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PICARD CONSTANTS OF »n-SHEETED ALGEBROID SURFACES
KAZUNARI SAWADA

Abstract

In this paper we construct all the surfaces defined by n-valued entire algebroid
functions having at least n + 1 exceptional values. And we investigate the number of
exceptional values of entire functions on the surfaces. Furthermore we determine the
Picard constants of the surfaces under certain conditions.

1. Introduction

Let M(R) be the family of non-constant meromorphic functions on a Riemann
surface R.  We call a value, which is not taken by f € M(R), an exceptional value
of f. And let p(f) be the cardinal number of exceptional values of f € Mi(R).
Then we put

Z(R) = sup p(f),
feM(R)

which is called the Picard constant of R. We can prove that Z(R) >2 if R
is open and Z(R) =0 if R is compact. The Picard constant plays a very
important role in the theory of analytic mappings of Riemann surfaces. Indeed
Ozawa [7] proved that there exists no non-trivial analytic mapping of R into X
if 2(R) < 2(X).

An n-sheeted algebroid surface is the proper existence domain of an n-valued
algebroid function, which is defined by the following irreducible equation:

So(@)y" = SiE)y" "+ ()" S (2)y + (<1)"Su(2) =0,

where S;(z) (i=0,1,...,n) are entire functions with no common zero. An
algebroid function y is called transcendental if at least one of Si(z)/So(z)
(i=1,2,...,n) is transcendental and y is called entire if all the S;(z)/Sy(z)
(i=1,2,...,n) are entire. If R is an n-sheeted algebroid surface, then 2(R) < 2n
by Selberg’s theory of algebroid functions [14]. However it is very difficult in
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general to calculate Z(R) of a given open Riemann surface R, even an algebroid
surface.
In the case of 3-sheeted surfaces we have the following

THEOREM A (Ozawa-Sawada [8]). Let R be a 3-sheeted algebroid surface
defined by
P = 81(2)y* + $a(2)y = 83(2) = 0.
If p(y) =5, then we have
v = yp? 4 (e + y2)y — 3 =0,

where yy (#£0), y1, y2, v3 (#0) are constants and H(z) is a non-constant entire
Sfunction with H(0) =0. And its discriminant is

D =4y + Gyge + Liyoe™ + &,

where o (#£0),(1,(, are suitable constants.

THEOREM B (Ozawa-Sawada [8], Sawada-Tohge [13]).! Let R be the surface
described in Theorem A. If ({1,(3) # (0,0), then Z(R) = 5.

Furthermore in the case of 4-sheeted surfaces we have the following

THEOREM C (Ozawa-Sawada [9]). Let R be a 4-sheeted algebroid surface
defined by

¥y =81(2)p” + $2(2)y* — S3(2)y + Sa(z) = 0.

If p(y) =17, then we have

V=21 + (e + 32)y? — (ayoe + y3)y +y4 =0,

where yo (#£0), y1, y2, ¥3, y4 (#£0), a (#0) are constants and H(z) is a non-
constant entire function with H(0) =0. And its discriminant is

D = sy +nyyget +nyyge”

where n; (i=0,...,5) are suitable constants with nyns # 0.

+ e + nyoe™ + g,

TueOREM D (Ozawa-Sawada [9], Niino-Tohge [6]).> Let R be the surface
described in Theorem C. If (ny,15,13,14) # (0,0,0,0), then 2(R)=1.

In this paper we extend the above results for n-sheeted algebroid surfaces and
consider the following problems:

'Ozawa-Sawada [8] proved the above result under the condition that R is of finite order and
Sawada-Tohge [13] proved that the result remains valid without the order condition.

20zawa-Sawada [9] proved the above result under the condition that R is of finite order and
Niino-Tohge [6] proved that the result remains valid without the order condition.
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1. How many kinds of exponential functions are there in the defining
equation of an n-sheeted algebroid surface R? In other words, when does
there exist only one kind of exponential function in the defining equation
of R?

In Section 3 we construct all the surfaces defined by n-valued entire algebroid
functions y with p(y) >n+1 and give an estimation for the number of expo-
nential functions appearing in the defining equation (Theorem 1 and Corollary 1,
2 and 3).

2. Determine the discriminant of R.

In Section 4 we prove that the factor of all zeros of the discriminant of
R, the defining equation of which has only one kind of exponential function, is
representable as a polynomial with respect to the exponential function of degree
p(y) —2 (Theorem 2).

3. Find a representation of an entire function on R.

In Section 5 we give a representation for every entire function on R by
means of the defining function of R and some meromorphic functions on C.
Further we investigate the counting functions of poles of the meromorphic func-
tions (Theorem 3).

4. Is 2(R) decidable?

In Section 7 we show a relation between the number of exceptional values of
an arbitrary entire function on R and a covering property of R (Theorem 4 and
Corollary 4). Further we calculate #(R) under certain conditions (Theorem 5).

We assume that the reader is familiar with the Nevanlinna-Selberg theory
of meromorphic and algebroid functions and the notations: T'(r,f), m(r,f),
N(r,0,f), N(r,o0,f) and S(r, f) etc. (See [3], [4] and [14]).

2. Some lemmas

In this section we introduce some lemmas used in the following sections.
Let y be an n-valued algebroid function defined by the following equation:

F(z,y) :=y"= S1(2)y" "+ + (=1)"'S,1(2)y + (=1)"S,u(2) = 0,

where S; (i =1,2,...,n) are entire functions. Then o (€C) is not taken by y, if
and only if, the following entire function:

F(zya) =a" — S1(2)a" 4+ (=1)"' S 1 (2o + (=1)"S,(2)

has no zero. In this case we call « a finite exceptional value of y. Furthermore
o is called an exceptional value of the ‘first kind’ if F(z,o) = const. # 0 and o is
called an exceptional value of the ‘second kind’ if F(z,«) = exp H(z), where H(z)
is a non-constant entire function. We have the following

Lemma 1 (Rémoundos [11]). An n-valued transcendental entire algebroid
function has at most n— 1 exceptional values of the first kind and at most n
exceptional values of the second kind.
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For our construction of n-sheeted surfaces, the following result plays an
important role.

Lemma 2 (Niino-Ozawa [5]). Let o (j=1,2,...,m) be a set of non-zero
constants and g; (j=1,2,...,m) a set of entire functions satisfying

m
> ogi=1.
=1

Then we have

m

Z&(ng) <m-—1,

J=1
where 6(0,g;) denotes the Nevanlinna-deficiency.

For our investigation of exceptional values of entire functions on n-sheeted
surfaces, we need the following

Lemma 3 (Niino-Tohge [6]). Let H and L be non-constant entire
Sunctions with H(0) = L(0) =0, a,=b,=1, a, (u=0,1,...,m—1) and b,
(v=0,1,...,n—1) meromorphic functions with ay #0, by #0 and g a mero-
morphic function. Further suppose that

T(r,aﬂ):S(r,eH) u=01._....m—1,
T(r,b,) = S(r,et) v=0,1,....,n—1,
and
N(r,0,g) + N(r, 0,9) = o(m(r,e) + m(r,e*)) r— oo

outside a set of finite measure. If n>m>1,d = (m,n), m = pd, n = qd and the
identity

m

Zb exp(vL(z Za,, exp(uH (z))
holds, then we have one of the following two cases:
(I) exp(nL(z) +mH(z)) = bo(z)ao(z), 9(z) = bo(z) exp(—mH(z)),
bjy(z) = bo(z)a—j(z )exp(—g(nL( )+mH(z))> for j=0,1,2,....d,

W(2) =0 for p#0, 1p,2p,....dp =m,
W(2) =0 for v#£0, 1q,2q,...,dg=n;
(IT) exp(nL(z) —mH(z2)) = bo(2)/a0(2), ¢(z) = exp(nL(z) — mH(z)),

a(2) = ap(z )exp(d;j(nL(z) —mH(z))) for j=0,1,2,....d,

>R

S
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au,(z) =0 for u#0, 1p,2p,...,dp =m,
b,(z) =0 for v+#0, 1q,2q,...,dq =n.

3. Construction of n-sheeted surfaces

In this section we construct n-sheeted algebroid surfaces defined by the fol-
lowing irreducible equation:

(1) F(z,y) =" = Si(2)y" '+ + (—1)"71Sn,1y +(=1)"S,(z) =0,

where S; (i=1,2,...,n) are entire. Let us assume that the function y defined
by (1) has p finite exceptional values and p > n. In this case we have p(y) =
p+1 (=n+1), since y has no pole. Let b; (j=1,2,...,m) be the set of
exceptional values of the second kind of y and ax (k=1,2,..., p —m) be the set
of exceptional values of the first kind of y, where a; (k=1,2,...,p—m) and
by (j=1,2,...,m) are different from each other. By Lemma 1 we have 1 <
m<nand 0<p—m<n—1. From (1) we have

F(Z,bl) = b{l — S]b{’_l 44 (_1>nSn :ﬂleH](z)’

F(27 bm) - b,};l,l - Slb;l;l + -4 (—1)”Sn — mEHm(Z>,

2
) F(z,a)) =al — Siap ' + -+ (=1)"S, = oy,
F(Z,(lp_m) = a;ztm - Sl“;::;; +ot (_l)nsn = Up—m;
where B, (j=1,2,...,m) and o (k=1,2,...,p—m) are non-zero constants
and H; (j=1,2,...,m) are non-constant entire functions with H;(0) = 0.
First of all let us consider the case p=n. In this case, from (2), each

of Si(z) (i=1,2,...,n) is representable as a linear combination of 1 and el
(j=1,2,...,m). Without loss of generality we may assume that

Hi=H,=---=H, = Hf,

Hm1+l = Hm|+2 = 0 = Opyym, = Hz*v

Hm1+~~+m/,1+l = Hm]+~-»+m/,1+2 = 0 Edpygeqm, = H/*;

where / is an integer with | </ <m, H # H’ (i#j) and m; (j=1,2,...,7)
are integers with 1 <m; <m and m; +my +---+m, =m. Hence (1) is reduced
to

F(z,y) = P(y) + Q1(3)e™® 4+ 4+ Qs (y)e™'D =0,

where P(y) is a monic polynomial of y of degree n and Q;(y) (j=1,2,...,¢)
are polynomials of y with

degQi<n—1 and Q;#0 (j=1,2,...,7).
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Next let us consider the case p >n+ 1. From the first n 4 1 equations of
(2) we have

n H n—1 n—2 ] i T [0
by — pre™ by bi S 1
n H. n—1 n—2
b} — Bre™ b b R | -S 0
: : .o S, 0
n H, n—1 n-2 . —
by — e by bl R | s =
al — o al=t a2 1
a’ — a*’] a2 | n
L “nt1-m ntl-m  @yiiom  Yuil-m ] _(_1) \'S 10
The above equation has a non-trivial solution ‘[1,—S,S,,...,(=1)"S,]. Hence
we have
i n H, n—1 n—2 ]
by — fre™ by bi e 1
H -1 -2
Ry S
H -1 -2 _
det bl — e’ bl bl - 1]=0,
n n—1 n—2
ap —oq aj af S|
n n—1 n—-2
| D t—m — Fntl=m Gpyipy Gyyfm " 1 ]
and
m
i H; _
(3) > (~1)'Bdie™ + 49 = 0,
i=1
where
i n n—1 n—2 7
! b b! U |
n n—1 n—2
; b} ; |
— n n—1 n—2
Ay = det bl b b e 1,
n n—1 n—2
ay — ag aj aj R |
n n—1 n—2
_anJrlfm = Ontlem Gy Gyiom 1 |
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i bilfl b?*Z B |
bl"jl blnle B |
bz”+1l blﬂHZ T |
A; = det : : #0 (i=1,2,...,m).
bn—l pn=2 B |
aiil ai12 R |
_a;’;;]lfm agllzfm . e e 1_

If Ag # 0, we have

m

Zé(oaeHi) é m— 17

i=1

by (3) and Lemma 2. On the other hand we have 6(0,e”) =1 (i=1,...,m).
This is absurd. Therefore we have 4y = 0. In this case, dividing (3) by e, we
have

—BA) + Z ) B = 0.

If H; # H, for any i =2,3,...,m, then we have /4, =0 by Lemma 2. This
contradicts ;41 # 0. Therefore, without loss of generality, we may assume that
H,'EHl (i:2737...,m1),

I - int 2 < b .t.
my :integer (2 <m; < m) s {H,»séH1 (i=m+1,...,m).

Then we have

m

Z YBAi+ > (=1) B = 0.

i= i=m;+1

nmy

In this case we have ) l( 1))f,4;=0 by the similar way of above.
Furthermore, dividing (3) by e+~ we have

( )m]Jrlﬁn1|+1An11+l + Z ﬂzA eHL fm1 = =0.

i=mi+2
By the similar way of above, we may assume that

HiEHml+1 (i:m1+27'--aml+m2)a

dm, :integer (2 <my <m—my s.t.{ .
( ) Hi7_éHWl1+1 (l:m1+m2+17"'7m)7
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because of f,, .1 Am +1 # 0. Therefore, repeating this process, we may put

H=H,= ---=H, = H,
Hy1=Hpy2= - = Hypymy, =2 HS,

— — — — *
Hm1+‘“+l77/,1+1 = Hl‘)1]+"'+WI/,]+2 = = Mm+tmy, —- H/7

where / is an integer with | </ < [m/2], H # H; (i #j)andm; (j=1,2,...,7)
are integers with 2 < m; <m and m;+my+---+my, =m. In this case each

of Si(z) (i=1,2,...,n) is representable as a hnear combination of 1 and e’
(j= 1,2,...,/) by (2). Hence (1) is reduced to
(4) F(z,) = P(y) + Q1(»)e™D + -+ 0y (n)eD =0,

where P(y) is a monic polynomial of y of degree n and Q;(y) (j=1,2,...,¢)
are polynomials of y with

degQi<n—1 and Q;#0 (j=1,2,...,7).
In particular, in the case /=1, we have

F(z,y) = P(y) + O()e"® = 0,

where
m
=L =06)" m+nm+-+n,=n,
i1
P
= H —a)’*, i+l Al <n— ],
with a non-zero constant a, because that b; (j =1,2,...,m) are the exceptional
values of the second kind of yand a; (k=1,2,...,p—m) are the exceptional

values of the first kind of y.

Now let us consider the case 7 > 1 and investigate both of the sets of zeros
of P(y) and Q;(y), respectively. Firstly, substituting y =a;r (1 <k <p—m)
into (4), we have

F(z,ar) = Plax) + Qi(ax)e™ + -+ Qs(ar)e™ = o (#0).
By Lemma 2 and H; # H; (i #j), we have

(5) {Q/(ak) =0 forVj (12j=7),

Plag) = o,
for Vk (1 <k <p-—m). Let us substitute y=b; (1 <k <m) into (4). For
every k (I M) there exists only one i (1 <i</) such that m; +--- +

1+---+m;. And we have
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F(z,b;) = P(b) + O1(b)e™ + -+ Qs (bp)ef’ = pret’ #0.

By Lemma 2 and H; # H; (i #j), we have

P(by) =0,
(6) Oi(bi) =0 for j=1,2,....i—1i+1,... ./
Qi(br) = P

for Vk (1 <k <m). For the monic polynomial P(y) we have

Pby)=0 fork=1,2,...,m,
Play) =0 fork=12,....,p—m,

by (5) and (6). From the first n equations we can determine P(y) and the
remaining p — n constants are decided by the following manner:

o =Play) (k=n—m+1,....,p—m).

=1,2,...,p—m,
L2,...,my 4 +m_,m +--+m+1,...,m,
Oi(by) =P k=m+---+m_+1,....m+---+my,

by (5) and (6). If the condition deg Q;j+ 1 =<p—m; holds, then we have
Qj(y) = 0 by the first p — m; equations. This is absurd. Hence we may assume
that deg Q; +1 > p —m;. In this case from the first deg Q;(y) + 1 equations we
can determine Q;(y) and the remaining p — deg Q; — 1 constants are decided by
the following manner:

ﬁk = Qj(bk)7

for my+---+mj_y + (deg Q; + 1—(p —m;))+1 <Vk <my + ---+m;. Further-
more if there exists a set of / polynomials from P and Q; (j=1,2,...,/),
which has a common zero, say ¢, with ¢ #a; (k=1,2,...,p—m) and ¢ # b;
(i=1,2,...,m), then c is a finite exceptional value of y, which is different from
ar and b;. This is absurd. Hence every set of / polynomials among the 7 + 1
polynomials P and Q; has no common zero, which is different from a; and b;.

Consequently we have the following result, which is a characterization of the
n-sheeted algebroid surfaces R with 2(R) >n+ 1

THEOREM 1. Let y be an algebroid function defined by

F(27 y) :yn - Sl(z)yn_l +eee (—1)’1715,1,1)/4- (—l)nSn(Z) =0.
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If the entire algebroid function y has p (=n) finite exceptional values, that is
p(y)=p+1=n+1, then F(z,y) =0 coincides with

F(z,p) = P(y) + Q1(»)e™ O -+ 0/ ()" =0,

with non-constant entire functions H;(z) of H(0)=0 (j=1,2,...,/) and

m

P(y) =[] —b)"P(y),

i=1

p—m m o bi i B
0i(») =[]y —a)"* W}Eﬁ” ) ~0i(») (G=12,....7),
k=1 Hi:m]+~~+mj,1+l(y - bi)'/
where ar (k=1,2,...,p—m) and b; (i=1,2,...,m) are different constants, m
is a positive integer with m <n, { is a positive integer such that ¢ <m if
py)=n+1and £ <[m/2] if p(y)=n+2, n (i=1,. ), (J'—l 0),
nx (j=1,....00k=1,....,p—m)and ¢;; (j=1,.. /l—l )areposztwe

integers with Zl’ i <, Zj;l m; =m and

m my+--+mj

(7) }:mk+§:4,f Y Gusn—1 (j=1,....0),

i=my-tmy_+1

~( ) is a monic polynomial of degree n— (n; +---+n,) with P(ak) #0 and

P(b )#0 QJ( Y (j=1,...,¢) are polynomzals of degree degQ <n—-1-

i+ 20 40— Z:m,;:'i’m/ 1 t.i) with Qj(ar) # 0 and Q(b;) #0 and
every set of [ polynomials among the /+1 polynomials P(y) and 0;(y)
j=1,...,7) has no common zero.

In particular if £/ =1, then F(z,y) =0 coincides with

(E) F(z,y) = P(y) + Q(y)e" =0,
where H(z) is a non-constant entire function with H(0) =0 and
m
:H(y_bi)niv np+ny+---+n, =n,
-1
p=
:aH —ak/", /1+/2+--~+/p,m£n—1,
k=1

with a non-zero constant a.
In order to complete our result we prove the following

LEMMA 4. Let

F(z,p)=y"=Si(@)y" " 4+ (1) S1(2)y + (= 1)"S,(2),
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be a polynomial of y of degree n with entire coefficients S; (i=1,2,...,n). If
there exist different n constants a; (j=1,2,...,n) such that

F(Za a/) # 07
then F(z,y) is irreducible.

Proof. Let us suppose that F(z, y) is not irreducible. Then we may put

= HFk(Za y)>
k=1

where Fi(z,y) (k=1,2,...,m) are m irreducible polynomials of y. Further-
more we may put

1y

Fizy) = -fey) (e=1.2,....m),

J=1

where n (k=1,2,...,m) are positive integers with > ", mc=n and f;;
(j=1,2,...,n,) are determinations of the algebroid function defined by
Fi(z,») =0. In this case F(z,y) = [[;L, [[*;(y —fi,) is the factorization of
F(z,y) over the field of algebroid functions. Hence every fi ; has no pole
because that all coefficients of F(z,y) are entire and the coefficient of y" of
F(z,y) has no zero. Therefore all coefficients of Fi(z, y) are entire because that
every coefficient of Fi(z, y) is a symmetric expression of fi; (j=1,2,...,n).
Furthermore let y; be the algebroid function defined by Fi(z,y) =0
(k=1,2,...,m), then y; (k=1,2,...,m) are entire, that is, every y; has no
pole. Now substituting y = a; we have

m
za, H zaj

Then we have Fi(z,a;) #0 (k=1,2,...,m) because of F(z,a;) # 0. Hence we
have

n+1< min p(y) <2 min n <n.
I<k<m I<k<m

This is absurd. Q.E.D.

Every equation F(z, y) = 0, satisfying the conditions described in Theorem 1,
is irreducible by Lemma 4.

An estimation for 7, which is the number of exponential functions appearing
in the defining equation of the surface described in Theorem 1, is given by the
following

COROLLARY 1. Let p(y) be the number of exceptional values of an n-valued
entire algebroid function y and m be the number of exceptional values of the second
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kind of y. Then we have

m
8 (< ———.
® p(y)—n
Proof.  From (7), we have
p—m m my+--+mj;
n=1z D matd Gim o D> i
k=1 i=1 i=my 4 4mj_+1

>p—m+m—-—mi=p—m; (j=12,...,7).
Therefore we have
l
(n=1)=tlp=Y mi=t(p—m,
=1

and the desired result because of p =p(y)— L. Q.E.D.

The following two results give us some sufficient conditions for / = 1, where
¢ 1s the number of exponential functions appearing in the defining equation of the
surface described in Theorem 1.

COROLLARY 2. Let p(y) be the number of exceptional values of an n-valued
entire algebroid function y and m be the number of exceptional values of the second
kind of y. If m <min(2(p(y) —n),n+1), then we have £ = 1.

Proof. By Lemma 1 we have m <n+ 1. And by (8) and the assumption,
we have / <m/(p(y) —n) <2 and /= 1. Q.E.D.

CoOROLLARY 3. Let p(y) be the number of exceptional values of an n-valued
entire algebroid function y. If p(y) > 3n/2, then we have ¢ = 1.

Proof. By (8), Lemma 1 and the assumption, we have

m n
/< =2
=) —n " dmj2—n

Hence we have 7 = 1. Q.E.D.

In 1944 Dufresnoy [2] gave the sufficient condition for / =1, described in
Corollary 3, by the different way from that given above. The following examples
show us the sharpness of these corollaries.

Example 1. Firstly let us consider the case n=4. If p(y) =7 (>3n/2),
then we have / =1 by Corollary 3. In the case p(y) =6, if m <3 (<2(6 —4)),
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then we have / =1 by Corollary 2. If m =4, then we have / <4/(6 —4) =2
and the following example:
4
EII i) + A1(y = bi)(y = b2)(y — @)

+ Ax(y — b3)(y — ba)(y

where a,b; (j=1,2,3,4) are different constants and A;,A, are non-zero con-

_ a)eHz(Z) =0,

stants.
=5. If p(y) =8 (>3n/2), then

Example 2. Next let us consider the case n = 5
we have / =1 by Corollary 3. In the case p(y) =7, if m <3 (<2(7-15)), then
5)=2 and

we have /=1 by Corollary 2. If m =4, then we have / <4/(7 —
the following example:
4

)+ A1(y = bi1)(y = b2)(y — ar)(y — @)™

(y=b)?[[r -

j=2
+Ax(y = b3)(y = ba)(y — ar)(y — ar)e™™) =0,
where b; (j=1,2,3,4) and a;, (k =1,2) are different constants and 4, and 4,

F(z,y)

are non-zero constants.

Example 3. Lastly we consider the case n = 6. If p(y) > 10 (>3n/2), then
we have / =1 by Corollary 3. In the case p(y) =9, if m <5 (<2(9 —6)), then
If m =6, then we have / <6/(9 —6) =2 and

we have /=1 by Corollary 2.
the following example:

6 3
= H y—= b/) +A1 H(y—bj)(y _ al)(y _ ag)eH‘(Z)
j=1

J=1

6
+ A [ =)y — an)(y — ar)e™ =0,
j=4

6), a1 and a; are different constants and A4; and A, are non-

where b; (j=1,...,
zero constants.

4. Discriminants of n-sheeted surfaces
In this section we confine our attention to the surface defined by the fol-

lowing irreducible equation:

(E) F(z,y) = P(y) + Q(y)e™ =0,
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where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic
polynomial of y of degree n and Q(y) is a polynomial of y of degree at most
n—1. Let us put Y:=y, Z:=e"?) then (E) is reduced to

) P(Y)+Q(Y)Z =0.

Hence the algebroid function y defined by (E) is the composite function of the
algebraic function Y = Y(Z) defined by (9) and Z = e”®). Therefore the dis-
criminant of (E) is the composite function of the discriminant of (9) and
Z =", Furthermore each of branch points of y is a pre-image of a branch
point of Y(Z) under Z = ).

Now let Z =27, (#w0) be a zero of the discriminant of (9). In this case
the equation (9) with respect to Y has a multiple roots. Hence we have

{HU+QW%—Q
P'(Y)+Q'(Y)Zy =0.

Therefore Z = Z, is a multiple value of the following fractional function:

P(Y)
10 Z=———.
1o oY)
Conversely every finite multiple value of (10) is a zero of the discriminant of (9).
Now let Y = Y, be a multiple Zy-point of order ny. Then the function
(10) is representable as

Z=Z0+Z, (Y =Y)" 4+ (Z,, #0),
at Y =Y, and hence the function Y = Y(Z) has the following form:
Y = Y0+Y1(Z—Zo)l/n0+"' (Y1 #0),

at Z =Zy. Therefore Z =27, is a branch point of the algebraic function Y
of multiplicity ny. Hence the function Y takes different two values at differ-
ent two points on the proper existence domain of Y, lying over a point
Z # oo. Furthermore in this case the discriminant D of (9) has the following
form:

D=[{(Z~2zy)""y" " x D= (Z - Z0)""'D

This expression shows us that the order of zero Z =2, of D coincides with
the sum of orders of zeros of (d/dY)(—P/Q) at all the multiple Zy-points of
the function (10). Therefore the degree of D coincides with the degree of the
numerator of (d/dY)(—P/Q)

Next we calculate (d/dY)(P/Q). Let us put

{P(Y) = (Y—b])m(Y—bz)nz"'(Y—bm)n'“7
OY)=a(Y —a)" (Y —a)” - (Y —ay_n)"™,
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where ni +m+---+n,=n, (H1+0(o+- - +{p_y=¢{<n-1, a is a non-zero
constant and b; (i=1,2,...,m) and ax (k=1,2,...,p—m) are different con-
stants. In this case we have

i P(Y) H_;L(Y_bj)n‘/_l{(n —)aYP ' 4.}
dy 9(v) =y e .

Consequently, because of > ", (n; — 1) = n—m, we have
D=Z""(Ay 1 Z' " 4+ + Ay),

where Ao,...,A,_1 are constants. Therefore we have the following

THEOREM 2. Let
(E) F(z,) = P(y) + Q(»)e"® =0,

be an irreducible equation with respect to y, where H(z) is a non-constant entire
Sfunction with H(0) =0, P(y) is a monic polynomial of y of degree n and Q(y) is
a polynomial of y of degree at most n— 1. Then the discriminant of (E) has the
following form:

D ="M L4, 5 exp((p(y) = 2)H(2)) + -+ + Ao},

where p(y) is the number of exceptional values of the entire algebroid function y
defined by (E) and m is the number of exceptional values of the second kind of
y. Further A; (i=0,1,...,p(y) —2) are polynomials with respect to the finite
exceptional values of y with AoAp(,)—2 # 0.

Proof. We have already shown that the factor of the discriminant D of (E),
which gives all the zeros of D, is a polynomial with respect to e of degree at
most p—1 (=p(y) —2), where p is the number of finite exceptional values of
y. Let us assume that AgA4,,)—» =0. Firstly we have

(11) nT(r,y) = T(r,ef) + 0(1),

by (E). Secondly, by AoA,,)—» =0, we have

(12) AN (r,R) < N(r,0,D) < (p(y) - 3+ o(1)) T(r, "),
where
N(r,R) = 1Jr n(t,R) —n(O.R) ,  nOR)
nJo n

with n(r,R) = 3 g (4 — 1), where the summation }_ runs through all the branch
points in R(r), which is the part of R lying over |z| <r, and A indicates the
multiplicity of the branch point. By (11) and (12) we have
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N(r,R) < (p(y) =3 +o(1)T(r,y),
and

. . .N(rR)
lim inf =e<p(y) -3
r=eo T(r, ) )

Therefore Selberg’s deficiency relation [14] gives

Z&(wv) <2+e<p(y) -1,
where d(w,) is Nevanlinna-Selberg’s deficiency at w, of y. On the other hand we
have Y d(w,) = p(y). This is a contradiction.

In general the discriminant of the algebraic equation (E) is given as a
polynomial of the coefficients of (E). On the other hand each coefficient of
(E) is a polynomial of e/ and the finite exceptional values of y. Therefore
A; (j=0,1,...,p(y) —2) are polynomials of the finite exceptional values of
». Q.E.D.

5. Entire functions on R

In this section we confine our attention to the family of non-constant entire
functions on the n-sheeted algebroid surface defined by the following irreducible
equation:

(E) F(z,y) = P(y) + O(y)e"® =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic
polynomial of y of degree n and Q(y) is a polynomial of y of degree at most
n—1. We prove the following

THEOREM 3. Let R be the n-sheeted algebroid surface defined by (E). Let f
be an entire function on R. Then f is representable as

(13) [=h+hy+hy++ "
where f; (i=1,2,...,n—1) are meromorphic functions on C, all of which are

regular at any points z satisfying H'(z) # 0.

Proof. Let zp be a point satisfying H'(zp) # 0. And let us assume that at
least one of the functions f; appearing in the right hand side of (13) has a pole
at z=zy of order p;,. Putting p = maxg<;<,_ | p;, We may put

(14) f}(z):(zoii’—z))ﬁ-i---- (i=0,1,....n—1),

where o; 5 (i=0,1,...,n—1) are constants with

(ao,*ﬁa EER (xnfl.,—i)) # (0, R ,0)
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Case 1. We assume that there exists no branch point of R over zp. In this
case the algebroid function y defined by (E) has the following n determinations:

yj:aj,o—i—aj’l(z—zo)+---+aj,k(z—zo)k+--~ (j=12,...,n),

where a; ; are constants and a; o # gj0 (i #j), because that the function y is
the composite function of the algebraic function Y = Y (Z) defined by P(Y) +
O(Y)Z =0 and Z = ¢ the function Y takes different two values at different
two points on the proper existence domain of ¥ = Y (Z) over each point Z (#0o0)
and H'(z) #0 (see Section 4).

Substituting (14) into (13), we have

f=fo+hy+hy+ A+ foy) !

1
e ~ ~ . PEEERY =~ n_l _— PEEERY
= (00, —p + 01, —p@j,0 + -+ + 1,54y )(z )7 +
— 20
The function f has no pole. Hence we have
n—1 .
%, —p + o1, —pdj0 + oo,y =0 (j=1,2,....n),
and
2 | oo, —5
1 ap,o al,o al’o 0,—p 0
2 n—1 -
L ayo a3y -+ ayy o1, —p 0
2 n—1
1 an,0 dyo 0 dyo Ap—1,—p 0

The determinant of the coefficient matrix of the above equation does not vanish
because of a; o # a;0 (i #j). Therefore we have (o9 _z,...,%-1,—5) = (0,...,0),
which is absurd.

CaAse 2. We assume that there exists at least one branch point over z;. In
this case the function y defined by (E) has the following determinations:

vi=aio+ai(z—z0)"" o tar, ((z—z)"V M (i=1,2,..,0),
yi=ajo+a(z—z0)+-+auz—z2) + - (=12 n1),

where ny +---+n,+n,40=n and af, (i=1,2,...,/) and a;o (j=1,2,...,
nsy1) are different constants by the same reason as the above Case 1. Fur-
thermore a;/; #0 (i=1,2,...,/) because that the function y is the com-
posite function of Z =ef’®) and Y = Y(ZP defined by P(Y)+ Q(Y)Z =0,
Y=Y(Z) has the form: Y=Y, +Y{(Z—Z,)"/™ +--- (¥, #0) at every branch
point of Y (see Section 4) and H'(zy) # 0 by our assumption. By the similar way
of above, from (13) and (14), we have
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f=h+ v+ 4 Sy

oo —p o )
0’1’+...+{(1~+ }{a:OJraZI(Z_ZO)I/n,Jr...}

(z _20)13 z—29)?

0, 5 - |
+ {(zjzi))z3+"'}{a:OJra:l(Z_Zo)l/"' Jra;fz(z—zo)z/"' 42

An—1,—p * * i * i -
+{%—F"'}{ai,0+ai71(2_20)1/n _’_ai72(2_20)2/n +}n 1

z—12p)
C : +a/,C ! + (a2 Cy + al, C) !
=C—5+a,C1 =, i1 L2 dipt) ="
(z—z)? " (z — zo)P~1/m ! 2 (z — z)P~2/m
1
+(a] Gy + 24} 1a;,Cr + a4 C) T
’ Y ’ (z —zo)P ™"

1
* }’l, 1 * -
+ ( Chy1+--+ a,-,n,flcl) (z— Zo)p (ni— )/n,

where

k -1
Co=o0,p+ -+ " ++ 1 5aj",
k k—1 -1 -2
Cr=o1 5+ +op(1)ale ™+ a5 (" e

k k-2 -1 -3
Cr=op 5+ +oa5(5)ai 4+ o1, 5 ("5 )aiy" ™,

—n; 1
Cnifl = Op;—1,—p + -t o, —p (nilil)a:ok nitl + -+ On—1,—p (:71)61*0” i,

The function f has no pole. Therefore, by a;, #0, we see that all the Cj
should vanish at once, that is,

o0, o —pa o A oy, paiy T =0,

ot o (Dae T a5 (" a7 =0,

O, —p e O, fp(lzc) T lfp(nzl)“z*on P =0,

- | k * k—ni+1 [ n—1 * N—H; __
O‘n,-fl.,fp‘k"‘+°‘k,fp(n,71)azo + +°‘nfl-fp(n,v71)ai,o =0,
and we have

I[O((),,i, O(l,,i, O(z,,i, 0(37,13 OC,,,L,I}]-IAZI[O 0 0 O O],
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where
[ ) « 3 v k n—1 1
1 ay o ap o aj o ai 9 ap o
2\ o« 3\ o« 2 K\ o« k-1 n—1 x n—2
0 1 (1)“1 0 (1)”1 0 (1)“1 0 ( 1 )al,o
k x  k—nj+1 n—1 ® N—n
0 0 1 (nl—l)al,o (nl—l) 1,0
* * 2 * 3 x k * n—1
4 1 aso aso as0 as o as0
- 2 * 3 x 2 k * k—1 n—1 * n—2
0 (1)"/,0 (1)“/,0 (1)”/,0 ( 1 )afO
. . k x k—ns+1 . n—1 * N—nNy
0 0 1 (n/fl)a/,O (n/fl)“/,o
2 3 k ~1
1 ai,0 a1 o aj o ai o ai’y
2 3 k n—1
L 1 Ane1,0 yyyy0 1,0 o 0,0 Y Q1,0 ]

It is easy to prove that det A4 # 0 because that af, (i=1,2,...,/) and

a0 (j=1,2,...,n,41) are different constants. Therefore =~ we  have
(o0, —p5 - - 0n—1,—p) = (0,...,0), which is absurd. Q.E.D.

Example 4. Let R be the n-sheeted algebroid surface, which is defined by
the n-valued entire algebroid function y defined by

yr=e"" — 1.
Then y has the following n branches:
yi=&z(1+ez+ez?+-2) j=0,1,2,....n—1,

at z =0, where ¢ =e?/" and ¢, (k=1,2,...) are constants. Furthermore let
us put

f=fo+fiv+-+frop" !

and

fi = k=0,1,2,....,n—1,

where Fy(z) (k=0,1,2,...,n—1) are single-valued entire functions. Then we
have
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. Fk V4
feyf = —zg‘ )

= fijk(Z)(l +Clz—|—6‘222+"‘)k Jj=01,....,n—1

fjkzk(l +ez+ ezt -)k

Therefore f is an entire function on R. Here we should notice that z=10 is a
zero of (z")" and also a pole of f; (j=1,2,...,n—1).

6. Transformation formula of discriminants

Let y be the algebroid function defined by

(E) F(z,y) = P(y) + Q(y)e" =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic
polynomial of y of degree n and Q(y) is a polynomial of y of degree at most
n—1. Let us assume that p(y) >n+ 1, where p(y) is the number of excep-
tional values of y. In this case (E) is irreducible by Lemma 4. Let R be the
algebroid surface of y. Furthermore let us assume that there exists an entire
function f on R such that p(f) >n+ 1. Then f is representable as

(15) f=Fo1+Fiiy+Foy*+- -+ F_ ",

where F;; (j=0,1,...,n—1) are meromorphic functions on C, all of which are
regular at any points z satisfying H'(z) # 0 by Theorem 3. Eliminating y from
(E) and (15), we have a suitable polynomial with respect to f of degree n.
Hence f is at most n-valued. Furthermore the defining equation of f is ir-
reducible by p(f) =n+1 and Lemma 4. Therefore f is just an n-valued al-
gebroid function. So let X be the n-sheeted algebroid surface of f. Now let
vk (k=1,2,...,n) be the n determinations of y. And let us put

fi=Foa+Fa+ B+ +Foyp ' (k=1,2,....n),

then f; (k=1,2,...,n) are n determinations of f. In fact for any determi-

nation f of f, there exists a curve Cy such that f is the analytic contin-
uation of f; along Cy. If y; is the analytic continuation of y, along C, then
we have f = Fy |+ Fi1yi+ F> 10} + Fo1ayr ! from fi =Fo1+ Fiap +
F271y12 + 4 Fn_l’lyffl. This shows f :f,

From (E) and (15), we have

[l=Fj+Fpy+FBpy + o+ Fap"™ (j=12...,n-1),
and

f}cj =Fo;+Fiyc+Fo v+ +Fyyp!
(Gj=12,....,n—1;k=1,2,...,n),
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where F;; (/=0,1,...,n—1;j>1) are suitable polynomials with F;;

(i=0,1,....,n—1) and e”. Hence we have
1 f fl2 fln—l
1 f fF - f!

ae |

U g2 e g

Loy vf - [0 Fa Foao o Foae
1oy p3 oyt |0 Ay Fio - Fia
1oyy p2 oo oy 0 Fyory Fuoioo oo Fuinen
The discriminants Dg and Dy of R and X are defined by
12 ) ne |2
1y y12 y?l 1 £ f12 fl 1
Ly 3 o VAR
Dr=|. . . . o Dx=|. . . . )
Uoyw y2oo ! Uofu f7 o
respectively. Therefore from (16) we have
(17) Dx = Dg - G2,
where
1 Foi Foo -+ Foni
0 Fi, Fio - Fiaa
G = det
0 Fog Foio o0 Fuga

This expression shows that G is meromorphic on C which is regular at any points
z satisfying H'(z) #0. Therefore we have

N(r,00,G) < N(r,0,H").

Let zp be a pole of G of order py. Then, from (17), zy is a zero of Dg because
that Dyx is entire. Let my be the order of zero zy of H'. Then from (17) we
have

2po < (p(y) = 2)(mo +1) < 2(p(y) = 2)my < 2(2n — 2)my,
by Theorem 2. Hence we have
(18) N(r,0,G) < (2n—2)N(r,0,H') = S(r,e™).
Here let us assume that X is defined by
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X F(z,f) = P(f) + Q(f)e"? =0,
where L(z) is a non-constant entire function with L(0) =0, P(f) is a monic
polynomial of f of degree n and Q(f) is a polynomial of f of degree <
n—1. By Dgr#0 and Dy # 0, (16) shows us that the function y is a function
on X. And by the similar way of constructing (16), we have

Loy ypo !
1 b2 y% y;’_l
(19) S :
I R
LA 2 - L Goa Goor - Gon-t
1 A - 00 G G, - G
1 fn n2 f;{lil 0 anl,l anl,Z anl,nfl
where G;; (i=0,1,...,n— 1) are meromorphic functions all of which are regu-

lar at any points z satisfying L'(z) #0 and G,; (/=0,1,...,n—1;j>1) are
suitable polynomials of G;; (i=0,1,...,n—1) and e£. From (16) and (19) we
have

1 Fyi Foo, -+ Fyaui 1 Go Gy - Goni
0 Fi; Fio - Fiu 0 Gy G, - G
. . . = I,
0 Fo11 Foi2 o0 Fuoam 0 Gioi1 Goor2 - Guoram
where I, is the unit matrix of degree n. Putting
1 Gy Goo> - Gou-i
- 0 Gi G - G
G = det ) ) ,
0 Gn—l‘l Gn—l,2 e Gn—l,n—l

we have G-G = 1. Therefore every zero of G is a pole of G. By the similar
way of proving (18), we have

(20) N(r,0,G) = N(r,0,G) < (2n — 2)N(r,0,L") = S(r,e").
7. Picard constants of R
By the results of Section 4, 5 and 6 we can prove the following

THEOREM 4. Let R be the n-sheeted algebroid surface defined by the following
irreducible equation:
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(E) F(z,y) = P(y) + O(y)e™ =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic

polynomial of 'y of degree n and Q(y) is a polynomial of y of degree at most n — 1,

A be the set of projections of all branch points of R and k (<n) be a positive

integer. Assume that there exist just k different points on R over every z e A.
Then we have

(1) p(f) =mp(n—k)+2,

for an arbitrary entire function f on R with p(f) > 3n/2, where my is a suitable
positive integer.

Proof. Let X be the n-sheeted algebroid surface defined by f. Then, by
Lemma 4 and the assumption p(f) > 3n/2 > n + 1, the defining equation of X is
irreducible and contains only one exponential function, say e\, by Corollary 3
and the assumption p(f) > 3n/2. And, by (17), (18) and (20) in Section 6, we
have

Dy = Dg - G2,
where G is a meromorphic function satisfying
N(r,oo,G):S(r,eH), N(V,O,G):S(I’,EL)

and Dp and Dy are the discriminants of R and X, respectively. Then G has no
zero and no pole by Lemma 3. Therefore the factor of zeros of Dy coincides
with that of Dg.

Now, by Theorem 2, Dy is representable as

mg

Dy = Ap(f)_zewmm) H(6L<Z) —&)",

Jj=1
where m and my; (>1) are non-negative integers, &; (j =0,1,...,my) are non-
N . o . . my o
zero constants and n; (j=1,2,...,my) are positive integers with > .7 n; =

p(f) —2. By the computations in Section 4, y is representable as
) =wo+on(z—z0)"™ + -+ (o #0),

at every branch point z, satisfying H'(z9) # 0 and y takes different two values
at different two points on R, lying over a point z satisfying H'(z) # 0. By the
assumption that there are just k different points on R over every z € A, Dg has no
zero other than an infinite number of zeros of order n — k. On the other hand
Dx has an infinite number of zeros of order n; (j=1,2,...,ms). Hence we
have nj=n—k (j=1,2,...,ms). And therefore we have

p(f) =my(n—k)+2,
which is the desired result. Q.E.D.
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An n-sheeted algebroid surface is called regularly branched if all its branch
points are of order n — 1. As a corollary of Theorem 4 we have the following

COROLLARY 4. Let R be the n-sheeted algebroid surface defined by the fol-
lowing irreducible equation:

(E) F(z,y) = P(y) + O(y)e"?) =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic
polynomial of y of degree n and Q(y) is a polynomial of y of degree at most
n— 1. Assume that R is regularly branched. Then we have p(f) = 2n for every
entire function [ with p(f) > 3n/2.

Proof. By (21) and the assumption that R is regularly branched, for every
entire function f with p(f) > 3n/2, there is an integer my such that p(f) =
my(n—1)+2. Since 3n/2 <p(f) <2n and n>2, my =2 must hold. Hence
we have p(f) = 2n. Q.E.D.

In 1973 Aogai [1] proved that 2?(R)=2n for every n-sheeted regularly
branched algebroid surface R with #(R) > 3n/2. Corollary 4 shows us the ex-
istence of no entire function f on R with 3n/2 < p(f) < 2n.

At last we prove the following

THEOREM 5. Let R be the n-sheeted algebroid surface defined by
(E) F(z,y) = P(y) + Q(»)e™? =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a monic
polynomial of y of degree n and Q(y) is a polynomial of y of degree at most n — 1.

We assume that p(y) > 3n/2 — 1, where p(y) is the number of exceptional
values of the n-valued entire algebroid function defined by (E). In this case, by
Theorem 2, the discriminant of R is

Dy = "4, ) 5 exp((p(y) = 2)H(2)) + -+ + Ao},

where m is the number of exceptional values of the second kind of y and
Ao, - ., Ap(y)—2 are constants with AgAp(,)—2 # 0.
Let us put

J ={d : integer| (p(y) —2,d) =d and d <2n—p(y)},

{2

and
NJ* = {kq|k : non-negative integer, qeJ* and kq < p(y) —2}.

If there exists at least one coefficient A; of Dg such that A; # 0 and i ¢ NJ*,
then we have 2?(R) = p(y).
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Proof.  First of all we have attention to the result that (E) is irreducible. In
fact we have p(y) =n+1 if p(y) >3n/2 —1. Therefore (E) is irreducible by
Lemma 4.

Let us assume that Z(R) > p(y). Then there exists a meromorphic function
f on R such that 2(R) > p(f) > p(y). Without loss of generality we may
assume that f is entire on R. Let X be the surface defined by f. Then, by
p(f) >p(y) =n+1 and Lemma 4, the defining equdtlon of X is irreducible and
has only one kind of exponential function, say e“(), by Corollary 3 and the
assumption: p(f) =p(y)+1>3n/2. In this case we have

2

p(f) A ri-2
(22) e Bje/t®) = Dy = G*Dg = G*e""MHG) A;e™)
j=0 =0
where m is the number of exceptional values of the second kind of f, B;

J=0,...,p(f) —2) are constants with ByB,;—» # 0 and G is a meromorphlc
()-
function on C satisfying

N(r,0,G) = S(r,e™@) N(r,0,G) = S(r,e"),

by Theorem 2, (17), (18) and (20). Let us put d := (p(») — 2, p(f) — 2), then we
have d € J. Furthermore let ¢ be the positive integer such that dg = p(y) — 2.
In this case we have

A[:O (l7éOaQa2q7>dCI)7

by Lemma 3 and (22). This contradicts the assumption that there exists at least
one A; such that A4; #0 (i ¢ NJ*). Q.E.D.

By Theorem 5 it is easy to verify the following result:

Let R be the n-sheeted algebroid surface defined by (E). If p(y) =2n—1, then
we have P(R) =2n—1 without (Ay,...,Axw-4)=(0,...,0).

This result coincides with Theorem B and D in the case n =3 and n =4 re-
spectively.

Some problems

Finally we list some problems:

1. Does Theorem 4 remain valid without the discriminant condition?
In the case of 3-sheeted surfaces the author [12] proved that 2(R) =5 for every
surface of p(y)=>5.

2. Let R be the surface defined by the following irreducible equation:

F(z,y) = P(y) + O()e" =0,

where H(z) is a non-constant entire function with H(0) =0, P(y) is a
monic polynomial of y of degree n and Q(y) is a polynomial of y of
degree at most n — 1. Is Z(R) decidable in the case p(y) <3n/2 —
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3. Let R be the surface defined by the following equation:

F(z,y) = P(y) + Q1()e™T® 4+ 4+ Qs(y)e™ =0,

with /> | and p(y) > n+ 1, where H*( ) (j=1,...,/) are non-constant
entire of H;(0) =0, P(y) is a monic polynomial of y of degree n and
Oi(y) U= 1 ,/) are polynomial of y of degree at most n — 1. In this
case, is Z(R ) demdable?
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