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Abstract

= =

Let {&,},5o denote an ergodic Markov chain with a finite state space E =
{1,2,...,s}. For each j keZ, let {Y,{k}nzl be a sequence of iid. {—1,1}-valued
random variables which are independent of {£,}. We define the process {S,},, by

So=0and S,=S,_1 + Y,f" % for n>1. Let a be a positive integer. We denote
by T\ the first exit time of the process from the interval [—x,a — x| for each x =0,
I,...,a. We give an asymptotic behaviour of the transition functions P/.(k”)(x7 y) =

P{x+S,=y;Tx >mé&, =k|& =j} as n— oo for each x,ye[0,a] and all j, k € E.

1. Preliminaries and the main result

Let (Q,7,P) be a probability space. Let {¢,},., denote a Markov chain
with a finite state space E = {1,2,...,s} with a transition matrix Q = (qx); scz-
Let {Y,{"}iff = be a family of independent random variables which are indepen-
dent of {&,}. We assume that {Y/¥},_, is the sequence of identically distributed

random variables for each j keZE. We set
So=0, S,=S,1+Y>% fornx>l.

The process {S,},.o is known as a random walk defined on a finite Markov
chain. Limit theorems for such processes were treated, e.g., by Keilson and
Wishart (1], and by Miller [2]. Takenami [5] proved local limit theorems for a
class of periodic Markov chains, realizing it as such a process.

Let a be a positive integer, and denote by [0,«] the interval consisting of the
integers 0,1,2,...,a. We set Ty =inf{n > 0|x+ S, ¢ [0,a]} for each x € [0,d],
the first exit time from the interval [0,a]. Set

(1.1) PP (x,y) = P{x+ Sy =y Ty > m; &, = k| & = j}

for each x,ye[0,a] and all j keE. We are interested in an asymptotic
behaviour of (1.1) as n — oco. A corresponding result for simple random walk
may be found, e.g., in P21.2 of Spitzer [4].

We will consider our problem under the following assumptions.
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ASSUMPTION 1. @ is ergodic, that is, irreducible and aperiodic.

AssuMPTION 2. The random variables Y]jk take only two values +1 and —1
with positive probabilities ;. and S =1 — ay, respectively, for all j,k € E.

AssumpTION 3. There exists a positive constant ¢, which does not depend on
J, such that ¢ = P{ Yf‘]fl =1|& =/} for all jeZE.

Set A = (qjx%u); ez and B = (qPji); rcz- By Assumptions 2 and 3 we see
that N B

(1.2) c= qukajk and 1-c= qukﬁjk
keZ kel
for all je&E. We define the s x s orthogonal matrix

U= (u,u,...,u,
5

. . —_——
of which the column vectors are given by u; = +/1/s(1,1,...,1)" and
! s—1—1
1 N —_——
(0,0,...,0,—s+/+1,1,1,...,1)

for 0 </ < s— 2, where the superscript * denotes the transpose of a matrix or a
vector. Set

(1.3) C=U*AU and D= U*BU.
Then by (1.2) the matrices have the forms
1 s—1

A~ /=

Here C); and D), are (s— 1)-dimensional row vectors, C, and Dy, are
(s — 1) x (s — 1) matrices. Note that ¢;; =c and dj; =1 —¢. We introduce the
following matrices:

0 1 2 a—1 a

0 C11 0 0 0 0

di 0 cn 0 0 1
G = 0 d11 0 0 0 2

0 0 0 0 C11 a—1
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0 1 a—1 a
0 Cp 0 0 0
Dy, 0 0 0 1
G12 = 0 D]z 0 0 2
0 0 0 C12 a—1
0 0 Dy 0 a
and
0 1 a—1 a
0O Cxn o o 0
Dy O (0] (0] 1
G22 = 0] D22 0] 0] 2
(0] 0 0] sz a—1
(0] 0 s Dzz 0] a

where 0 denotes the (s — 1)-dimensional row vector with all entries equal to zero
and O denotes the (s — 1) x (s — 1) null matrix. Note that Gy, is an (a+ 1) x
(s—1D(a+1) matrix and Gy is an (s—1)(a+1)x (s—1)(a+1) matrix.
Denote by ¢;i(x, y) the (x,y) entry of Gyj, and by Gia(x, y) and Gxn(x,y) the
(x, y) submatrix in Gy, and Gy, respectively. Let u denote the Perron-Frobenius
eigenvalue of Gj;. Then we see that

1/2 5172

(1.4) = 2¢%d)],

where o is given in (2.1). See, e.g., P21.1 of Spitzer [4]. Set
1 -1

(1.5) Hy = (1-}-1022) :

By (3.5), we see that the right hand side of (1.5) exists if Assumptions 1 through 3
are satisfied. We shall represent it in the following form:

sz(o, 0) 1'122(07 1) cee HZQ(O, a)

Hyy — sz(l,()) H22(171) Hzg(l,a)
22 T ?

Hx(a,0) Hxn(a,1) --- Hxn(a,a)

where H»(x,y) is an (s — 1) x (s — 1) matrix for each x, y € [0,a]. We set, for
each x,y e |0,d],
i (x, y) = 2u(x)uo(y)ey ™ di
and
1
(ha(x, ), hs(x, ) = > hl(x’x')/—lGlz(x'7x”)H22(x”7y)7

x',x"€0,a]
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where vo(x) is given in (2.2). Define the s-dimensional row vector

h(x7 y) = (hl(x> y)>h2(x7 )/)7 s 7hé’(xa y))

for each x,y€[0,q].
Now we state our main theorem.

THEOREM 1. Suppose that Assumptions 1 through 3 are satisfied. Then we
have, for each x,y € |[0,a] and all j k€&,

(1.6) Pj(k")(x7 y) = {”"(\/ 1/sh(x, y)ui +o(1)) if n+y—x is even,
0 otherwise.

Here the inner products h(x, y)u are strictly positive for each x,y € [0,a] and all
Jj,k€eE, and o(1) tends to zero as n — oo.

In Section 2, in order to prove Theorem 1, we introduce the sequence of
lemmas. In Section 3, we prove Theorem 1.

2. Some lemmas for Theorem 1

In this section, we introduce some lemmas on which our proof of Theorem 1
is based.
We set, for each x,y€[0,q] and n > 1,

m
Fn(xvy) = {(Zly'~~atn)e{_lal}”|x+ Z tm/E[O,a],l <m<n-— 17

m'=1

x+itm/:y}

m'=1

and y,(x,y) = #L,(x, ). Put

(2.1) i,:coszi;

and

(22) UZ(Z/) _ )a i 5 sin (Z+i)—’(_2;+ 1)7[

for each z,z' €[0,a]. Using P21.1 of Spitzer [4], we have the following lemma.

LemMma 1.

Tu(X, ) = Z (222)"02(x)0=(»)

z€|0,4]

for each x,y€[0,a] and n> 1.
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LEMMA 2. Let k be any eigenvalue of Gy. Then u > |k|, where u is the
Perron-Frobenius eigenvalue of Gy given in (1.4).

Proof. Define the s(a + 1) x s(a + 1) matrix
0o 1 2 a—1 a
O 4 0 - o O 0
B 0 4 - o 0 1
p—|lo B o - o ol 2
o 0 O - O A |a-1
0O 0 O B o a

where the O is s x s null matrix. By Assumption 1 we may see that P is
s(a+1) x s(a+ 1) non-negative irreducible matrix with period 2. For each
z€[0,a], we define the s-dimensional column vector w. = (d; /c11)2/200(2)~

(1,1,...,1)" and s(a + 1)-dimensional column vector
wo
Wi
w =
Wa

Then u is an eigenvalue of P, and w is a right eigenvector associated with .
Since u is positive and w is non-negative, u is the Perron-Frobenius eigenvalue of
P (See, e.g., Seneta [3] p. 23). Define the s(a+ 1) x s(a+ 1) matrix J by

0 1 2 a—1 a
u o o - 0] (0] 0
O U O 0] (0] 1
O O O U O|a-1
O O O 0] U a
Then we have
0o 1 2 a—1 a
O C O (0] 0] 0
D O C (0] 0] 1
(2.3) O D O (0] 0] 2

J*PJ =

Cla-1
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By an appropriate permutation of the rows and the columns, the right hand side
of (2.3) may be reduced to the form

G Gn
O Gn)’
where the O is (s —1)(a+ 1) x (a+ 1) null matrix. Since x# and —u are eigen-

values of Gy; and u is the Perron-Frobenius eigenvalue of P, we may see that
u> x| ]

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. Then there exist
positive constants ny and ¢, 0 < ¢; < 1, such that, for each x, y € [0,d], all j,k and
k' € E,

P/(l:l/) (X, y) < l
PP (x,y) €

when n>ny and n+y — x is even.
Proof. By Assumption 1, there exists a positive constant n{ such that, for
all j keZ, qj(.,'z) >0 when n >nj. Set nj =max{n{,a} and
(2.4) = min{Pj(,f‘)(x, »)|x,yel0,a);n +y—x is even; j, k € E}.
Then ¢; is strictly positive. Thus by (2.4)
POy =Y S P y)PR ()
j'ex y'€0,q]
n+y—y' is even
> P{T,>n—n|& =j}

when n > n; and n+y — x is even. Cleatly, Pj(,f)(x, y) < P{Tx>n—ny|& =Jj}.
Therefore the proof is complete. O

3. Proof of Theorem 1

We define the s x s matrix-valued function, for re {—1,1},
F(l):{c ?ftzl,
D ift=-1.
We may write, for re {—1,1},

1 s—1
PN
Su(t) | Fia(0)\ 1
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where F12(¢) is an (s — 1)-dimensional row vector-valued function and F» () is an
(s —1) x (s — 1) matrix-valued function.
For each x,ye[0,d] and n > 1, we define the s x s matrix-valued function

G(x.y)= Y F(n)---F(t).

tely(x,y)

Then it may be represented in the following form

1 s—1
=
o (x.0) | G\
3.1
G G(x, )
: G )(x ») }s—l
0
Here
911 X, y fll [1 fll(tn)v
tel,(x,y)
G§’§ (x,») Fy(tr)--- Fol(ty)
tel,(x,y)
and
n—1

32) G =" Y g x)Gu G T (", y),

m=0 x',x"e[0,a

where 9(1?) (x,y)=11if x=y, 0 otherwise, and Gég)(yg y) =1 if x=y, O other-
wise. Thus by (1.1) and (1.3) we have

(3.3) (P (x,9))j ez = UG (x, ) U”.

Let ||X|| = max; i|xp| for a matrix X = (xj). By Lemma 1

1
(34) L9 (6 ) = I, ) + (1)
as n — oo, when n+y —x is even. By Lemma 2,
3.5 Lew = o(p"
(3.5) T 22 (x,») o(p")

as n— oo for some p, 0 <p<1. Define the (¢+ 1) x (s—1)(a+ 1) matrix
G\ = (G%(x,)) | for n> 1. Then by (3.2) we have

x,y€(0,a

(3.6) Gt = ZGHGIZG;/’ G\Y Gy + GG

m=0



308 TOSHIYUKI TAKENAMI AND MICHIO SHIMURA

By (3.2) and (3.5)

| R
(3.7) lim —nGiz) exists.

n—oo lu

Therefore by (3.5), (3.6) and (3.7) we have

(8 Gy = Y )Gl ) Hn(x" y)

K x',x"e[0,a K
as n — oo, when n+y—x is even. Therefore by (3.1), (3.3), (3.4), (3.5) and
(3.8) the formula (1.6) holds.

We will show that h(x, y)u, are strictly positive for each x,y e [0,¢] and
all ke&E. By formula (1.6), we may see that h(x,y)ur >0. Suppose that
h(x, y)ue =0 for some x,ye0,a], keE. Since h(x,y) #0 and {u;}, = is an
orthogonal family in R’ h(x, y)u; # 0 for some k' e . Thus

P{x+S,=y;T.>mné&, =k'|& =}
P{x‘i’Sn:y;T‘c>n;én:k|éO :]}

as n— oo, when n+y—x is even. This contradicts Lemma 3. Therefore
h(x, y)ur > 0 for each x,ye[0,a] and all k€ E. The proof is complete. [
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