor-
mation theoretic properties. We do not recall here the definitions and the main
properties of them (for instance, the reader can see both in [7] or [11]). For very
good reasons, one particular Gaussian map is called Wahl map (see [10]).

We fix notations. We always work over an algebraically closed base field K
with char K # 2. Let X be a projective variety, L and M line bundles on X, V'
a subspace of H(X,L), W a subspace of H°(X, M). The Gaussian map of the
pair (V, W) is a linear map

Yy VW — H' (X, Q) ® L M).

If V=W we will write ¥y instead of Wy . The map W) is uniquely deter-
mined by its restriction (denoted in the same way) to A(V). If V = H(X,L)
and W = H°(X, M) we will use the notations W, m and ¥ instead of Wy y and
Yy, If K := Ky (the canonical sheaf) is a line bundle, the Gaussian map Vg is
called the Wahl map of X. Note that if X is a smooth curve the Wahl map ¥
of X is a linear map from A*(X,Ky) to H'(X,K$?).

In the first part of this paper we will prove the following result.
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THEOREM 0.1. Assume char(K) =0 or char(K) = p > 2. Then there exists
an integer gy such that the following statement holds. For every even (resp. odd)
integer q > 2, for every even (resp. odd) integer g > go and for every smooth curve
C of genus q there is a smooth curve X of genus g which is a 5: 1 covering of C
whose Wahl map Yk is surjective.

Taking a hyperelliptic curve as the curve C in the statement of Theorem 0.1,
we obtain the following corollary related to [11], §4 and [4], Problem 8.5.

CoRrROLLARY 0.2. Assume char(K) =0 or char(K) = p > 2. There exists an
integer go such that for every g > go a general 10-gonal curve of genus g has a
surjective Wahl map.

We remark that Corollary 0.2 is a very special case of [6], Theorem 1.2 (at
least in characteristic zero). We further remark that Proposition 4.1 of [6] shows
that the Wahl map of a double or triple covering is not surjective.

Theorem 0.1 will be proved in section 1 as a corollary to the Theorem 1.1
and Theorem 1.2. These theorems and their proofs are related to [12]; Theorem
4.11, Lemma 4.12 and Corollary 4.13, [4]; Ch. 3 and problem 8.5, and [5].
Indeed, in characteristic 0 case it would be possible to prove Corollary 0.2 and a
slightly weaker form of Theorem 0.1 just using [12]; Theorem 4.11, Lemma 4.12
and proof of Corollary 4.13. The main point is not Corollary 0.2 but rather that
the surjectivity of the Wahl map also holds true for some very special (e.g. 10-
gonal) curves of sufficiently high genus.

In the second (and last) section of this paper we show the failure of a key
property of Gaussian maps in positive characteristic: Gherardelli’s lower bound
for the rank of a Gaussian map (see Corollary 2.2 and Example 2.4).

1. Proofs of 0.1 and 0.2

In this section we prove Theorem 0.1 and Corollary 0.2 as a consequence
of Theorem 1.1 and Theorem 1.2. Here are the notations we will use in this
section.

We fix a smooth curve C of genus ¢ > 2 and a rank 2 normalized vector
bundle £ on C. Set S:=P(E) and let n: S — C be the associated projection.
Let —e be the minimal degree of the self-intersection of a section of n; by a
theorem of Nagata we have e > —¢q; E is stable if and only if e < 0. We work
on Pic(S) modulo numerical equivalence (which will be denoted by =x). We
take as basis of Pic(S) modulo numerical equivalence the class f of a fiber of
7 and the class / of a minimal degree section of 7. Hence h?> = —e, h.f = 1 and
f?=0; we will use the additive notations for Pic(S)/~. We fix integers a, b
witha>0,b>eaife>0,b>0if e <0 and a smooth curve X of type ah + bf.
We have

K5%—2h+(2q—2—€)f, KX:(K5+X)|X
and
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Pa(X) =14 ab — (ea®/2) + (ea/2) +qa—a—b
by the adjunction formula. Set K := Kg. Note that for every line bundle L on

S (and there is a g-dimensional family of them) whose numerical class is ah + bf,
we have

(S, L)=1—-¢g+ (L-(L—-Ks)/2)
=1—q+ ((ah+b)((a+2)h+ (b+e+2—-29)f)/2)
=1—q—aq+ab— (ea/2) — (ea®*/2) +a+b

by Riemann-Roch formula and vanishing theorems. Note that every curve X we
will use will appear only once and for a unique such line bundle just because for
genus reasons any such X can be a 5: 1 covering of another curve in at most one
way. Hence indeed we will find a family of large dimension (diverging with g)
satisfying the thesis of Theorem 0.1 (for ¢ =5 and taking for instance ¢ =0 or
e=1). We use the following commutative diagram considered in many of the
quoted references.

AHO(S,0(Ks + X)) —% H(S,QL(2Ks + 2X))
P y HY(X,QL2Ks +2X), )

lx
/o
AHO(X,Ky) & —%, H(X,3Ky)
Here the restriction map p is not surjective because g > 0; we will call W o p the
relative Wahl map of X (or of the pair (X,S)). To prove the surjectivity of Wk,
it is sufficient to prove the surjectivity of the relative Wahl map which follows if
we have the surjectivity of Wx,y and y. Even just the surjectivity of y (e.g. the

surjectivity of o and f) is interesting since it shows that dim(coker(¥x o p)) <
dim(coker(Wk;x)). It is the part which fails if ¢ =0.

THEOREM 1.1.  With the notations just introduced we have:

(i) B is surjective.

(i) There is a function B(q,e,a) (depending only on the integers q, e, a) such
that if b > B(q,e,a) the map o is surjective.

Proof. (i): By the conormal exact sequence of X
0— Ox(2Ks + X) — Os @ QL(2Ks + 2X) — K2 — 0,

coker(f3) is contained in H'(X,Ox(2Ks + X)) which is dual to H°(X, (—Ks) y)-
From the exact sequence on S:

0 — Os(—Ks — X) — Os(—Ks) — Os(—Ks) y = 0
and the fact that for ¢ > 2 we have h°(S, —Ks) = 0, we see that it is sufficient
to prove that H!(S,—Ks— X)=0. By a vanishing theorem of Kodaira (in
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positive characteristic we have to use that Kodaira vanishing holds for surfaces
of Kodaira dimension < 0 in [8]; Ch. II, Theorem 1.6 at p. 125); in positive
characteristic to have the ampleness of Kg+ X use [9], Ch. V, Ex. 2.14 and note
that (Ks+ X)*> >0 and (Ks+ X)-h >0 for e > 0.

(ii): By the following exact sequence on S,

0 — Q4(2Ks + X) — Qg(2Ks +2X) — Qg(2Ks +2X);y, — 0
to prove the surjectivity of « it is enough to show the vanishing of the
space H'!(S, Q}g(ZKg—i—X )). This vanishing depends only on the line bundle
0Us(X), not on the choice of the curve X in the linear system |X| on S. Let F be
any fiber of 7, say F = 7~ '(P). Hence F ~ P! and Og(— F)p = Up. From the
conormal bundle exact sequence of the inclusion of F in S
0 — Os(=F)p — Qg — Qp — 0,
we obtain that QS‘ p 1s a direct sum of a line bundle of degree 0 and a
line bundle of degree —2. Hence Q! (ZKS—&—X)‘F is a direct sum of a line
bundle of degree a—4 and a line bundle of degree @ —6. Hence if a>5
we have h!(F,QL(2Ks +X)p) =0, h°(F, Ql(2Ks +X)‘F) =2a—8 and hence
R'7,(Q4(2Ks + X)) =0, while Rz (QL(2Ks+ X)) is a rank 2a—8 vector
bundle on C. By the Leray spectral sequence of 7 it is sufficient to show that
H'(C,R7,(Qg(2Ks + X))) = 0. Take any integer ¢ > 0 such that |X — cF| # 0
and fix Y €|X — ¢F|. We have
QL(2Ks + X) = QL(2Ks + Y) ® Us(cF),
and hence
Rz, (QL(2Ks + X)) = R'7.(QL(2Ks + Y)) ® Oc(cP)
by the projection formula. For any fixed Y the vector bundle
R'7,(Q{(2Ks + Y)) is a fixed vector bundle on C and hence H'(C,
R, (Q5(2Ks + Y)) ® Oc(cP)) = 0 for ¢ > 0, say for all ¢>cyp. The minimal
integer ¢y depends only on the integer ¢ and the numerical invariants of the
Harder-Narashiman filtration of the vector bundle R’z.(QL(2Ks+ Y)) (ranks
and degrees of its subquotients). These numerical invariants depend only on
the numerical invariants of S (i.e. from ¢ and ¢) and the numerical invariants of
Y, say a and b’. Furthermore, there is one 4’ (at least) for any fixed ¢, e, a.
Hence H'(C, R'%.(Q5(2Ks + X))) = 0 for fixed g, e, a if b = b’ 4 ¢ is large, say
for all b > B(q,e,a). O

We were unable to give an explicit form for the function B(q, e, a) in part (ii)
of Theorem 1.1.

THEOREM 1.2.  There is a computable function D(q,e,a) depending only on q,
e, a, such that if b > D(q,e,a), then Wk x is surjective.

Proof. Several proofs (each with a different estimate for the function
D(g,e,a)) seems to be available; some of these proofs use different interpretations
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of the Gaussian maps. For the case e = 0, see Remark 1.3; for the general case
one can use also either the method of [3] as in [2] or a Leray spectral sequence
and the interpretation in terms of the diagonal of S x S given in [5]. Here we
use the interpretation of the Gaussian map given in [11], Lemma 1.7. Set
L(b) := Ks + X (as a function of b for fixed ¢, e, a). First consider (restricting
to a fiber F of n) what happens if instead of the curve X we take a curve X'
numerically equivalent to ak+ (b+1)f in the linear system 0Us(X)® Os(F).
Consider the restriction of the data to F. Note that L(b); is a line bundle of
degree a —2 > 0 on P'. Take another integer 5" and consider W) 1(»1). First
note that with the notations of [11], Lemma 1.7, we need to prove /4!(S, M) ®
L(b)) =0. First, restricting to F, we obtain that for large b (say b > by(q, e,a))
the bundle My ® L(b) is spanned. Then we see that 4'(S, M) ® L(b)) for
large b is a non increasing function of » (up to now this would follow also from a
Leray spectral sequence and the interpretation in terms of the diagonal of S x S).
Then we show that if 4’ > b we have

R (S, My ® L(b)) < h'(S, My ® L(b'))
and that if " > b' > b > by(q,e,a), then
h'(S, Mgy ® L(b")) < max(0,4' (S, M*? @ L(b")) — 1)
(restricting to the fiber F, using the Leray spectral sequence of 7, the projection

formula and using the fact that for every sheaf U on C and every P € C, we have
h'(C,U® Oc(P)) < h'(C,U) if h'(C,U) > 0). O
Proof of Theorem 0.1. Set
G(q,e,a,b) :== p,(X) =1+ ab — (ea®/2) + (ea/2) + ga — a — b.
Note that G(q,e,a,b+1) = G(q,e,a,b) +a—1. Hence fixing ¢, ¢ and taking
a =5, if for one large b we cover a genus ¢g’, then we cover all the genera g’ + 4¢
with ¢ positive integer. Then note that G(g,e+ 1,a,b) = G(q,e,a,b) —a*/2+
a/2. Hence, since gcd(4,10) =2 we may use the same trick taking two con-
secutive integers instead of the integer ¢ and conclude the proof of 0.1. O

Remark 1.3. To use only the case S =P! x C as in [12], Theorem 4.11,
Lemma 4.12 and Corollary 4.13 (which would give explicit and very good
bounds), just take instead of C, 4 curves C;, 1 <i <4, with p,(C))=q+i—1
and note that G(¢+ 1,e,a,b) = G(q,e,a,b) + a and that 5 and 4 are coprime.
In this way, we also get Corollary 0.2 with a more explicit bound on gj.

2. The failure of Gherardelli’s bound in characteristic p

In this section we will show the failure in positive characteristic of a key
property of the Gaussian map for non complete linear series, i.e. Gherardelli’s
lower bound of the rank of every Gaussian map (Theorem 2.1 and Corollary
2.2). Nevertheless, the more interesting applications of Gherardell’s bound hold
in positive characteristic (see Proposition 2.3). The key point of this section is
Example 2.4.
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THEOREM 2.1.  Fix integers n and p with n > 2, p prime and p # 2. Set x :=
[(n—1)/p). Assume char(K) = p. Let C be a rational normal curve in P". Then
there exists a linear subspace V of P" with dim(V') = x and such that every tangent
line to C intersects V. Furthermore, no integer smaller than x has this property.

Proof. Recall that a curve Z in a projective space M is said to be strange
if there is a point P € M (called the strange point of Z) such that every tangent
line to a smooth point of Z contains P. Let y be the minimal integer such that
there a rational (but singular) strange curve D in P’ (hence D is the image of a
projection py of C from a linear space W of dimension n — y — 1 with WNC =
0. Let V be the (n— y)-dimensional linear subspace of P" containing W and
mapped to v by the projection py. Since every tangent line to D,.; contains v,
every tangent line to C intersects V. Since the projection p, of D from v into
P’~! is not separable and its image is a non degenerate curve, we have n =
deg(D) = p(deg(D’)) = p(y —1). Hence y <x+ 1. To prove the theorem it is
sufficient to use that in [1] it is proved the existence of a rational strange curve of
degree px in P*™!, D lying on a cone T with vertex v and with as base a rational
normal curve D’ of P’~!, D with v as strange point. O

Taking duals, the following statement is equivalent to Theorem 2.1 and
shows in what sense Gherardelli’s lower bound fails in positive characteristic
(compare with [10], (1.4)).

COROLLARY 2.2. Assume char(K)=p>2. Let L be a line bundle of
degree n on P' and W, the associated Gaussian map. Then the set of decom-
posable vectors of A°H'(P', L) intersects Ker(¥y) in a set of dimension x — 1 with

[n—l
X = )
V4

However, we still have the following result as in characteristic 0.

PropoSITION 2.3.  Assume char(K) # 2. The Gaussian map Yr. of the degree
n line bundle L on P! has rank 2n—1. Hence the Wahl map of the canonical
bundle of a hyperelliptic curve of genus g has rank 2g — 3.

Proof.  Note (as in [6], first sentence of section 1, or [11], Theorem 4.4) that
for the base {x'},_,_, of H*(P' L) we have

Y (x'Ax)=(G—-ix"ldxy, 0<i<j<n.
It is easy to check that for every integer u with 1 <u <2n—1 we may find
two integers [ and j, i # j, with j —i not a multiple of p :=char(K) > 2 and
i+j=u. Ul
The main point of this section is that the failure of the classical lower bound

in Gherardelli’s theorem is reflected in the failure of a Gaussian map for certain
non complete linear systems, as shown by the following example.
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Example 2.4. Assume char(K) = p > 2. For every integer n, a with 2 <
a<n—p there is a base point free linear subspace V of H°(P',0(n)) with
dim(V)=a+1 and such that rank(¥p) < 2a — 1.

Proof. Take a base {x'},_;_, of H*(P' ((n)) with dx' = ix"~! dx. Take
a subspace V' of dimension a+ 1 spanned by elements {x'},_, of this base,
J = {jly s "j(H-l}) jl <o < ja+] Wlth) say, p + ja = ja+1- Then we have
\PV(x]a A x]u+l) — O l:‘
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