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SECTIONAL GEOMETRIC GENERA FOR
AMPLE VECTOR BUNDLES

HiroNOBU ISHIHARA

Abstract

Two invariants, called the c;-sectional geometric genus and the ((1)-sectional
geometric genus, are introduced for generalized polarized manifolds, i.e., pairs of a
projective manifold and an ample vector bundle on it. They are generalizations of the
c¢j-sectional genus and the @(1)-sectional genus introduced by T. Fujita for generalized
polarized manifolds. They are also generalizations of the sectional geometric genus
introduced by Y. Fukuma for polarized manifolds. We classify generalized polarized
manifolds of the smallest ¢; or ¢(1)-sectional geometric genus under the spannedness
condition for ample vector bundles.

Introduction

For the classification of projective manifolds, ample line bundles are useful
tools. A polarized manifold is the pair (X, L) of a projective manifold X and
an ample line bundle L on X. For the classification of polarized manifolds, the
sectional genus g(X,L) is an important invariant that is a natural generalization
of the genus of curves. A generalized polarized manifold (X, &) is the pair of a
projective manifold X and an ample vector bundle & on X. We note that gen-
eralized polarized manifolds (X, &) are corresponding to the scrolls (Px (&), H(&))
that are basic polarized manifolds. (We denote by H(&) the tautological line
bundle Op)(1) on Px(&).) T. Fujita [F1] introduced the c|-sectional genus
g(X,det &) and the O(1)-sectional genus g(Px(&),H(&)) for the classification of
generalized polarized manifolds. These sectional genera of generalized polarized
manifolds are natural generalizations of the sectional genus of polarized manifolds
(see also [BiLL]).

On the other hand, A. Lanteri [L] introduced the geometric genus p,(X,&)
for ample vector bundles & with regular sections, i.e., there exists a global sec-
tion whose zero locus Z is a submanifold of X of the expected dimension. This
genus is defined as the geometric genus p,(Z) of the submanifold Z. Recently,
Y. Fukuma [Fk1] introduced the sectional geometric genus g;(X, L) for polarized
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manifolds (X,L) and integers 0 <i <n. This genus is a natural generalization
of both the sectional genus and the geometric genus because g,(X,L) = g(X, L)
and ¢,(X,L) = ps(X). For every 0 <i<n, ¢g;(X,L) is a non-negative integer
when L is spanned (i.e. generated by global sections). In fact, g;(X, L) > h'(Oy)
and we have classification results for the pairs (X, L) of small g,(X,L) (w.r.t.
h*(Ox)) in [Fkl].

Motivated by the above papers [F1], [L] and [Fkl], we consider two in-
variants g;(X,det &) and g¢;(Px(&),H(&)) for generalized polarized manifolds
(X,8). We call them the c-sectional geometric genus and the O(1)-sectional
geometric genus respectively. By definition, they are natural generalizations of
both the c;-sectional genus and the ((1)-sectional genus, and also a generali-
zation of the sectional geometric genus. When & is spanned, both g;(X,det &)
and g¢;(Px(&), H(&)) are non-negative integers and not less than h'(Cy). We
obtain classification results for the pairs (X, &) with g2(X,det &) = h*(COx) or
g2(Px (&), H(&)) = h*(Ox). As corollaries, we obtain the classification of pairs
(X, &) with go(X,det &) =0 or g2(Px(8),H(&)) = 0.

The contents of the present paper are as follows. In Section 1, we review
the properties of the sectional geometric genus needed for the following sections.
In Section 2 (resp. 3), we consider basic properties of the ¢; (resp. ¢(1))-sectional
geometric genus. In Appendix, we recall Lanteri’s geometric genus of gener-
alized polarized manifolds and consider its relation to the c¢;-sectional geometric
genus.

Notation and Terminology

We work over the complex number field. Varieties are always irreducible
and reduced. Line bundles are identified with the linear equivalence classes of
Cartier divisors. The tensor products of line bundles are denoted additively,
while we use multiplicative notation for intersection products. Numerical equiv-
alence is written as =.

A vector bundle & is said to be ample if the tautological line bundle H(&) on
Py (&) is ample. We say that & is spanned if H(&) is spanned, i.e., generated by
global sections. The restriction &, of & to a variety W is often denoted by &y .
We denote by L®" the direct sum of r copies of a line bundle L. For writing
cohomology groups and Euler characteristic, we often omit the base spaces in
case of no fear of confusion. We denote by p(W) the Picard number of W.

A polarized manifold (X,L) is said to be a Del Pezzo manifold if Ky +
(n—1)L = Oy for n=dim X. We note that (X, L) is said to be a scroll over a
variety W if (X,L) = (Pw(&),H(&)) for some ample vector bundle & on W.
We say that (X,L) is a quadric fibration over W if there exists a fibration
f X — W such that (F,Lp) = (Q™,0(1)) for a general fiber F of f, where Q™
is a smooth hyperquadric in P! and m = dim X — dim W. We call (X L) a
Veronese fibration over a curve C if there exists a fibration f : X — C such that
(F,Lr) = (P?, 0(2)) for every fiber F of f. We say that (X, L) is a simple blow-



76 HIRONOBU ISHIHARA

up of a polarized manifold (X', L") if there exists a blowing-up z: X — X’ at a
point x’ and L =nr*L' —n'(x'). A polarized manifold (X’,L’) is called the
reduction of (X, L) if there exists a morphism f : X — X’ that is a composite of
simple blow-ups and (X', L’) is not a simple blow-up of any polarized manifold.

1. Sectional geometric genus

DerniTION 1.1 ([Fk1,(2.1)]). Let X be a projective manifold of dimension n
and L an ample line bundle on X. For every integer 0 < i < n, the i-th sectional
geometric genus g;(X,L) of the pair (X,L) is defined by the formula

gi(X,L) := (=) (i(X, L) — Z D" R ().

Here y,_;(X,L) is an integer that is uniquely determined by the Hilbert poly-
nomial of (X,L):

tL) => 5 (X, L) jt,
Jj=0

where 7% :=1 and (/) :=¢(t+1)---(t+j—1) for 1 <jeZ.
Remark 1.1.1. We find that

gn(X, L) = h"(Ox) = py(X),
gO(XvL) :Xn(Xv L) =L",

1
gi(X,L) =1 = s (X, L) = 1+ 5 (Ky + (n — L)L

by the Hirzebruch-Riemann-Roch theorem (see [F0,(1,2.1)]). Hence g,(X,L) is
the geometric genus of X, go(X, L) is the degree of (X,L), and ¢;(X,L) is the
sectional genus of (X, L).

For a computation of the sectional geometric genus, we use the following
formula.

ProrosiTiON 1.2 ([Fk1,(2.3)]). Let X be a projective manifold of dimension
n and L an ample line bundle on X. For every integer 1 <i<n—1, we have

n—i—1 — n—i )
gi(X,L)= > (—1)-’<" i >h°(KX +(n—i— L)+ Y (1) hm R (0y).
k=0

=0

When L is spanned, we get a smooth ladder of (X, L) by Bertini’s theorem.
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ProposiTION 1.3 (See, e.g., [FO,(L4.1)]). Let X be a projective manifold of
dimension n and L an ample and spanned line bundle on X. Then there exists a
sequence

X=X,o20X,.1>---2X)

of submanifolds X; of X such that dim X; =i and X; € |Ly,.,,| for every integer
I<i<n-1

Remark 1.3.1.  We note that the numbering of {X;};_, is different from that
in [Fk1]. In the situation of (1.3), we find that

gi(X, L) = gi(Xu1, Ly, ) = - = gi(Xi, Lx;) = py(Xi)

for every integer 1 <i<n—1 (cf. [Fk1,(2.4)]). This is the reason why ¢;(X, L)
is called the i-th sectional geometric genus.

Existence of a ladder is essential for the following result.

ProrosiTiON 1.4 ([Fk1,(3.4.1)]). Let X be a projective manifold of dimension

n and L an ample and spanned line bundle on X. Then g;(X,L) > hi(Ox) for

every integer 0 < i <n. Moreover, when n >3, g»(X,L) = h*(Oy) if and only if

(X,L) is one of the following:

M (Pc());

(i) (0" 0(1)

(i) a Del Pezzo manifold,

(iv) a scroll over a smooth curve;

(V) a quadric fibration over a smooth curve;

(vi) a scroll over a smooth surface;

(vii) the reduction (X',L') of (X,L) is either (P* (0(2), (P 0(3)),
(Q*,0(2)), or a Veronese fibration over a smooth curve. (The case
(X,L)=(X",L’) is included.)

Outline of Proof. We find that (cf. (1.3.1))

gi(X7 L) = gi(/Yi+17LXf+1)
= hO(KX‘+1 + LX[H) - hO(KXm) + hi((QXm)

= h[<(9Xi+1)
= h'(Oy).

If g2(X,L) = h*(Ox) and n > 3, then we get h°(Ky, + Ly,) = 0. 1t follows that
h°(Ky + (n—2)L) = 0, hence Ky + (n —2)L is not nef and (X, L) is one of the
above cases (i), ..., (vii) by adjunction theory (see, e.g., [BS, Chap. 7]) or [FO,(II,
§11)]). O
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Remark 1.4.1. We see that g>(X, L) = 0 for all the cases in (1.4) except (vi);
in Case (vi), g2(X,L) =0 if and only if p, of the base surface is zero.

Remark 1.42. When n>2, we have ¢|(X,L)=h'(0y) if and only if
(X,L) = (P",0(1)), (P*,0(2)), (Q",0(1)), or (X,L) is a scroll over a smooth
curve (see, e.g., [BS,(7.2.10)]). Moreover, it is known that g;(X,L) >0 for
all polarized manifolds (X,L), and if ¢g;(X,L)=0 and n > 2, then (X,L)=
(P", (1)), (P?,0(2), (Q",0(1)), or (X,L) is a scroll over P! (see, e.g.,
[FO,(IL,12.1)]). Tt is unknown, however, that ¢;(X,L) >0 for all polarized
manifolds (X,L) when 2 <i<n-—1.

Remark 1.4.3. Let (X,L) be as in (1.4). Then g;(X,L) = h'(COy) if and
only if H'(Ky + (n —i)L) = 0 for every i < n (see [Fk1,(3.3)]). Thus the classi-
fication of pairs (X,L) with g;(X,L) = h'(Ox) becomes harder as i increases.
In [Fk2] we have a partial classification of pairs (X, L) with g3(X,L) = 0 when
n>5 and L is very ample.

2. cj-sectional geometric genus

DerFmiTioN 2.1. Let X be a projective manifold of dimension » and & an
ample vector bundle of rank r on X. The i-th cj-sectional geometric genus of
the pair (X, &) is defined as g;(X,det &), where g; is the i-th sectional geometric
genus (see (1.1)).

Remark 2.1.1. From (1.1.1) we see that g,(X,det &) = p,y(X), go(X,det &)
=¢1(6)", and ¢ (X, det &) is equal to the cj-sectional genus of (X,&) (see [F1]).
When r =1, the ¢-sectional geometric genus is nothing but the sectional geo-
metric genus.

~ Remark 2.1.2.  When & is spanned, from (1.4) we see that g;(X,det &) >
h'(Ox) for every 0 <i<n.

For i =1 we have the following classification result.

PRrROPOSITION 2.2. Let X be a projective manifold of dimension n > 2 and &
an ample and spanned vector bundle of rank r>2 on X. Then g;(X,det &) >
h\(Ox), and equality holds if and only if (X,&)= (P?,0(1)®%). Moreover,
g1(X,det &) = hl(OX) +1 if and only if (X,&) is one of the following:

) (PO
i) (P2, 0(1));
i) (P2.0(1) ® 0(2));

(
(
iv) (P?, 7p2), where Tpo is the tangent bundle of P
(P! x P o(1,1)®?).
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Proof. The inequality g;(X,det &) > h'(Oy) follows by (2.1.2). Suppose
that g (X,det &) = h'(Ox). We note that (det &)C > r for any rational curve C
in X since & is ample. Then we see that (X, det &) =~ (P?,0(2)) from (1.4.2).
It follows that &|; = Op:i(1 )®2 for every line / in P2, hence & is a uniform vector
bundle and & = Op2(1 )®2 by, e.g., [0SS,(I,3.2.1)]. Conversely, if (X,&) =~ (P?,
0(1)®%), then g, (X, det ﬁ)—hl(@ ) =0.

Suppose that g;(X,det &) = h'(Ox)+ 1. Then, by [FkL,(3.2)], (X,det &) is
a Del Pezzo manifold unless

(x) n=2, X =~ Po(¥) and det & = 2H(Z ) for an ample vector bundle % of

rank 2 on an elliptic curve C with ¢;(F) = 1.
f (X,det &) is the case (x), then g;(X,det &) =2 and we see that & is not
spanned because of [BiLL,(1.3)]. Thus (X,det&) is a Del Pezzo manifold.
Then ¢,(X,det&) =1 and (X,&) is one of the above cases (i),...,(v) by
[F1,(1.5)]. Conversely, h'(0x)=0 and g¢;(X,det&) =1 for all the cases
1),...,(v). O

Remark 2.2.1. 1In fact, by [F1,(1.4)&(1.5)], ¢g1(X,det &) =0 for all gener-
allzed polarlzed manifolds (X, &), and equality holds if and only if (X,&) =~
(P?, 0(1)®?); moreover, g;(X, det &) =1if and only if (X, &) is one of the cases

(i),...,(v) of (2.2).
For i =2 we obtain the following.

THEOREM 2.3. Let X be a projective manifold of dimension n>3 and &
an ample and spanned vector bundle of rank r > 2 on X. Then g,(X,det &) >
h*(Oy), and equality holds if and only if (X,&) is one of the following:

) (P o(m)®);
i i

(

i) (P3,0(1)®);

i (P o)

(iv) (P2, 0(1) @ 0(2));

(v) (@, 0(1)%);

i) (Pw(F),H(F) ® 0*9), where F and 4 are vector bundles on a smooth

curve Wsuch that n =rank & =3, r=rank 9 =2 and ¢ : Py (F) — W
is the bundle projection.

Proof. The inequality g»(X,det &) > h*(Ox) follows by (2.1.2). Suppose
that g,(X,det &) = h*(Ox). Then the pair (X,det &) is one of the cases of (1.4).
Since & is ample, we see that (det &)C >2 for any rational curve C in X.
Hence (X,det &) is the reduction of itself and (X,det &) is one of the following:

(a) a Del Pezzo manifold;

(b) (P, 0(3));
©) (P*,0Q));
(d) (@°,02));
a Veronese fibration over a smooth curve.

In Case (a), we have g;(X,det &) =1, hence (X,&) = (P?,0(1)®%) by (2.2).

—
a
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In Case (b), we see that r=2 or 3 since (det&)/ =3 for every line
[ in P3. Moreover, if r=2, we have &|, = Up(1)® Up(2); if r=3, we
have &), = (O‘Pl(l)@3. Hence we get & = 0ps(1) @ Op3(2) or @,,3(1)(93 by, e.g.,
[OSS,(1,3.2.1)&(1,3.2.3)].

In Case (c), similarly as above, we have &|; = Up: (1)®? for every line / in P*.
Hence & = Opi(1)®7.

In Case (d), we have &|, = @Pl(l)@2 for every line / on Q° in P*. Hence
6= (9Q3(1)®2 by the argument in [YZ, p. 679,(4.3)].

In Case (e), let p: X — W be a Veronese fibration over a smooth curve
such that det 6 = 0p>(2) for every fiber F =~ P? of ¢. Then &F (91,2(1)@2
and h°(F,(Ky +2det &),) = 3 for every fiber F of ¢. Hence # := ¢, Ox(Ky +
2det &) is a locally free sheaf of rank 3 and it follows that X = Py ().

Then h°(F, (6 ® (—H(F)))y) =2 for every fiber F of ¢p. Hence ¥ :=¢,(6 ®
(—=H(F))) is a locally free sheaf of rank 2 and it follows that ¢p*9 =~ & ®
(—H(7)).

Thus we obtain the cases (i),...,(vi) of our theorem. Conversely, by (1.2),

we find that g»(X,det &) = h?(Ox) =0 for all the cases (i),...,(vi). O

Remark 2.3.1.  The case (vi) of (2.3) exists for an arbitrary smooth curve W.
Indeed, let & (resp. %) be an ample and spanned vector bundle of rank 3 (resp.
2) on W. We set (X,6):=(Pw(F),H(F)Q® ¢*9), where ¢ : Py (F) — W is
the bundle projection. Then & is ample and spanned, and by (1.2) we find that

g2(X,det &) = h°(Ky +det &) — h*(Ox) + h*(Cx)
=h'(—H(F) + ¢*(Kw + det F + det %))

COROLLARY 2.4. Let X be a projective manifold of dimension n > 3 and & an
ample and spanned vector bundle of rank r >2 on X. Then g»(X,det &) > 0, and
equality holds if and only if (X,&) is one of the cases of (2.3).

Remark 2.4.1. The classification of pairs (X,&) with g;(X,det &) =0 and
i>3is yet to be studied (cf. (1.4.3)).

3. (O(1)-sectional geometric genus

DermuiTioN 3.1. Let X be a projective manifold of dimension » and & an
ample vector bundle of rank r on X. The i-th O(1)-sectional geometric genus of
the pair (X, &) is defined as g;(Px (&), H(&)), where g; is the i-th sectional geo-
metric genus (see (1.1)).

Remark 3.1.1. From (1.1.1) we see that go(Px(&),H(&)) = H(&)"" ™! =
sp(€) and g1(Px(&),H(&)) is equal to the ((1)-sectional genus of (X,&) (see
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[F1]). When r =1, the O(1)-sectional geometric genus is nothing but the sec-
tional geometric genus.

Remark 3.1.2. By (1.2) and the Kodaira vanishing theorem, we get

0 fori=n—+1,
9i(Px (), H(&)) = § py(X) fori=n,
gn-1(X,det &) fori=n—1.
(See [Fk1,(2.10.8)].)

Remark 3.1.3. When & is spanned, from (1.4) we see that g;(Px(&), H(&)) =
h'(Opg)) = h'(CUx) for every 0 <i<n-+r—1.

For i =1 we have the following classification result.

PrOPOSITION 3.2. Let X be a projective manifold of dimension n > 2 and &
an ample and spanned vector bundle of rank r > 2 on X. Then g,(Px(&),H(&)) >
h\(Oy), and equality holds if and only if (X,&) = (P",0(1)®%). Moreover,
g1(Px (&), H(&)) = h' (Ox) + 1 if and only if (X,&) is one of the following:

(i) (P2,0(1)%);
(P2,0(1) ® 0(2));
(P27 ‘71’2);
(

Proof. The inequality gi(Px (&), H(&)) > h'(Ox) follows by (3.1.3). Sup-
pose that g;(Px(&),H(&)) = h'(Ox) and let p: Py(&) — X be the bundle pro-
jection. From (1.4.2) we see that (Px (&), H(&)) is a scroll over a smooth curve;
let f: Py(&) — Y be its scroll map. Since p and f are contraction morphisms
of different extremal rays, any curve contained in a fiber of p (resp. f) does not
be contracted by f (resp. p). Then, for a fiber Z >~ P! of p, we see that
fl,: P! — Y is a finite morphism. Hence r =2 and Y =~ P'. On the other
hand, for a fiber F =~ P" of f, we see that p|,:P" — X is finite surjective.
Hence X =~ P" by [Lz,(4.1)]. Thus Pyx(&) has two projective space bundle
structures over projective spaces. Then, by [Sa, Theorem A], we get Py(&) =~
P"x P' and then & = Op:(1)®%. Conversely, if (X,&) =~ (P",0(1)®?), then
g1(Px(8), H(&)) = h'(Ox) = 0.

Suppose that g;(Px(&), H(&)) = h'(Ox) + 1. Then, by [FkL,(3.2)], (Px(&),
H(&)) is a Del Pezzo manifold since dim Py(&) > 3. It follows that g;(Px (&),
H(&)) =1, hence (X,&) is one of the cases (i),...,(iv) of our theorem by
[F1,(3.3)]. Conversely, h'(Ox) =0 and g,(Px(&),H(&)) =1 for all the cases
(i),...,(iv). O

Remark 3.2.1. In fact, by [F1,(3.2)&(3.3)], gi1(Px(&),H(&)) =0 for all
generalized polarized manifolds (X, &), and equality holds if and only if either
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X =~ P! or (X,&) = (P",0(1)®%); moreover, gi(Px(&), H(&)) =1 if and only if
either X is an elliptic curve or (X, &) is one of the cases (i),...,(iv) of (3.2).

For i =2 we obtain the following.

THEOREM 3.3. Let X be a projective manifold of dimension n > 3 and & an
ample and spanned vector bundle of rank r >2 on X. Then g,(Px(&),H(&)) =
h*(Oy), and equalzty holds if and only if (X,&) is one of the following:

() (PO,

(i) (P",0(1)%%);

(i) (P*,0(1) § 0(2));
(iv) (0", 0(1));

V) (Pw(F),H(F)® ¢*Y), where F and 4 are vector bundles on a smooth

curve W such that n =rank & >3, r=rank 9 =2 and ¢ : Py(F) — W

is the bundle projection;

Proof. The inequality g»(Px (&), H(&)) = h*(0y) follows by (3.1.3). Sup-
pose that g2(Py (&), H(&)) = h*(Ox). Let (P,H) := (Px(&),H(&)), N :=dim P
=n+r—1 and p:P— X be the bundle projection. From (1.4) we see
that Kp+ (N —2)H is not nef. Then there exists an extremal ray R of P
such that (Kp+ (N —2)H)R < 0. Let f: P — Y be the contraction morphism
of R. Since Kp+ (N —2)H = (n—3)H + p*(Ky +det &), we see that f # p,
Ky +det & is not nef and there exists an extremal ray R’ of X such that
(Ky +det )R’ < 0. Let ¢p: X — W be the contraction morphism of R’. We
can take R’ that corresponds to R and makes the following commutative

diagram:
P
d

X

/ %

=

w.

|

Since dim P >4 and p(P) =p(X)+1 =2, from (1.4) we see that f: P — Y is
one of the following:

(a) (P,H) is a Del Pezzo manifold;

(b) a scroll over a smooth curve;

(c) a quadric fibration over a smooth curve;

(d) a scroll over a smooth surface;

(e) the reduction of (P,H) is (P*, 0(2)).
In Case (a), we have ¢;(P,H) =1, hence the condition n > 3 is impossible
because of (3.2).

In Case (b), Y is a smooth curve. Since p and f are contraction morphisms
of different extremal rays, any curve contained in a fiber of p (resp. f) does not
be contracted by f (resp. p). Hence Y = f(C) for a rational curve C in a fiber
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of p. It follows that ¥ =~ P' and then g;(P,H) =0. Hence we get (X,&) =
(P",0(1)*%) by (3.2)

In Case (c), Y is a smooth curve. From the argument above, for a fiber
Z =~ P! of p, we see that f|,: P! — Y is a finite morphism. Hence r =2
and Y =~ P'. Then, for a general fiber F =~ Q" of f, we see that Plp: 0" — X is
finite surjective. Hence, by [PS, Prop. 8|, p|r is an isomorphism unless X =~ P".
We show that the case X = P" does not occur. If X =~ P" we take gen-
eral hyperplane sections of X and get a smooth surface S =~ P?. We consider
a 3-dimensional scroll (P, H'):= (Ps(&s), H(6s)) that is a quadric fibration
over P! via flprsy=Slp. Let F''= Q? be a general fiber of f|,. We have

"elaH' — (plp))"Op:(b)| and det &s = Up2(e) for some integers a,b and e.
Then we find that

0= (F") =d*(e® — e2(&5)) — 3a’be + 3ab?,
0=H'-(F")* = a*(e® — c2(&s)) — 2abe + b*.
By combining these equalities, we get ae = 2b. Moreover, we have
O = Op(F')| o = al'| = (plp) " Opa(b) = Oge(a — be)

for some positive integer ¢. It follows that a = bc and then ce = 2, hence ¢ =1
and e =2. Then we get &5 = @Pz(1)®2, which is a contradiction since [/,
is a quadric fibration. Thus we infer that p|, is an isomorphism and X = Q".
By restrlctlng Kp=—-2H + p*(Kx +det &) to F, we get det & = (Up»(2). Hence
=0 n(l)® by the argument in [YZ, p. 679,(4.3)].

In Case (d), Y is a smooth surface and (P,H) =~ (Py(&'), H(&')) for an
ample vector bundle &’ on Y. Similarly as in Cases (b) and (c), for a fiber

~ P! of p, we see that f|,: P""' — Y is finite. Hence r =2 or 3. When
r=3, fl,is surjectlve also p|p: F — X is surjective for a fiber F ~ P" of f. It
follows that ¥ ~ P> and X ~ P" by [Lz,(4.1)]. Hence, by [Sa, Theorem Al, we
get P~ P" x P? and then & =~ Up:(1)®°.

When r =2, we have dim p(F) =n— 1, hence dim W < 1. We show that
the case dim W =0 does not occur. If dim W =0, then we get p(Y) = p(X)
=1. It follows that Y =~ P? since Y is covered by rational curves {C,:=
f(p~'(x))|x e X}. By an argument similar to [YZ, p. 683, Lemma 10], we infer
that f |p71(x) : P — C, is birational for every x € X. Then we have

(Ky +det &")Cy = f*(Ky +det &) - p™'(x) = (Kp+nH) - p~'(x) =n—2,

hence (d —3)c =n—2, where ¢ :=deg C, and d :=¢|(&’). Since &' is ample,
we have d > rank &' =n. If ¢ > 2, thend—n—4and(§’ |, = Opi(1 )4 forevery
line /=P in ¥ =P It follows that &' = Op2(1)®* and P =~ P2 x P3, which is
a contradiction since p: P — X is a Pl-bundle Thus ¢=1 and d =n+1.
Then we have &'|, = Opi (1)®"~ 16—)@ 1(2), hence &' = Op()®"' ® 0p2(2). A
natural surjection &' — Op2(1)®"" determines a divisor E := P(0p(1)®"") €
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|H — f*Op2(2)| on P. Then we get E - p~!(x) = —1, hence p~!'(x) = E for all
x € X, which is a contradiction too.

Thus we have dim W =1 and a general fiber D of ¢ is p(F). Since
F ~P"! we see that D~ P"! and ¢ is a P" !-fibration. We consider an n-
dimensional scroll (Pp(&p), H(&p)) that is also a scroll over f(p~'(D)) = P!
via f|,-1p). By [Sa, Theorem A], we get Pp(ép) = P! x P! and then &p =~
@Pn—l(l)(-BZ. We infer that there exists an ample line bundle 4 on X such that
(D', Ap/) = (P"',0(1)) and &pr = Opn (1)@2 for every fiber D’ of ¢ by an argu-
ment similar to [F2,(3.3)]. Then we get (X,&) = (Pw(F),H(F) ® ¢*%) for the
vector bundles 7 :=¢,0x(A4) and % := ¢, (6 ® Ox(—A)) on W.

In Case (¢), we have n =3, r=2 and f: P — Y is a simple blow-up that is
a component of the reduction morphism: (P, H) — (P* ¢(2)). For the excep-
tional divisor E = P3 of f, we see that p| E: P3 — X is finite surjective. Hence
X =~ P* and then p(Y) = p(X)=1. Thus f is a simple blow-up of (P* 0(2));
Y =P H=f*0p(2) — E and Kp = f*Ops(—5) + 3E. For every fiber Z = P!
of p, we have HZ =1 and Kp-Z = —2. It follows that EZ =1, hence E
is a section of p. Since (p|;)"(Ky +det &) = (Kp+2H)|p = Op:(—1), we get
det & = Ops(3). Then we have &), = Upi(1) @ Opi(2) for every line /=~ P! in
X = P3 hence & = Ups(1) ® Up3(2).

Thus we obtain that (X, &) is one of the cases (i),...,(v) of our theorem.
Conversely, by (1.2), we find that g,(Px (&), H(&)) = h*(Ox) = 0 for all the cases
1),...,(v). O

Remark 3.3.1. We see that the case (v) of (3.3) exists for an arbitrary
smooth curve W. Indeed, let & (resp. ¥) be an ample and spanned vector
bundle of rank n (resp. 2) on W. We set (X,8&) := (Pw(#),H(F)® ¢*%) and
(Y,8") = (Pw(%),H(%) ® q¢*F), where ¢ : Py(F)— W and q: Py (%) — W
are the bundle projections. Then & is ample and spanned, and (Px (&), H(&)) =
(Py(&'),H(&")), hence g2(Px(&),H(&)) = py(Y) =0 by (3.1.2).

COROLLARY 3.4. Let X be a projective manifold of dimension n > 3 and & an
ample and spanned vector bundle of rank r > 2 on X. Then g2(Px(&),H(&)) = 0,
and equality holds if and only if (X,&) is one of the cases of (3.3).

Remark 3.4.1. The classification of pairs (X,&) with g;(Px(&),H(&)) =0
and i >3 is yet to be studied (cf. (1.4.3)).

Appendix. Lanteri’s geometric genus
A. Lanteri [L] introduced a notion of geometric genus for ample vector
bundles.

DrerFINITION A.1 (L,(1.0)]). Let X be a projective manifold of dimension n
and & an ample vector bundle of rank r < n on X with the following property:
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() There exists a section s e H°(X, &) whose zero locus Z := (s), is a sub-
manifold of X of the expected dimension n — r.
Then the geometric genus p,(X,&) of the pair (X, &) is defined as p,(Z).

Remark A.1.1. When r=1, & is an ample line bundle L and we see that
py(X,6) = gn-1(X,L). Furthermore, when & = L®" is the direct sum of r copies
of an ample line bundle L, we see that p,(X,&) = ¢,—(X,L). When r=n—1,
py(X, &) is the curve genus of (X,8) (see [LMS]).

Remark A.1.2. When & is spanned, the property (x) is satisfied by Bertini’s
theorem. In that case, the definition of p,(X, &) does not depend on the choice
of a section se H'(X,&) since the property (*) is an open condition.

The following result is corresponding to (1.4), (2.1.2) and (3.1.3).

ProrosiTiON A.2 ([L,(1.1)]). Let X be a projective manifold of dimension n
and & an ample vector bundle of rank r < n on X with the property (x) in (A.1).
Then py(X,&) = h""(Ux), and equality holds if h/(Ky ® )\ &) =0 for every
integer 0 < j<r—1.

We have a relation between p,(X,&) and g,_.(X,det &) as follows.

THEOREM A.3. Let X be a projective manifold of dimension n and
&= C—B 1 L; the direct sum of ample and spanned line bundles L; on X. Suppose
that 1< r <n. Then gn—r(X,det &) > p,(X, &), and equality holds if and only if
gn—r(X, det &) = py(X, &) = "7 (Cy).

Proof. Since every L; is ample and spanned, we can take a general member
D; of |L;| such that Z := ﬂ  D; is a submanifold of X, dim Z =n—r and
pq(X &) =h°(Kz). On the other hand, we can take general members E; of
|det &| (1 <k <r) such that Y :=()),_, Ex is a submanifold of X, dim Y =
n—r and g,_,(X,det é’) =h%Ky). For every integer 1 </ <r, we set Z;:=
ﬂ D; and Y, := ﬂk . Ex. 'We may assume that Z;,Y; and Y,NZ, (1 <s,
leZ s+t—l) are submanifolds of X of dimension n—/. Then we have
hO(Kyl) > h°(Kz,) because

h'(Kz,) = h’(Kp,) = h°(Kx + L) — h°(Kx) + h' (Kx)
and
W (Ky,) = h°(Kg,) = h°(Ky + Ly +--- + L,) — hi°(Ky) + h'(Kx).

We note that if h°(Ky,) = h%(Kz,), then h°(Ky + det &) = 0, otherwise we get
WKy + L) =h"(Kxy + Ly +---+L,) >0 and

WKy + L+ -+ L) = h°(Kx + L) + h°(Lo+ -+ L) — 1 > h°(Kx + Ly),

which is a contradiction. Similarly we find that
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h'(Ky,) > h°(Ky,nz,) > h*(Kz,),
h’(Ky,) = i°(Ky,nz,) = h*(Kyinz,) = h°(Kz,),

cey

hO(Kyy) = hO(KYHnZ]) =z hO(KYlmz,_,,) = hO(Kz,_).

Hence we get g, .(X,det&)=h"(Ky,) > h"(Kz) = p,(X,&). Suppose that
gn—r(X,det &) = py(X,&). Then we infer that h°(Ky, , + det &y, ) = 0 similarly
as above. From an exact sequence

0 — O(Ky,,) — O(Ky, , +det &y, ) — O(Ky,) — 0,

we get h°(Ky,) =h'(Ky, ). Since h'(Ky,,)=h""(Oy, ) =h""(Ox), we see
that g,_,(X,det &) = h" " (Oy). O

Remark A.3.1. Suppose that r =n — 1. In general, g;(X,det &) > p,(X, &)
for all ample vector bundles & on X because

291(X,det &) —2 = (Ky 4+ (n— e (6))er (6)"
> (Kx + c1(€))en1 (&)
=2py(X,6) - 2.

We note that the curve genus p,(X,&) is defined for all generalized polarized
manifolds (X, &) by the last equality above. Pairs (X, &) with p,(X, &) = h' (Ox)
have been classified by [LMS, Theorem| when & is ample and spanned.

Remark A.3.2. Suppose that r =n—2 in (A.3). Because of (2.3), we see
that g2(X, det &) > p,(X, &) except for (P*, 0(1)®%).  Moreover, the difference is
not necessarily small. When (X, &) = (P> x P?,0(1,1)®%), for example, we find
that p,(X,&) =0 and ¢»(X,det &) =9 by simple computations. Pairs (X, &)
with p,(X,&) = h*(Ox) have been classified by [L,(3.2)&(3.3)].
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