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Abstract

Cosmologists are taking a renewed interest in multiconnected spherical 3-manifolds
(spherical spaceforms) as possible models for the physical universe. To understand the
formation of large scale structures in such a universe, cosmologists express physical
quantities, such as density fluctuations in the primordial plasma, as linear combinations
of the eigenmodes of the Laplacian, which can then be integrated forward in time. This
need for explicit eigenmodes contrasts sharply with previous mathematical investigations,
which have focused on questions of isospectrality rather than eigenmodes. The present
article provides explicit orthonormal bases for the eigenmodes of lens and prism spaces.

1. Introduction

In recent years cosmologists have taken a renewed interest in multiply
connected 3-manifolds as possible models for the universe [1, 2, 3], motivated
by upcoming opportunities to determine the topology of the real universe using
satellite measurements of the microwave background [4] and galaxy catalogs [5].
Cosmologists initially focused on closed hyperbolic 3-manifolds, favored by the
low observed matter density in the universe, as well as the more easily understood
flat 3-manifolds. But since 1998 it has become clear that the modest amount
of matter in the universe (30%) is complemented by a large amount of exotic
energy (70%). This extra energy implies that the observable universe is approx-
imately flat, or perhaps slightly spherical [6]. Cosmologists have therefore shifted
their interest from hyperbolic 3-manifolds to flat and spherical ones. Beyond
the data’s very slight preference for a spherical universe, the cosmologists’ new
interest in multiply connected spherical 3-manifolds (spherical spaceforms) is due
to the fact that the volume of a spherical 3-manifold decreases as the topology
gets more complicated, unlike hyperbolic 3-manifolds whose volumes increase
as the topology gets more complicated. Thus even though both hyperbolic and
spherical 3-manifolds are consistent with an approximately flat observable uni-
verse, the spherical topologies would be more easily detectable observationally [7].

To understand and simulate microwave background measurements in a
multiply connected spherical universe, cosmologists must first understand the
density fluctuations in the primordial plasma (see [8] for a review). Such density
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fluctuations are expressed as linear combinations of the eigenmodes (eigenfunc-
tions) of the Laplacian, just as the vibration of a drumhead may be expressed as
a linear combination of the drumhead’s eigenmodes. But unlike mathematicians’
studies of isospectrality [9], where the spectrum was the primary object of inter-
est (“Can you hear the shape of a lens space?”’) and the eigenmodes were sec-
ondary, the cosmologists’ research puts the eigenmodes at center stage. More
specifically, for each wave number k (corresponding to eigenvalue k(k + 2)), the
cosmologists want an explicit orthonormal basis for the corresponding space of
eigenmodes. The present paper provides such an eigenbasis for all lens spaces
(Theorem 2, Section 9) and prism spaces (Theorem 3, Section 10).

2. Toroidal coordinates

The determination of the eigenmodes of a lens space (resp. prism space) is
elementary and constructive. Visualize such a manifold as the 3-sphere S* under
the action of a cyclic (resp. binary dihedral) group I' of covering transforma-
tions. The key to simplicity is to choose a coordinate system that respects the
covering transformations I'. A toroidal coordinate system meets our needs per-
fectly (Figure 1).

FIGURE 1. Toroidal coordinates. Nested tori fill the 3-sphere like layers of an onion. Just as the
layers of an onion collapse to a line at the onion’s core, the nested tori collapse to two circles, one at
x =0 and the other at y =n/2.

Let x, y, z and w be the usual coordinates in R* so the 3-sphere S° is
defined by x% +y? 4+ z2 +w? = 1. The coordinates y, 0 and ¢ parameterize the
3-sphere as
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X =cosycost

y =cos ysin 0
(1) .

z =sin y cos ¢

w =sin y sin ¢
for

0<y<m/2
(2) 0<0<2n

0<¢<2n.

For each fixed value of y € (0,7/2), the 0 and ¢ coordinates sweep out a torus.
Taken together, these tori almost fill S3. The exceptions occur at the endpoints
% =0 and y = /2, where the stack of tori collapses to the circles x> + y> = 1 and
22 +w? = 1, respectively.

3. The Laplacian in toroidal coordinates

The coordinates y, § and ¢ are everywhere orthogonal to each other. Thus
the metric on the 3-sphere may be written as

(3) ds® = b} dy* + hy d6* + b} dg*
where

h, =1
(4) hp = cos y

h, = sin y.

The Laplacian is just the divergence of the gradient of a function ¥, and the
divergence is, in turn, just the “net outflow per unit volume”. So by visualizing
the small volume element dydfdp we may write down the Laplacian for any
orthogonal coordinate system as
(5) V2= 1 0 hohy, 0 ihlh¢£+ihlh0i

hyhoh, 0y h, Oy 00 hy 00 09 h, Op
with no calculation required. In the present case, substituting (4) into (5) gives
the Laplacian in toroidal coordinates

1 . 0 O0siny 0 0 cosy 0
I S S K K 7
(6) Vi= cos y sin)({é)( cosx SIHXE?;(+60 cos y 00 Op sin y 6go}'

4. The Helmholtz equation in toroidal coordinates

The wave number k parameterizes the eigenmodes of the Laplacian on
the 3-sphere S°. Each integer wave number k > 0 corresponds to an eigen-
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value —k(k +2) with multiplicity (k+1)> [10, 11]. The Helmholtz equation
thus takes the form

(7) VW = —k(k +2)¥
We will look for solutions that factor as
(8) Y (. 0.0) = X()O0)D(p).

We have no a priori guarantee that all solutions must take this form, but in
Section 6 we’ll see that the number of independent solutions of this form does
indeed equal the dimension (k + 1) of the full eigenspace.

Substituting the expression (6) for V2 and the factorization (8) of ¥ into the
Helmholtz equation (7) gives

©) 0P 0 cos 7 sin ax+ X 52®+ X0 oo
x Xa)( cos? y 90>  sin? 5(0

cos y sin y dy
Multiplying through by cos? y sin® y/(X©®) isolates the ® and ® factors

(10) Lsxsmxicos sin d—X+s1n L °0 + cos? L &0
X dy ALy, “\© a0 X(Ddgo

—k(k +2)XO.

= —k(k +2) cos? y sin? y.

The expressions in ® and ® must each be constant, and to allow a periodic
solution the constants must be negative,

2
(11) % % =/
1 d*®

(12) ®dp —m?

The solutions are the usual circular harmonics

(13) 0,(0) =cos|/|@ or sin|/|0
and

(14) ®,,(p) = cosjm|p or sin|m|gp.

By convention, nonnegative / indicates cos|/|0 while negative ¢ indicates sin|/|0,
and similarly for m.
Substituting (11) and (12) into the Helmholtz equation (10) reduces it to a
second order ordinary differential equation for X
(15)
d dX . .
cosysiny d cos y sin y— — /2 sin® y — m? cos® y = —k(k + 2) cos? y sin® .
X dy dy
For integers k, / and m satisfying |/| + |m| <k and /+m =k (mod 2), equa-
tion (15) is a close relative of the Jacobi equation and admits the solution
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(16) Xism(y) = cosl’! y sin”! P} (17D (cos 2y7)

where P, (D) s the Jacobi polynomial
d
G- | +d (1] +d j d-i
(17) P! _—d§:( SRR [CERCEY

k= (] + ]

5. The eigenmodes of S> in trigonometric and polynomial forms

Substituting the expressions for X, ® and ® from (16), (13) and (14) gives
the eigenmode

(19) s, 0,0) = cosl’! y sinl" ypH)(

x (cos|/|0 or sin|/|0)

cos 2y)

X (cos|m|p or sin|m|p)

where as usual the choice of cos|/|0 or sin|/|0 (resp. cos|m|p or sin|m|p) depends
on the sign of 7 (resp. m).

The Jacobi polynomial may be expanded as a homogeneous polynomial of
degree 2d in x, y, z and w,

1 & d\ (/| +d :
(20) Pd(‘mHm(COS 2) = ﬁz;(bﬂ'l—i_ ) <d|i'l )(COS 2+ l)l(COS 2y — 1)dfz

< b * d) ( |i,| irld) (cos? z)'(—sin® )"~

1

<|m|.+d)(|il|jld)( + ) (= (22 +w))

- 1M

1

i=0

The cosl’l y factor combines felicitously with the cos|/|6 or sin|/|0 factor to create
a homogeneous polynomial of degree |/| in x and y, for example,

v . ,
(21)  cosl’l y cos|/|0 = cos’l ¥ Z (—1)’(| ) cos’17% @ sin* 0
0<i<|/|/2

2i

-5 (e

o0<i<|/|/2

= Z (- )(l |>(cosxcos0)/_2i(cos;(sin0)2i
0<i=)l/2
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|m|

Similarly, sin' y combines with cos|m|p or sin|m|p to create a degree |m| poly-
nomial in z and w. Multiplied together, these factors express Wi/, as a homo-
geneous degree k harmonic polynomial in (x, y,z, w) coordinates. For example,
when k=7, /=3 and m = —2 we have

(22) W5 2(x,0,0) = [P§2’3)(cos 2y)][cos® y cos 36][sin? y sin 2¢]
= [3(x* + %) — 4(z* + w?)][x* — 3xp?][2zw)].

_ The fact that each W¥,/» may be expressed as a polynomial proves that the
Yism are smooth even along the circles y =0 and y = n/2, where the toroidal
coordinate system collapses.

6. The eigenmodes form a basis

For each k, the set of Wy, forms a basis for the space of eigenfunctions on
S3 with wave number k. More precisely, define the basis

(23) Bi = {Pum||l| +|m| <k and /+m =k (mod 2)}.

To prove that By is a basis, we must show that the W,/ it contains are linearly
independent and span the full eigenspace. R R

Linear independence. The inner product of two elements Wi, and W, of
By is

(24) <\Pk/mv liJk/’m’>

= J ‘i’k/’m‘ilk/'m’ av
S3

n/2 (2rn 2n
= J J J (Xietm®rD@p) ( Xy © Dy ) cos y sin y dopdOdy
7=0J6=0 Jp=0

n/2 2n
= J XictmXiym €OS y sin y dy J 0,0, di
=0 6=0
2n
X J (qu)m’ d(p .
9=0

If /#¢" (resp. m#m'), then the orthogonality of the circular harmonics
(BO/,0,) = 0~ (resp. <(~Dmaq)m’> = O) immediately implies ~<\Pk/ma‘Pk/’m’> =0,
proving that ¥, and ¥,,,, are orthogonal. Because the Wy, in B are non-
zero and pairwise orthogonal, they must be linearly independent.

Span. We have shown that the ¥y, in B; are linearly independent. To
prove that they span the full eigenspace, it suffices to check that the number of
elements of By equals the dimension of the full eigenspace, which is known to
be (k+1)>. The set By = {¥)0,0} has (0+1)> =1 element, and the set B, =
{li’]ﬁ_'_]?g,li’],_],o,\i’]?oﬁ_l,"i]]’()’_]} has (1+1)2:4 elements, as required. For
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the remammg By, with k > 2, we proceed by induction, assummg that the set
Bi_, is already known to contain ((k —2) + 1)* = (k- 1) elements. Each ele-
ment P, 2.¢,m € Br_p corresponds to an element ¥ ¢,m € Br. The set By also
contains the additional elements ‘I’k 0, +k,‘I’k 41,4 (k—1) - \Pk.,i(kfl),ilvli’kik,&
Taking into account the plus-or-minus signs, this gives 2 +4+---4+44+2=2+
4(k — 1) + 2 = 4k additional elements. Adding these to the (k—1)* elements
corresponding to Bi_», we get a total of (k—1)? +4k = (k+ 1)* elements, as
required.

This completes the proof that By is a basis for the space of eigenfunctions
on S* with wave number k.

7. Normalization

The Wi/, are already mutually orthogonal (Section 6), so if we normalize
them to unit length they will form an orthonormal basis for the eigenspace. An
orthonormal basis is convenient in cosmological applications, because it makes it
easy to construct an unbiased random density fluctuation with wave number k.

To compute the norm of a given Wy, set /' = ¢ and m’ = m in equation
(24), giving

B B /2 2n 2n
25)  {Prom, Prrm)> = (J X2, cos y sin y d;() (J e; d@) ( J o2 dgo).
7=0 0=0 =0

The ® and ® integrals are easy to evaluate. Substituting in the solutions (13)
and (14) immediately gives

2n 2n
(26) J @’ df=n and J D2 dp=n
0=0 9=0
when / and m are nonzero, along with the special cases
2n 2n
(27) J ©®; df =2n and J ®; dp = 2n.
0=0 =0

The X integral seems daunting, but luckily the cosl’! xsm )( factor in the
expression (16) for X provides exactly the standard weighting function relative to
which the Jacobi polynomials are normalized!

/2
(28) J X2, cos ysin y dy
7=0
/2

= J [cosl’!  sin
7=0

b ){quml‘l/‘)(cos 2%)]? cos y sin y dy
n/2

= J 0(cos 2 (sin? )P (cos 2)]% cos y sin i dy
P
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then, changing the variable to u = cos 2y,

_ LT w0 )2 g
=gz u u 7 u u

(29)

and using the standard normalization for Jacobi polynomials [12, 13], we get
(30) _ (|£) + d)!(jm| + d)! '
2(k + 1)d'(J¢| + |m| + d)!
Define the normalized eigenmodes Yy, to be
Prsm Pism

I I {+m (|+d)!(|m|]+d)!
Vi, By VI [
where /7 is 1 when ¢ is 0, and Z is 0 when / is nonzero, and similarly for 71, to
accommodate the special cases in equations (26) and (27).

The results of this section and the previous one together prove

(3 1 ) ‘{lk/m =

THEOREM 1. The Yism, taken over all integers k, ( and m satisfying
||+ |m| <k and /+m=k (mod?2), comprise an orthonormal basis for the
eigenspace of the Laplacian on the 3-sphere.

8. The action of an isometry of S° on the space of eigenmodes

An arbitrary orientation-preserving isometry of the 3-sphere has matrix

cos A —sin Af 0 0

(32) sin A0 cos A0 0 'O
0 0 cos Ap —sin Agp
0 0 sin Ap  cos Agp

relative to an appropriate orthonormal (x, y,z,w) coordinate system on R*. In
toroidal coordinates (y, 6, ), the same isometry may be described as

X=X
(33) 0— 0+A0
9 — ¢+ Ap.

The action of this isometry on the space of eigenfunctions is much simpler in
toroidal coordinates than in traditional polar coordinates. For example, if /> 0
and —m < 0, then the isometry (33) maps

Wi, it,-m(1,0,0) = Y, 42,-m(x, 0 + AO, ¢ + Ap)
= Xk/m(%)®+/(0 + Ae)q)fm((ﬂ + A(ﬂ)
= Xirm(x) cos £(0 + AQ) sin m(p + Ag)
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= Xim(y)(cos £/A6 cos £0 — sin /AG sin /0)
X (sin mAg cos mg + cos mAg sin mg)

= cos /A0 sin mAQ Xism(%)O1s(0) D11 (0)
+ cos /A0D cos mAY Xirm()O+(0)D_(9)
— sin A0 sin mAQ Xysm(x)O—_(0)D4(9)
— sin /A6 cos mAQ Xism(x)O_s(0)D_,, ()

= cos /AG sin mAg i s m(2,0,0)
+ cos /A0 cos mAY Wi s, —m(2, 0, 9)
— sin /A0 sin mAg Wi, _s 4m(x, 0, 0)
— sin /A0 cos mAg i _¢,—m (2,0, 9)

(34) ... and similarly for the images of Wi i/, +m, WYk —z,+m and Wi _/ .

Thus the subspace spanned by the Wi i, 4, is invariant (setwise but not
necessarily pointwise) under the action of the isometry (33). Typically this
subspace is 4-dimensional, but when / or m is zero it is 2-dimensional, or only 1-
dimensional when both / and m are zero.

Thus the complete ecigenspace factors into orthogonal 1-, 2- and 4-
dimensional invariant subspaces, each spanned by a set Wi i/ +m. To under-
stand the full action of the isometry, it suffices to understand its action on each
invariant subspace.

Case 1. /=m=0.

The 1-dimensional invariant subspace spanned by Wi o is pointwise fixed by
every isometry of the form (33).

CasE 2. /=0 or m=0 (but not both).

For sake of discussion, assume ¢ > 0 and m = 0. Relative to the basis

di =% 10

(35)
dy =%, /0

the isometry (33) acts as a rotation through an angle /A6, with matrix

< cos /A6 sin /A0 >

(36) —sin /AO cos (/AO

A quick computation similar to (34) verifies that matrix (36) is correct. Thus if
/A0 =0 (mod 27) the whole subspace is fixed pointwise; otherwise only the
origin is fixed. Similar conclusions hold when /=0 and m > 0.
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CasE 3. />0 and m > 0.

Computation (34) expresses the isometry’s action on each of the Wy 4/ 1 as a
linear combination of the Wi ./ 1, themselves. For best results use the rotated
basis

1 1
e = \/;(‘I’k, it 4m + Yt —m) = \/;Xk/m cos(£0 — my)

1 1 .
€ = \/:(lyk,—/,-&-m - \Ilk,+/k, —m) = \/:Xk/m SIH(/0 - m(p)
2 2
(37)
1

1
€3 = 5(\{1/(,+/,+m - ‘Pk,—{\,—m) = \/;Xk/m COS(/Q + m(p)

1 1 .
€4 = \/;(\Pk,/,wn + ‘Pk,Jr/,fm) = \/;’Yk/m Sln(fg + m(p)

relative to which the action has matrix

(38)
cos(/A0 — mAg)  sin(/A0 — mAp) 0 0
—sin(/A0 — mAgp)  cos(/A0 — mAg) 0 0
0 0 cos(/A0 + mAg)  sin(/A0 + mAg)
0 0 —sin(/A0 + mAg)  cos(/A0 + mAg)

Clearly the subspace spanned by {e;,e;} (resp. {es,es}) is pointwise fixed if and
only if /A0 = mA¢ (mod 2x) (resp. /A0 = —mAp (mod 2%)). If /A0 = mAp =0
or 7, then the whole 4-dimensional subspace is pointwise fixed.

In summary, an isometry (33) fixes the subspace spanned by

{Wr,00} always
{Wk, 42,0, ¥k, ~r,0} iff /A0 =0 (mod 27)
{¥k,0,4m> Pr,0,-m} ifft mAp =0 (mod 2x)

1
{ E(Tk wt4m + P~z —m),

(39) 1
E(Tk.—/,er - lPk,+/7—m)

1
{\/;(‘Pk,Jr/,er - \Pk.f/. 7m)7

1

E(‘"Pk, —/,+m + ‘Pk., +7, —m) }

iff /A6 = mAp (mod 27)

iff /A0 = —mAg (mod 27)
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and this is the complete description of the fixed point set. When working with
fixed point sets, please keep in mind that the eigenmode Wy, exists if and only if
|] +|m| <k and /+m =k (mod 2).

9. Eigenmodes of lens spaces

The lens space L(p,q) is the quotient of the 3-sphere S* by the cyclic group
whose generator ¢ is the isometry (33) with A0 = 2z/p and Ap = 2nq/p. Each
eigenmode of L(p,q) lifts to a g-invariant eigenmode of S*, and conversely each
g-invariant eigenmode of S* projects down to an eigenmode of L(p,q). Thus
the eigenmodes of L(p,q) correspond to the g-invariant eigenmodes of S°.

Substituting A6 =27/p and Ag = 2znq/p into (39) yields a set of simple
integer conditions showing which eigenmodes of S are g-invariant:

THEOREM 2. The eigenspace of the Laplacian on the lens space L(p,q) has
an orthonormal basis that, when lifted to Z,-invariant eigenmodes of the 3-sphere,
comprises those eigenmodes in the left column for which the corresponding condition
in the right column is satisfied, subject to the restriction that an eigenmode Vi,
exists if and only if the integers k, { and m satisfy |/|+ |m| <k and { + m=k
(mod 2).

basis vectors condition
Wi 00 always

Wi 42,00 Wk, —¢.0 /=0 (mod p)

(40) Wi,0,+m, Pre,0,-m gm =0 (mod p)
1 1

\/;(\Pkﬁf/ﬁﬁm + lPk, 7/,7m)7 \/;(l}lk —{,+m — lII/c.,+/$7m) = qm (mOd p)
1 1

5(‘1’/(, wtoem — Pk —r.-m), \/;(‘Pk, tom+ Yo v —m) £ =—gm (mod p)

For a given lens space L(p,q) and wave number k, the number of basis vectors
gives the multiplicity of the eigenvalue k(k + 2) (see Table 1).

10. Eigenmodes of prism spaces

The n™ prism space is the quotient S3 /Dy, where the binary dihedral
group D is the extension of the binary cyclic group Z; = Z,, by an order four
Clifford translation along a perpendicular axis (Figure 2). The generator of the
Z,, action may be written in toroidal coordinates as

2n 2n
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TaBLE 1. The number of eigenbasis vectors specified in Theorem 2 tells the multiplicity of each
eigenvalue k(k +2) in the spectrum of a lens space L(p,q). Here are the results for p <9 and
k< 14.

k 01 2 3 4 5 6 7 8 9 10 11 12 13 14
s3 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
L) |1 0 9 0 25 0 49 0 8 0 121 0 16 0 225
LB 1 0 3 8 5 12 21 16 27 40 33 48 65 56 75
L4 |1 0 3 0 15 0 21 0 45 0 55 0 9l 0 105
L5 |1 0 3 0o 5 12 7 16 9 20 33 24 39 28 45
L52 |1 0 1 4 5 8 9 12 17 20 25 28 33 40 45
L1 o 3 0o 5 0 21 0 27 0 33 0 6 0 75
Lz, |1 0 3 0 5 0 7 16 9 20 11 24 13 28 45
L7121 o 1 2 3 6 7 10 11 14 17 20 25 28 33
LEH |1 0o 3 0o S5 0 7 0 27 0 33 0 39 0 45
L83 |1 o 1 0o 7 0 11 0 25 0 27 0 45 0 53
Lo |1 0 3 0o 5 0 7 0 9 20 11 24 13 28 I5
L9221 0o 1 2 1 4 7 6 9 14 11 16 21 18 25

Nl

FIGURE 2. The binary dihedral group D, has two generators. The first generator acts as a left-
handed 27/2n corkscrew motion preserving the toroidal layers just as in the lens space L(2n,1). The
second generator acts as a lefthanded 27/4 corkscrew motion along an orthogonal axis (drawn heavy
in the figure), taking, for example, the torus at level y = 7/8 to the one at y = 37/8 and interchanging
the roles of 6 and ¢.

while the generator of the order four Clifford translation may be written as

(42) (%:0,0) — (g — =P, — 0>.
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The eigenmodes of the prism space naturally correspond to the Dj;-invariant
eigenmodes of S3. That is, they correspond to the eigenmodes of S3 that are
invariant under both the Z,, generator (41) and the Z4 generator (42). Sections
8 and 9 have already determined the action of the Z,, generator on the space
of eigenmodes, with the fixed subspace specified by Theorem 2 with p = 2n and
g =1. A similar computation shows how the Z, generator interchanges the roles
of / and m:

(43) Wirm (1, 0,0) = Prrm(7/2 — x,—p,m — 0)

= Xirm(1/2 = 1)O/ (=) Pp(n — 0)

= Xiem(1/2 = x) @ (—¢)Op(m — 0)

= [£Xione (0] [£Om (0)][£ D/ (9)]

= W (2,0, 9).
The first plus-or-minus sign in the penultimate line of (43) will be plus (resp.
k — (71 + |ml])

2

7 . . . . L
5 X into (16) and interchanging the roles of sine and cosine introduces a factor

of (—1)“.] The third plus-or-minus sign in (43) will be plus when / is nonneg-
ative, minus otherwise. The second plus-or-minus sign will be plus when m is
either nonnegative and even or negative and odd, minus otherwise. Thus we
may rewrite (43) as

(44) Wm0, 9) = [ Xine )][EOm(0)][£D/ (9)]
- Gk/mlPkm{(Xa 0, §0)

minus) when d = is even (resp. odd). [Proof: Substituting y —

with
Okem = (£) () (1) (%)
where
the first + is + if and only if d is even
the second + is + if and only if />0
the third + is + if and only if m >0
the fourth + is + if and only if m is even.

When / #m the action (44) preserves the 2-dimensional plane spanned
by Wk/m and Wg,,. If the parities of / and m agree (both even or both odd)
then the action is either a positive reflection interchanging Wi/, < Wi, (Figure
3a) or a megative reflection interchanging Wi/, «— —W,, (Figure 3b), according
to the sign of os,. If the parities of / and m disagree (one even and the other
odd) then the action is a quarter turn taking either Wi/ — Yime — —VPrrm —
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(a) Ve4z (b) - . Wes1 (c) Ws3z (d) V732
v N

Vs We24 ——r 615 - Ws23 iy ;\%—}Wzs
“Weaz “Wes1 V532 V732

FIGURE 3. The Z4 generator acts on each 2-dimensional subspace {Wi/m, Vime} as a reflection (if /
and m have the same parity) or a rotation (if / and m have opposite parities).

—Wime — Prem or the opposite (Figure 3cd). The positive and negative reflec-
tions each fix a 1-dimensional line, but the quarter turns fix only the origin.

When ¢ = m the situation is even simpler. The action (44) either fixes the
I-dimensional line spanned by Y, or inverts it, according to whether g,/ is
positive or negative.

The preceding two paragraphs have found the eigenmodes fixed by (44), i.e.
the eigenmodes invariant under the action of the Z, generator (42). To find the
eigenmodes of a prism manifold, we must check which of the modes invariant
under the Z, generator (42) are invariant under the Z,, generator (41) as well.
This is straightforward, because Theorem 2, with p = 2n and ¢ = 1, already tells
us which modes the Z;, generator preserves. We know a priori that the eight
basis vectors {Wk 4/, 4+m, Pk, +m +¢} Span a space that is setwise invariant under
both the Z,, and the Z; generators. Typically this space is 8-dimensional, but
its dimension may be less. Consider the following special cases. Assume / and
m are distinct and positive unless otherwise indicated.

{¥roo} (1-dimensional)
The mode Wy exists if and only if £ is even. When it exists, it is always
fixed by the Z,, generator, as indicated in the first line of the conditions (40)
in Theorem 2. It is fixed by the Z; generator if and only if gy is positive,
which happens if and only if d =k/2 is even.

{¥i 1,0, Yr0,+¢} (4-dimensional)
According to the second and third lines of conditions (40), the Z,, gener-
ator fixes this whole space pointwise when ¢ =0 (mod 2n), and otherwise
fixes nothing.

The Z, generator leaves the two 2-dimensional subspaces spanned by
{¥h.r.0,Pro0.,} and by {¥i _s0,Pro -} setwise invariant. If 7 is odd,
then the Z, generator acts on each 2-dimensional subspace as a quarter
turn, fixing nothing but the origin. If / is even (as it must be when
/ =0 (mod 2n)), then the Z4 generator acts on each subspace as a positive
or negative reflection, fixing Wi /o0 + Wro,, and Wi, _,0— Pro, - if orro
is positive (when d is even), or Wy /.0 — Wk0,, and W _s 0 + Wk,0,—¢ if okro s
negative (when d is odd).

{W¥k +¢,+¢} (4-dimensional)
This 4-dimensional subspace factors into two orthogonal 2-dimensional
subspaces, spanned by {Wi,,+ Wk —s,—¢,Prk.—r.c — Pr.r,—r} and {¥r,/—
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Y s ¢, Yk, —r,¢ +¥r,s,—s} respectively, each of which is setwise invariant
under both the Z;, and the Z, generators.

The subspace {Wk /s + Yk—¢.—¢, Yr,—r,c — Pr,r,—¢} 1s always fixed by
the Z,, generator, according to the fourth line of conditions (40). It is fixed
by the Z4 generator as well if and only if g4, is positive, which happens
if and only if k =0 (mod 4). (k must be even for the mode Wy, to exist,
so the only question is whether it is equivalent to 0 or 2 modulo 4.)

The subspace {\Pk7/7/ - \Pky_/g_/,lpkﬁ_/#/ +"Pk./7—/} is fixed by the Zj,
generator if and only if 2/ =0 (mod 2n), according to the last line of
(40). If oy, is positive the Z4 generator fixes Wy ,, — Wi _,,_, but not
Y —s.r + Wi s, —s, while if o/, is negative the opposite is true.

4. 4m> Pi,+m +¢} (8-dimensional)

This 8-dimensional subspace factors into four orthogonal 2-dimensional
subspaces, spanned respectively by the bases

{\Pk, +/,+m> ‘I’k, +m, +/}

{‘P/c, —/,—m> lPk. —m, —{'}

{\Pk.,Jr/. —m> ‘Pk, —m, +/}

{We, 2, +ms Y, 4m, ¢ }-
If the parities of # and m do not match (one even and the other odd) then the
Z,4 generator acts as a quarter turn on each of the four subspaces and fixes
only the origin. If the parities of / and m do match (both even or both
odd), then the Z, generator acts as a reflection on each of those same four
subspaces, fixing the following vectors, with the choice of signs (consistent as
shown) depending on whether oy, is positive or negative:

‘Pk, +/,+m + \Pk., +m,+(

b T 2 S

lIIk, +/,—m F \Pk, —m,+{

\Pkf/,er + \Pk., +m,—{ -
These four vectors comprise a basis for the Z; generator’s 4-dimensional
fixed point space. Taking sums and differences of those vectors gives a new,
more convenient basis for the same space:

+ (Wk,om, 40 + ¥k, —m, 1)
+ (lPkHrm +/ ‘Pk —m,— )
(‘Pk —m,+{ + \Pk +m, 7/)

+ (\Pk.fm.Jr/ - \Pk,+m, )
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The fourth (resp. fifth) line of the conditions (40) shows that the Z,, gen-
erator fixes the first and fourth (resp. second and third) vectors in (45) if and
only if £/ =m (mod 2n) (resp. / = —m (mod 2n)).

The above cases completely determine the D}-invariant eigenmodes of S*, thus

proving

THEOREM 3.

The eigenspace of the Laplacian on the prism space S°/D;,

where D is the binary dihedral group of order 4n, has an orthonormal basis that,
when lifted to D)-invariant eigenmodes of the 3-sphere, comprises those eigenmodes
in the left column for which the corresponding condition in the right column is
satisfied, subject to the restriction that an eigenmode Yy, exists if and only if the
integers k, ¢/ and m satisfy |/|+|m| <k and /+m =k (mod 2).

basis vectors condition
Wi 0,0 k=0 (mod4)
1
VECFso + i) /=0 (mod 2n)
\/%(q'k.s/:o — W0/ and d even
\/1(‘1’1(/0—‘1’1(0/)
AN /=0 (mod 2n)
\@(‘I‘k,f/,o F o) and d odd
\/%(Tk/.,/ + Wi —r,-r)
: k=0 (mod 4)
\/;("Pk, vt —Yrr 1)
(46) , 2/ =0 (mod 2n)
\é(qjk’/’( — W0 and k=0 (mod 4)
R 2/ =0 (mod 2n)
\ﬂ( kvt + ¥ rr) and k=2 (mod 4)
%((‘Pk, wtoim Yo v m) + (P sm o + Vi, om,—¢)) ¢/ =m (mod 2n)
%((Tk, +,—m T lPk,—/, +m) (lPk —-m,+{ — \Pk +m, /)) and og/m > 0
%((\Pkﬁr/ﬁfm + ‘Pk,ff, 7m) - (Tk +m,+{ + \Pk —m, /)) {=m (mOd 2”)
L(¥r1t,-m — Pt 4m) + (P, —m 10 — Pheoom,—2)) and og/m <0
%((\Pk,Jrf,er - \Pk,ff,fm) + (\Pk +m,+0 \Pk —m, /”)) =-—m (mOd 2”)
2 (Prost,-m + Ph,—r4m) — (Yh—m, 40 + i 4m,—¢)) and ag/m > 0
%((\Pk +£,+m \Pks/’, 7m) - (lPk,er +/ /)) /=—m (mOd 2”)
%((\Pkﬁr/,fm + lPk,ff,er) + (lPk —m,+{ + \Pk +m, — )) and Oktm < 0
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Note that when k is odd, none of the above conditions are satisfied, and the
eigenbasis is empty. This is not surprising, because when k is odd the eigen-
modes correspond to odd-degree homogeneous polynomials (Section 5), which are
anti-symmetric under the action of the antipodal map, and all groups D contain
the antipodal map.

When k is even, the total number of eigenmodes for given D, and k agrees
with the multiplicities given by Ikeda’s formulas (2k + 1)([k/n] 4+ 1) (for k even)
and (2k + 1)[k/n] (for k odd) from Theorem 4.3 of [14], where k = k/2 is half the

wave number and [k/n] denotes the integer part of k/n.
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