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ANOTHER INVOLUTION ON MODULI OF SEXTICS
Mutsuo Oxka

1. Introduction

Let .# be the moduli space of sextics with 6 cusps and 3 nodes. A sextic C
is called of a (2, 3) -torus type (or brleﬁy of a torus type) if its defining polynomial
f has the expression f(x,y) = fa(x,»)’ + f3(x,»)* for some polynomials f>, f;
of degree 2, 3 respectively. We denote by .#,,,s the component of .# which
consists of curves of a torus type and by .#,, the curves of a general type
(= not of a torus type). We denote the dual curve of C by C*. Recall that
C* is the image of the Gauss map dualc : C — P, (X,Y,Z2)— (Fx(X,Y,2),
Fy(X,Y,Z),Fz(X,Y,Z)). In our previous paper [03], we have shown that the
dual curve operation C — C* gives an involution on .4 and it preserves the type of
the curve in M, i.e., C* € M if and only if C € Myns. Let G:=PGL(3,C).
The quotient moduli spaces are by definition the quotient spaces of the moduli
spaces by the action of G.

The purpose of this note is to show that there exists an involution 7 on M |G
such that 1 is different from the dual curve operation and T preserves the types of the
sextics (Theorem 2.4). R

For the construction of 7, we consider the moduli space .# of plane curves
of degree 12 with 24 cusps and 24 nodes. This moduli space is also self-dual
in the sense that C* € .# if Ce./. The construction of 7 is done as follows.
First observe that C has three bi-tangent lines for any C € .#. We take g € G so
that the three coordinate lines X =0, ¥ = 0, Z = 0 are the bi-tangent lines of CY
and let F(X,Y,Z) =0 be the defining homogeneous polynomial of degree 6.
Then consider the curve C defined by F(X?2, ¥2,Z%) =0. It turns out that C is
contained in .. Thls operation defines a ratlonal mapping V : M /G — M / G.
We define 7(C) =y~ (Y(C9)").

2. Involution on the quotient moduli .#/G

Let .# and .# be the moduli space of sextics with 6 cusps and three nodes
and the moduli space of irreducible plane curves of degree 12 with 24 cusps and
24 nodes respectively. Note that the genus of a generic curve in .# (respectively
in /) is 1 (resp. 7). By the class formula ([N] or [O3]), it is easy to see that
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for a generic C €./, the dual curve C* is also in .#Z. We consider the mapping
n:P? — P?) defined by n(X,Y,Z)= (X2 Y2 Z?), which is a 4-fold covering
branched along the coordinate axes {X =0}U{Y =0}U{Z =0}. Take a
generic curve C € .4 and let F(X,Y,Z) be the defining homogeneous polynomial
of degree 6. As C* has three nodes, C has three bi-tangent lines. We denote
by .#™" the subset of .# which consists of curves C € .# whose three bi-tangent
lines are X =0, Y =0 and Z=0. We define a mapping V : .#"™" — . as
follows. Let Ce.#™' and let F(X,Y,Z) be the defining homogeneous poly-
nomial. We define /(C) :=n~'(C). Note that y(C) is defined by F(X,Y,Z)
= F(X2,Y2,Z?). Each cusp of C produces 4 cusps on /(C). Thus y(C) has
24 cusps. Each node of C also gives 4 nodes on y/(C), thus we get 12 nodes
on (C) which are mapped onto the nodes of C. As the restriction of 7 to the
affine chart {Z # 0} is the composition of double coverings (x,y) — (x,y?) and
(x,y) + (x2,y), each simple tangent on the coordinate axis X =0, ¥ =0 gives
2 nodes on ¥(C) ([Ol]). This is the same for the simple tangents for Z = 0.
Thus there are 12 nodes on (C) which are on the three coordinate axes and
they are mapped to simple tangents on coordinate axis by z. Thus y/(C) has 24
nodes. Thus y(C) e /. ~

Now for C € .4, we define y(C) as y(CY) by choosing g € G such that C9 e
A", The ambiguity for the choice of g € G is in the stabilizer G, i of .4/"™"
which is a direct product of S; (the permutations of coordinates) and C* x C* x
C” (scalar multiplications). Thus the polynomials F(X,Y,Z) and F(X,Y,Z)
are unique up to a G,w action. Thus .#"" /G wm =~ .#|G and ¥ : M |G —
A |G is well-defined.

Recall that a polynomial F(X,Y,Z) is called even in X (respectively
symmetric in  X,Y) if F(-X,Y,Z)=F(X,Y,Z) (resp. F(Y,X,Z)=
F(X,Y,Z)). Thus the polynomial F(X? Y2 Z?)isevenin X,Y,Z. Note that
evenness (or symmetricity) is preserved by the dual curve operation.

Lemma 2.1. Assume that C={F(X,Y,Z) =0} is defined by an even
polynomial F(X,Y,Z) in X (respectively symmetric polynomial in X,Y). Then
the dual curve C* is defined by an even polynomial F*(X*,Y*,Z*) in X* (resp. in
X5, Y.

Proof. Assume for example that F(X,Y,Z) is even in X. Then for any
point P=(X,Y,Z)e C, let P':=(—X,Y,Z)isalso in C. Then it is easy to see
that

dualc(P') = (Fx(P'), Fy(P'), Fz(P')) = (—=Fx(P), Fy(P), Fz(P)) = dualc(P)’

This implies that F*(X*, Y* Z*) is even in X. The symmetric case is proved
similarly. U

Assume that C e ./ is defined by F(X,Y,Z)=0. If Fis an even poly-
nomial in the variable X (respectively a symmetric polynomial in X, Y), then 6
cusps are stable by the involution (X,Y,Z) — (=X, Y,Z) (resp. by (X, Y,Z) —



28 MUTSUO OKA

(Y,X,Z)). Then there exists a homogeneous polynomial F>(X, Y,Z) of degree
2 which is even in X (resp. symmetric in X, Y) such that the conic F>(X,Y,Z) =
0 passes through the 6 cusps of C. By the criterion of Degtyarev [D], the sextic
F(X,Y,Z)=0 is of a torus type.

Now we take a generic C e .# "l and consider the dual curve (C)* and
let G(X*,Y*,Z*) be a defining homogeneous polynomial of degree 12, where
(X*,Y*,Z*) is the dual coordinates of (X,Y,Z). As F(X,Y,Z) is even in
X,Y,Z, sois G(X*,Y*,Z*) in X,Y,Z by Lemma 2.1.

ProOPOSITION 2.2. (C)" has 4 nodes on each coordinate axis X* =0, Y* =
0 orZ*=0.

Proof. Let C={F(X,Y,Z)=0} and let us consider the discriminant
polynomial AyF with respect to Y-variable. This is a homogeneous polynomial
of degree 30 in X,Z ([O2]). We assume that the singularities of the sextic
F(X,Y,Z) =0 are not on the coordinate axis. Assume that P:= («,f,y) € C is
a singular point of C with Milnor number g and multiplicity m. Then AyF (X, Z)
has a linear term (yX — aZ)” with p > u+m — 1 and the equality holds if the
line yY — fZ =0 is generic with respect to C (see [O3]). Thus to each cusp
(respectively to each node), there is an associated linear term with multiplicity 3
(resp. with multiplicity 2). The factor X =0 and Z = 0 has also multiplicity 2 in
AyF(X,Z) =0, as they are bi-tangent lines. Assume C is generic in .#. Then
the sum of degrees is 18 + 6 +4 = 28 by the above consideration. Thus there
exists two simple tangent lines of the form X —#,Z=0 and X —#,Z =0 for
some 7,7, #0. Then four lines X = +,/i;Z, i = 1,2 are bi-tangent lines for
the curve y(C). This implies that (1,0, +,/7;), i =1,2 are nodes of the dual
curve Y(C)*. Thus the coordinate axis Y* = 0 contains 4 nodes of (C)*. By
the same argument, X* = 0 and Z* = 0 contains also 4 nodes respectively. The
non-emptiness of “generic”’ curves in .# in the above sense is not obvious but it
follows from the example below. ]

DEFINITION 2.3. For Ce.#™', we define a polynomial of degree 6 by
G(X*,Y*,Z*) := G(VX*,v/Y*,v/Z*) and we define 1(C) by the sextics defined
by G(X*,Y*,Z*)=0. For Ce ./, take g € G so that CY9 e .#/™" and we define
an involution 7: . #/G — /G by 1(C) =1(CY).

Cram 1. 1(C)e .M for a generic Ce M and T is an involution which
preserves the type of sextics, that is, we have the commutative diagram:

MG — MG Mrorus| G — Miorus| G

Foo T

~ dual ~ ~ dual ~
%/G — %/G ﬂmrus/G — r%torus/G
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Proof. We may assume that C e.#". By the above consideration, we
have seen that the dual curve W(C)* of Y(C) is defined by a polynomial
G(X*,Y*, Z*) of degree 12 which is even in each of the three variables and it has
24 cusps and 12 nodes outside of coordinate axis and 4 nodes on each coordinate
axis. Thus ¢(C) has 6 cusps and 3 nodes. Note that nodes of (C)" on the
coordinate axes are mapped on simple tangents on the corresponding coordinate
axes of 1(C). Thus the curve 1(C), defined by g(v/x*,/y*) =0, belongs to
™', Finally we will show that 1 keeps the type of the curve. As the curves
{i(C); C € Myprys/G} are topologically equivalent, the image is contained in a
connected component. Thus it is enough to show that there exists a Ce
Myorys/ G such that 1(C) € M5/ G.  To see this, it is enough to take C e %,”0’:’53
whose defining polynomial F(X,Y,Z) is symmetric in each of X,Y. Then
F(X,Y,Z) is also symmetric in X, Y. This implies also that G(X*, Y*,Z*) and
G(X*, Y*, Z*) symmetric in X*, Y*. By Degtyarev’s criterion, this implies that
1(C) is a sextic of a torus type. O

Thus we have proved the following:

THEOREM 2.4. There exists an involution T on the quotient moduli space M |G
which is defined on generic points such that 1 is different from the dual curve
operation and T preserves the types of the sextics, that is 1(C) € M/ G < C €
ﬂtorus/G~

The following example shows that 7(C) # C* in general.

Example 2.5. Let Ce %IZZZ; be the sextic defined by the symmetric
polynomial:

S = —684(x3y + xp?) — 1055(x* + p?) +2235(x2 + p?) — 2178(x + ) +
(819/16)(x%y + ¥°x) + (1767/16) (x*p? + x2p*) + (881/8)p3x3 + (405/16)(x° + y©)
— (873/8)(x° + »°) + (2001 /4) (x* + y*) — (971/8)(x*y + xp*) — (6947/2)y*x* +
2268 + 1038(x2y + xy?) — 4883yx — (375/2)(x2p% 4+ x3p?).

Then (C) is defined by f(x?,y%) and y(C)" is defined by g(x*?,y*?) =0
and 1(C) is the sextic defined by the symmetric polynomial

g(x*,y*) = 908294x*2y*2 — 354000(x*y*? + x*2y*) + 302745(y** + x*4) +
529284 (x*y*2 + p*x*2) — 396458 (x* ™ + y*x*) — 722148(x3y*? + y*3x*2) +
11340( ™ + x*6) — 109170(x*> + y*3) + 86296x*y* + 482724(x3p* + y*3x*) —
158508 (y*x*> + p*Sx*) + 103096y*3x*3 — 22230(x* + y*) — 203920(y*3 + x*3) +
90570(y*? + x*2) + 2025

The dual curve C* of C is defined by the following symmetric polynomial
and we can easily check that i(C) # C* in .#/G.

h(x*,y*) = 3()6*4 +y*4) + 14()(,'*3 +y*3) + 3()6*2 +y*2) +4(y*x*4 +x*y*4) +
36()/*)6*3 + X*y*3) + 6()/*)6*2 + x*y*2) _ 2y*x* 4 12(}/*2)6*4 + x*Zy*4) + 84(y*2x*3 +
X*Zy*3) + 14}/*2)(?*2 4 88)1*3)6*3



30 MUTSUO OKA

Proof. Put C’':=1(C). We can see that C* and C’ are not in the same
orbit of PSL(3;C). In fact, assume that there exists a 4 € PSL(3; C) such that
(C*)A = (C’. Then A maps nodes to nodes. This implies that 4 permutes
the three points (0,0, 1), (0,1,0), and (1,0,0). Thus A4 is a scalar multiplication
of the coordinates (X*, Y* Z*)— (aX*,fY"* yZ*), followed by a persutaion
o € S3. These actions does not change the number of monomials in x* and y*.
Thus h?1 =g is impossible as g has 28 monomials while /# has only 19
monomials. Ul

Remark. We know that .#,,,s/G is irreducible of dimension 4, in which
one dimensional subvariety comes as the image of Gauss map (= dual curves) of
3 (3,4)-cuspidal sextics of torus type ([O4]). We do not know either the
irreduciblity of .#y.,/G or the dimension. Only thing we know is that it contains
one dimensional subvariety coming from 3 (3,4)-cuspidal non-torus sextics as the
image of Gauss map. However any such curve C is special in the sense C* is
not contained in .#,,/G. We do not have any explicit example of a generic
element C € .#,,/G which has three bitangent lines.
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