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ANOTHER INVOLUTION ON MODULI OF SEXTICS

Mutsuo Oka

1. Introduction

Let M be the moduli space of sextics with 6 cusps and 3 nodes. A sextic C
is called of a �2; 3�-torus type (or brie¯y of a torus type) if its de®ning polynomial
f has the expression f �x; y� � f2�x; y�3 � f3�x; y�2 for some polynomials f2; f3

of degree 2, 3 respectively. We denote by Mtorus the component of M which
consists of curves of a torus type and by Mgen the curves of a general type
(� not of a torus type). We denote the dual curve of C by C �. Recall that
C � is the image of the Gauss map dualC : C ! P2�, �X ;Y ;Z� 7! �FX �X ;Y ;Z�;
FY �X ;Y ;Z�;FZ�X ;Y ;Z��. In our previous paper [O3], we have shown that the
dual curve operation C 7! C � gives an involution on M and it preserves the type of
the curve in M, i.e., C � A Mtorus if and only if C A Mtorus. Let G :� PGL�3;C�.
The quotient moduli spaces are by de®nition the quotient spaces of the moduli
spaces by the action of G.

The purpose of this note is to show that there exists an involution i on M=G
such that i is di¨erent from the dual curve operation and i preserves the types of the
sextics (Theorem 2.4).

For the construction of i, we consider the moduli space ~M of plane curves
of degree 12 with 24 cusps and 24 nodes. This moduli space is also self-dual

in the sense that C � A ~M if C A ~M. The construction of i is done as follows.
First observe that C has three bi-tangent lines for any C A M. We take g A G so
that the three coordinate lines X � 0, Y � 0, Z � 0 are the bi-tangent lines of C g

and let F�X ;Y ;Z� � 0 be the de®ning homogeneous polynomial of degree 6.
Then consider the curve ~C de®ned by F�X 2;Y 2;Z2� � 0. It turns out that ~C is
contained in ~M. This operation de®nes a rational mapping c : M=G ! ~M=G.
We de®ne i�C� � cÿ1�c�C g���.

2. Involution on the quotient moduli M=G

Let M and ~M be the moduli space of sextics with 6 cusps and three nodes
and the moduli space of irreducible plane curves of degree 12 with 24 cusps and
24 nodes respectively. Note that the genus of a generic curve in M (respectively
in ~M) is 1 (resp. 7). By the class formula ([N] or [O3]), it is easy to see that
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for a generic C A ~M, the dual curve C � is also in ~M. We consider the mapping
p : P2 ! P2, de®ned by p�X ;Y ;Z� � �X 2;Y 2;Z2�, which is a 4-fold covering
branched along the coordinate axes fX � 0gU fY � 0gU fZ � 0g. Take a
generic curve C A M and let F�X ;Y ;Z� be the de®ning homogeneous polynomial
of degree 6. As C � has three nodes, C has three bi-tangent lines. We denote
by Mnml the subset of M which consists of curves C A M whose three bi-tangent

lines are X � 0, Y � 0 and Z � 0. We de®ne a mapping c : Mnml ! ~M as
follows. Let C A Mnml and let F �X ;Y ;Z� be the de®ning homogeneous poly-
nomial. We de®ne c�C� :� pÿ1�C�. Note that c�C� is de®ned by ~F�X ;Y ;Z�
:� F�X 2;Y 2;Z2�. Each cusp of C produces 4 cusps on c�C�. Thus c�C� has
24 cusps. Each node of C also gives 4 nodes on c�C�, thus we get 12 nodes
on c�C� which are mapped onto the nodes of C. As the restriction of p to the
a½ne chart fZ 0 0g is the composition of double coverings �x; y� 7! �x; y2� and
�x; y� 7! �x2; y�, each simple tangent on the coordinate axis X � 0, Y � 0 gives
2 nodes on c�C� ([O1]). This is the same for the simple tangents for Z � 0.
Thus there are 12 nodes on c�C� which are on the three coordinate axes and
they are mapped to simple tangents on coordinate axis by p. Thus c�C� has 24

nodes. Thus c�C� A ~M.
Now for C A M, we de®ne c�C� as c�C g� by choosing g A G such that C g A

Mnml . The ambiguity for the choice of g A G is in the stabilizer GMnml of Mnml

which is a direct product of S3 (the permutations of coordinates) and C � � C � �
C � (scalar multiplications). Thus the polynomials F �X ;Y ;Z� and ~F�X ;Y ;Z�
are unique up to a GM nml action. Thus Mnml=GM nml GM=G and c : M=G !

~M=G is well-de®ned.
Recall that a polynomial F�X ;Y ;Z� is called even in X (respectively

symmetric in X ;Y ) if F �ÿX ;Y ;Z� � F �X ;Y ;Z� (resp. F�Y ;X ;Z� �
F �X ;Y ;Z�). Thus the polynomial F �X 2;Y 2;Z2� is even in X ;Y ;Z. Note that
evenness (or symmetricity) is preserved by the dual curve operation.

Lemma 2.1. Assume that C � fF �X ;Y ;Z� � 0g is de®ned by an even
polynomial F �X ;Y ;Z� in X (respectively symmetric polynomial in X ;Y ). Then
the dual curve C � is de®ned by an even polynomial F ��X �;Y �;Z �� in X � (resp. in
X �;Y �).

Proof. Assume for example that F�X ;Y ;Z� is even in X. Then for any
point P � �X ;Y ;Z� A C, let P 0 :� �ÿX ;Y ;Z� is also in C. Then it is easy to see
that

dualC�P 0� � �FX �P 0�;FY �P 0�;FZ�P 0�� � �ÿFX �P�;FY �P�;FZ�P�� � dualC�P�0

This implies that F ��X �;Y �;Z �� is even in X. The symmetric case is proved
similarly. r

Assume that C A M is de®ned by F�X ;Y ;Z� � 0. If F is an even poly-
nomial in the variable X (respectively a symmetric polynomial in X ;Y ), then 6
cusps are stable by the involution �X ;Y ;Z� 7! �ÿX ;Y ;Z� (resp. by �X ;Y ;Z� 7!
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�Y ;X ;Z�). Then there exists a homogeneous polynomial F2�X ;Y ;Z� of degree
2 which is even in X (resp. symmetric in X ;Y ) such that the conic F2�X ;Y ;Z� �
0 passes through the 6 cusps of C. By the criterion of Degtyarev [D], the sextic
F �X ;Y ;Z� � 0 is of a torus type.

Now we take a generic C A Mnml and consider the dual curve c�C�� and
let ~G�X �;Y �;Z �� be a de®ning homogeneous polynomial of degree 12, where
�X �;Y �;Z �� is the dual coordinates of �X ;Y ;Z�. As ~F�X ;Y ;Z� is even in
X ;Y ;Z, so is ~G�X �;Y �;Z �� in X ;Y ;Z by Lemma 2.1.

Proposition 2.2. c�C�� has 4 nodes on each coordinate axis X � � 0, Y � �
0 or Z � � 0.

Proof. Let C � fF�X ;Y ;Z� � 0g and let us consider the discriminant
polynomial DY F with respect to Y-variable. This is a homogeneous polynomial
of degree 30 in X ;Z ([O2]). We assume that the singularities of the sextic
F �X ;Y ;Z� � 0 are not on the coordinate axis. Assume that P :� �a; b; g� A C is
a singular point of C with Milnor number m and multiplicity m. Then DY F�X ;Z�
has a linear term �gX ÿ aZ�r with rV m�mÿ 1 and the equality holds if the
line gY ÿ bZ � 0 is generic with respect to C (see [O3]). Thus to each cusp
(respectively to each node), there is an associated linear term with multiplicity 3
(resp. with multiplicity 2). The factor X � 0 and Z � 0 has also multiplicity 2 in
DY F�X ;Z� � 0, as they are bi-tangent lines. Assume C is generic in M. Then
the sum of degrees is 18� 6� 4 � 28 by the above consideration. Thus there
exists two simple tangent lines of the form X ÿ h1Z � 0 and X ÿ h2Z � 0 for
some h1; h2 0 0. Then four lines X �G

����
hi

p
Z, i � 1; 2 are bi-tangent lines for

the curve c�C�. This implies that �1; 0;G ����
hi

p �, i � 1; 2 are nodes of the dual
curve c�C��. Thus the coordinate axis Y � � 0 contains 4 nodes of c�C��. By
the same argument, X � � 0 and Z � � 0 contains also 4 nodes respectively. The
non-emptiness of ``generic'' curves in M in the above sense is not obvious but it
follows from the example below. r

Definition 2.3. For C A Mnml , we de®ne a polynomial of degree 6 by
G�X �;Y �;Z �� :� ~G� �������X �

p
;
�������
Y �
p

;
������
Z �
p � and we de®ne i�C� by the sextics de®ned

by G�X �;Y �;Z �� � 0. For C A M, take g A G so that C g A Mnml and we de®ne
an involution i : M=G !M=G by i�C� � i�C g�.

Claim 1. i�C� A M for a generic C A M and i is an involution which
preserves the type of sextics, that is, we have the commutative diagram:

M=G ���!i M=G???yc

???yc

~M=G ���!dual ~M=G

Mtorus=G ���!i Mtorus=G???yc

???yc

~Mtorus=G ���!dual ~Mtorus=G
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Proof. We may assume that C A Mnml . By the above consideration, we
have seen that the dual curve c�C�� of c�C� is de®ned by a polynomial
G�X �;Y �;Z �� of degree 12 which is even in each of the three variables and it has
24 cusps and 12 nodes outside of coordinate axis and 4 nodes on each coordinate
axis. Thus i�C� has 6 cusps and 3 nodes. Note that nodes of c�C�� on the
coordinate axes are mapped on simple tangents on the corresponding coordinate
axes of i�C�. Thus the curve i�C�, de®ned by g� �����x�

p
;
�����
y�
p � � 0, belongs to

Mnml . Finally we will show that i keeps the type of the curve. As the curves
fi�C�; C A Mtorus=Gg are topologically equivalent, the image is contained in a
connected component. Thus it is enough to show that there exists a C A
Mtorus=G such that i�C� A Mtorus=G. To see this, it is enough to take C A Mnml

torus

whose de®ning polynomial F�X ;Y ;Z� is symmetric in each of X ;Y . Then
~F �X ;Y ;Z� is also symmetric in X ;Y . This implies also that ~G�X �;Y �;Z �� and
G�X �;Y �;Z �� symmetric in X �;Y �. By Degtyarev's criterion, this implies that
i�C� is a sextic of a torus type. r

Thus we have proved the following:

Theorem 2.4. There exists an involution i on the quotient moduli space M=G
which is de®ned on generic points such that i is di¨erent from the dual curve
operation and i preserves the types of the sextics, that is i�C� A Mtorus=G , C A
Mtorus=G.

The following example shows that i�C�0C � in general.

Example 2.5. Let C A Mnml
torus be the sextic de®ned by the symmetric

polynomial:

f :� ÿ684�x3y� xy3� ÿ 1055�x3 � y3� � 2235�x2 � y2� ÿ 2178�x� y��
�819=16��x5y� y5x� � �1767=16��x4y2 � x2y4� � �881=8�y3x3 � �405=16��x6 � y6�
ÿ �873=8��x5 � y5� � �2001=4��x4 � y4� ÿ �971=8��x4y� xy4� ÿ �6947=2�y2x2�
2268� 1038�x2y� xy2� ÿ 4883yxÿ �375=2��x2y3 � x3y2�:

Then c�C� is de®ned by f �x2; y2� and c�C�� is de®ned by g�x�2; y�2� � 0
and i�C� is the sextic de®ned by the symmetric polynomial

g�x�; y�� :� 908294x�2y�2 ÿ 354000�x�y�2 � x�2y�� � 302745�y�4 � x�4��
529284�x�4y�2 � y�4x�2� ÿ 396458�x�y�4 � y�x�4� ÿ 722148�x�3y�2 � y�3x�2��
11340�y�6 � x�6� ÿ 109170�x�5 � y�5� � 86296x�y� � 482724�x�3y� � y�3x�� ÿ
158508�y�x�5 � y�5x�� � 103096y�3x�3 ÿ 22230�x� � y�� ÿ 203920�y�3 � x�3��
90570�y�2 � x�2� � 2025

The dual curve C � of C is de®ned by the following symmetric polynomial
and we can easily check that i�C�0C � in M=G.

h�x�; y�� :� 3�x�4 � y�4� � 14�x�3 � y�3� � 3�x�2 � y�2� � 4�y�x�4 � x�y�4��
36�y�x�3 � x�y�3� � 6�y�x�2 � x�y�2� ÿ 2y�x� � 12�y�2x�4 � x�2y�4� � 84�y�2x�3�
x�2y�3� � 14y�2x�2 � 88y�3x�3
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Proof. Put C 0 :� i�C�. We can see that C � and C 0 are not in the same
orbit of PSL�3; C�. In fact, assume that there exists a A A PSL�3; C� such that
�C ��A � C 0. Then A maps nodes to nodes. This implies that A permutes
the three points �0; 0; 1�, �0; 1; 0�, and �1; 0; 0�. Thus A is a scalar multiplication
of the coordinates �X �;Y �;Z �� 7! �aX �; bY �; gZ ��, followed by a persutaion
s A S3. These actions does not change the number of monomials in x� and y�.
Thus hA � g is impossible as g has 28 monomials while h has only 19
monomials. r

Remark. We know that Mtorus=G is irreducible of dimension 4, in which
one dimensional subvariety comes as the image of Gauss map (� dual curves) of
3 �3; 4�-cuspidal sextics of torus type ([O4]). We do not know either the
irreduciblity of Mgen=G or the dimension. Only thing we know is that it contains
one dimensional subvariety coming from 3 �3; 4�-cuspidal non-torus sextics as the
image of Gauss map. However any such curve C is special in the sense C � is
not contained in Mgen=G. We do not have any explicit example of a generic
element C A Mgen=G which has three bitangent lines.

References

[B-K] E. Brieskorn and H. KnoÈrrer, Ebene Algebraische Kurven, BirkhaÈuser, Basel, 1981.

[D] A. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory and its

Rami®cation, 3 (1994), 439±454.

[N] M. Namba, Geometry of Projective Algebraic Curves, Dekker, New York, 1984.

[O1] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992),

375±414.

[O2] M. Oka, Flex curves and their applications, Geom. Dedicata, 75 (1999), 67±100.

[O3] M. Oka, Geometry of cuspidal sextics and their dual curves, to appear in Singularities and

Arrangements, Sapporo-Tokyo 1998, Kinokuniya.

[O4] M. Oka, Elliptic curves from sextics, preprint, 2000.

[W] R. Walker, Algebraic Curves, Dover, New York, 1949.

Department of Mathematics

Tokyo Metropolitan University

Minami-Ohsawa, Hachioji-shi

Tokyo, 192-0397, Japan

E-mail: oka@comp.metro-u.ac.jp

mutsuo oka30


