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REDUCIBLE HYPERPLANE SECTIONS OF THREEFOLDS:

TWO COMPONENTS OF SECTIONAL GENUS ZERO*

Antonio Lanteri and Andrea Luigi Tironi

Abstract

By using adjunction theory, we describe the smooth complex projective threefolds

admitting a simple normal crossing divisor of the form Aþ B among their hyperplane

sections, both components A and B being smooth surfaces with sectional genus 0, and

one of them being nef or at worst an exceptional divisor of the first reduction mapping.

Introduction

Projective manifolds with an irreducible hyperplane section being a special
variety have been studied since longtime [BS]. However the corresponding study
for a reducible hyperplane section consisting of a simple normal crossing divisor
whose components are special varieties was started only recently by Chandler,
Howard and Sommese [CHS]. Results from [CHS] seem to indicate that classi-
fication in this setting can be harder for varieties of low dimension than in higher
dimensions. In particular, let X HPN be a smooth projective variety, let L
be its hyperplane bundle and suppose that jLj contains an element Aþ B where
A;B are smooth irreducible divisors meeting transversally (simple smooth de-
composition). If both ðA;LAÞ and ðB;LBÞ have sectional genus zero, then the
structure of ðX ;LÞ is known, as well as the description of A and B, if dim X b 4
([CHS], [LT]). In this paper we address the classification problem in the same
set-up, when dim X ¼ 3.

We would like to mention that in the course of our study we received the
preprint of [BCS], where a similar set up is considered. In particular [BCS, (5.3)]
provides the list of all possible numerical invariants concerning A;B, and AVB
inside them, when both pairs ðA;LAÞ; ðB;LBÞ are rational scrolls meeting along a
smooth curve of positive genus. The case when this curve is rational is not
considered there, since, as the authors say, it fits into a general result formulated
for any dimension in [CHS]. However, in our opinion, the three dimensional
setting deserves to be further studied also in this case.
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Here, assuming that at least one of A and B is a nef divisor (seminef de-
composition) we obtain a classification result, working in a slightly more general
setting than that described above. In fact, the adjunction theoretic classification
techniques we use allow us to assume that the line bundle L is simply ample and
spanned and not necessarily very ample. The result is as follows.

Theorem 0.1. Let L be an ample and spanned line bundle on a connected
projective manifold X of dimension three. Assume that there is a seminef simple
smooth decomposition Aþ B A jLj. If gðA;LAÞ ¼ gðB;LBÞ ¼ 0 then ðX ;LÞ and
A;B, after renaming, are as in the following cases:

1. a scroll over P1, with A being a P1-bundle over P1 and B a fiber of the
scroll projection;

2. a quadric fibration q : X ! P1, with both A and B being P1-bundles over
P1 via q;

3. X ¼ PðVÞ, where V is an ample and spanned vector bundle of rank 2 on
F1 with Chern classes c1ðVÞ ¼ ½3lþ bf�, c2ðVÞ ¼ 2b� 4 for an integer
bb 5, where l and f denote the ð�1Þ-section and a fiber of F1, and L is the
tautological line bundle on X. Moreover, AGF1 is a section of the scroll
projection p, B ¼ PðVgÞ where g is a smooth element of the linear system
j2lþ 2fj on F1, and there exists a non-splitting exact sequence 0 ! ½B�A !
pj�AV ! LA ! 0; furthermore h ¼ AVB is isomorphic to g on A and is a
section on B;

4. X ¼ PðVÞ, where V is an ample and spanned vector bundle of rank 2
on P2 with Chern classes c1ðVÞ ¼ 4, c2ðVÞ ¼ 5, and L is the tautological
line bundle on X. Let p : X ! P2 be the scroll projection; then AGF1,
pjA : A ! P2 being the contraction of the ð�1Þ-section of A, B ¼ PðVgÞG
P1 � P1, g being a smooth conic; furthermore h ¼ AVB is a section of B
with h2 ¼ 0 and on A it is a smooth element of the linear system j2E þ 2F j,
where E and F denote the ð�1Þ-section and a fiber, respectively;

5. ðP1 � P2;OP1�P2ð1; 2ÞÞ, with A A jOP1�P2ð1; 0Þj and B a general element of
jOP1�P2ð0; 2Þj;

6. ðP1 � P1 � P1;OP1�P1�P1ð1; 1; 1ÞÞ, with A A jOP1�P1�P1ð1; 0; 0Þj and B A
jOP1�P1�P1ð0; 1; 1Þj, up to reordering the factors;

7. ðPðTP2Þ; xT
P2
Þ, where xT

P2
stands for the tautological line bundle, or equiva-

lently, X A jOP2�P2ð1; 1ÞX j and L ¼ OP2�P2ð1; 1ÞX with A A jOP2�P2ð1; 0ÞX j
and B A jOP2�P2ð0; 1ÞX j;

8. KX þ 2L is nef and big and ðX ;LÞ admits ðP3;OP3ð2ÞÞ as first reduction,

the reduction morphism r : X ! P3 being the blowing-up at sa 1 points: if
s ¼ 0 then A;B A jOP3ð1Þj, while if s ¼ 1, i.e. r is the blowing-up at a point
p, then, up to renaming, either A is the proper transform of a quadric cone
having vertex at p and B is the exceptional divisor, or A is the proper
transform of a plane through p and B that of a plane not containing p.

Actually we prove a little bit more, since the seminefness of the decom-
position Aþ B is only used to manage the case when both polarized manifolds
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ðA;LAÞ; ðB;LBÞ are scrolls. The remaining cases are settled by Theorems 3.3, 4.1
and 4.2.

On the other hand, contrary to what is known in dimension 2, we do not
know concrete examples of polarized threefolds ðX ;LÞ admitting a simple smooth
decomposition Aþ B A jLj not satisfying the assumption in Theorem 0.1. In
fact, all pairs ðA;LAÞ; ðB;LBÞ appearing in [BCS, (5.3)] do not satisfy this as-
sumption; however the corresponding structure of ðX ;LÞ, if any, is completely
unknown.

Here is a sketch of the proof. The assumption that Aþ B is a seminef
decomposition implies that the hinge curve h ¼ AVB is rational. Then we can
rely on the adjunction theoretic structure of ðX ;LÞ, provided by [CHS] to obtain
a precise description of the varieties at hand via a case-by-case analysis. In
particular, in Section 2 we prove that if ðX ;LÞ is a scroll over a smooth surface,
then there are only three possibilities, namely cases 3, 4 and 5 in Theorem 0.1.
Moreover, for each variety appearing in Theorem 0.1 we also list all sectional
genus zero decompositions of the reducible elements of jLj.

This work was done in the framework of the National Research Project
‘‘Geometry on Algebraic Varieties’’, supported by the MIUR of the Italian
Government (Cofin 2002).

1 Background material

We work over the field of complex numbers C and we use the standard
notation from algebraic geometry. The tensor products of line bundles are
denoted additively. The pull-back i�F of a vector bundle F on a projective
variety X by an embedding i : Y ! X is denoted by FY . We denote by KX

the canonical bundle of a smooth projective variety X . A polarized manifold
is a pair ðX ;LÞ consisting of a smooth projective variety X and an ample
line bundle L on X . For polarized manifolds we will use the adjunction
theoretic terminology of [BS]. In particular we say that ðX ;LÞ is a scroll over
a smooth projective variety to mean that it is a scroll in the adjunction theoretic
sense. As a consequence, e.g., the smooth quadric surface ðQ2;OQ 2ð1ÞÞ ¼
ðP1 � P1;OP1�P1ð1; 1ÞÞ is not considered as a scroll over P1.

Let ðX ;LÞ be a smooth complex projective threefold polarized by an ample
and spanned line bundle. Suppose that jLj contains a divisor Aþ B where A;B
are irreducible smooth surfaces meeting transversally along a smooth curve. We
say that Aþ B is a smooth decomposition for L. Of course one can also consider
smooth decompositions consisting of more than two components. Therefore,
sometimes we use the expression simple smooth decomposition (ssd for short) to
emphasize that there are just two components.

We are interested in ssd Aþ B A jLj such that

gðA;LAÞ ¼ gðB;LBÞ ¼ 0:

Under this assumption both pairs ðA;LAÞ; ðB;LBÞ are polarized surfaces of sec-
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tional genus zero, hence they belong to one of the following two classes [F1,
(12.1) and (5.10)]:

A :¼ fðP2;OP2ðuÞÞ; u ¼ 1; 2; ðQ2;OQ 2ð1ÞÞg and

B :¼ fðFe; ½C0 þ bf �Þ; eb 0g: ð1:0Þ

For the class B of rational scrolls we used standard symbols; of course the integer
b has to satisfy the ampleness condition b > e [Ha, p. 380]. Let h :¼ AVB. We
call h the hinge curve; by assumption it is a smooth curve. Its genus is given by

2gðhÞ � 2 ¼ ðKX þ Aþ BÞAB ¼ ðKX þ LÞAB:
We recall the following lemma.

Lemma 1.1 ([T, Lemma 1]). Let ðX ;LÞ be a threefold polarized by an ample
and spanned line bundle L. Let Aþ B A jLj be a ssd. Then gðX ;LÞ ¼ gðA;LAÞþ
gðB;LBÞ þ ABL� 1.

We need some structure results to describe smooth decompositions occurring
for some standard varieties of adjunction theory.

Lemma 1.2. Let ðX ;LÞ be a threefold polarized by an ample and spanned
line bundle L. Assume that ðX ;LÞ is a scroll over a smooth curve C and let
Aþ B A jLj be a ssd. Then, after renaming, ðA;LAÞG ðP2;OP2ð1ÞÞ, ðB;LBÞ is a
scroll over C or ðQ2;OQ 2ð1ÞÞ, and gðX ;LÞ ¼ gðB;LBÞ ¼ gðCÞ.

Proof. Let p : X ! C be the scroll projection and let F GP2 be a general
fiber of p. We have ½A�F ¼ OP2ðaÞ and ½B�F ¼ OP2ðbÞ, for some integers a; bb 0.
Since

OP2ð1Þ ¼ LF ¼ ½A�F þ ½B�F ¼ OP2ðaþ bÞ;
it follows, after renaming, that a ¼ 0, b ¼ 1. This implies that ðA;LAÞG
ðF ;LF ÞG ðP2;OP2ð1ÞÞ and ðB;LBÞ is a scroll over C or, possibly, ðQ2;OQ 2ð1ÞÞ, if
gðCÞ ¼ 0. Moreover

ABL ¼ ½B�F ½L�F ¼ L2
F ¼ 1

and then by Lemma 1.1 we deduce that gðX ;LÞ ¼ gðB;LBÞ ¼ gðCÞ. r

Lemma 1.3. Let ðX ;LÞ be a Del Pezzo threefold polarized by an ample
and spanned line bundle L. Assume that Aþ B A jLj is a ssd. Then gðA;LAÞ ¼
gðB;LBÞ ¼ 0 and ðX ;LÞ is one of the following pairs:

1. ðP1 � P1 � P1;OP1�P1�P1ð1; 1; 1ÞÞ;
2. ðPðTP2Þ; xT

P2
Þ, where TP2 is the tangent bundle to P2 and xT

P2
stands for

the tautological line bundle;
3. ðX ;LÞ has ðP3;OP3ð2ÞÞ as first reduction, with X being P3 blown-up at one

point at most.
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Proof. By the genus formula we have that

2gðhÞ � 2 ¼ ðKX þ LÞAB ¼ �ABL < 0;

hence ABL ¼ 2. By Lemma 1.1 we thus get

1 ¼ gðX ;LÞ ¼ gðA;LAÞ þ gðB;LBÞ þ 1;

which gives gðA;LAÞ ¼ gðB;LBÞ ¼ 0. Then the assertion follows from [CHS,
(3.4)]. r

Remarks. In case 1 of Lemma 1.3 we get a ssd Aþ B A jLj, by choosing,
e.g., A A jOP1�P1�P1ð1; 0; 0Þj and B A jOP1�P1�P1ð0; 1; 1Þj. For this decomposition,

ðA;LAÞG ðQ2;OQ 2ð1ÞÞ and ðB;LBÞ A B.
In case 2, X can be described alternatively as a smooth element of

jOP2�P2ð1; 1Þj and L ¼ OP2�P2ð1; 1ÞX . This shows that the only possible decom-
position for L is Aþ B, where A A jOP2�P2ð1; 0ÞX j and B A jOP2�P2ð0; 1ÞX j, giving
a scroll structure on both components.

As to 3, note that the case with r : X ! P3 the blowing-up at a point p
does really occur. Recall that L :¼ r�ðOP3ð2ÞÞ � E, where E is the exceptional
divisor. Here we list all possible decompositions for L. Let B 0 HP3 be an
element of jOP3ð2Þj containing p.

a) Suppose that B 0 is irreducible and let B ¼ r�1ðB 0Þ be its proper trans-
form. If B 0 is smooth at p, then B ¼ r�B 0 � E A jLj is an irreducible element.
If B 0 is a quadric cone with vertex at p, then B ¼ r�B 0 � 2E A jL� Ej. More-
over BGF2 with ðr�ðOP3ð1ÞÞÞB ¼ ½C0 þ 2f �, since r : B ! B 0 is the minimal
desingularization. Here C0 is a section of minimal self-intersection and f is a
fiber of F2. So, letting A ¼ E, we get the ssd Aþ B A jLj. Note that the curve
h ¼ AVB is C0 on B and a conic on A. This gives

LA ¼ ½A�A þ ½B�A ¼ OP2ð�1 þ 2Þ ¼ OP2ð1Þ
and

LB ¼ ð2r�ðOP3ð1ÞÞ � EÞB ¼ ½C0 þ 4f �:
Therefore ðA;LAÞG ðP2;OP2ð1ÞÞ, ðB;LBÞG ðF2; ½C0 þ 4f �Þ.

b) Suppose that B 0 ¼ B 0
1 þ B 0

2, where B 0
i A jOP3ð1Þj, and let Bi ¼ r�1ðB 0

i Þ,
i ¼ 1; 2.

b1) Let p A B 0
1nB 0

2. Then B1 ¼ r�ðB 0
1Þ � E A jr�ðOP3ð1ÞÞ � Ej; moreover

B1 GF1 with ðr�ðOP3ð1ÞÞÞB1
¼ ½C0 þ f �. Here C0 is a section of minimal self-

intersection and f is a fiber of F1. Letting A ¼ B2 we get the ssd Aþ B1 A jLj.
Note that h ¼ AVB1 is a line inside A and an element of jC0 þ f j as a curve
on B1. This gives

LA ¼ ½A�A þ ½B1�A ¼ OP2ð2Þ
and

LB1
¼ ð2r�ðOP3ð1ÞÞ � EÞB1

¼ ½C0 þ 2f �;
since E VB1 is C0. Therefore ðA;LAÞG ðP2;OP2ð1ÞÞ, ðB1;LB1

ÞG ðF1; ½C0 þ 2f �Þ.
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b2) Let p A B 0
1 VB 0

2, but B 0
1 0B 0

2. Then, arguing as before and letting
A ¼ E, we get the non simple smooth decomposition Aþ B1 þ B2 A jLj, where
ðA;LAÞG ðP2;OP2ð1ÞÞ and ðBi;LBi

ÞG ðF1; ½C0 þ 2f �Þ for i ¼ 1; 2.
b3) Finally let B 0

1 ¼ B 0
2. Then, letting A ¼ E we get the non-reduced de-

composition Aþ 2B1 A jLj, with ðA;LAÞ; ðB1;LB1
Þ as in b2).

Note that the ssd found in a) and b1) correspond to the two cases mentioned
in 8 of Theorem 0.1.

Lemma 1.4. Let ðX ;LÞ be a threefold polarized by an ample and spanned line
bundle L. Assume that ðX ;LÞ is a quadric fibration over a smooth curve C and
that Aþ B A jLj is a ssd. Then one of the following cases occurs:

1. A is a fiber, up to renaming, and gðX ;LÞ ¼ gðB;LBÞ þ 1;
2. ðA;LAÞ and ðB;LBÞ are scrolls over C or ðQ2;OQ 2ð1ÞÞ, and h is a section of

both.
Moreover, under the assumption that gðA;LAÞ ¼ gðB;LBÞ ¼ 0, only case 2 can
occur.

Proof. Let q : X ! C be the fibration and let F GP1 � P1 be a smooth
fiber. Suppose that A ¼ F ; then

LF ¼ ½B�F ¼ OP1�P1ð1; 1Þ:
In particular, ABL ¼ ðLF Þ2 ¼ 2. Moreover KX þ 2L ¼ q�H1 tA for some in-
teger tb 1, H being an ample line bundle on C. Hence, by adjunction we get
the following expressions:

2gðA;LAÞ � 2 ¼ ðKX þ Lþ AÞAL ¼ tA2L� ABL ¼ �ABL ¼ �2;

2gðB;LBÞ � 2 ¼ ðKX þ Lþ BÞBL ¼ tABL� ABL ¼ ðt� 1ÞABL ¼ 2ðt� 1Þ:

Thus gðA;LAÞ ¼ 0, gðB;LBÞ ¼ t, and then gðX ;LÞ ¼ gðB;LBÞ þ 1, by Lemma 1.1.
Now suppose that neither A nor B are fibers. Then both ½A� and ½B� restrict

non trivially to the general fiber F and since LF GOP1�P1ð1; 1Þ, up to renaming,
we see that ½A�F GOP1�P1ð1; 0Þ, ½B�F GOP1�P1ð0; 1Þ. Let DHC denote the
image of the singular fibers of q and set U ¼ Anqj�1

A ðDÞ. Since the general fiber
of qjA is a P1, A is a ruled surface over C. Set e ¼ AVF and f ¼ BVF . Note
that 1 ¼ ef ¼ ABF . Hence, from the equality

0 ¼ e2 ¼ ðAF Þ2 ¼ ½F �A½A�A ¼ ½F �AðLA � ½B�AÞ ¼ ½F �ALA � FAB ¼ eLA � 1;

we see that e, the general fiber of qjA is a line. Since LA is ample, this implies
that every fiber of qjA is a line. Thus ðA;LAÞ is a scroll over C or ðQ2;OQ 2ð1ÞÞ.
Moreover, since hVF ¼ eV f, we have that qjA : h ! C is an isomorphism, i.e.,
h is a section of ðA;LAÞ. Of course the same argument works for ðB;LBÞ.

This proves the first part of the statement. As to the last assertion, note
that under our assumption on the sectional genera, in case 1 we would get
gðX ;LÞ ¼ 1. According to the classification of polarized manifolds this would
imply that ðX ;LÞ is not a quadric fibration [F1, (12.3)], a contradiction. r
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Example. Let X ¼ P1 � Fe (any eb 0) and L ¼ p�
1OP1ð1Þ þ p�

2 ½lþ bf�
ðb > eÞ, where p1; p2 are the two projections, and l; f are the fundamental section
and a fiber of Fe respectively. Note that L is very ample. The composition of
p2 with the scroll projection of ðFe; ½lþ bf�Þ gives a morphism q : X ! P1 making
ðX ;LÞ a fibration with all fibers being smooth quadrics. Actually for any fiber
F of q we have F ¼ f� f , where f ¼ p2ðF Þ and f is a fiber of p2, hence F G
F0 ¼ P1 � P1. For any curve GHFe we set sG ¼ sV p�1

2 ðGÞ, where s is a fiber
of p1, i.e., s A jp�

1OP1ð1Þj. Thus LF ¼ p1j�FOP1ð1Þ þ p2j�F ½lþ bf� ¼ ½sf þ f � is the

sum of the two rulings, i.e., ðF ;LF Þ ¼ ðQ2;OQ 2ð1ÞÞ.
Let A A jp�

1OP1ð1Þj and let B A jp�
2 ½lþ bf�j be a smooth element (there is such

a B because ½lþ bf� with b > e is very ample). Then Aþ B A jLj is a ssd.
Moreover, we have that

ðA;LAÞG ðFe; ½lþ bf�Þ; ðB;LBÞG ðP1 � g ¼ F0; ½sg þ ðg2Þ f �Þ;
where g is a smooth curve in jlþ bfj. Note that sg G g via p2. Moreover,
g2 ¼ 2b� eb 2 and so ðB;LBÞ is in class B, i.e., it is not ðQ2;OQ 2ð1ÞÞ.
Furthermore hG sg, hence gðhÞ ¼ 0. Since

ABL ¼ ABðAþ BÞ ¼ AB2 ¼ g2 ¼ 2b� e;

recalling Lemma 1.1 we get gðX ;LÞ ¼ 2b� e� 1. We would like to note also
that in this case we can decompose an element of jLj in at most bþ 2 smooth
irreducible components, all of sectional genus zero, by taking A as above and
B0 A jp�

2 lj, Bj A jp�
2 fj for every j ¼ 1; . . . ; b. Thus we obtain

ðA;LAÞG ðFe; ½lþ bf�Þ; ðB0;LB0
ÞG ðF0; ½sl þ ðb� eÞ f �Þ and

ðBj;LBj
ÞG ðF0; ½sf þ f �Þ

for j ¼ 1; . . . ; b.
Finally, note that for e ¼ 0 we get X ¼ P1 � P1 � P1 with L ¼

OP1�P1�P1ð1; 1; bÞ, bb 1. For b ¼ 1 our ðX ;LÞ is a Del Pezzo threefold, while,
for bb 2 we get a quadric fibration and gðX ;LÞ ¼ 2b� 1.

2 Scrolls over surfaces

In this Section we classify

(2.0) threefolds X endowed with an ample and spanned line bundle L such that
ðX ;LÞ is a scroll over a smooth surface S, and there is a ssd Aþ B A jLj with
gðA;LAÞ ¼ gðB;LBÞ ¼ 0.

Recall that by scroll we mean an adjunction-theoretic scroll. However, by
[S, Theorem 3.3 (note that the proof there works also for k ¼ 1)], our ðX ;LÞ is
also a classical scroll over S. Let p : X ! S be the scroll projection; since L
restricts to every fiber as OP1ð1Þ, up to renaming, we have that pjA : A ! S is a
birational morphism, while B ¼ p�g, where gHS is a smooth curve. Moreover,
since gðA;LAÞ ¼ gðB;LBÞ ¼ 0 we have that ðA;LAÞ as well as ðB;LBÞ are among
the pairs listed in ð1:0Þ. In particular this implies that gGP1 and S is either
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P2 or Fe for some eb 0, being dominated birationally by A. Moreover there are
two possibilities: either

i) pjA is an isomorphism, or
ii) pjA contracts some ð�1Þ-line.
Since ðX ;LÞ is a scroll over S, we can write X ¼ PðVÞ where V :¼ p�L is

an ample and spanned vector bundle of rank 2 on S. Moreover, since L is
the tautological line bundle of V, we know that KX þ 2L ¼ p�H, where H ¼
KS þ det V is an ample line bundle on S.

By the genus formula we have both

�2 ¼ 2gðA;LAÞ � 2 ¼ ðKX þ Aþ LÞLA ¼ ðKX þ 2L� BÞAL ¼ p�HAL� ABL

and

�2 ¼ 2gðB;LBÞ � 2 ¼ ðKX þ Bþ LÞLB ¼ ðKX þ 2L� AÞBL ¼ p�HBL� ABL:

The two genera being equal, this gives

p�HAL ¼ p�HBL ¼ p�Hp�gL ¼ Hg: ð2:1Þ
Moreover

H det V ¼ p�HL2 ¼ p�HLðAþ BÞ ¼ 2p�HBL ¼ 2Hg: ð2:2Þ

Theorem 2.1. Let X ;L;A;B be as in ð2:0Þ and let S0P2. Then
X ¼ PðVÞ, where V is an ample and spanned vector bundle of rank 2 on F1 with
Chern classes c1ðVÞ ¼ ½3lþ bf�, c2ðVÞ ¼ 2b� 4 for an integer bb 5, where l and
f denote the ð�1Þ-section and a fiber of F1, and L is the tautological line bundle on
X. Moreover AGF1 is a section of X, B ¼ PðVgÞ, where g is a smooth element of
the linear system j2lþ 2fj, and the scroll projection p induces a non-splitting exact
sequence 0 ! ½B�A ! pj�AV ! LA ! 0; furthermore h ¼ AVB is isomorphic to g
on A and is a section on B.

Proof. By what we said before, S ¼ Fe for some eb 0. Moreover, in view
of (1.0), we are in case i). Letting X ¼ PðVÞ, where V ¼ p�L as before, now
we can write det V ¼ ½alþ bf� for some suitable integers a and b. Moreover
KX þ 2L ¼ p�H, where

H ¼ KFe þ det V ¼ ½ða� 2Þlþ ðb� 2 � eÞf�;
is an ample line bundle, hence

a > 2 and b > ða� 1Þeþ 2; ð2:3Þ
in view of [Ha, p. 380]. Since ðA;LAÞ is either ðQ2;OQ 2ð1ÞÞ or a scroll by (1.0),

we can identify A with Fe via the isomorphism pjA and write (up to exchanging
the factors in case e ¼ 0) LA ¼ ½lþ tf� for some integer t > e. Thus, in view of
the identification

h ¼ AVB ¼ AV p�g ¼ g
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induced by pjA, we get

ABL ¼ hLA ¼ gðlþ tfÞ: ð2:4Þ

Moreover, since p�HAL ¼ ðpj�AHÞLA, (2.1) gives

Hðlþ tfÞ ¼ Hg: ð2:5Þ
Now, as already observed, B ¼ p�g, where gHFe is a smooth rational curve.
Hence, by [Ha, p. 380] an easy check leads to the following possibilities:

(1) g ¼ l,
(2) g ¼ f,
(3) g@ lþmf, for some integer mb e,
(4) e ¼ 0 and g@mlþ f, for some integer mb 2,
(5) e ¼ 1 and g@ 2lþ 2f.

We proceed with a case-by-case analysis.
Case (1). We have Hg ¼ Hl, but this contradicts (2.5).
Case (2). We have Hg ¼ Hf. But (2.5) says that Hg ¼ HfþHðlþ

ðt� 1ÞfÞ > Hf, a contradiction.
Case (3). We have Hg ¼ ða� 2Þðm� eÞ þ b� e� 2. Moreover (2.5) im-

mediately gives m ¼ t and then ABL ¼ 2m� e, by (2.4). By the condition
gðB;LBÞ ¼ 0, recalling also (2.1) we thus get b ¼ ð4 � aÞmþ ða� 2Þe. Com-
bining this with (2.3) we have ð4 � aÞm > eþ 2 > 0 and so, recalling (2.3) we
conclude that a ¼ 3. Hence b ¼ mþ e. Replacing these values into the ex-
pressions of H det V and Hg, (2.2) gives a numerical contradiction.

Case (4). In this case we have H det V ¼ 2ðab� a� bÞ and Hg ¼ a� 2þ
mðb� 2Þ. So, noting that b > 2 by (2.3), (2.2) gives m ¼ a� 1. But (2.5) in
turn shows that t ¼ b� 3. Thus Hg ¼ mtþ 2m� 1. On the other hand (2.4)
shows that ABL ¼ mtþ 1. So, recalling also (2.1), the condition gðB;LBÞ ¼ 0
leads to the equality m ¼ 0, which is a contradiction.

Thus we are in Case (5). In particular, S ¼ F1 and H ¼ ½ða� 2Þlþ
ðb� 3Þf�. We have H det V ¼ ða� 2Þðb� aÞ þ aðb� 3Þ and 2Hg ¼ 4ðb� 3Þ.
So (2.2) gives ða� 2Þðb� aÞ ¼ ð4 � aÞðb� 3Þ. Recalling (2.3) we deduce that
2a b� aa ð4 � aÞðb� 3Þ. Thus a ¼ 3 and bb 5. Moreover, we get LA ¼
½lþ ðb� 2Þf�, by (2.5). Now let p : F1 ! P1 be the ruling projection. Note that
ðVn ½�2l�Þf ¼ Of lOfð�1Þ for any fiber f, since V is ample and det V ¼
½3lþ bf]. So L ¼ p�ðVn ½�2l�Þ is an invertible sheaf on P1, and we can put
L ¼ OP1ðdÞ for an integer d. From the injection p�L ! Vn ½�2l� we obtain
an exact sequence

0 ! ½2lþ df� ! V ! Q ! 0; ð2:6Þ

where the quotient is the line bundle Q ¼ det V� ½2lþ df� ¼ ½lþ ðb� dÞf�. Since
V is ample, it follows that Q is ample, hence b� d > 1. Moreover c2ðVÞ ¼
ð2lþ dfÞðlþ ðb� dÞfÞ ¼ 2b� d� 2. Thus the Chern–Wu relation for the tau-
tological line bundle L on X gives

L3 ¼ c1ðVÞ2 � c2ðVÞ ¼ ð3lþ bfÞ2 � ð2b� d� 2Þ ¼ 4bþ d� 7: ð2:7Þ
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On the other hand, since L2
A ¼ ðlþ ðb� 2ÞfÞ2 ¼ 2b� 5 and L2

B ¼ L2p�g ¼
deg Vg ¼ g det V ¼ 2b, we get L3 ¼ L2

A þ L2
B ¼ 4b� 5. Comparing this with

(2.7) we obtain d ¼ 2, hence c2ðVÞ ¼ 2b� 4 and the exact sequence induced by
(2.6) on A via the isomorphism pjA becomes 0 ! ½B�A ! pj�AV ! LA ! 0. Note
that the sequence does not split; otherwise, by restricting (2.6) to l we would get
Vl ¼ Ol lOlðb� 3Þ, contradicting the ampleness of V. r

The above result is e¤ective as the following example shows.

Example. Let X be the Fano bundle obtained by blowing-up Y ¼ PðTP2Þ
along a fiber [D, Theorem 3] (see also [SW, case 14 in the Theorem]). Let
p : X ! F1 be the projection, and let b : F1 ! P2 be the induced blowing-up of
the basis of Y . With the same notation as above recall that l is the exceptional
divisor of b and that b �OP2ð1Þ ¼ ½lþ f�. Let V :¼ b�TP2 n ½f�. Since the ex-
ceptional divisor of the blowing-up X ! Y is p�l, we can write

X ¼ Pðb �TP2 n ½�l�Þ ¼ PðVÞ:

Let L be the tautological line bundle of V on X . Then the canonical bundle
formula KX ¼ �2Lþ p�ðKF1

þ det VÞ gives

2L ¼ �KX þ p�ðlþ 2fÞ:

Since �KX is ample and p�ðlþ 2fÞ is spanned, this shows that L is ample.
Moreover L is spanned, V being so. To see this note that b �TP2 is very ample
on F1nl and spanned on l. Now, consider a smooth curve g A j2lþ 2fj, and let
B ¼ p�g. Then B is a smooth surface isomorphic to Fe for some eb 0. Note
that L� B is the tautological line bundle of

Vn ½�g� ¼ b�TP2 n ½�2l� f� ¼ b �TP2ð�1Þn ½�l�:

Let x ¼ bðlÞ and let Jx HOP2 be the corresponding ideal sheaf. From the Euler
sequence we know that TP2ð�1Þ is spanned and h0ðTP2ð�1ÞÞ ¼ 3. Then
h0ðTP2ð�1ÞnJxÞ ¼ 1. Moreover, since c2ðTP2ð�1ÞÞ ¼ 1, the unique surface
SHY corresponding to the non-trivial elements in H 0ðTP2ð�1ÞnJxÞ is a mero-
morphic section of Y containing exactly one fiber: namely that over x. It thus
follows that h0ðL� BÞ ¼ h0ðb �TP2ð�1Þn ½�l�Þ ¼ 1. Note that the unique ele-
ment A A jL� Bj is just the proper transform of S in the blowing-up X ! Y .
Therefore A is a smooth surface, which is a meromorphic section of p. More-
over, the number of fibers of p it contains is given by c2ðVn ½�g�Þ. But it is
immediate to check that

c2ðVn ½�g�Þ ¼ c2ðb�TP2ð�1Þn ½�l�Þ ¼ 0:

Therefore A is a holomorphic section of p, i.e., pjA : A ! F1 is an isomorphism.

On the other hand, when S ¼ P2, we get the following very precise de-
scription of ðX ;LÞ.
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Theorem 2.2. Let X ;L;A;B be as in (2.0) and assume that S ¼ P2. If
i) holds, then ðX ;LÞ ¼ ðP1 � P2;OP1�P2ð1; 2ÞÞ, with, up to renaming, A A
jOP1�P2ð1; 0Þj and B a general element of jOP1�P2ð0; 2Þj. If ii) holds, then
X ¼ PðVÞ, where V is an ample and spanned vector bundle of rank 2 on P2 with
Chern classes c1ðVÞ ¼ 4, c2ðVÞ ¼ 5. Moreover, up to renaming, AGF1, pjA :

A ! P2 being the contraction of the ð�1Þ-section of A, and B ¼ PðVgÞGP1 � P1,
g being a smooth conic; furthermore h ¼ AVB is a section of B with h2 ¼ 0 and on
A it is a smooth element of the linear system j2E þ 2F j, where E and F denote the
ð�1Þ-section and a fiber, respectively.

Proof. Set X ¼ PðVÞ with V :¼ p�L, as at the beginning of this Section.
Since S ¼ P2 the situation specializes as follows: det V ¼ OP2ðaÞ with ab 4
since

H ¼ KP2 þ det V ¼ OP2ða� 3Þ
is an ample line bundle. Moreover g A jOP2ðuÞj with u ¼ 1 or 2, since g is a
smooth rational curve. By (2.2) we know that Hðdet V� 2½g�Þ ¼ 0. So, since
H is ample, we get a ¼ 2u and recalling our conditions on a and u we con-
clude that 4 ¼ a ¼ 2u, i.e., c1ðVÞ ¼ 4 and g is a smooth conic. In addition,
H ¼ OP2ð1Þ, p�HLA ¼ p�HLB ¼ 2, by (2.1) and (2.2), and so for the smooth
curve h ¼ AVB we get

Lh ¼ LAB ¼ 4: ð2:8Þ
Since B ¼ p�g we have B ¼ PðVgÞ. Thus, in view of the above, we can write
Vg ¼ OP1ðe1ÞlOP1ðe2Þ where 1a e1 a e2 ¼ 8 � e1. Hence ðB;LBÞ is a scroll

over P1 of invariant e ¼ 8 � 2e1, whose degree is given by

L2
B ¼ L2p�g ¼ deg Vg ¼ 8: ð2:9Þ

Using this information together with (2.8) and the conditions in [Ha, p. 380], a
straightforward verification shows that e ¼ 0, i.e., BGP1�P1, h is an element of
the ruling transverse to the projection pjB, and LB ¼ ½hþ 4f �, where f denotes a
fiber of pjB. On the other hand, from the Chern–Wu relation for the tauto-
logical line bundle L on X we get

L3 ¼ c1ðVÞ2 � c2ðVÞ ¼ 16 � c2ðVÞ: ð2:10Þ
Note that ðP2; det VÞ is the first reduction of ðS;LSÞ, where S is a general
element of jLj. Thus gðX ;LÞ ¼ gðS;LSÞ ¼ 3. This implies that c2ðVÞb 3, due
to results of Lanteri–Sommese [LS] and Noma [N]. Recalling (2.9) and (2.10)
we thus see that ðA;LAÞ has degree

L2
A ¼ L3 � L2

B ¼ 8 � c2ðVÞa 5: ð2:11Þ
First suppose we are in case i). Then ðA;LAÞ ¼ ðP2;OP2ðvÞÞ, where v ¼ 1 or 2
in view of (2.11). Moreover, since h corresponds to g in the isomorphism
pjA : A ! P2, we have that h A jOP2ð2Þj; hence

4 ¼ LAB ¼ LAh ¼ 2v:
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Thus v ¼ 2, L2
A ¼ 4 and so (2.11) gives c2ðVÞ ¼ 4. On the other hand, since A

is a section of p there is a surjection from V to a line bundle on P2. This gives
rise to an exact sequence

0 ! OP2ðxÞ ! V ! OP2ðyÞ ! 0; ð2:12Þ

with x; y integers and y > 0 since V is ample. Combining this with the previous
conclusions we get

xþ y ¼ c1ðVÞ ¼ 4 ¼ c2ðVÞ ¼ xy;

hence x ¼ y ¼ 2. On the other hand (2.12) splits, since the first cohomology
group of any line bundle on P2 is trivial; thus V ¼ ðOP2ð2ÞÞl2 and this concludes
the proof in case i).

Now suppose we are in case ii). Then, checking the list in (1.0) we see that,
necessarily, A ¼ F1 and pjA is the contraction of the ð�1Þ section of A. Let E
and F be the ð�1Þ-section and a fiber of A, respectively. Since E is a fiber of
p, we have LAE ¼ LE ¼ 1. Writing LA ¼ ½xE þ yF � for some integers x; y,
we thus get y ¼ xþ 1. Then L2

A ¼ x2 þ 2x, with xb 1. Comparing this with
(2.11) we see that x ¼ 1, hence LA ¼ ½E þ 2F �. Note that Eh ¼ 0; otherwise
g ¼ pðhÞ would contain the point p ¼ pðEÞ, and then E would be in AVB,
contradicting the irreducibility of h. On the other hand, LAh ¼ 4, by (2.8). So,
writing h@ sE þ tF for some integers s; t, these conditions immediately imply
that t ¼ s ¼ 2, i.e. h A j2E þ 2F j. r

To show that the result of Theorem 2.2 is e¤ective, we produce an example
as in case ii).

Example. Let V HP11 be a 4-dimensional classical scroll over P2 of degree
11; let p : V ! P2 be the projection, let L be the hyperplane line bundle, and
let F ¼ p�L be the corresponding very ample vector bundle of rank 3. Such
a scroll exists, e.g., take F ¼ OP2ð2ÞlOP2ð1Þl2. Note that ‘‘a priori’’ ðV ;LÞ
could not be a scroll (in the adjunction theoretic sense). Actually, KV þ 3L ¼
p�H, where H ¼ KP2 þ det F ¼ OP2ðaÞ with ab 0, because c1ðFÞb rk F ¼ 3,
due to the (very) ampleness of F. However, by [F2, Main theorem], the only
exception to the ampleness of KP2 þ det F is F ¼ OP2ð1Þl3. But, recalling the
Chern–Wu relation, this would imply that

11 ¼ L4 ¼ L2p�ðc1ðFÞ2 � c2ðFÞÞ ¼ 9 � 3 ¼ 6;

a contradiction. Therefore the pair ðV ;LÞ is a scroll. Now take a general
hyperplane section X A jLj of V and let L ¼ LX . Then the pair ðX ;LÞ is
clearly a scroll.

Remarks. a) Note that BGP1 � P1 in case ii) of Theorem 2.2. However
L2
B ¼ 8. So ðB;LBÞ0 ðQ2;OQ 2ð1ÞÞ. The same conclusion holds for Theorem

2.1, since we showed there that L2
B ¼ 2bb 10.
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b) Note also that in case ii) of Theorem 2.2 we have ½A�A ¼ LA � ½B�A ¼
½�E �, hence A is not nef. The same is true for A in Theorem 2.1, since there
½A�A ¼ LA � ½B�A ¼ ½�lþ ðb� 4Þf�.

3 The case when both ðA;LAÞ; ðB;LBÞ A A

Here we start the proof of Theorem (0.1). For the moment we do not need
the assumption that Aþ B A jLj is a seminef ssd. First we prove some useful
lemmas.

Lemma 3.1. Let L be an ample and spanned line bundle on a smooth
projective threefold X. Assume that there exists a ssd Aþ B A jLj, and let
h ¼ AVB be the corresponding smooth hinge curve. Suppose furthermore that
ðA;LAÞG ðP2;OP2ðuÞÞ, with u ¼ 1; 2 and BGP2 or Fe for some eb 0. Then
gðhÞ ¼ 0.

Proof. Set ½A�A ¼ OP2ðdÞ and ½B�A ¼ OP2ðdÞ for some integers d; d. Since
OP2ðuÞ ¼ LA ¼ OP2ðdþ dÞ, we get d þ d ¼ ua 2. Note that h A jBAj. So, as-
suming, by contradiction, that gðhÞ > 0, we get db 3, which implies d < 0. So,
if gðhÞ > 0 we have that dd < 0. On the other hand, looking at the smooth
curve h inside B, we have

0 > dd ¼ ½A�A½B�A ¼ A2B ¼ ½A�2B ¼ h2:

Thus B0P2. On the other hand, the only irreducible curve on BGFe

with negative self-intersection is the section C0. Therefore gðhÞ ¼ gðC0Þ ¼ 0, a
contradiction. r

Lemma 3.2. Let L be an ample and spanned line bundle on a smooth
projective threefold X. Assume that there exists a ssd Aþ B A jLj and let
h ¼ AVB be the corresponding smooth hinge curve. Suppose furthermore that
ðA;LAÞG ðQ2;OQ 2ð1ÞÞ and BGFe for some eb 0. Then gðhÞ ¼ 0.

Proof. Set ½B�A ¼ OP1�P1ðx; yÞ for some integers x; y. Then

½A�A ¼ LA � ½B�A ¼ OP1�P1ð1 � x; 1 � yÞ:

Since h A jBAj is an irreducible curve, we see that ðx; yÞ is either ð1; 0Þ; ð0; 1Þ, or
x; y are both positive integers. Moreover, if we assume, by contradiction, that
gðhÞ > 0, then we get xb 2 and yb 2; otherwise h would be a section of one of
the two rulings of P1 � P1. We have

½A�A½B�A ¼ OP1�P1ðx; yÞOP1�P1ð1 � x; 1 � yÞ ¼ xð1 � yÞ þ yð1 � xÞ ¼ xþ y� 2xy:

Note that the function jðx; yÞ ¼ xþ y� 2xy is always negative for xb 2, yb 2
(actually jðx; yÞ ¼ xð1 � yÞ þ yð1 � xÞa xð�1Þ þ yð�1Þa�4Þ. On the other
hand, looking at the smooth curve h inside BGFe, we thus see that

reducible hyperplane sections of threefolds 311



0 > jðx; yÞ ¼ ½A�A½B�A ¼ A2B ¼ ½A�2B ¼ h2:

But this leads to the same contradiction as in Lemma 3.1. r

Now we can proceed with a case-by-case analysis of our ssd Aþ B A jLj as
in Theorem 0.1.

(I) Assume that AGP2 and BGP2.
Put ½A�B ¼ OP2ðd 0Þ and ½B�A ¼ OP2ðdÞ with d; d 0 b 1.
By Lemma 3.1 we know that gðhÞ ¼ 0, hence from the equalities

dðd � 3Þ ¼ ðKA þ ½B�AÞ½B�A ¼ 2gðhÞ � 2 ¼ ðKB þ ½A�BÞ½A�B ¼ d 0ðd 0 � 3Þ
we get d 2 � 3d þ 2 ¼ d 02 � 3d 0 þ 2 ¼ 0. Therefore d; d 0 A f1; 2g. Recall that
LA ¼ OP2ðuÞ, with u ¼ 1; 2. Then

d 02 ¼ ½A�2B ¼ ½A�A½B�A ¼ ðLA � ½B�AÞ½B�A ¼ ðu� dÞd:
This immediately shows that d 0 ¼ 2 is impossible, while d 0 ¼ 1 implies d ¼ 1,
u ¼ 2. Then, letting LB ¼ OP2ðvÞ, from the symmetric relation

1 ¼ ½B�2A ¼ ½A�B½B�B ¼ ½A�BðLB � ½A�BÞ ¼ v� 1;

we get v ¼ 2. So ðA;LAÞG ðB;LBÞG ðP2;OP2ð2ÞÞ.
Moreover ABL ¼ ½B�ALA ¼ du ¼ 2 and by Lemma 1.1 we obtain that

gðX ;LÞ ¼ 1. So ðX ;LÞ is a Del Pezzo threefold and since L3 ¼ L2
A þ L2

B ¼ 8 we
see from [F1, (8.5)] that ðX ;LÞG ðP3;OP3ð2ÞÞ.

(II) Assume, up to renaming, that AGP2 and BGQ2.
Put ½B�A ¼ OP2ðdÞ with db 1 and ½A�B ¼ OP1�P1ðx; yÞ for some nonnegative

integers x and y. Note that

d 2 ¼ ½B�2A ¼ ½B�B½A�B ¼ ðLB � ½A�BÞ½A�B ¼ xþ y� 2xy

and

dðd � 3Þ ¼ 2gðhÞ � 2 ¼ ðKB þ ½A�BÞ½A�B ¼ 2xy� 2x� 2y:

Hence

2xy� 2x� 2y ¼ dðd � 3Þ ¼ xþ y� 2xy� 3d

and this gives

3xþ 3y� 4xy ¼ 3db 3: ð3:2Þ
Moreover we have that ABL ¼ du ¼ xþ y for u ¼ 1; 2.

If u ¼ 1 then d ¼ xþ y and from (3.2) we get xy ¼ 0. Thus we can suppose
without loss of generality that x ¼ 0. Moreover, since gðhÞ ¼ 0 by Lemma 3.1,
we get y ¼ 1 and so d ¼ 1 by (3.2). Then ABL ¼ xþ y ¼ 1 and by Lemma 1.1
we get gðX ;LÞ ¼ 0. In view of our assumptions it thus follows that ðX ;LÞ is a

scroll over P1 [F1, (12.1) and (5.10)].
If u ¼ 2 then 2d ¼ xþ y and (3.2) gives 3d ¼ 4xy. Moreover,

3xþ 3y� 4xy ¼ 2d þ d ¼ xþ yþ d
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and then

1a d ¼ 2xþ 2y� 4xy: ð3:3Þ
Since 3d ¼ 4xy0 0 we get xb 1 and yb 1. If x ¼ 1 then 2 � 2y ¼ db 1 and
so ya 1=2, but this is a contradiction. In the same way we see that y0 1, so
we can suppose that x; yb 2. But then (3.3) would give 1a d < 0, which is
absurd.

(III) Finally assume that both A and B are Q2.
Put ½A�B ¼ OP1�P1ðx; yÞ and ½B�A ¼ OP1�P1ðz;wÞ for some nonnegative in-

tegers x; y;w and z. Since

2xy ¼ ½A�2B ¼ ðLA � ½B�AÞ½B�A ¼ zþ w� 2zw
and

2zw ¼ ½B�2A ¼ ðLB � ½A�BÞ½A�B ¼ xþ y� 2xy;

we deduce that

xþ y ¼ 2ðxyþ zwÞ ¼ zþ w: ð3:4Þ
By Lemma 3.2, the genus formula for h A jABj gives

�2 ¼ 2gðhÞ � 2 ¼ ðKB þ ½A�BÞ½A�B ¼ 2xy� 2x� 2y;

hence ðx� 1Þðy� 1Þ ¼ 0. Similarly, arguing on h A jBAj we get ðz� 1Þðw� 1Þ ¼
0. Up to exchanging the factors of A and B we can thus assume that x ¼ z ¼ 1.
But then (3.4) gives y ¼ w and 1 þ y ¼ 2ðyþ wÞ ¼ 4y, which is impossible, y
being an integer.

We sum up the above results in the following statement

Theorem 3.3. Let L be an ample and spanned line bundle on a smooth
projective threefold X. Assume that there is a ssd Aþ B A jLj. If both ðA;LAÞ
and ðB;LBÞ are in class A then ðX ;LÞ is either a scroll over P1 or ðP3;OP3ð2ÞÞ.

Remark. Note that, at least in cases (I) and (II), we could deduce the result
above also from [CHS, (3.10)], in view of Lemma 3.1, after a case-by-case
analysis of the polarized threefolds appearing there (e.g., see the argument at the
end of Section 5). However we preferred to provide a more direct proof.

4 The case when ðA;LAÞ A A and ðB;LBÞ A B

We proceed with a case-by-case analysis also in this context, continuing the
enumeration started in Section 3.

(IV) Assume that ðA;LAÞG ðP2;OP2ðuÞÞ with u ¼ 1; 2.
Put ½B�A ¼ OP2ðdÞ with db 1. Let BGFe for some eb 0 and let C0 and f

be a section of minimal self-intersection and a fiber respectively. Since ðB;LBÞ is
a scroll we can write LB ¼ ½C0 þ bf � for some integer b > e. Note that h A jABj
is a smooth curve of genus zero on Fe by Lemma 3.1. Hence by [Ha, p. 380]
there are three possibilities:
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(1) ½A�B ¼ ½ f �;
(2) ½A�B ¼ ½C0�;
(3) ½A�B ¼ ½xC0 þ yf � with x > 0 and y > xe, or e > 0, x > 0 and y ¼ xe.

Case (1). We observe that ½A�BLB ¼ ABL ¼ 1 and then gðX ;LÞ ¼ 0 by
Lemma 1.1. After ruling out ðP3;OP3ð1ÞÞ and ðQ3;OQ3ð1ÞÞ, we deduce that

ðX ;LÞ is a scroll over P1 [F1, (12.1) and (5.10)], with ðA;LAÞG ðP2;OP2ð1ÞÞ.

Case (2). Since gðhÞ ¼ 0, by the genus formula we obtain

�2 ¼ 2gðhÞ � 2 ¼ ðKA þ ½B�AÞ½B�A ¼ ðd � 3Þd;
i.e., d 2 � 3d þ 2 ¼ 0. Thus d ¼ 1 or 2.

Let d ¼ 1. Thus ½A�A ¼ LA � ½B�A ¼ OP2ðu� 1Þ with u ¼ 1; 2. If u ¼ 2
then we get ½A�A ¼ OP2ð1Þ and so

1 ¼ ½A�A½B�A ¼ ½A�2B ¼ C 2
0 ¼ �ea 0;

but this is a contradiction. If u ¼ 1 then ½A�A ¼ OP2 and ½B�ALA ¼ ABL ¼ 1.
So we get gðX ;LÞ ¼ 0 by Lemma 1.1, and again ðX ;LÞ is a scroll over P1.

Now let d ¼ 2. Thus ½A�A ¼ OP2ðu� 2Þ with u ¼ 1; 2. If u ¼ 2 then 0 ¼
½A�A½B�A ¼ ½A�2B ¼ �e. Moreover 4 ¼ ½B�ALA ¼ ABL ¼ ½A�BLB ¼ C0ðC0 þ bf Þ,
which gives LB ¼ ½C0 þ 4f �. Therefore

½KX þ 2L�B f ¼ ðKB þ ½A�B þ LBÞ f ¼ 2f 2 ¼ 0:

This shows that KX þ 2L cannot be ample. Note that ðX ;LÞ can be neither
ðP3;OP3ð1ÞÞ nor ðQ3;OQ3ð1ÞÞ. Hence, from adjunction theory we know that
ðX ;LÞ belongs to a very short list of pairs. If KX þ 2L is not nef, then by [CHS,
(3.1)] ðX ;LÞ is

(A) a scroll over a smooth curve,
but this is absurd, because LA ¼ OP2ð2Þ, and this polarization on A is not
compatible with Lemma 1.2. Now suppose that KX þ 2L is nef but not big.
Then, by [CHS, (3.2)], ðX ;LÞ is one of the following pairs:

(B) a Del Pezzo threefold;
(C) a quadric fibration over a smooth curve;
(D) a scroll over a smooth surface.

Since

½B�ALA ¼ ABL ¼ 4; ð4:1Þ
Lemma 1.1 shows that gðX ;LÞ ¼ 3. Clearly this rules out case (B).

Case (C) cannot occur as well. Actually, let q : X ! C be the quadric

fibration over a smooth curve C. Since AGP2, A cannot be a fiber of q and so
qjA : A ! C is a surjection. But this is impossible since P2 cannot fibre over a
curve.

In case (D) we conclude that ðX ;LÞ is a scroll over P2 as in Theorem 2.2,
case i), because AGP2.

Assume now that KX þ 2L is nef and big. Then by [CHS, (3.5)]
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(E) there exists the first reduction morphism r : ðX ;LÞ ! ðX 0;L 0Þ and the
adjoint bundle KX 0 þ 2L 0 is ample.

Since KX þ 2L is not ample, clearly r is not an isomorphism. So, by [CHS,
(3.5), (3.6)] we get the following possibilities:

(E1) one of the two components of Aþ B A jLj is an exceptional divisor of r,
or

(E2) r contracts at least one exceptional divisor E and neither A nor B is
one of them.

But case (E) cannot occur. Indeed, in case (E1) we have that A ¼ E is an
exceptional divisor of r; then ABL ¼ ½B�ELE ¼ OP2ð2ÞOP2ð1Þ ¼ 2, which con-
tradicts (4.1). On the other hand, in case (E2) clearly AVE ¼ j while BVE is a
rational curve on B, which is contracted by r. But this is impossible, since, as
we have seen BGF0.

Finally suppose that u ¼ 1. Then ½A�A ¼ OP2ð�1Þ, ½B�A ¼ OP2ð2Þ and so we
get �2 ¼ ½A�A½B�A ¼ ½A�2B ¼ �e. Since

2 ¼ ABL ¼ ½A�BLB ¼ C0½C0 þ bf � ¼ �eþ b ¼ �2 þ b;

we conclude that L3 ¼ L2
A þ L2

B ¼ 1 þ ½C0 þ 4f �2 ¼ 7 and by Lemma 1.1 we
obtain that gðX ;LÞ ¼ 1, i.e., ðX ;LÞ is a Del Pezzo threefold of degree 7.
Therefore X is P3 blown-up at a point p and L ¼ r�OP3ð2Þ � E, where
r : X ! P3 is the blowing-up and E ¼ r�1ðpÞ is the exceptional divisor [F1,
(8.6)].

Case (3). Since

ðu� dÞd ¼ ½A�A½B�A ¼ ½A�2B ¼ ½xC0 þ yf �2 ¼ xð2y� exÞ > 0

and 1a d, ua 2, we deduce that d ¼ 1, u ¼ 2 and x ¼ 1. This gives ABL ¼
½A�2B þ ½B�2A ¼ 2 and by Lemma 1.1 we have that gðX ;LÞ ¼ 1, i.e., ðX ;LÞ is a Del
Pezzo threefold.

Furthermore, from x ¼ 1 we get ½B�2B ¼ ðLB � ½A�BÞ
2 ¼ ðb � yÞ2

f 2 ¼ 0. So
it follows that L2

B ¼ ðA2 þ 2ABþ B2ÞB ¼ ½A�A½B�A þ 2½B�2A ¼ 3 and then L3 ¼
L2
A þ L2

B ¼ 4 þ 3 ¼ 7. This leads to the same conclusion as at the end of
case (2).

The discussion above proves the following

Theorem 4.1. Let L be an ample and spanned line bundle on a smooth
projective threefold X. Assume that there is a ssd Aþ B A jLj. If ðA;LAÞG
ðP2;OP2ðuÞÞ with u ¼ 1; 2 and ðB;LBÞ A B then ðX ;LÞ is one of the following
pairs:

1. a scroll over P1;
2. ðP1 � P2;OP1�P2ð1; 2ÞÞ, with A A jOP1�P2ð1; 0Þj and B A jOP1�P2ð0; 2Þj a

general element;
3. ðX ;LÞ has ðP3;OP3ð2ÞÞ as first reduction with X being P3 blown-up at one

point.
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(V) Suppose now that ðA;LAÞG ðQ2;OQ 2ð1ÞÞ.
By the genus formula and Lemma 3.2 we get

�2 ¼ 2gðhÞ � 2 ¼ ðKA þ ½B�AÞ½B�A ¼ ð�LA þ ½A�AÞ½B�A ¼ �ABL� ½A�2B:
We claim that ½A�2B a 0. If not, then the equation above gives ABL <
ABL þ ½A�2B ¼ 2, and then Lemma 1.1 would imply gðX ;LÞ ¼ 0. But, clearly,
ðX ;LÞ can be neither ðP3;OP3ð1ÞÞ, nor ðQ3;OQ3ð1ÞÞ, because ðB;LBÞ A B.
Moreover ðX ;LÞ cannot be a scroll over a smooth curve, since our ssd Aþ B is
not compatible with Lemma 1.2. This proves the claim. Note that it cannot be
½A�B ¼ ½ f �. Otherwise we would get

2 ¼ ABL ¼ ½B�2A ¼ ½B�B½A�B ¼ ½B�B f ¼ ðLB � ½A�BÞ f ¼ LB f ¼ 1;

a contradiction. If ½A�B 0 ½C0�, recalling that h A jABj is a smooth curve, we can
write ½A�B ¼ ½aC0 þ bf �, where a > 0, b > ae or e > 0, a > 0 and b ¼ ae [Ha, p.
380]. But in these cases we have ½A�2B ¼ að2b� aeÞ > 0, which contradicts the
claim. All this shows that ½A�B ¼ ½C0�.

On the other hand, since AGQ2 ¼ P1 � P1, we can write ½B�A ¼
OP1�P1ðx; yÞ for some integers x; yb 0. Recall that h A jBAj has genus zero by
Lemma 3.2. So, up to exchanging the factors of A, we can suppose that x ¼ 1.
Then we get

�e ¼ ½A�2B ¼ ½A�A½B�A ¼ LA½B�A � ½B�2A ¼ 1 � y:

Therefore ½B�A ¼ OP1�P1ð1; eþ 1Þ and ½A�A ¼ OP1�P1ð0;�eÞ. By adjunction we
thus get

½KX þ 2L�A ¼ KA þ LA þ ½B�A ¼ OP1�P1ð0; eÞ
and this shows that KX þ 2L is not ample. Arguing as in (IV) and noting that
neither A nor B can be an exceptional divisor of the first reduction morphism, we
conclude that ðX ;LÞ is one of the following pairs:

(A) a scroll over a smooth curve;
(B) a Del Pezzo threefold;
(C) a quadric fibration over a smooth curve;
(D) a scroll over a smooth surface.
(E2) there exists the first reduction morphism r : ðX ;LÞ ! ðX 0;L 0Þ and the

adjoint bundle KX 0 þ 2L 0 is ample; r contracts at least one exceptional divisor E
and neither A nor B is one of them.

Case (A) cannot occur since the structure of A and B is not compatible with
Lemma 1.2.

To deal with case (B), let LB ¼ ½C0 þ bf � with b > e. Since gðhÞ ¼ 0, we
have that

b � e ¼ C0ðC0 þ bf Þ ¼ ½A�BLB ¼ 2 � ½A�2B ¼ eþ 2;

i.e. b ¼ 2eþ 2. By Lemma 1.1 we know that ABL ¼ gðX ;LÞ þ 1 ¼ 2. Then
e ¼ 0, b ¼ 2, i.e. ðB;LBÞ ¼ ðF0; ½C0 þ 2f �Þ. Therefore L3 ¼ L2

A þ L2
B ¼ 2 þ L2

B ¼ 6

and by [F1, (8.7)] we get ðX ;LÞ ¼ ðP1 � P1 � P1;OP1�P1�P1ð1; 1; 1ÞÞ.
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In case (C), let q : X ! C be the quadric fibration morphism. Then by
Lemma 1.4 we deduce that CGP1.

Case (D) does not occur since the present polarization of A is not compatible
with that of the component P1 � P1 arising in the proofs of Theorems 2.1 and
2.2 (see Remark a) at the end of Section 2).

Finally, case (E2) is not possible. Indeed, since LE ¼ ½A�E þ ½B�E ¼ OP2ð1Þ
and AGP1 � P1, we deduce that ½A�E ¼ OP2 and ½B�E ¼ OP2ð1Þ. Thus EB HB
is a ð�1Þ-curve and so this gives EB ¼ C0, BGF1 and by arguing as in case (B),
we see that LB ¼ ½C0 þ 4f �. Thus we get

3 ¼ C0ðC0 þ 4f Þ ¼ EBLB ¼ EB2 þ EBA ¼ B2
E ¼ 1;

but this is absurd.
We can sum up the above results in the following

Theorem 4.2. Let L be an ample and spanned line bundle on an irreducible
projective manifold X of dimension three. Assume that there is a ssd Aþ B A jLj.
If ðA;LAÞG ðQ2;OQ 2ð1ÞÞ and ðB;LBÞ A B then ðX ;LÞ is one of the following pairs:

1. a quadric fibration over P1; or

2. ðP1 � P1 � P1;OP1�P1�P1ð1; 1; 1ÞÞ.

5 The case when both ðA;LAÞ; ðB;LBÞ A B

When both components of the ssd Aþ B A jLj are rational scrolls we need a
further condition to control the genus of the smooth curve h ¼ AVB. This is
provided by the notion of seminef decomposition which we recall for the conve-
nience of the reader (see [T, §1]).

Definition. Let ðX ;LÞ be a polarized manifold of dimension nb 3 and let
Aþ B A jLj be a ssd. We say that Aþ B is a seminef divisor or shortly a seminef
ssd, if at least one of A and B is a nef divisor or at worst an exceptional divisor
of the first reduction mapping of ðX ;LÞ.

Remark. Note that all ssd of sectional genera zero allowed for the pairs
ðX ;LÞ listed in Theorems 2.2, 3.3, 4.1 and 4.2 are seminef. So these results
remain unchanged under the extra assumption that Aþ B A jLj is a seminef ssd.
In particular this gives cases 1, 2, 5, 6 and 8 in Theorem 0.1.

The next lemma shows the role of the seminefness assumption.

Lemma 5.1. Let L be an ample and spanned line bundle on a smooth
projective threefold X and let Aþ B A jLj be a seminef ssd. If both ðA;LAÞ;
ðB;LBÞ A B, then the corresponding hinge curve h ¼ AVB has genus gðhÞ ¼ 0.

Note that in the present setting, neither A nor B can be an exceptional
divisor of the first reduction morphism. Hence, due to the assumption, one of
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them, say A, is nef. Then the assertion above is an obvious corollary of the
following more general result.

Lemma 5.2. Let L be simply an ample line bundle on a smooth projective
threefold X, and suppose that Aþ B A jLj is a ssd. If A is a nef divisor and
ðA;LAÞ is a scroll over a smooth curve of genus p, then the hinge curve h has genus
gðhÞ ¼ 0 or p.

Proof. Let C0 and f be a section of minimal self-intersection and a fiber
of A respectively. Since h A jBAj, we can write ½B�A 1 ½xC0 þ yf � (numerical
equivalence) for some integers x; y, where x ¼ hf b 0. On the other hand, since
ðA;LAÞ is a scroll, we have that LA 1 ½C0 þ tf � for a suitable integer t > 0.
Thus

½A�A ¼ LA � ½B�A 1 ½ð1 � xÞC0 þ ðt� yÞ f �;
where 1 � x ¼ Af b 0, due to the nefness of A. Now, if gðhÞa p, it can only be
gðhÞ ¼ 0 or p, by the Riemann–Hurwitz theorem. So, let gðhÞ > p. Then
xb 2, otherwise h would be either a fiber (if x ¼ 0) or a section of A (if x ¼ 1),
which implies gðhÞ ¼ 0 or p, respectively. But this clearly contradicts the in-
equality xa 1 obtained before. r

The fact that gðhÞ ¼ 0 under the assumption that Aþ B A jLj is a seminef ssd
with gðA;LAÞ ¼ gðB;LBÞ ¼ 0 also follows from [T, Lemma 6]. However, we
preferred to present here a direct proof of this fact in line with that of Lemmas
3.1 and 3.2.

To conclude the proof of Theorem 0.1, consider our seminef ssd Aþ B A jLj.
If KX þ 2L is not nef and big, we know that ðX ;LÞ belongs to a very precise list
of pairs [S]. On the other hand, if KX þ 2L is nef and big, let r : X ! X 0 be the
reduction morphism. Since ðA;LAÞ and ðB;LBÞ are in B, r can contract neither
A nor B. So, one of them, say A, is a nef divisor and then we deduce from
Lemma 5.1 that gðhÞ ¼ 0. Then [CHS, (3.10)] applies. Note that case 5 in
[CHS, (3.10)] cannot occur. Thus we obtain that ðX ;LÞ is one of the following
threefolds:

(A) a scroll over a smooth curve;
(B) a Del Pezzo threefold;
(C) a quadric fibration over a smooth curve;
(D) a scroll over a smooth surface;
(E) KX þ 2L is nef and big and there exists the first reduction morphism

r : ðX ;LÞ ! ðX 0;L 0Þ; moreover, the adjoint bundle KX 0 þ 2L 0 is ample and
neither A nor B is a fiber of r. Let A 0 ¼ rðAÞ and B 0 ¼ rðBÞ. The following
cases can occur:

(E1) ðX 0;L 0ÞG ðQ3;OQ3ð2ÞÞ.
(E2) ðX 0;L 0ÞG ðP3;OP3ð3ÞÞ;
(E3) X 0 is a P2-bundle over a smooth curve Y , u : X 0 ! Y with

2KX 0 þ 3L 0 ¼ u�H for an ample line bundle H on Y . Thus ðF ;L 0
F Þ ¼
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ðP2;OP2ð2ÞÞ for a general fiber F . In the present setting there are two
possibilities:
(E3-i) after renaming, if necessary, A 0 is a fiber of u, Y ¼ P1, and B 0

meets a general fiber in a smooth conic; or
(E3-ii) both A 0 and B 0 are P1-bundles over Y ¼ P1 via u, each meeting

a fiber of u in a line.
Since ðA;LAÞ and ðB;LBÞ are in B, case (A) is not possible.

Case (B) occurs: in fact, by combining [CHS, (3.4)] with Lemma 1.3 and the
subsequent remark we see that ðX ;LÞ ¼ ðPðTP2Þ; xT

P2
Þ.

Case (C) can also occur, and the base curve is P1 by Lemma 1.4, since both
A and B are P1-bundles over P1.

Case (D) leads to the pairs in Theorem 2.1 and in case ii) of Theorem 2.2.
We observe that cases (E1) and (E2) cannot occur since gðA;LAÞ ¼ gðB;LBÞ ¼ 0.

Case (E3-i) is not possible. Since L 0
A 0 ¼ L 0

F ¼ OP2ð2Þ we have

A 0B 0L 0 ¼ ½B 0�FL 0
F ¼ ðL 0

F Þ
2 ¼ 4

and so by Lemma 1.1 we obtain that gðX 0;L 0Þ ¼ 3. Moreover 2KX 0 þ 3L 0 ¼
u�H1 tF for some integer tb 1 and then by the genus formula we get

8 ¼ 2ð2gðX 0;L 0Þ � 2Þ ¼ 2ðKX 0 þ 2L 0ÞðL 0Þ2

¼ ð2KX 0 þ 3L 0 þ L 0ÞðL 0Þ2 ¼ tðL 0
F Þ

2 þ ðL 0Þ3

¼ 4tþ ðL 0Þ3
b 4tþ 1:

Thus t ¼ 1 and ðL 0Þ3 ¼ 4. But this gives 4 ¼ ðL 0Þ3 ¼ ðL 0
F Þ

2 þ ðL 0
B 0 Þ2 ¼

4 þ ðL 0
B 0 Þ2 which is absurd since L 0 is ample.

Finally, also case (E3-ii) is not possible. Since p ¼ ujA 0 : A 0 ! P1 is a P1-
bundle and ðL 0

A 0 Þf ¼ OP1ð1Þ for every fiber f of p, we know that KA 0 þ 2L 0
A 0 ¼

p�H 0 1 tf for some integer t. As observed before, we can assume without loss
of generality that A is nef, hence A 0 is nef. Therefore

ðKX 0 þ 2L 0ÞA 0 f ¼ ðKA 0 þ L 0
A 0 þ ½B 0�A 0 Þ f a ðKA 0 þ 2L 0

A 0 Þ f ¼ t½ f �2 ¼ 0;

but this is a contradiction since we know that KX 0 þ 2L 0 is ample.
Summing up the discussion above we get cases 2 again, 3, 4 and 7 of

Theorem 0.1. Combining this with the remark before Lemma 5.1 concludes the
proof of Theorem 0.1.
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