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ON TOPOLOGICAL TYPES OF REDUCED SEXTICS

MASAHARU IsHIKAWA, Tu CHANH NGUYEN, AND MUTSUO OKA

Abstract

We present a computational method for obtaining generic forms of sextics with a
given configuration of local singularities. Using this method, we first complete the
classification of topological types of local singularities appearing on reduced sextics.
Next we give the list of possible configurations of singularities containing at least one
non-simple singularity and satisfying p(5) > 7, and show that such a sextic is of torus
type, which has been conjectured by the third author.

1. Introduction

Our main interest in this paper is to study the topological types of sin-
gularities appearing on reduced sextics and their configurations.

In the first half of this paper (§§3), we study the topological types. By the
works of Urabe, Yoshihara, Yang [U, Yo, Ya], it is known that all simple
singularities with Milnor number less than or equal to 19 can appear on sextics.
On the other hand, Degtyarev proved in [D] that the rigid isotopy type of an
irreducible sextic with at least one non-simple singularity is determined by the
configuration of singularities of the sextic and Wall listed in [W] all the possible
non-simple singularities on reduced sextics using the notation of Arnold [AGV].

It is well-known that the topological type of an isolated singularity is
determined by its Newton boundary if the boundary is Newton non-degenerate.
We focus on this property and give the classification of singularities appearing
on reduced sextics in terms of Newton boundaries. It turns out that the sin-
gularities are Newton non-degenerate except the series of classes of singularities
S,, n=1,2,...,6. Note that our classification is independent of the work of
Wall, though our list obtained is, of course, identical to his list.

Our strategy is computational. We start from the generic form of a
sextic
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fay) = agx'yl.
i+j<6

Assume that the origin (0,0) is a singularity and put ag = aj9o = an = 0.
We take a series of changes of local coordinates (x;,y;) as long as the
Newton number v(I'_(f;(x;, y;))) is strictly greater than the previous one
v(I_(f; (xj-1,¥-1))). As the Newton number is bounded above by the Milnor
number, this process stops after a finite number of operations. When we arrive
at the coordinate system (x., y;) for which no further change of coordinates is
possible, we check if the polynomial is reduced, if the Newton boundary is non-
degenerate and if it really exists. The classification of local singularities of
reduced sextics is completed by checking all possible trees of the changes of
coordinates. This classification is done in Section 3.

In the second half (§§4,5), we deal with reduced sextics having special
configurations and observe if they are of torus type (see Section 4 for the
definition of torus type).

In Section 4 we prove that a reduced sextic with configuration of singularities
on a tame sextic of torus type and having at least one non-simple singularity is
always of torus type (Theorem 12).

In Section 5 we compute the p-invariants of non-simple singularities ap-
pearing on reduced sextics and prove, using the result in Section 4 and the
discussion in [W], that if a sextic has at least one non-simple singularity and
satisfies p(5) > 7 then it is of torus type (Theorem 16), which has been con-
jectured by the third author.

2. Preliminaries

2.1. Notations. We use the following standard notations for simple sin-
gularities:
Ay X2+ y" =0 (n>1),
D,:x*y+y" =0 (n>4),
E:x3+y*=0,E7: x> +xp° =0, Eg : x* + »° =0,
where the equations written in the right-hand side are the normal forms of these
singularities (cf. Remark 2 below). Furthermore, we use the following notations
for non-simple singularities as their normal forms:
Byg:x"+y1=0 (p<gq),
By s(x +y9) =0,s=x,9,xy (p<q),
Cpg: X! +y1+x%2=0 (2/p+2/q<1,p<q),
YCpq: (X +yI+x%2) =0 (2/p+2/q<1,p<q),
Dy, xP+yi+x33=0 (2/p+3/q<1),
Fpq X! + 7+ X707 + X797 =0 (6<p<q),
Sy :=T,1\T, (mn=1,...,6), where
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(42 3)2 i) —
To:= (x"—p’)"+ > a;x'y! =0,
0<i4j<6,3i+2/>12

Tyi={Ri = = R; =0},

Ry = ais + axn, Ry = 4ars + 4as — a3y, Ry = 2az3 + 2asy — axau,

Ry := —dayp + 2azasy + afl, Rs5 :=2as1 — asg1asp and Rg := —4dagy + ago.
These notations of the singularities are to be understood in the sense of to-
pological equivalence. The notations S3 and Sg are denoted as Sp; and Sp; in
[Ph] respectively. All other singularities appearing in [Ph] have the same no-

tations. Note that the Milnor numbers u of these singularities are given by the
following formulae:

w(Byy) =(p—1)(qg—1), wuxByy)=pq—p+q, wyBy,) =pq+p—q,
N(XJ’Bp,q) = (P+1)(CI+1)7 ﬂ(Cp,q):P‘FQ“‘l, ﬂ(pr,q):3p+q’
Dy g) =2p+q+1, wF,y)=p+qg+6 wuS,)=15+n.

Remark 1. The correspondence between our notations and those in [W] (cf.
[AGV]) is described in the following table (where i >0 and j, k > 1):

| Dyyi | B3 3 | B3 3141 | B3 3142 | By 4 | By s | By | Bs s | Bs ¢ | Bs 6 |
‘ E, | Ek o | Ey (-1 ‘ Er 1) ‘ X0 | Wiz | Wi.o ‘ NAoo ‘ NFy ‘ none ‘

VB34 | ¥Bys | yBss | XBya | yBas | xBys | xBss | XBys | xBy7 | xyBas | xyBs 4
Zn | Zi3 | Z10 | Wis ‘ NCyy ‘ Eys | Wiz ‘ NFy; ‘ Es (o) | Z ‘ NGy

o1k | Carjavk | VG 61k | YCsark | D3 ok | Da7 | Ds sk | Do svi | Fsyjser| Sk

Exi |Taayjawc| Zix | NBYy | Esx |Wii|Ndio | NBL, | NAe | W,

2.2. Newton boundary and coordinate changes. For a given analytic
function f(u,v) =37, jazu'v/, we denote by T'(f;(u,v)) the Newton boundary
with respect to the coordinates (u,v). We may abbreviate it to T'(f) if the choice
of the coordinates is clear. The cone of I'(f;(u,v)) with the origin is denoted
by T_(f;(u,v)). The Newton principal part of f is defined by NPP(f):=
> jjer(s) @u'v’.  The Newton number v(I(f)) is defined by the alternating
sum

v(T'(f)) :=2 volume I'_(f) — (a+b)+ 1,

where a (resp. b) is the length of the face of I'_(f) on the w-axis (resp. v-axis).
For example, a is given by min;en{i|ajn # 0}. If no such monomial exists,
a =0 by definition.

Let A be a face of the Newton boundary. The polynomial fa(u,v):=
DG jyen@ix'y is called the face function. Let p,q be the pair of coprime
positive integers such that (p, ) is a normal vector to A. Since A is included in
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the line {(i, /) € R?| pi + qj = d}, where d is some positive integer, fi(u,v) is a
weighted homogeneous polynomial of type (p,q;d) and uniquely factorized as
Sau,v) = cuv® Hle(vf’ — u?)", where &|,...,&, are mutually distinct non-zero
complex numbers. If f) has no multiple factor (i.e., v; = 1 for each i), we say
that f is non-degenerate on A. Otherwise f is said to be degenerate on A. If f
is non-degenerate on all faces, we say that f is non-degenerate or more precisely
Newton non-degenerate.

For a given weight vector Q = /(p,q), we denote the lowest terms with
respect to the weight O by fo(x,y). Let d(Q) denote the minimal degree with
respect to Q and set A(Q; f) :=={pi+qj=d(Q)} NI(f). Then fu(x,y) is the
sum of a;x'y/ for (i,j) € A(Q;f). In particular, if Q is a normal vector to a
face A then A(Q; f) = A and fp(x, y) = fa(x, ). In this case we may use both
of the notations fp(x,y) and fa(x, y) for representing the face function.

It is well-known that the topological type of the germ of an isolated sin-
gularity f(u,v) =0 with non-degenerate Newton boundary depends only on the
Newton boundary I'(f;(u,v)). See [K, O2] for further details.

When we are given a polynomial of f(x,y), for the determination of the
normal forms we use two types of coordinate changes.

(i) A change of coordinates given by

(x, ) = (ax + by, cx + dy),

where a,b,c,d € C and ad — bc # 0. This is a linear coordinate change. It does
not change the degree of a given polynomial.
(i) A change of coordinates given by either

(an/) = (X,y+S1x+s2x2+...+prp)
or
(x,y) = (x+lly+l2y2+'-'—|—lqu7y)’

where s;,¢,€C, s, #0 and t, # 0. This is called a triangular coordinate change.
Note that a triangular coordinate change may change the degree of a given
polynomial.

Remark 2. The normal forms presented in Section 2.1 are Newton non-
degenerate except for Sj,...,Ss. Thus if a face has other integral point (a,b) on
['(f), the monomial cx“y?, with ¢ e C generic, can be added. If (1,b) is on
I'(f), the monomial on y-axis can be chopped off (a negligible truncation in the
sense of [O]). For example, for n =2m + 1 odd, 4, and D, can be written as

Ay X2 4 crxy™ ™ £ ey¥ 2 4 (higher terms), ¢} —dey # 0,
Dyi1 o X2y + crxy™ N 4+ 9?1 4 (higher terms), ¢} —4c¢y # 0.

In particular, ¢, can be zero if ¢; # 0. Note also that for ¢ = 2m, C, , can be
defined by x” +x2p? + 1 xp™ ! + c29*" =0 with ¢} —4c; #0. The notations
5By 4,5C, 4, $ =X, y,xp, do not imply that f is divisible by s but they are just
topological equivalences. So, for example xBs 4 can be defined by x* + xy* +
(higher terms).
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2.3. Inequalities. Let (C,P) be a germ of a plane curve C at a singular
point P. Denote by u(C, P) the Milnor number of the singularity of C at P, by
r(C, P) the number of locally irreducible components of C at P, and by J(C, P)
the J-invariant, which is the maximal number of nodes in a deformation of the
germ (C, P). It is well-known that the equality 26(C, P) = u(C,P) +r(C,P) — 1
holds, see [M]. We denote the multiplicity of C at Pe C by m(C,P). In the
case where two plane curves (or two germs) C; and C, intersect at P, we denote
their local intersection number at P by I(Cj, Cy; P).

Now we introduce several inequalities which we will use later for the classi-
fication of local singularities on reduced sextics.

Let C be an irreducible plane curve in P>. We denote by X(C) the set of
singular points of C. The genus formula is

g == 3 ecp),
Pex(C)

where ¢ is the genus of a non-singular model of C and d is the degree of C. Let
P e C be a singular point. The above equality and g > 0 give the inequality:

(d—1)(d-2)

P
5(C,P) < 5 :

or u(C,P)+r(C,P)—1<(d-1)(d-2),
called Pliicker’s inequality. In particular, for an irreducible sextic we have
o(C,P) < 10.

Let (u,v) be a local analytic coordinate system centered at a singular point
P e C. Another inequality due to Kouchnirenko [K] is

V(T (/5 (u,0))) < u(C, P).

The last inequality, which can be applied to any reduced sextic, is
u(C,P) <25. This follows from the fact that the sum of Milnor numbers of a
sextic function f:C* — C is bounded above by 25.

3. Classification of local singularities on reduced sextics

We give the classification of topological types of local singularities of re-
duced sextics for each multiplicity fixed. Suppose that a reduced sextic C has an
isolated singularity at the origin O and let m(C, O) denote its multiplicity. Since
C is a sextic, m(C,0) can be 2,3,...,6.

THEOREM 3. The classification of topological types of local singularities on
reduced sextics is given as follows. Here TyC represents the tangent cone of C
at O:

1. m(C,0) =2:

(i) ToC is x>=0: (C,0)=4, 2<n<19).
(i) ToC consists of two generic lines: (C,0) = A;.
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2. m(C,0) = 3:
(i) ToC is x>=0: (C,0)=E, (n=6,7,8), By, (6 <n<12), xBy,
(n=35 7) G, (7T<n< 15), D;, (10<n<13).

(i) ToC is x’y =0: (C,0)=D, (5<n<19).
(i) 7oC conszsts of three generic lmes (C,0) = Dy.
3. m(C,0) =
(i) TOC is x*=0: (C,0)~By, (n=5,6), Ds7, xB3, (n=4,5),
S, (1<n<e6).
(i) ToC is Xy =0: (C,0)=yB;, (n=4,5,6), xyBy3, yCi,
(7T<n<12).

(ili) ToC is x*p(x+cy) =0, c#0: (C,0)=Cs, (5<n<14).
(vi) ToC is x*y*=0: (C,0)=Cs, (5<n<14), Cs, (6 <n<12),
C74’n (7 <n< 11), C&n (8 <n< 11), C9’9.
(v) ToC consists of four generic lines: (C,O) = By 4.
4. m(C,0) =35:
1) ToC is x> =0: (C, 0) = B576, XB475.
i) ToCis x*y =0: (C,0) = VBas, xyBs 4.
i) ToC is x>y =0: (C,0)=yCs, (n=15,6), Ds, (n=06,7).
iv) ToC is y(x+c1y)(x+cp) =0, ¢c1,c2 #0, ¢; #c2: (C,0) = Dy s,

YCs. 4.
(V) ToC is x*p(x+c1y)(x+c29) =0, c1,62 #0, ¢1 # ¢ (C,0) = Ds ,
(n=26,7),
(vi) ToC is x*y*(x+¢y) =0, c#0: (C,0) = (p qef{6,7}).
(vii) TyC consists of five generic lines: (C, O) 5,5
5. m(C,0) =6:

(v) ToC consists of six generic lines: (C,O) = Bg .

3.1. Listing possible local singularities. Let C be a reduced sextic with an
isolated singularity at the origin O and let f be the defining polynomial of C
which has the form

)= 3 v,

i+j<6
where ago =0. Now we make a list of possible singularities for each fixed
multiplicity.

(I) Case m(C,0) =2: In this case by a linear coordinate change if nec-
essary we may assume that ajg = ag; = 0, axy # 0, and either 4agyax) — a%l # 0 or
apy =ajp =0. We look at the face A which has (2,0) as a vertex. If f is non-
degenerate on A then fp gives a normal form of an 4, singularity. Otherwise,
fa(x, p) = ax(x + ayk)? for some k > 2 and o € C* := C — {0}. Then we take a
triangular change of coordinates x; = x + ay*, y; = y. This operation stops at a
finite number of steps and only the singularities 4,, n > 1, appear in this series.
It is well-known that the maximal rank of the simple singularities on sextics is 19
(see [H, S-I]). Thus n < 19.

(IT) Case m(C,0) =3: In this case a; =0 for i+ j <2, and at least one
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of aj, i+ j=3, is not zero. Put Q="'(1,1). We separate this case into three
subcases according to the degeneration of the homogeneous polynomial fp :=
D iy AX'Y.

(II-1) Assume that fp has three distinct roots. Then the singularity is
Dy = B313.

(II-2) Assume that fp has two distinct roots, one of which is a root of mul-
tiplicity 2: After a suitable linear coordinate change, we can assume that ag; =
aip =0 and ay =1. Thus f(x,y) = azx> + ayxy + (higher terms). Hence
the possible singularities are D,, n > 5. We also have n <19 ([H, S-I]).

(II-3) Assume that fp has a root of multiplicity 3. After a suitable linear
coordinate change, we can assume that apz = a3 =ax; =0 and a3 =1. If
aos # 0 then the singularity is Eg. If ags =0 and a3 #0 then it is E;. If
aps = a13 = 0 and ags # 0 then it is Eg. Otherwise f is a linear combination of
monomials x'y/ with 2i4 j > 6.

Set Q' =1(2,1). We again separate this case into three subcases according
to the degeneration of the weighted homogeneous polynomial fp:.

(II-3-1) Assume that fp: has three distinct roots. Then the singularity is
By

~ (I1-3-2) Assume that fp has two distinct roots, one of which is a double
root. Then by a triangular change of coordinates x; = x + ap?, y; = y, we may
assume that f(x1, y1) = x}(x; + fy7) + >’ where f #0 and >' is a linear com-
bination of monomials x!y{ with 2i+ j > 6. Now we look at the face A which
has (2,2) as the right side end and we try to make f to be non-degenerate on A.
After a finite number of triangular changes of coordinates, we arrive at the form

X} + BxIy? + eyl ¢ #0,n:o0dd

NPP(f)(xi, yi) =
xi3 + /)’ylz(xl2 + clxiyf/z

ey, ¢} —4cy # 0, n: even.

The corresponding singularity is C3 ,, n>7. We will see later that Cs, with
n < 15 appears but no further singularities in this series.

(II-3-3) Assume that fp has a root of multiplicity 3. Then by a triangular
change of coordinates x; = x 4+ ay?, y; = y, we can write f(x1,y1) = x13 + Z'
where Y’ is a linear combination of monomials x{y{ with 2i+j>6. Now
we look at the face A which contains the vertex (3,0) at the right side end.
We continue triangular changes of coordinates (x;, y;) until the face function
Ja(x;, yi) (with respect to new A) becomes non-degenerate. Assume that (x;, y;)
are the last coordinates and let (a,b) be the end vertex of A other than (3,0).
Note that ¢ <2 and 2a+ b > 6.

If @ =0 then fx(x;,y;) is a normal form of the singularity By, b > 7. If
a=1 then fa(x;,y;) = x/3 + clxjy;’, which is xB; ;. Note that if b is even then
XByp = B3 3. We will see later that Bsp, b>13 and xBp, b =9 do not
appear.

Assume that ¢ = 2. Then f(x;, ;) = x/3 + clxizyf’ + (higher terms). By the
assumption, b > 3. If b =3 then we get D37n, n>10. We will see later that
n < 13. We will also see that b >4 does not occur in reduced sextics.
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(III) Case m(C,0)=4: Set Q="'(1,1). We then separate this case
into five subcases according to the degeneration of the homogeneous poly-
nomial fo =3, . 4azx'y/.

(III-1) Assume that fp has four distinct roots. Then the singularity is Bg 4.

(III-2) Assume that fp has three distinct roots, one of which is a double
root. Then f(x,y) = apx*(x + c1¥)(x + c2p) + (higher terms) with ¢j, ¢y #0
and c; # ¢;. The possible singularities are only C4,, n > 5. We will see later
that n < 14.

(III-3) Assume that fp has two distinct double roots. After a suitable
change of coordinates, we can assume that fp(x, y) = x2y?. Consider the right
face A; which contains the vertex (2,2) as the left end vertex. We continue
triangular changes of coordinates of type x; = x;_1, y; = yi_1 + cixik_" | successively
until we arrive at the coordinates (x,, y,) in which f is non-degenerate on A;.
Then we consider the face A, which has (2,2) as the right end vertex. We
continue triangular changes of coordinates of type x; = x;_1 + ¢y, ¥ = yj-1
until we arrive at the coordinates (xg, yg) in which f is non-degenerate on A,.
Note that in this process, the part of the Newton boundary I'(f;(xj_1, yj-1)) N
{(a,b);b < 2} is unchanged. So, at the end of two series of operations, we see
that the possible singularities are only C, ,, p,q = 5. We will see later that Cs ,,
q=15,Csy, q=13, C1 4, g =12, C3 4, ¢ =12, and Co 4, ¢ > 10 do not appear
on reduced sextics.

(IIT-4) Assume that fp has two distinct roots, one of which is a root of
multiplicity 3. We can assume that a4 = a» = @13 = aps =0 and a3; = 1, and
f(x,») = x*y + (higher terms). We focus on the face which has (3,1) as the
right end and do the same inductive process as in the case m(C,0) =3. If any
one of ags,ais,aps is non-zero, f is non-degenerate in the coordinate (x, y) and
the corresponding singularities are yB3 4,xyBs 3, yBss.

Assume that ags = a14 = ape = 0. For Q' =(2,1), the function fy is given
by fo(x,¥) =x%y +anx?y® + aisxy®.  As (x,y) are affine coordinates, we ob-
serve that x|/ and ajs # 0 as otherwise x?|f. If fp is non-degenerate then the
singularity (C,0) is yB;e. If it is degenerate, we apply a triangular change
of coordinates x; = x + ap?, y; = y and get fo(x1, y1) = xjy1 —axiy]. Observe
that o = 0 implies that ay; = a;5 = 0 and x?|f, which is impossible as (C, O) is
assumed to be an isolated singularity. Now we consider the face which has (2, 3)
as the right end. After suitable triangular changes of coordinates, we can assume
that the Newton boundary is non-degenerate. Let (x,,y,) be the last coor-
dinates. Let A denote the face which contains (2,3) as the right end vertex in
the coordinates (x,, y,) and (a,b) denote the left end vertex of A. It is easy to
observe that either (a,b) = (0,q), ¢ =8, or (a,b) = (1,q), ¢ > 6. In the former
case the singularity (C,0) is yCs; 41, and in the latter case it is yC3 4.
Thus in any case, we get the singularities yCs ,, n > 7. We will show later that
n<12.

(III-5) Assume that fp has one root of multiplicity 4. Then we may assume
that f(x, y) = x* + (higher terms) and the singularities are By s if aos # 0, and
XB3 4 if ags =0, a4 #0. Otherwise (i.e., aps = ajs = 0) the polynomial is a
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linear combination of monomials x'y/ with 3i+2j > 12. Put Q= (3,2) and
consider the face function:  fp(x, y) = x* + anx?y® + agey®. Put J = a3; — dayg.
An easy discussion shows that the singularity (C,O) is one of the following:

(@) If J #0, aps #0, then (C,0) is Bypg.

(b) If age =0, ax; #0, then fo(x,y) = x* +ap3x?y>. The possible singu-
larity in this case with ajs # 0 is Da 7, as NPP(f) = x* + anx?y? + ajsxy®. If
ajs = 0, we can easily see that x?[f.

(c) If a3 = aps = 0, then ajs can not be zero and NPP(f) = x*+ ajsxy°.
Thus (C,O) is xBss.

(d) Assume that agg, a3 #0 and J =0. Then NPP(f) = (x*+ay3)?. In
this case, we have no further possible triangular change of coordinates. To see
the structure of the singularity, we apply toric modifications with respect to a
regular subdivision admissible for the dual Newton diagram (see [O2]) and then
we can easily see that the strict transforms have only A,-type singularities on
upstairs. They correspond to the sequence of singularities S,, n=1,2,...,6.

(IV) Case m(C,0) =5: Set Q=1(1,1). We separate this case into seven
subcases according to the degenerations of the homogeneous polynomial fp(x, y)
of degree 5.

(IV-1) Assume that fy has five distinct roots. Then the singularity is Bs s.

(IV-2) Assume that f, has four distinct roots, one of which is a root of
multiplicity 2. We may assume that x*|fp. Then the singularities are Dsg if
aps # 0 and Ds 7 if aps =0 and a;5 # 0. Otherwise we can see that x2|f.

(IV-3) Assume that fp has three distinct roots, two of which are of mul-
tiplicity 2. We may assume that x2|fp and y?|fp, and thus f(x,y) = anx2y® +
azpx*y? + (higher terms). Then the possible singularities are Fs.6,F6,7 and F7 7.

(IV-4) Assume that fp has three distinct roots, one of which has the
multiplicity 3. We may assume that fp = y*(y + o1x)(p + oox) where oy, 0, are
non-zero and oy # 0. Then the face A which has (2,3) as the left side end can
not be degenerate as f has degree 6. The possible singularities are Dg s or
yCs 4.

(IV-5) Assume that fp has two distinct roots of multiplicity 2 and 3 re-
spectively. Then we may assume that fp(x,y) = x2y3. Then the singularities
obtained are Ds ¢, D 7, ¥Cs,s and yDs .

(IV-6) Assume that fp has two distinct roots, one of which has multiplicity
4. We assume that fp(x,y) = x*y. Then the singularities are yBs s or xyBs 4.

(IV-7) Assume that fp has a single root of multiplicity 5. Then the sin-
gularities are Bsg or xBys.

(V) Case m(C,0) = 6: The singularity which can be obtained is only B s.

3.2. Non-existence. We prove the non-existences of local singularities
which are mentioned in the previous arguments.

LemMA 4. A,, n>20 and D,, n > 20 do not appear on reduced sextics.

This is a well-known result by Horikawa and Shioda-Inose [H, S-I]. The
assertion, except for the case Ajy, can also be proved as follows: For Aj,,
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m > 11, note that this singularity is locally irreducible. Thus it must be on an
irreducible component. But Pliicker inequality says that it can be possible only
on a curve of degree greater than 7. For Ay, 1, m > 11, it can not be on an
irreducible curve of degree at most 6. If it is on the intersection of two com-
ponents with degrees d;,d>, di + d, < 6, then the intersection multiplicity must be
m. However this is also impossible by Bézout theorem as did, <9. For D,,
n > 20, a similar argument can be applied.

LemMa 5. The singularities Cs,,, n > 16 do not exist on reduced sextics.

Proof. The singularity Cs;, has two (resp. three) locally irreducible com-
ponents for n odd (resp. n even) and its Milnor number is n +4. Thus C; , does
not exist for n > 16 on irreducible sextics by Pliicker inequality. For an n odd,
one component has the singularity A4,_3, n > 16, which is locally irreducible and
can not be on a curve of degree less than 6. We prove the non-existence of C3
for k> 8. It has three local smooth components L;, Ly, L3 so that their local
intersection numbers are given by

I(L,L;;0)=2, j=23 and I(Ly,L3;0)=k—1.
Under the normal form of Cs oy as before, the defining equation fi(x, y) of L;
is given as fi(x,y) = x + y? + (higher terms), f>(x, ) = x + v—1p*! + (higher
terms) and f3(x, y) = x — v/—1y¥~! + (higher terms), and the intersection number
I(L;,L;; 0) is easily given by these expressions (see [O2] for example). The
singularity (L, U L3, O) is Ay—3. Thus this can not be on an irreducible com-
ponent of degree less than 6. If they are on different irreducible components, say
C, and Gs, the pair of degrees (deg C,,deg C3) is (2,4), (4,2) or (3,3) by Bézout
theorem. In particular, the local component L, must be on the same component
with L, or L3. We assume that L; and L, are on the component C,. The pair
(2,4) is impossible since an irreducible conic can not have any singularity, and
the case (4,2) is also since I(Li ULy, L3;0)=k+12>9. If the pair is (3,3)
then L; UL, must be on a cubic. Since (L; UL;,0) is an As singularity on the
cubic, it must consist of one line and one conic. But this contradicts to the
assumption that L; and L, stay in the same component C,. O

LemMa 6. The singularities B3 ,, n > 13 and xB, ,, n =9 do not exist on
reduced sextics.

Proof. The Milnor number of Bs, is 2(n — 1). Thus n > 14 is impossible
by the inequality u(C,0) <25. For n=13, B33 is a locally irreducible sin-
gularity. Thus it must be on an irreducible component of degree less than or
equal to 6, but this is impossible. For xB; ,, the Milnor number is u(xB; ,) =
3n—2. Hence n> 10 does not occur by the same reason. Suppose n=29.
Then xB, ¢ has two locally irreducible components, one is smooth at O, say L,
and the other component has the singularity B, ¢ = As. But, since Ag can not be
on a cubic, we can not have the equality I(L, B, 9; 0) =9 by Bézout theorem.

O
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LemmA 7. The singularities D3 ,, n > 14 do not exist on reduced sextics.

Proof. The singularity D3, has two (resp. three) locally irreducible com-
ponents for n even (resp. n odd) and its Milnor number is n 4+ 7. Thus D3, does
not exist for n > 13 on irreducible sextics by Pliicker inequality. For n even,
the sextic consists of two irreducible curves and their intersection number at the
origin is 6. Hence the pair of degrees is either (4,2) or (3,3). But since one
component has the singularity 4,_4, n > 14, which is locally irreducible, and this
can not be on a curve of degree less than 5.

We finally prove the non-existence of D3 oiy1, k> 7. It has three local
smooth components L, L, L; so that their local intersection numbers are given
by

I(L],L_/-;O)::;, ]22,3 and I(L27L3;0)=k—1.

The singularity (L, U Ls, O) is Ax—3. Thus this can not be on an irreducible
component of degree less than 5. It is also impossible for (L, U L3, O) to stay on
an irreducible component of degree 5 since I(L;,L,UL3;0)=6>5-1 con-
tradicts to Bézout theorem. Let C; be the supporting irreducible component for
L;, i=2,3. Thus by Bézout theorem, the only possibility is the case (deg, L,,
deg,L3) = (2,4) or (3,3) and C; must be smooth at O. The former case is
impossible since I(L; ULy, L3;0) =1(LiUL3,Ly;0)=k+2>9, and the latter
case is also since (L; U L,, O) is an As singularity and it can not be on a cubic.

O

LemMma 8. Let f(x;, y;) be the defining analytic function with respect to some
analytic coordinates (x;, y;) of a singularity on a sextic. Suppose that it satisfies
fo(xp,y) =X +eixtyl for Q="(b,1). Then b<3.

Proof. The singularity has two or three locally irreducible components.
Since  I'(f;(xj,);)) contains [(x}+ "), we have u(f;(x;, ) = v(T-(f;
(xj,7;))) >2(3b—1). Thus b>5 is impossible by the inequality x(C,0) < 25.
Now we assume b =4. Since u(f;(x;,y;)) > 22, the singularity can not be on
an irreducible sextic. The rest of the proof is similar to the proof of the non-
existence of Ds, for n > 14. O

LemMa 9. The singularities Cs ,, n = 15 do not exist on reduced sextics.

Proof. The singularity Cs, has three (resp. four) locally irreducible com-
ponents for n odd (resp. n even) and its Milnor number is n + 5. Thus C4 , does
not exist for n > 14 on irreducible sextics by Pliicker inequality. For n odd,
one component has the singularity A4, 3, n > 15, which is locally irreducible
and can not be on a curve of degree less than 6 except the case where
n=15. Suppose n=15. Then there are three locally irreducible components
Ly,L,, Ly where L; and L, are smooth while L3 is the singularity A, in a
quintic. Since (L; U L3, 0) (and also (L, U L3, 0)) can not be on an irreducible
quintic, (L;UL,,O0) must be on a line, which is impossible.
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We finally prove the non-existence of Cy4 2, kK > 8. It has four local smooth
components Ly, Ly, L3, Ly so that their local intersection numbers are given by
I(L,-,Lj;O):l,i:1,2,j:3,4, I(L],LQ;O):I and I(L3,L4;0):k—l.
The singularity (L3 U Ly, O) is Ap—3. Thus this can not be on an irreducible
component of degree less than 6. If they are on different irreducible compo-
nents, the pair of their degrees is either (4,2) or (3,3) by Bézout theorem. Let
us consider the case (4,2) and suppose that L, stays on the conic. Since
I(LiULyU L3, Ly; O) = k+ 1 > 9 contradicts to Bézout theorem, the conic must
contain either L; or L,. However this is impossible as I(L; U L3, L, U Lg; O) =
k+2>10. The case (3,3) is not possible by a similar argument. O

The proofs of the following two lemmas are similar to those of the previous
ones. So, we omit their proofs.

LemmA 10.  The singularities Cs ,, n > 15, Cg,, n > 13, C7,,, n > 12, Cgy,
n>12, Cy,, n>10, do not exist on reduced sextics.

LemMa 11.  The singularities yCs ,, n > 13 do not exist on reduced sextics.

3.3. Existence. To complete the classification of local singularities on
sextics, we have to show the existence of possible singularities listed in Section 3.1
and we did it by showing explicit examples of such sextics. In the calculation for
listing local singularities on sextics in Section 3.1, we have implicitly shown that
any of the singularities can be degenerate into one of the followings:

A9, D19, B3 12, Bs 6, C3.15, Ca 14, Cs.14, Cs, 12, C7.11, Cs.11, Co,9, ¥yC3.12, D313, S6.

If (C,0) is one of the singularities Bs 12, Bg,6, C3.15, Cs,12, Co.9 and S¢ then an
explicit equation is given in [Ph] since it must be of torus type (see Section 4
below). Thus, for proving the existence, it is enough to give explicit equations of
examples for the singularities A9, D19, C4.14, Cs 14, C7,11, Cs. 11, yC3,12 and Ds3 13.
The equations are the following:

1. (C,0) = Ay (then C is irreducible):

f(x, ) = (446 — 54V/5) y° — (10 + 26V5)a’xp> — (192 + 40V/5)ap°

— (100 + 14v/5)ox?y* + (978 — 114V/3)xy* + (52 + 4/5)5%p*

+ (=344 +24V5)x%y® + (32 — 48V/5)a* X%y — (384 + 80V/5)oxy?
(18 + 14V5)a?x*y? + (=8 + 12V/5)ax>y? + (618 — 66v/5)x%y?
(104 + 8v/5)a%xy? + (48 4+ 10V/5)ax"y + (=344 + 24V/5)x*y
(42 — 22V/5)0%x3y — (192 + 40V/5)ax?y + 82x° + (5 + 13V/5)a’x°
92 +26V/5)ox* + (86 — 6V/5)x* + (52 + 4/5)0%x?

where o := v/ =2 + 2/5.

N
N
N
.
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2. (C,0) = Dyg (then C is irreducible):
fx,y) = =7/29% = 3/dxy° + > +19/8x%p* — Top* 4 1223
—3/2x%% 4+ 2xp° + xMy? 4+ 3/4x%? — 7/2x%% — dxdy
+ 12x%y — 3/4x%y + x2y — 10x8 + x° — 13/8x*
3. (C,0) = C4,14 (then C is a reducible curve of either a conic and a quartic
or two cubics):
)= (x+y) 0+’ + 02 + 2%y + 2
fx,y) =0+ 27 +xp — P+ 23 (0P + 2+ xy — 2P+ x7)
4. (C,0) = Cs,14 (then C is a reducible curve of a conic and a quartic):
)= (x4 y) 0+ x? + 5
5. (C,0) = Cy11 (then C is irreducible):
F6, 1) =8+ 2% + %3+ x2?  pxd + opxt 1748
6. (C,0) = Cg,q; (then C is a reducible curve of a line and a quintic):

fx,9) =y’ +2xp° + X%y +x°)

7. (C,0) = yCs 12 (then C is a reducible curve of a line, a conic and a
cubic):

f(x,y) = x(xy + 2x 4+ 2p?) (x> — 2xy? — dxy — 4pY)
8. (C,0) = D33 (then C is a reducible curve of a conic and a quartic):
fy) =07 —xy—x2 = x)(0* = 3xp° +3x%y? = 2xp2 + 3x%p + x* — P+ x?)
This completes the proof of Theorem 3. O

4. Configuration spaces of sextics of torus type

Recall that a sextic is called of forus type if the defining polynomial f(x, y)
can be written as f(x,y) = fa(x, y)3 + f3(x, y)z, where f; is a polynomial of
degree i for i = 2,3. Note that the classification of the possible configurations of
singularities of reduced sextics of torus type has been done by Pho and Oka in
[Ph, O-Ph, O3].

A sextic f32 + f23 = 0 of torus type is called tame if its singularities are sitting
only at the intersection of the conic defined by f; = 0 and the cubic f3 =0. An
important property of tame sextics of torus type is that the sum of intersection
numbers of the conic and cubic for all singularities is always 6. Hence there are
only 11 configurations of intersection numbers of local singularities, which are
described in the first column in the following table. Each vector in the first
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column is called an i-vector.
described in the other two columns.

The possible configurations of local singularities are
This classification is done by Pho [Ph].

1-vector simple singularities non-simple singularities
(I,1,1,1,1,1) {645}
(1,1,1,1,2) {4A2+A5}, {4A2+E6}
(1,1,2,2) {24, + X + Y}, 0
X,Y = As,E¢
(1717173) {3A2+A8} {3A2+o}7
0=DB36,C37,C335,C39
(2,2,2) {X+Y+Z}, 0
Xv sz = A57E6
(17273) {AZ + X + Ag}, {A27X7T}> X = A57E67
X = As, Eg 7= B3,C37,C38
(1,1,4) {242 + A} {242 +n},
n= Cs9,B33,Cs¢,B46,Ds7
(3,3) {245} {45 + &},
¢ =Bss,C3,7,C38, {2B36}
(2,4) {X+41}, X=A45,Es | {X+oa}, X =As,Es, o = C39,B33
{4s,p}, B = Cs,6,Ba6,Ds7
(1,5) {42+ A4} {4 + 7}, v = C3,12, B3, 10, Ce,9, S3
(6) {417} {Gs15}1,{Co 0}, {B512},
{Ce,12},{S6}, {Bs.,6}

Let .# denote the vector space of dimension 28, which is the space of
sextics, and denote the space of sextics with a given configuration X of singu-
larities by .#(X), i.e. M (X) :={f e .#|X <= Z(C(f))}, where Z(C(f)) is the con-
figuration of singularities of the sextic C(f):= {(x,y)e C?*|f(x,y)=0}. On
the other hand the space of sextics of torus type is of 16 dimensional, denoted by
T, and we set Myps(X) :={f €T |Z<=Z(C(f))} for a given configuration X.

The main result in this section is the following.

THEOREM 12. Let X be the configuration of singularities on a tame sextic of
torus type with at least one non-simple singularity (thus X is one of the right side
configurations in the above table). Then M(X) = Mipns(Z).

To prove this theorem, we study slices of the configuration spaces .#(X) and
%torus(2)~
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Proof. For each configuration X in the assertion, we consider a slice con-
dition & and compute the dimension of the slices of the configuration spaces
ME, L) and Myns(E,F). Since obviously we have (X, F) o Mprs(Z, F), it
is enough to show that .#(X, %) is irreducible and has the same dimension as
that of A,pns(2, ). Note that, since the set {f € 7 | =X(C(f))} is dense in
Mrorus(Z) in the sense of Zariski topology, the dimension of .#,.s(X, &) can be
determined by using formulae in [O-Ph].

The proof is computational. We first start from the generic form of sextics
and put the singular points at explicit loci so that we get a normal form of
M, ). Then we check the dimension, which is the number of parameters in
the normal form, and also check the irreducibility of the parameter space.

As an example, we give a proof of the assertion for the configuration X =
{342+ B3 ¢}. The dimension of a minimal slice of .#,,.,s(X) is 4. Let C denote
a sextic with this configuration. By the action of PGL(3,C), we can assume that
the singularity at the origin O is Bsg, and either

(1) %: three A,’s are at (1,0), (0,1) and (1,1),

(2) S»: three A,’s are at (1,1), (0,1) and (—1,1), or

(3) B3¢ and two A,’s stay on a line (i.e., colinear).

We first show that case (3) does not happen. Let L be the colinear line. By
Bézout theorem, L must be a component of C. However this is impossible since
A, is locally irreducible.

Now we consider the slices .#(X, %), i=1,2:

MES)={Ce M) |Z(C) satisfies F}.

In cither case, the line defined by the tangent cone of C at O can not pass
through any A4,. This can be proved as follows: Assume that L:= {x =10} is
the tangent cone of (C,0) for example. If C is irreducible then this con-
tradicts Bézout theorem. We suppose that C = LU Cs, with Cs is a quintic.
Again this gives a contradiction that 5 = I(L,Cs) >4+ 2. Thus we assume that
the tangent cone of C at O is given by the equation y — tx = 0 for some ¢ € C.
Note ¢+ #0,1 in (1) and ¢ # +1 in (2).
We first study case (1). We start from the generic form f(x, y) of sextics.
Let z; :=(1,0), z:=(0,1) and z3 := (1,1) denote the singular point with A,-
singularities and get the equations
of of > S
fz) = Ox (z1) = oy (z:) =0, 0x% 0y?  Ox0y
We can assume that a3y = 1 by the action of PSL(2,C). Next, the condition
that (C, O) is B3¢ can be applied by following the same process as what we did
in Section 3.1. The obtained normal form has four variables (a14,d31,d40,1) in
our calculation (cf. the torus decomposition in Remark 13), and this implies that
the slice is rational and thus irreducible. Thus, we can conclude that these slices
coincide.
In case (2), we can also get a normal form of a minimal slice of the
configuration space .#(X) by computer calculation. Since it has four variables

(z)*=0, i=1,2,3.
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(a2, as1,a60,t) in our calculation (cf. Remark 13) and it is irreducible, we can
conclude that this slice coincides with that of .#y.(X). This completes the
proof for the configuration X = {34, + B3 ¢}.

The proofs for other configurations are analogous, so we omit them. []

Remark 13. A torus decomposition of the normal form of the slice in case
(1) is given by

L, y) =t —ty—x*+x
and

f3(x,¥) = ((2aa0 + 6)x3 + (3t — a4 — a31)x2y — (2a40 + 6)x?
+ (—91 + 2a3; + a41)xy2 + (61 — a31)xy - (2&40[ + Cl31)ly3
+ (2ag0t + a31)1y*) /(24/3 + au).

The torus decomposition in case (2) is

Hxy) =0 —1y—xp+x
and

fi(x,p) = (78a§0x3 — 4agoas) x*y + dagoas x> + (agl — dagpaz)xy*
+ (Saéo + dagoas — agl Yxy + (dagpas t + dagoas, + 8a§0 — agl )ty3

+ (—dagoast + a3 — 8a, — dagan)ty?)/(8agy’).

Remark 14. For any given configuration X of the singularities of a tame
sextic of torus type with only simple singularities (thus X is one of the left side
configurations in the table), there exists a sextic of non-torus type with the same
configuration X of singularities ((O5]). Thus they make a Zariski pair for which
the Alexander polynomials are given by > — ¢+ 1 and 1. Eyral and Oka have
proved that, for 7 tame configurations X’s, there exists a sextic Cy of non-torus
type with configuration ¥ so that the fundamental group z;(P?\Cs) is abelian.
See [E-O] for details.

Remark 15. For A7, we can also check the assertion of Artal: The
parameter space of sextics having A7 as a singularity consists of four connected
components, two of which correspond to irreducible sextics of torus and non-
torus type and the others correspond to reducible ones of torus and non-torus

type.

5. Relation between sextics of torus type and their p-invariants

Let C be a plane curve of degree d defined by f(x,y) =0 and let X(C)
denote the singular locus of C. Let PeX(C) be a singular point on C.
Consider an embedded resolution of C, n: U — U where U is an open neigh-
borhood of P, and let Ej, ..., E; denote the exceptional divisors. Choose a local
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coordinate system centered at P and let k; and m; be the order of zero of the
canonical two form 7n*(du A dv) and 7* f respectively along the divisor E;. Then
we define an ideal #p; , and integers p(P;k) and p(k) by

Ipkd = {¢ € Op; (n"¢$) = Z(—ki + [kmi/d])Ei}
and

p(ka) = dim @P/fP,k,d’ p(k) = Z p(P’k)

PeX(C)

respectively. These notations are used in [A] and [O4].

By easy calculation we can obtain the generators of the ideals #p, ¢ and
the p(P,k) for all non-simple smgularltles in sextics d = 6. Note that the p-
invariants of simple singularities in sextics are aligned in [O4, Proposition 3].
The following is the list of p-invariants of non-simple singularities appearing on
reduced sextics. Here the notation p; s(P) represents the triple (p(P,5),p(P,4),

p(P,3)):
1. B4a,C45,Css: fpk6—<x xy 3, <X ¥>,{x,y> and p; 5(P)=(3,1,1).
2. Bus, By Ip e = <320, 920, {x, 2, (x, y> and pys(P) = (3,2,1).
3. Bse,B37,B35,¥B3.6, ¥Ba 3, ¥Bs 2, xyB2 3, C3.7,Cs.8, Ca6, Ca 7, Ca s, Cs 6,
C5,77C5,8: fP,k,6:<x2aXy7 y3>7<xa y2>7<x7 y> and p3,5(P):(47271)
4. Bsg, C39, C3 10, C3 11, Ca, 9 Cy,10, Ca11, Cs.9, Cs 10, Cs, 11, yCi,7:
Iprs = X2 x, v, <x, p2), {x, p) and P35( ) = (5 2,1).
5. B39,5C38,¥C39,D3.100 Ip 6 = <x%xp, ¥, (x, p3), <x y» and
p3,s(P) = (5,3,1).
6. Bue ¥Bs3, D470 Ip i =<x%xp% p3),<x% xy, y?), {x, p> and
.03,5( )=(5,3,1).
7. C66aC67,C687C77aC78;C88
ka6—<x » X)s y > <X xy,y > {x, J/> and P35( ) =(5,3,1).
S8 Fpie = X2 xp%, 3, <x2, xp, 25, <x, p) and ps 5(P) = (5,3,1).
9. Bs o, 33,11, VB72, G312, C3.13, C3,14, Ca.12, Ca,13, C4.14, Cs 12, Cs.13, Cs 14,
yCs10, ¥G311, ¥C312, D311, D312, D3,133
jP,k,G = <x27x)’7 y5>7<x7 )’3>7 <X7J/> and p3,5(P) = (6737 1)
10. Bss, Bs s, yBa s, yBsa, xyB3 4, yCs 4, yCs s, yCs 6, Ds s, D5 7, Ds 5, De.s,
Dg 7, Fs,6, Fs,7, F7,7:
f)’,k,é = <x37x2y7xy21y3>7<x27xy7 y2>7<x7 y> and p3,5(P) = (6737 1)
11. Cs,9, Cs, 10, C6 1, C7, 9 G, 10 ¢, 1 Cs 9, Cs 10, Cs,11:
Ip s = XXy, p > <x X, Y > <x y>and/)35( ) =(6,3,1).
12. S5, 84, Ss: Ipie = <X xptx2 = p3 p < Xy, 2, X ) and
p3s(P) = (6,3;1)
13. G5 fpk6—<x X, 65, <x, ¥, <x yy and p; 5(P) = (
14. Coo: Jp 6 =<x*xp,y > (x?,xy,y > {x,y> and p; s P)=(7
15. Gs 12: fpk6—<x xp, ¥°0,<x?, xp, p¥,<x, y) and P35(P):(

[oe]
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16. Se: jP.k.ﬁ = <x3,x2y7x2 - y3a y4>7 <x2,xy, y3>7 <X, y> and
p375(P) = (7’4’ 12) 5 6 4 5
17. B3,12: fP,k‘yé = <X y XV, ) >7<X,y >7<xay > and p3‘,5(P) = (87472)
18. BG,6: jP$k’6: <x47x3y7x2y27xy37y4>a<x37x2y7 xyza y3>7<x27xy7 y2> and
,03_’5(P) = (101613)

THEOREM 16. Let C be a sextic with at least one non-simple singularity. If
C satisfies p(5) > 7 then it is of torus type.

The proof for the case where the non-simple singularity is a higher triple
point is given in Proposition 17. Here a higher triple point means a non-simple
singularity with multiplicity 3. The proof for the case where the non-simple
singularity is a quadruple point is given in Proposition 18. The rest, i.e., the case
where it has multiplicity 5 or 6, will be dealt with after these propositions.

ProPOSITION 17.  Let C be a sextic with a higher triple point. If C satisfies
p(5) =7 then it is of torus type.

Proof. We briefly describe a method as used in [W] to read off all possible
configurations of singularities on sextics with at least a higher triple point. Let
C be given by

F(x,3,2) = 32 + x222a(p, 2) + x2b(3,2) + e(1,2) = 0,

where a,b and c¢ respectively are homogeneous polynomials of degree 2, 4 and 6.
The point P = (1:0:0) is a higher triple point. Let X be the double covering
of P? determined by C. Then X is an elliptic surface defined by w? = F in the
weighted projective space P(3,1,1,1).

By [W, Theorem 5.1], the surface X is not rational if and only if X(C) =
{2B3,6} or Z(C) = {Bs,12}. Both are of torus type.

Suppose that X is a rational elliptic surface. Then the configuration of ex-
ceptional fibres of X determines the singularities on C as describe in the follow-
ing table, see [W, Section 5] for details. Here p(—,5) represents the p-invariants
of the singularities described in the second column. Note that C; ¢ = B3¢ and
D39 = Bs 9.

Type | Singularity | p(—,5) | Singularity at P | p(P,5)
1, A, <3 C3,6+r 4,...,7
i - - Bs.; 4
111 Al 0 yB5_2 4
v As 1 Bss 5
Ir* Dy, <2 D3.’9+r 5or6

e Eg 2 Bs.10 6

r+ E; 2 yB7.2 6

T+ Eg 2 B3 11 6
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Let d be an exceptional fibre. If the fibre d is different from the fibre z =0
then C has another singularity on d N C of the same type as X has on the fibre
and this singularity is given in the second column. If the fibre d is z =0 then C
has P as the unique singularity on d N C. The type of singularity at P is given in
the fourth column except for the following cases:

« If z divides ¢ but z does not divide b then the fibre z = 0 has the singularity

of type I, for r > 0 and C has another A4; singularity on z = 0.

« If z divides both b and ¢ but does not divide «, then the fibre z =0 has

type I; and the singularity at P is of type Css.

« If z divides all @, b and ¢ then the fibre z = 0 has type II and the singularity

at P is of type yBs,.
From the list of p-invariants of non-simple singularities and the fact that Bj >
corresponds only to a non-rational surface, we can see that the possible values
of p(P,5) for a higher triple point P are 4 < p(P,5) <7. We now check the
assertion case by case.

(1) Case p(P,5) =7: The singularity at P is Cs 5 and hence the corre-
sponding fibre is Iy. From the list of all possible configurations of singularities
on rational elliptic surfaces [Pe]|, we have only one case, that is Iy3/;. The cor-
responding sextic has X(C) = {Cs 15} or X(C) = {C3,15,4:}. By Theorem 12,
such a sextic is of torus type.

(2) Case p(P,5) = 6: The singularity at P is C3 ¢, for 6 <r <8, D39, for
2<j<4, Bsi0,B311 or yB;,. This means that the fibre z=10 is one of

{4, L5V I T |6 < r < 8,2 < j <4}

For obtaining p(5) > 7, the sextic should have at least one singularity other than
P whose p-invariant is strictly positive. From the list in [Pe], we see that this
condition is satisfied only in the following cases: IsIV2I, Isl311, Isl331,
VI*VI, VI*LI;. Then the possible configurations of singularities are X(C) =
{C3’12,A2,Z'A1} for 0 <i<2 and E(C) e {B&]o,Az,jAl} for j=0,1. From
Theorem 12, all of them are of torus type.

(3) Case p(P,5) =5: The singularity at P is C3 ¢, for 3 <r <5, D3 9,; for
j=0,1 or B3g. Note that D39 = B3g. The fibre z=01is I, for 3<r <5, I
for j=0,1 or IV. From the list in [Pe], we see that only the following cases
correspond to sextics with p(5) > 7:

. (the fibre z=0 is 13): 413, 16131211; 1613311; 3131211, 313311, IV213211,

IV2LL, IV*LI . The first case gives £(C) = {C3,9,345,i4,} for i =0, 1.
The last one gives £(C) = {Cs 9, Eg,i4;} for i = 0,1. The other cases give
either X(C) = {C3,9,245,i4,} for 0 <i <2 or X(C) = {C39,4s,id} for
0<i<?2 Al of them are of torus type.

« (the fibre z = 0 is IV): 31V, IV2Lb, IV2I21, I IV2I,, IV*IV. The last
two cases respectively give Z(C) = {Bs 3,45} and X(C) = {B3 3, Es}. The
other cases give X(C) = {B33,24,,i4,} for i=0,1. All of them are of
torus type.

(4) Case p(P,5) =4: The singularity at P is C3 ¢4, for 0 <r <2, B3 7 or
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¥Bs . Then the fibre z=01is I, for | <r <2, II, Il or not exceptional. From
the list in [Pe], we see that only the following cases correspond to sextics with
p(5) =T

« (the fibre z=01is L): 3LLL, IV2LD, LI, The first two cases give
2(C) ={Cs,3,342,i4,} for i=0,1 and the last case gives X(C) = {Cs3s,
As, Ar,id;} for i =0,1. All of them are of torus type.

. (the fibre z=0 is 11)1 19311, I6IV2]1, 16133117 16131211> ]V2132[1, 3]3]2]1,
3L31, IV*II,. The first case gives Z(C) = {Cj3 ¢4, As, jA1 } for i=1,2
and j=0,1. The last case gives X(C) = {C5 ¢1i, Eg, 42, jA,} for i=1,2
and j=0,1. The other cases give either X(C) = {C3 6+, 45, 42,jA1 } for
i=1,2 and 0<;<2 or X(C)={Cs64i,342,jA1} for i=1,2 and
0<j<2 All of them are of torus type.

« (the fibre z=0 is not exceptional): L3I, IV*IV, IV*LI,, ILIV2],
16131211: 16133]1: 3IV, IV2[312, ]V213211, 4[3, 3[3]211, 3133[1. The first case
gives X(C) = {Bs¢,As,iA1} for i=0,1. The second and the third cases
give X(C) = {B3 6, E6, A2,iA;} for i =0,1. The last six cases give Z(C) =
{B3,6,342,i4;} for 0 <i <2. The other cases give X(C) = {Bs6, 45, 42,
i1} for 0 <i<2. All of them are of torus type. O

ProposiTiION 18.  Let C be a sextic with a quadruple point. If C satisfies
p(5) =7 then it is of torus type.

Proof. First of all, we briefly describe an argument as used in [W] to obtain
all possible configurations of sextics with a quadruple point. Suppose that C is
given by

F(x,y,z) = x*a(y,z) + 2xb(y,z) + ¢(y,z) =0,

where a,b and ¢ are homogeneous polynomials of degree 4, 5 and 6
respectively. We denote f(y,z) = F(1,y,z). Let P=(1:0:0) be the singular
point.

Denote 6 =b*> —ac. Let d be a non-zero linear form in Cl[y,z]. For
g€ Cly,z], denote vy(g) = k if g =d*g; and d ¥ g;. The singularities of C can
be realized as follows, see [W, Section 1, 2 and 6] for details:

(i) vg(0) =r=2 and vy(a) < 1. The sextic C has another singularity on
dNC of type A, if va(f) =0 and of type D, if vy(f) =1 (here we
mean D, =24, and D; = A43).

(1) vg(0) =2, vg(a) =2 and vy(f) =1. The sextic has only one A4; sin-
gularity on dNC.

(iii) Other possible cases of v;(d) and v,(a) correspond to sextics with P as
the unique singular point on CNd. Moreover, the relation between
the values of v;(0) and v,(a) and the singularity at P is given in the
following table. Here, for convenience, we choose d in such a way that
va(a) < vi(a) for any non-zero linear form /.
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va(a) | va(f) va(0) Singularity at P p(P,5)
<1 <l <10 Cs4=Bass 3
2 0 0 Cy5 or Css 3
2 0 s>2 Catrars; T+5<10 or (r,s) = (1,10) | 4,...,7
2 1 2 Cire; 0<r<8 4,...,7
2 1 3 Cayrg; 0<r<7 4,...,6
3 0 0,2 or 3 VB3 4,xyBs 3 or yBss 3.4
3 1 2 xyBy 3 4
3 1 s>4 YC3a45 4 <5<10 4,5,6
4 0 0,2 B, s, yBs 3,4
4 1 2 VBa 3 4
4 0 k>4 Sk—a; 4 <k <10 (So = Bass) 5,6,7
4 1 4 Dy 7 5
4 1 5 ¥Bs 3 5

We now check the assertion by considering case by case.

a

) Case where P is of type C, ,:

« If p(P,5) = 3 then P is one of C4 4,Cs5 or Css. By the above argument,
we see that configurations of other singularities with positive values of
p(=,5) which may occur in %(C) are either {4;} or {D;} for i <9,
{m4;} or {mD;,} for m <3 and j <3, or {Q;,Q;} where Q;=4; or
Diyy for i <6 and Q;j = 4; or Djyy for j<3. All of these cases give
p(5) <6. ‘

« If p(P,5) =4 then P is of type Cy, or Cs, for 6 < g <8 We see that

configurations of other singularities with positive values of p(—,5) may
occur in X(C) are either {4;} or {D;} for i <7, {m4;} or {mD;,} for
m <2, j<3, or {0y, Q;} where O» = A, or D3 and Qj = 4; or Dj;; for
j<4. Al of these cases give p( ) <6. '

- Suppose that p(P,5)=5. If P is of type Cy,4,Cs, for 9<g <11 or

Coyiq for i=1,2 and r=7,8, or Cgg then one more singularity with
positive value of p(—,95) Wthh can occur in £(C) is 4; or D;y; for i < 4.
All of them give p(5) < 6. If P is of type Cs¢ then the configurations

2(C) = {C¢,6,A4s} and E(C) = {Cg,6,2A2} satisfy p(5) =7 and both are of
torus type.

« If p(P,5) = 6 then P is one of type C4 4, Cs 4 for 12 < g < 14 or Cgy; 4 for

i=0,1,2 and 9 < ¢ <11. There is only one case with p(5) > 7, that is
2(C) = {C¢9,42}. This is of torus type.
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« If p(P,5) = 7 then there are two possible cases X(C) = {Cg 12} and Z(C) =
{Cy9}. Both are of torus type.

(2) Case where P is B, s or has one of types yB, ,,xyB, , and yC3 ,: Using
the same argument as above, we can conclude that there is no sextic with
p(5) =17

(3) Case where P is of type By or S, for | <n <6: If P= B4 or S, for
n=1,2 then p(P,5) =5. Then the cases with p(5) > 7 are £(C) = {Bs, As} or
¥(C) ={B4¢,242}. Both are of torus type. If P is one of S, for n=3,4,5
then p(P,5) = 6. Then there is only one case X(C) = {S3,4,} with p(5)=7.
This is also of torus type. If P is Sg then we also know that the sextic should be
of torus type with p(5) =7.

(4) Case where P is Ds7: We have p(P,5) =5 and the cases with p(5) > 7
are X(C) ={Da 7,45} and X(C) = {D4 7,24,}. Both are of torus type. O

Proof of Theorem 16. If C contains one non-simple singularity of multi-
plicity 3 or 4 then the result follows from the previous propositions. We
consider the singularity with multiplicity 5 or 6. The case of multiplicity 6 is
trivial since the sextic factors into 6 distinct lines and it has only one singularity
at the common point. This singularity is of type Bss and has p(—,5) = 10.
The sextic is of torus type.

We consider C with a quintuple point P. There are 16 possible types of
singularities for P and p(P,5) = 6. Suppose that C has another singular point Q,
then Bézout inequality implies that the line PQ =/ < C. We write C = /U Cs.
Since I(/,Cs; Q) >1 we have I(/,Cs; P) <4. Because (C,P) is a quintuple
point, I(/,Cs; P) =4 and I(/,Cs; Q) = 1. Thus (C, Q) is an 4; singularity and
hence p(5) =6. This completes the proof. O

We conclude this paper with conjectures posed by the third author.

CONIJECTURE A. The generic Alexander polynomial of a reduced sextic C is
trivial if and only if it is of non-torus type.

See [A, O4] for the definition of generic Alexander polynomials.
CoNJECTURE A’.  If a reduced sextic satisfies p(5) =7 then it is of torus type.

Note that Theorem 16 verifies Conjecture A’ for the case where a sextic has at
least one non-simple singularity.

CoNIJECTURE B. Let C be an irreducible sextic of non-torus type. Then the
fundamental group m;(P? — C) is isomorphic to Z)6Z.

We remark that there is a reducible sextic C of non-torus type whose funda-
mental group 7;(P? — C) is not abelian.
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