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SECTIONAL GEOMETRIC GENERA FOR

AMPLE VECTOR BUNDLES

Hironobu Ishihara

Abstract

Two invariants, called the c1-sectional geometric genus and the Oð1Þ-sectional

geometric genus, are introduced for generalized polarized manifolds, i.e., pairs of a

projective manifold and an ample vector bundle on it. They are generalizations of the

c1-sectional genus and the Oð1Þ-sectional genus introduced by T. Fujita for generalized

polarized manifolds. They are also generalizations of the sectional geometric genus

introduced by Y. Fukuma for polarized manifolds. We classify generalized polarized

manifolds of the smallest c1 or Oð1Þ-sectional geometric genus under the spannedness

condition for ample vector bundles.

Introduction

For the classification of projective manifolds, ample line bundles are useful
tools. A polarized manifold is the pair ðX ;LÞ of a projective manifold X and
an ample line bundle L on X . For the classification of polarized manifolds, the
sectional genus gðX ;LÞ is an important invariant that is a natural generalization
of the genus of curves. A generalized polarized manifold ðX ;EÞ is the pair of a
projective manifold X and an ample vector bundle E on X . We note that gen-
eralized polarized manifolds ðX ;EÞ are corresponding to the scrolls ðPX ðEÞ;HðEÞÞ
that are basic polarized manifolds. (We denote by HðEÞ the tautological line
bundle OPðEÞð1Þ on PX ðEÞ.) T. Fujita [F1] introduced the c1-sectional genus
gðX ; det EÞ and the Oð1Þ-sectional genus gðPX ðEÞ;HðEÞÞ for the classification of
generalized polarized manifolds. These sectional genera of generalized polarized
manifolds are natural generalizations of the sectional genus of polarized manifolds
(see also [BiLL]).

On the other hand, A. Lanteri [L] introduced the geometric genus pgðX ;EÞ
for ample vector bundles E with regular sections, i.e., there exists a global sec-
tion whose zero locus Z is a submanifold of X of the expected dimension. This
genus is defined as the geometric genus pgðZÞ of the submanifold Z. Recently,
Y. Fukuma [Fk1] introduced the sectional geometric genus giðX ;LÞ for polarized
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manifolds ðX ;LÞ and integers 0a ia n. This genus is a natural generalization
of both the sectional genus and the geometric genus because g1ðX ;LÞ ¼ gðX ;LÞ
and gnðX ;LÞ ¼ pgðX Þ. For every 0a ia n, giðX ;LÞ is a non-negative integer
when L is spanned (i.e. generated by global sections). In fact, giðX ;LÞb hiðOX Þ
and we have classification results for the pairs ðX ;LÞ of small g2ðX ;LÞ (w.r.t.
h2ðOX Þ) in [Fk1].

Motivated by the above papers [F1], [L] and [Fk1], we consider two in-
variants giðX ; det EÞ and giðPX ðEÞ;HðEÞÞ for generalized polarized manifolds
ðX ;EÞ. We call them the c1-sectional geometric genus and the Oð1Þ-sectional
geometric genus respectively. By definition, they are natural generalizations of
both the c1-sectional genus and the Oð1Þ-sectional genus, and also a generali-
zation of the sectional geometric genus. When E is spanned, both giðX ; det EÞ
and giðPX ðEÞ; HðEÞÞ are non-negative integers and not less than hiðOX Þ. We
obtain classification results for the pairs ðX ;EÞ with g2ðX ; det EÞ ¼ h2ðOX Þ or
g2ðPX ðEÞ;HðEÞÞ ¼ h2ðOX Þ. As corollaries, we obtain the classification of pairs
ðX ;EÞ with g2ðX ; det EÞ ¼ 0 or g2ðPX ðEÞ;HðEÞÞ ¼ 0.

The contents of the present paper are as follows. In Section 1, we review
the properties of the sectional geometric genus needed for the following sections.
In Section 2 (resp. 3), we consider basic properties of the c1 (resp. Oð1Þ)-sectional
geometric genus. In Appendix, we recall Lanteri’s geometric genus of gener-
alized polarized manifolds and consider its relation to the c1-sectional geometric
genus.

Notation and Terminology

We work over the complex number field. Varieties are always irreducible
and reduced. Line bundles are identified with the linear equivalence classes of
Cartier divisors. The tensor products of line bundles are denoted additively,
while we use multiplicative notation for intersection products. Numerical equiv-
alence is written as 1.

A vector bundle E is said to be ample if the tautological line bundle HðEÞ on
PX ðEÞ is ample. We say that E is spanned if HðEÞ is spanned, i.e., generated by
global sections. The restriction EjW of E to a variety W is often denoted by EW .
We denote by Llr the direct sum of r copies of a line bundle L. For writing
cohomology groups and Euler characteristic, we often omit the base spaces in
case of no fear of confusion. We denote by rðWÞ the Picard number of W .

A polarized manifold ðX ;LÞ is said to be a Del Pezzo manifold if KX þ
ðn� 1ÞL ¼ OX for n ¼ dim X . We note that ðX ;LÞ is said to be a scroll over a
variety W if ðX ;LÞG ðPW ðEÞ;HðEÞÞ for some ample vector bundle E on W .
We say that ðX ;LÞ is a quadric fibration over W if there exists a fibration
f : X ! W such that ðF ;LF ÞG ðQm;Oð1ÞÞ for a general fiber F of f , where Qm

is a smooth hyperquadric in Pmþ1 and m ¼ dim X � dim W . We call ðX ;LÞ a
Veronese fibration over a curve C if there exists a fibration f : X ! C such that
ðF ;LF ÞG ðP2;Oð2ÞÞ for every fiber F of f . We say that ðX ;LÞ is a simple blow-
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up of a polarized manifold ðX 0;L 0Þ if there exists a blowing-up p : X ! X 0 at a
point x 0 and L ¼ p�L 0 � p�1ðx 0Þ. A polarized manifold ðX 0;L 0Þ is called the
reduction of ðX ;LÞ if there exists a morphism f : X ! X 0 that is a composite of
simple blow-ups and ðX 0;L 0Þ is not a simple blow-up of any polarized manifold.

1. Sectional geometric genus

Definition 1.1 ([Fk1,(2.1)]). Let X be a projective manifold of dimension n
and L an ample line bundle on X . For every integer 0a ia n, the i-th sectional
geometric genus giðX ;LÞ of the pair ðX ;LÞ is defined by the formula

giðX ;LÞ :¼ ð�1Þ iðwn�iðX ;LÞ � wðOX ÞÞ þ
Xn�i

j¼0

ð�1Þn�i�j
hn�jðOX Þ:

Here wn�iðX ;LÞ is an integer that is uniquely determined by the Hilbert poly-
nomial of ðX ;LÞ:

wðtLÞ ¼
Xn

j¼0

wjðX ;LÞt½ j �=j!;

where t½0� :¼ 1 and t½ j � :¼ tðtþ 1Þ � � � ðtþ j � 1Þ for 1a j A Z.

Remark 1.1.1. We find that

gnðX ;LÞ ¼ hnðOX Þ ¼ pgðXÞ;
g0ðX ;LÞ ¼ wnðX ;LÞ ¼ Ln;

g1ðX ;LÞ ¼ 1 � wn�1ðX ;LÞ ¼ 1 þ 1

2
ðKX þ ðn� 1ÞLÞLn�1

by the Hirzebruch-Riemann-Roch theorem (see [F0,(I,2.1)]). Hence gnðX ;LÞ is
the geometric genus of X , g0ðX ;LÞ is the degree of ðX ;LÞ, and g1ðX ;LÞ is the
sectional genus of ðX ;LÞ.

For a computation of the sectional geometric genus, we use the following
formula.

Proposition 1.2 ([Fk1,(2.3)]). Let X be a projective manifold of dimension
n and L an ample line bundle on X. For every integer 1a ia n� 1, we have

giðX ;LÞ ¼
Xn�i�1

j¼0

ð�1Þ j n� i

j

� �
h0ðKX þ ðn� i � jÞLÞ þ

Xn�i

k¼0

ð�1Þn�i�k
hn�kðOX Þ:

When L is spanned, we get a smooth ladder of ðX ;LÞ by Bertini’s theorem.
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Proposition 1.3 (See, e.g., [F0,(I,4.1)]). Let X be a projective manifold of
dimension n and L an ample and spanned line bundle on X. Then there exists a
sequence

X ¼ Xn IXn�1 I � � �IX1

of submanifolds Xi of X such that dim Xi ¼ i and Xi A jLXiþ1
j for every integer

1a ia n� 1.

Remark 1.3.1. We note that the numbering of fXign
i¼1 is di¤erent from that

in [Fk1]. In the situation of (1.3), we find that

giðX ;LÞ ¼ giðXn�1;LXn�1
Þ ¼ � � � ¼ giðXi;LXi

Þ ¼ pgðXiÞ

for every integer 1a ia n� 1 (cf. [Fk1,(2.4)]). This is the reason why giðX ;LÞ
is called the i-th sectional geometric genus.

Existence of a ladder is essential for the following result.

Proposition 1.4 ([Fk1,(3.4.1)]). Let X be a projective manifold of dimension
n and L an ample and spanned line bundle on X. Then giðX ;LÞb hiðOX Þ for

every integer 0a ia n. Moreover, when nb 3, g2ðX ;LÞ ¼ h2ðOX Þ if and only if
ðX ;LÞ is one of the following:

(i) ðPn;Oð1ÞÞ;
(ii) ðQn;Oð1ÞÞ;
(iii) a Del Pezzo manifold;
(iv) a scroll over a smooth curve;
(v) a quadric fibration over a smooth curve;
(vi) a scroll over a smooth surface;
(vii) the reduction ðX 0;L 0Þ of ðX ;LÞ is either ðP4;Oð2ÞÞ, ðP3;Oð3ÞÞ,

ðQ3;Oð2ÞÞ, or a Veronese fibration over a smooth curve. (The case
ðX ;LÞ ¼ ðX 0;L 0Þ is included.)

Outline of Proof. We find that (cf. (1.3.1))

giðX ;LÞ ¼ giðXiþ1;LXiþ1
Þ

¼ h0ðKXiþ1
þ LXiþ1

Þ � h0ðKXiþ1
Þ þ hiðOXiþ1

Þ

b hiðOXiþ1
Þ

¼ hiðOX Þ:

If g2ðX ;LÞ ¼ h2ðOX Þ and nb 3, then we get h0ðKX3
þ LX3

Þ ¼ 0. It follows that
h0ðKX þ ðn� 2ÞLÞ ¼ 0, hence KX þ ðn� 2ÞL is not nef and ðX ;LÞ is one of the
above cases ðiÞ; . . . ; ðviiÞ by adjunction theory (see, e.g., [BS, Chap. 7]) or [F0,(II,
§11)]). r
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Remark 1.4.1. We see that g2ðX ;LÞ ¼ 0 for all the cases in (1.4) except (vi);
in Case (vi), g2ðX ;LÞ ¼ 0 if and only if pg of the base surface is zero.

Remark 1.4.2. When nb 2, we have g1ðX ;LÞ ¼ h1ðOX Þ if and only if
ðX ;LÞG ðPn;Oð1ÞÞ, ðP2;Oð2ÞÞ, ðQn;Oð1ÞÞ, or ðX ;LÞ is a scroll over a smooth
curve (see, e.g., [BS,(7.2.10)]). Moreover, it is known that g1ðX ;LÞb 0 for
all polarized manifolds ðX ;LÞ, and if g1ðX ;LÞ ¼ 0 and nb 2, then ðX ;LÞG
ðPn;Oð1ÞÞ, ðP2;Oð2ÞÞ, ðQn;Oð1ÞÞ, or ðX ;LÞ is a scroll over P1 (see, e.g.,
[F0,(II,12.1)]). It is unknown, however, that giðX ;LÞb 0 for all polarized
manifolds ðX ;LÞ when 2a ia n� 1.

Remark 1.4.3. Let ðX ;LÞ be as in (1.4). Then giðX ;LÞ ¼ hiðOX Þ if and
only if H 0ðKX þ ðn� iÞLÞ ¼ 0 for every i < n (see [Fk1,(3.3)]). Thus the classi-
fication of pairs ðX ;LÞ with giðX ;LÞ ¼ hiðOX Þ becomes harder as i increases.
In [Fk2] we have a partial classification of pairs ðX ;LÞ with g3ðX ;LÞ ¼ 0 when
nb 5 and L is very ample.

2. c1-sectional geometric genus

Definition 2.1. Let X be a projective manifold of dimension n and E an
ample vector bundle of rank r on X . The i-th c1-sectional geometric genus of
the pair ðX ;EÞ is defined as giðX ; det EÞ, where gi is the i-th sectional geometric
genus (see (1.1)).

Remark 2.1.1. From (1.1.1) we see that gnðX ; det EÞ ¼ pgðXÞ, g0ðX ; det EÞ
¼ c1ðEÞn, and g1ðX ; det EÞ is equal to the c1-sectional genus of ðX ;EÞ (see [F1]).
When r ¼ 1, the c1-sectional geometric genus is nothing but the sectional geo-
metric genus.

Remark 2.1.2. When E is spanned, from (1.4) we see that giðX ; det EÞb
hiðOX Þ for every 0a ia n.

For i ¼ 1 we have the following classification result.

Proposition 2.2. Let X be a projective manifold of dimension nb 2 and E
an ample and spanned vector bundle of rank rb 2 on X. Then g1ðX ; det EÞb
h1ðOX Þ, and equality holds if and only if ðX ;EÞG ðP2;Oð1Þl2Þ. Moreover,
g1ðX ; det EÞ ¼ h1ðOX Þ þ 1 if and only if ðX ;EÞ is one of the following:

(i) ðP3;Oð1Þl2Þ;
(ii) ðP2;Oð1Þl3Þ;
(iii) ðP2;Oð1ÞlOð2ÞÞ;
(iv) ðP2;TP2Þ, where TP2 is the tangent bundle of P2;

(v) ðP1 � P1;Oð1; 1Þl2Þ.
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Proof. The inequality g1ðX ; det EÞb h1ðOX Þ follows by (2.1.2). Suppose
that g1ðX ; det EÞ ¼ h1ðOX Þ. We note that ðdet EÞCb r for any rational curve C
in X since E is ample. Then we see that ðX ; det EÞG ðP2;Oð2ÞÞ from (1.4.2).
It follows that Ejl GOP1ð1Þl2 for every line l in P2, hence E is a uniform vector

bundle and EGOP2ð1Þl2 by, e.g., [OSS,(I,3.2.1)]. Conversely, if ðX ;EÞG ðP2;
Oð1Þl2Þ, then g1ðX ; det EÞ ¼ h1ðOX Þ ¼ 0.

Suppose that g1ðX ; det EÞ ¼ h1ðOX Þ þ 1. Then, by [FkI,(3.2)], ðX ; det EÞ is
a Del Pezzo manifold unless

(*) n ¼ 2, X GPCðFÞ and det E1 2HðFÞ for an ample vector bundle F of
rank 2 on an elliptic curve C with c1ðFÞ ¼ 1.

If ðX ; det EÞ is the case (*), then g1ðX ; det EÞ ¼ 2 and we see that E is not
spanned because of [BiLL,(1.3)]. Thus ðX ; det EÞ is a Del Pezzo manifold.
Then g1ðX ; det EÞ ¼ 1 and ðX ;EÞ is one of the above cases ðiÞ; . . . ; ðvÞ by
[F1,(1.5)]. Conversely, h1ðOX Þ ¼ 0 and g1ðX ; det EÞ ¼ 1 for all the cases
ðiÞ; . . . ; ðvÞ. r

Remark 2.2.1. In fact, by [F1,(1.4)&(1.5)], g1ðX ; det EÞb 0 for all gener-
alized polarized manifolds ðX ;EÞ, and equality holds if and only if ðX ;EÞG
ðP2;Oð1Þl2Þ; moreover, g1ðX ; det EÞ ¼ 1 if and only if ðX ;EÞ is one of the cases
ðiÞ; . . . ; ðvÞ of (2.2).

For i ¼ 2 we obtain the following.

Theorem 2.3. Let X be a projective manifold of dimension nb 3 and E
an ample and spanned vector bundle of rank rb 2 on X. Then g2ðX ; det EÞb
h2ðOX Þ, and equality holds if and only if ðX ;EÞ is one of the following:

(i) ðP4;Oð1Þl2Þ;
(ii) ðP3;Oð1Þl3Þ;
(iii) ðP3;Oð1Þl2Þ;
(iv) ðP3;Oð1ÞlOð2ÞÞ;
(v) ðQ3;Oð1Þl2Þ;
(vi) ðPW ðFÞ;HðFÞn j�GÞ, where F and G are vector bundles on a smooth

curve W such that n ¼ rank F ¼ 3, r ¼ rank G ¼ 2 and j : PW ðFÞ ! W
is the bundle projection.

Proof. The inequality g2ðX ; det EÞb h2ðOX Þ follows by (2.1.2). Suppose
that g2ðX ; det EÞ ¼ h2ðOX Þ. Then the pair ðX ; det EÞ is one of the cases of (1.4).
Since E is ample, we see that ðdet EÞCb 2 for any rational curve C in X .
Hence ðX ; det EÞ is the reduction of itself and ðX ; det EÞ is one of the following:

(a) a Del Pezzo manifold;
(b) ðP3;Oð3ÞÞ;
(c) ðP4;Oð2ÞÞ;
(d) ðQ3;Oð2ÞÞ;
(e) a Veronese fibration over a smooth curve.

In Case (a), we have g1ðX ; det EÞ ¼ 1, hence ðX ;EÞG ðP3;Oð1Þl2Þ by (2.2).
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In Case (b), we see that r ¼ 2 or 3 since ðdet EÞl ¼ 3 for every line
l in P3. Moreover, if r ¼ 2, we have Ejl GOP1ð1ÞlOP1ð2Þ; if r ¼ 3, we
have Ejl GOP1ð1Þl3. Hence we get EGOP3ð1ÞlOP3ð2Þ or OP3ð1Þl3 by, e.g.,
[OSS,(I,3.2.1)&(I,3.2.3)].

In Case (c), similarly as above, we have Ejl GOP1ð1Þl2 for every line l in P4.
Hence EGOP4ð1Þl2.

In Case (d), we have Ejl GOP1ð1Þl2 for every line l on Q3 in P4. Hence
EGOQ3ð1Þl2 by the argument in [YZ, p. 679,(4.3)].

In Case (e), let j : X ! W be a Veronese fibration over a smooth curve
such that det EF ¼ OP2ð2Þ for every fiber F GP2 of j. Then EF GOP2ð1Þl2

and h0ðF ; ðKX þ 2 det EÞF Þ ¼ 3 for every fiber F of j. Hence F :¼ j�OX ðKX þ
2 det EÞ is a locally free sheaf of rank 3 and it follows that X GPW ðFÞ.
Then h0ðF ; ðEn ð�HðFÞÞÞF Þ ¼ 2 for every fiber F of j. Hence G :¼ j�ðEn
ð�HðFÞÞÞ is a locally free sheaf of rank 2 and it follows that j�GGEn
ð�HðFÞÞ.

Thus we obtain the cases ðiÞ; . . . ; ðviÞ of our theorem. Conversely, by (1.2),
we find that g2ðX ; det EÞ ¼ h2ðOX Þ ¼ 0 for all the cases ðiÞ; . . . ; ðviÞ. r

Remark 2.3.1. The case (vi) of (2.3) exists for an arbitrary smooth curve W .
Indeed, let F (resp. G) be an ample and spanned vector bundle of rank 3 (resp.
2) on W . We set ðX ;EÞ :¼ ðPW ðFÞ;HðFÞn j�GÞ, where j : PW ðFÞ ! W is
the bundle projection. Then E is ample and spanned, and by (1.2) we find that

g2ðX ; det EÞ ¼ h0ðKX þ det EÞ � h3ðOX Þ þ h2ðOX Þ

¼ h0ð�HðFÞ þ j�ðKW þ det Fþ det GÞÞ
¼ 0:

Corollary 2.4. Let X be a projective manifold of dimension nb 3 and E an
ample and spanned vector bundle of rank rb 2 on X. Then g2ðX ; det EÞb 0, and
equality holds if and only if ðX ;EÞ is one of the cases of (2.3).

Remark 2.4.1. The classification of pairs ðX ;EÞ with giðX ; det EÞ ¼ 0 and
ib 3 is yet to be studied (cf. (1.4.3)).

3. Oð1Þ-sectional geometric genus

Definition 3.1. Let X be a projective manifold of dimension n and E an
ample vector bundle of rank r on X . The i-th Oð1Þ-sectional geometric genus of
the pair ðX ;EÞ is defined as giðPX ðEÞ;HðEÞÞ, where gi is the i-th sectional geo-
metric genus (see (1.1)).

Remark 3.1.1. From (1.1.1) we see that g0ðPX ðEÞ;HðEÞÞ ¼ HðEÞnþr�1 ¼
snðEÞ and g1ðPX ðEÞ;HðEÞÞ is equal to the Oð1Þ-sectional genus of ðX ;EÞ (see
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[F1]). When r ¼ 1, the Oð1Þ-sectional geometric genus is nothing but the sec-
tional geometric genus.

Remark 3.1.2. By (1.2) and the Kodaira vanishing theorem, we get

giðPX ðEÞ;HðEÞÞ ¼
0 for ib nþ 1;

pgðXÞ for i ¼ n;

gn�1ðX ; det EÞ for i ¼ n� 1:

8><
>:

(See [Fk1,(2.10.8)].)

Remark 3.1.3. When E is spanned, from (1.4) we see that giðPX ðEÞ;HðEÞÞb
hiðOPðEÞÞ ¼ hiðOX Þ for every 0a ia nþ r� 1.

For i ¼ 1 we have the following classification result.

Proposition 3.2. Let X be a projective manifold of dimension nb 2 and E
an ample and spanned vector bundle of rank rb 2 on X. Then g1ðPX ðEÞ;HðEÞÞb
h1ðOX Þ, and equality holds if and only if ðX ;EÞG ðPn;Oð1Þl2Þ. Moreover,
g1ðPX ðEÞ;HðEÞÞ ¼ h1ðOX Þ þ 1 if and only if ðX ;EÞ is one of the following:

(i) ðP2;Oð1Þl3Þ;
(ii) ðP2;Oð1ÞlOð2ÞÞ;
(iii) ðP2;TP2Þ;
(iv) ðP1 � P1;Oð1; 1Þl2Þ.

Proof. The inequality g1ðPX ðEÞ;HðEÞÞb h1ðOX Þ follows by (3.1.3). Sup-

pose that g1ðPX ðEÞ;HðEÞÞ ¼ h1ðOX Þ and let p : PX ðEÞ ! X be the bundle pro-
jection. From (1.4.2) we see that ðPX ðEÞ;HðEÞÞ is a scroll over a smooth curve;
let f : PX ðEÞ ! Y be its scroll map. Since p and f are contraction morphisms
of di¤erent extremal rays, any curve contained in a fiber of p (resp. f ) does not

be contracted by f (resp. p). Then, for a fiber ZGP r�1 of p, we see that
f jZ : P r�1 ! Y is a finite morphism. Hence r ¼ 2 and Y GP1. On the other
hand, for a fiber F GPn of f , we see that pjF : Pn ! X is finite surjective.
Hence X GPn by [Lz,(4.1)]. Thus PX ðEÞ has two projective space bundle
structures over projective spaces. Then, by [Sa, Theorem A], we get PX ðEÞG
Pn � P1 and then EGOP nð1Þl2. Conversely, if ðX ;EÞG ðPn;Oð1Þl2Þ, then
g1ðPX ðEÞ;HðEÞÞ ¼ h1ðOX Þ ¼ 0.

Suppose that g1ðPX ðEÞ;HðEÞÞ ¼ h1ðOX Þ þ 1. Then, by [FkI,(3.2)], ðPX ðEÞ;
HðEÞÞ is a Del Pezzo manifold since dim PX ðEÞb 3. It follows that g1ðPX ðEÞ;
HðEÞÞ ¼ 1, hence ðX ;EÞ is one of the cases ðiÞ; . . . ; ðivÞ of our theorem by
[F1,(3.3)]. Conversely, h1ðOX Þ ¼ 0 and g1ðPX ðEÞ;HðEÞÞ ¼ 1 for all the cases
ðiÞ; . . . ; ðivÞ. r

Remark 3.2.1. In fact, by [F1,(3.2)&(3.3)], g1ðPX ðEÞ;HðEÞÞb 0 for all
generalized polarized manifolds ðX ;EÞ, and equality holds if and only if either
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X GP1 or ðX ;EÞG ðPn;Oð1Þl2Þ; moreover, g1ðPX ðEÞ;HðEÞÞ ¼ 1 if and only if
either X is an elliptic curve or ðX ;EÞ is one of the cases ðiÞ; . . . ; ðivÞ of (3.2).

For i ¼ 2 we obtain the following.

Theorem 3.3. Let X be a projective manifold of dimension nb 3 and E an
ample and spanned vector bundle of rank rb 2 on X. Then g2ðPX ðEÞ;HðEÞÞb
h2ðOX Þ, and equality holds if and only if ðX ;EÞ is one of the following:

(i) ðPn;Oð1Þl3Þ;
(ii) ðPn;Oð1Þl2Þ;
(iii) ðP3;Oð1ÞlOð2ÞÞ;
(iv) ðQn;Oð1Þl2Þ;
(v) ðPW ðFÞ;HðFÞn j�GÞ, where F and G are vector bundles on a smooth

curve W such that n ¼ rank Fb 3, r ¼ rank G ¼ 2 and j : PW ðFÞ ! W
is the bundle projection;

Proof. The inequality g2ðPX ðEÞ;HðEÞÞb h2ðOX Þ follows by (3.1.3). Sup-

pose that g2ðPX ðEÞ;HðEÞÞ ¼ h2ðOX Þ. Let ðP;HÞ :¼ ðPX ðEÞ;HðEÞÞ, N :¼ dim P
¼ nþ r� 1 and p : P ! X be the bundle projection. From (1.4) we see
that KP þ ðN � 2ÞH is not nef. Then there exists an extremal ray R of P
such that ðKP þ ðN � 2ÞHÞR < 0. Let f : P ! Y be the contraction morphism
of R. Since KP þ ðN � 2ÞH ¼ ðn� 3ÞH þ p�ðKX þ det EÞ, we see that f 0 p,
KX þ det E is not nef and there exists an extremal ray R 0 of X such that
ðKX þ det EÞR 0 < 0. Let j : X ! W be the contraction morphism of R 0. We
can take R 0 that corresponds to R and makes the following commutative
diagram:

P ���!f Y

p

???y
???yq

X ���!
j

W :

Since dim Pb 4 and rðPÞ ¼ rðX Þ þ 1b 2, from (1.4) we see that f : P ! Y is
one of the following:

(a) ðP;HÞ is a Del Pezzo manifold;
(b) a scroll over a smooth curve;
(c) a quadric fibration over a smooth curve;
(d) a scroll over a smooth surface;
(e) the reduction of ðP;HÞ is ðP4;Oð2ÞÞ.

In Case (a), we have g1ðP;HÞ ¼ 1, hence the condition nb 3 is impossible
because of (3.2).

In Case (b), Y is a smooth curve. Since p and f are contraction morphisms
of di¤erent extremal rays, any curve contained in a fiber of p (resp. f ) does not
be contracted by f (resp. p). Hence Y ¼ f ðCÞ for a rational curve C in a fiber
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of p. It follows that Y GP1 and then g1ðP;HÞ ¼ 0. Hence we get ðX ;EÞG
ðPn;Oð1Þl2Þ by (3.2).

In Case (c), Y is a smooth curve. From the argument above, for a fiber
ZGP r�1 of p, we see that f jZ : P r�1 ! Y is a finite morphism. Hence r ¼ 2
and Y GP1. Then, for a general fiber F GQn of f , we see that pjF : Qn ! X is
finite surjective. Hence, by [PS, Prop. 8], pjF is an isomorphism unless X GPn.
We show that the case X GPn does not occur. If X GPn, we take gen-
eral hyperplane sections of X and get a smooth surface SGP2. We consider
a 3-dimensional scroll ðP 0;H 0Þ :¼ ðPSðESÞ;HðESÞÞ that is a quadric fibration

over P1 via f jp�1ðSÞ ¼ f jP 0 . Let F 0 GQ2 be a general fiber of f jP 0 . We have

F 0 A jaH 0 � ðpjP 0 Þ�OP2ðbÞj and det ES ¼ OP2ðeÞ for some integers a; b and e.
Then we find that

0 ¼ ðF 0Þ3 ¼ a3ðe2 � c2ðESÞÞ � 3a2beþ 3ab2;

0 ¼ H 0 � ðF 0Þ2 ¼ a2ðe2 � c2ðESÞÞ � 2abeþ b2:

By combining these equalities, we get ae ¼ 2b. Moreover, we have

OF 0 ¼ OP 0 ðF 0ÞjF 0 ¼ aH 0jF 0 � ðpjF 0 Þ�OP2ðbÞ ¼ OQ2ða� bcÞ

for some positive integer c. It follows that a ¼ bc and then ce ¼ 2, hence c ¼ 1
and e ¼ 2. Then we get ES GOP2ð1Þl2, which is a contradiction since f jp�1ðSÞ
is a quadric fibration. Thus we infer that pjF is an isomorphism and X GQn.
By restricting KP ¼ �2H þ p�ðKX þ det EÞ to F , we get det E ¼ OQ nð2Þ. Hence

EGOQ nð1Þl2 by the argument in [YZ, p. 679,(4.3)].
In Case (d), Y is a smooth surface and ðP;HÞG ðPY ðE 0Þ;HðE 0ÞÞ for an

ample vector bundle E 0 on Y . Similarly as in Cases (b) and (c), for a fiber
ZGP r�1 of p, we see that f jZ : P r�1 ! Y is finite. Hence r ¼ 2 or 3. When
r ¼ 3, f jZ is surjective; also pjF : F ! X is surjective for a fiber F GPn of f . It
follows that Y GP2 and X GPn by [Lz,(4.1)]. Hence, by [Sa, Theorem A], we

get PGPn � P2 and then EGOP nð1Þl3.
When r ¼ 2, we have dim pðF Þ ¼ n� 1, hence dim W a 1. We show that

the case dim W ¼ 0 does not occur. If dim W ¼ 0, then we get rðY Þ ¼ rðXÞ
¼ 1. It follows that Y GP2 since Y is covered by rational curves fCx :¼
f ðp�1ðxÞÞ j x A Xg. By an argument similar to [YZ, p. 683, Lemma 10], we infer
that f jp�1ðxÞ : P

1 ! Cx is birational for every x A X . Then we have

ðKY þ det E 0ÞCx ¼ f �ðKY þ det E 0Þ � p�1ðxÞ ¼ ðKP þ nHÞ � p�1ðxÞ ¼ n� 2;

hence ðd � 3Þc ¼ n� 2, where c :¼ deg Cx and d :¼ c1ðE 0Þ. Since E 0 is ample,
we have db rank E 0 ¼ n. If cb 2, then d ¼ n ¼ 4 and E 0jl GOP1ð1Þl4 for every
line lGP1 in Y GP2. It follows that E 0 GOP2ð1Þl4 and PGP2 � P3, which is
a contradiction since p : P ! X is a P1-bundle. Thus c ¼ 1 and d ¼ nþ 1.
Then we have E 0jl GOP1ð1Þln�1 lOP1ð2Þ, hence E 0 GOP2ð1Þln�1 lOP2ð2Þ. A

natural surjection E 0 ! OP2ð1Þln�1 determines a divisor E :¼ PðOP2ð1Þln�1Þ A

sectional geometric genera for ample vector bundles 83



jH � f �OP2ð2Þj on P. Then we get E � p�1ðxÞ ¼ �1, hence p�1ðxÞHE for all
x A X , which is a contradiction too.

Thus we have dim W ¼ 1 and a general fiber D of j is pðFÞ. Since
F GPn�1, we see that DGPn�1 and j is a Pn�1-fibration. We consider an n-
dimensional scroll ðPDðEDÞ;HðEDÞÞ that is also a scroll over f ðp�1ðDÞÞGP1

via f jp�1ðDÞ. By [Sa, Theorem A], we get PDðEDÞGPn�1 � P1 and then ED G

OP n�1ð1Þl2. We infer that there exists an ample line bundle A on X such that
ðD 0;AD 0 ÞG ðPn�1;Oð1ÞÞ and ED 0 GOP n�1ð1Þl2 for every fiber D 0 of j by an argu-
ment similar to [F2,(3.3)]. Then we get ðX ;EÞG ðPW ðFÞ;HðFÞn j�GÞ for the
vector bundles F :¼ j�OX ðAÞ and G :¼ j�ðEnOX ð�AÞÞ on W .

In Case (e), we have n ¼ 3, r ¼ 2 and f : P ! Y is a simple blow-up that is
a component of the reduction morphism: ðP;HÞ ! ðP4;Oð2ÞÞ. For the excep-
tional divisor EGP3 of f , we see that pjE : P3 ! X is finite surjective. Hence
X GP3 and then rðYÞ ¼ rðX Þ ¼ 1. Thus f is a simple blow-up of ðP4;Oð2ÞÞ;
Y GP4, H ¼ f �OP4ð2Þ � E and KP ¼ f �OP4ð�5Þ þ 3E. For every fiber ZGP1

of p, we have HZ ¼ 1 and KP � Z ¼ �2. It follows that EZ ¼ 1, hence E
is a section of p. Since ðpjEÞ

�ðKX þ det EÞ ¼ ðKP þ 2HÞjE ¼ OP3ð�1Þ, we get
det E ¼ OP3ð3Þ. Then we have Ejl GOP1ð1ÞlOP1ð2Þ for every line lGP1 in
X GP3, hence EGOP3ð1ÞlOP3ð2Þ.

Thus we obtain that ðX ;EÞ is one of the cases ðiÞ; . . . ; ðvÞ of our theorem.
Conversely, by (1.2), we find that g2ðPX ðEÞ;HðEÞÞ ¼ h2ðOX Þ ¼ 0 for all the cases
ðiÞ; . . . ; ðvÞ. r

Remark 3.3.1. We see that the case (v) of (3.3) exists for an arbitrary
smooth curve W . Indeed, let F (resp. G) be an ample and spanned vector
bundle of rank n (resp. 2) on W . We set ðX ;EÞ :¼ ðPW ðFÞ;HðFÞn j�GÞ and
ðY ;E 0Þ :¼ ðPW ðGÞ;HðGÞn q�FÞ, where j : PW ðFÞ ! W and q : PW ðGÞ ! W
are the bundle projections. Then E is ample and spanned, and ðPX ðEÞ;HðEÞÞG
ðPY ðE 0Þ;HðE 0ÞÞ, hence g2ðPX ðEÞ;HðEÞÞ ¼ pgðYÞ ¼ 0 by (3.1.2).

Corollary 3.4. Let X be a projective manifold of dimension nb 3 and E an
ample and spanned vector bundle of rank rb 2 on X. Then g2ðPX ðEÞ;HðEÞÞb 0,
and equality holds if and only if ðX ;EÞ is one of the cases of (3.3).

Remark 3.4.1. The classification of pairs ðX ;EÞ with giðPX ðEÞ;HðEÞÞ ¼ 0
and ib 3 is yet to be studied (cf. (1.4.3)).

Appendix. Lanteri’s geometric genus

A. Lanteri [L] introduced a notion of geometric genus for ample vector
bundles.

Definition A.1 ([L,(1.0)]). Let X be a projective manifold of dimension n
and E an ample vector bundle of rank r < n on X with the following property:

hironobu ishihara84



(*) There exists a section s A H 0ðX ;EÞ whose zero locus Z :¼ ðsÞ0 is a sub-
manifold of X of the expected dimension n� r.

Then the geometric genus pgðX ;EÞ of the pair ðX ;EÞ is defined as pgðZÞ.

Remark A.1.1. When r ¼ 1, E is an ample line bundle L and we see that
pgðX ;EÞ ¼ gn�1ðX ;LÞ. Furthermore, when E ¼ Llr is the direct sum of r copies
of an ample line bundle L, we see that pgðX ;EÞ ¼ gn�rðX ;LÞ. When r ¼ n� 1,
pgðX ;EÞ is the curve genus of ðX ;EÞ (see [LMS]).

Remark A.1.2. When E is spanned, the property (*) is satisfied by Bertini’s
theorem. In that case, the definition of pgðX ;EÞ does not depend on the choice
of a section s A H 0ðX ;EÞ since the property (*) is an open condition.

The following result is corresponding to (1.4), (2.1.2) and (3.1.3).

Proposition A.2 ([L,(1.1)]). Let X be a projective manifold of dimension n
and E an ample vector bundle of rank r < n on X with the property (*) in (A.1).

Then pgðX ;EÞb hn�rðOX Þ, and equality holds if h jðKX n5r�j
EÞ ¼ 0 for every

integer 0a ja r� 1.

We have a relation between pgðX ;EÞ and gn�rðX ; det EÞ as follows.

Theorem A.3. Let X be a projective manifold of dimension n and
E ¼ 0r

j¼1
Lj the direct sum of ample and spanned line bundles Lj on X. Suppose

that 1 < r < n. Then gn�rðX ; det EÞb pgðX ;EÞ, and equality holds if and only if
gn�rðX ; det EÞ ¼ pgðX ;EÞ ¼ hn�rðOX Þ.

Proof. Since every Lj is ample and spanned, we can take a general member
Dj of jLjj such that Z :¼ 7r

j¼1
Dj is a submanifold of X , dim Z ¼ n� r and

pgðX ;EÞ ¼ h0ðKZÞ. On the other hand, we can take general members Ek of
jdet Ej ð1a ka rÞ such that Y :¼ 7r

k¼1
Ek is a submanifold of X , dim Y ¼

n� r and gn�rðX ; det EÞ ¼ h0ðKY Þ. For every integer 1a la r, we set Zl :¼
7 l

j¼1
Dj and Yl :¼ 7 l

k¼1
Ek. We may assume that Zl ;Yl and Ys VZt ð1a s,

t A Z; sþ t ¼ lÞ are submanifolds of X of dimension n� l. Then we have
h0ðKY1

Þb h0ðKZ1
Þ because

h0ðKZ1
Þ ¼ h0ðKD1

Þ ¼ h0ðKX þ L1Þ � h0ðKX Þ þ h1ðKX Þ
and

h0ðKY1
Þ ¼ h0ðKE1

Þ ¼ h0ðKX þ L1 þ � � � þ LrÞ � h0ðKX Þ þ h1ðKX Þ:
We note that if h0ðKY1

Þ ¼ h0ðKZ1
Þ, then h0ðKX þ det EÞ ¼ 0, otherwise we get

h0ðKX þ L1Þ ¼ h0ðKX þ L1 þ � � � þ LrÞ > 0 and

h0ðKX þ L1 þ � � � þ LrÞb h0ðKX þ L1Þ þ h0ðL2 þ � � � þ LrÞ � 1 > h0ðKX þ L1Þ;
which is a contradiction. Similarly we find that
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h0ðKY2
Þb h0ðKY1VZ1

Þb h0ðKZ2
Þ;

h0ðKY3
Þb h0ðKY2VZ1

Þb h0ðKY1VZ2
Þb h0ðKZ3

Þ;
. . . ;

h0ðKYr
Þb h0ðKYr�1VZ1

Þb � � �b h0ðKY1VZr�1
Þb h0ðKZr

Þ:

Hence we get gn�rðX ; det EÞ ¼ h0ðKYr
Þb h0ðKZr

Þ ¼ pgðX ;EÞ. Suppose that
gn�rðX ; det EÞ ¼ pgðX ;EÞ. Then we infer that h0ðKYr�1

þ det EYr�1
Þ ¼ 0 similarly

as above. From an exact sequence

0 ! OðKYr�1
Þ ! OðKYr�1

þ det EYr�1
Þ ! OðKYr

Þ ! 0;

we get h0ðKYr
Þ ¼ h1ðKYr�1

Þ. Since h1ðKYr�1
Þ ¼ hn�rðOYr�1

Þ ¼ hn�rðOX Þ, we see
that gn�rðX ; det EÞ ¼ hn�rðOX Þ. r

Remark A.3.1. Suppose that r ¼ n� 1. In general, g1ðX ; det EÞ > pgðX ;EÞ
for all ample vector bundles E on X because

2g1ðX ; det EÞ � 2 ¼ ðKX þ ðn� 1Þc1ðEÞÞc1ðEÞn�1

> ðKX þ c1ðEÞÞcn�1ðEÞ
¼ 2pgðX ;EÞ � 2:

We note that the curve genus pgðX ;EÞ is defined for all generalized polarized
manifolds ðX ;EÞ by the last equality above. Pairs ðX ;EÞ with pgðX ;EÞ ¼ h1ðOX Þ
have been classified by [LMS, Theorem] when E is ample and spanned.

Remark A.3.2. Suppose that r ¼ n� 2 in (A.3). Because of (2.3), we see

that g2ðX ; det EÞ > pgðX ;EÞ except for ðP4;Oð1Þl2Þ. Moreover, the di¤erence is

not necessarily small. When ðX ;EÞ ¼ ðP2 � P2;Oð1; 1Þl2Þ, for example, we find
that pgðX ;EÞ ¼ 0 and g2ðX ; det EÞ ¼ 9 by simple computations. Pairs ðX ;EÞ
with pgðX ;EÞ ¼ h2ðOX Þ have been classified by [L,(3.2)&(3.3)].
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