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STABILITY AND QUANTUM PHENOMENEN AND LIOUVILLE
THEOREMS OF p-HARMONIC MAPS WITH POTENTIAL'

ZHEN-RONG ZHOU

Abstract

In this paper, we discuss the stability and the pointwise gap phenomenen of p-
harmonic maps with potential. Stability theorems of p-H-harmonic maps from or into
general submanifolds of the shpere and the Euclidean space are established, and Sealey’s
quantum theorem is extended. We also discuss the conservation law and the Liouville
theorems of p-H-harmonic maps. As a consequence of our stability theorem, we not
only generalize Leung’s stability theorem to rather general case, but also improve it by
replacing the sectional curvature bound by a Ricci curvature bound. In order to discuss
the gap property of p-harmonic maps, we establish a Bochner-typed formula which is
used by some authors in a uncorrect form.

1. Introduction

Let M™ and N" be Riemannian manifolds, u: M — N a smooth map, H
a smooth function on N. We call  a p-harmonic map with potential H or a
p-H-harmonic map if it is a critical point of the p-H-energy:

() Ey () :%JM |du|p—JMHou.

If H is constant, a p-H-harmonic map is called p-harmonic. A 2-harmonic map
is called harmonic. Hence p-H-harmonic maps are a generalization of the usual
ones.

In this paper, we always assume that all initial manifolds are compact and
that p > 2.

Y. L. Xin in [13] proved that any stable harmonic map from S™ (m > 2)
is constant and P. F. Leung in [8] proved that any stable harmonic map from
M™ (m>2) to a hypersurface of Euclidean space is constant. Q. Chen in
[2] generalized them to harmonic maps with potential. Ohnita in [9] verified that
stable harmonic maps from or into minimal submanifolds of the sphere is
constant if the Ricci curvatures of the submanifolds are bigger than half the
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dimensions. In Section 3, we investigate the stability of p-H-harmonic maps
from or into general submanifolds of the sphere and the Euclidean space. Even
back to original harmonic maps, our results are new and optimal.

H. C. J. Sealey in [10] demonstrated a quantum theorem on harmonic maps.
A. M. Matei in [6] discuss the quantum properties of p-harmonic maps. In
Section 4, we investigave quantum phenomena of p-H-harmonic maps. Our
method is different from A. M. Matei’s. We use a different Bochner formula
which is verified in Section 2.

Y. L. Xin in [14] used conservation law to obtain a Liouville theorem for
harmonic maps and Q. Chen in [2] generalized Karcher and Wood’s theorem to
harmonic maps with potential taking use of the same technique. In Section 5,
we introduce a stress p-energy tensor and discuss the corresponding conservation
law, and obtain two Liouville theorems of p-H-harmonic maps.

2. Preliminaries

In the following, we denote the exterior differential operator on bundle-
valued r-forms by d, its adjoint by d*. We use V and <, > stand for connections
and inner products, respectively, of various vector bundles which are evident
according to the contexts, Y for summation of repeated indices.

2.1. The first variation
Let u: M™ — N" be a smooth map, u, its variation, ¥ = (du,/dt)|,_, the
variational field. Then

dE, ,H(u,) .
@ R IR ION 2

where 1, ;y(u) = 7,(u) + grad H ou, 1,(u) = —d*(|du|’ *du). Therefore, the
Euler-Lagrange equation of E, y is

(3) Ty, 1 (1) = 0.
THEOREM 1. Let M be a Riemannian manifold, u be a p-H-harmonic

map from M. If Hess Hou <0, then due; € Ker Hess H ou. Especially, if
Hess H ou < 0, then u is constant.

Proof. By the Euler-Lagrange equation we have
(4)  dd*(|du|"2du), |du|’*duy = {(d(grad H o u), |dul’*du
= (V¥ ™V grad H o u, |du|”du
=" Jdul” 2V N grad H o u,due;)
— Z |du\”72<Vd€Z grad H, due;)
= Z \du|?~* Hess H (due;, due;).
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On the other hand,

(5) J <dd” (|du|”*du), |dul”duy = J |d* (|| *du)|*.
M M
So, we have
(6) J S [l Hess H(due;, due) :J 1A (|du|” )|
M M
from which we can draw the conclusion of the theorem. Q.E.D.

2.2. The second variation

Let uy be a variation with double parameters s and ¢, v = (Ouy/3s)|,_g ,—o
and w = (duy/01)|,_ o the variational fields. Let e,(u) = (1/p)|dul” be the p-
energy density and E,(u) = [,, e,(u) the p-energy. Set ®(x,s,) = uy(x). Then
by a standard calculation, we have

azEp(ust)
™ 0sot

=(p-2) J ||~ Z Ve, w, due; YV, due;)
M

s=0, =0

+ J Vv, d*(|dulP 2 du) >
M

n du|” " (RN (due;, w)v, due;>
|, 97 D0 (R (duei, w)

-I-J |dulP 2 {Vu, V.
M

On the other hand,

2
0°H o Ugy
0sot

(8) =<V, grad H,v) + {grad H,V,,v)>

5=0,1=0

= Hess H(w,v) + <d*(|du|""*du), V,,v
where we used the Euler-Lagrange equation. Therefore we obtain

0 Ey 1 (uy)
®) 0s0t

=(p-2) J || P~ Z Ve, w, due; Y{V,v, due;)
M

s=0, =0

- J Hess H (v, w)
M

— | |du? Z (RN (due;, w)due;, vy
M

+J |dul? "2V, V).
M
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This implies

*E, w(u)

(10) or?

<(p- 1)J |dul? 2| Vw|* — J Hess H(w, w)
=0 M M

— J |du|P~* Z (RN (due;, w)due;, w.
M
In the following, we will denote (62EP7H(uS,)/6s6Z)|S:0"t:0 by I, u(v,w).

2.3. Bochner formulas

Bochner type formulas are important in harmonic maps theories. There are
several versions of these formulas for p-harmonic maps. Here, we introduce two
of them which will be used in this paper.

Let V' be a vector bundle over a Riemannian manifold M", {e;;i=1,-,m}
a local field of orthonormal tangent frame on M"™ such that V.,e; =0 at a
fixed point under consideration. For any V-valued l-form o, we have (see

(1n) SAlof* = A6,05 + Vol — 37 CR” (e )oer), o(e))>

+ Z <a(RiCM e;),a(e).

Here Ag = —(d*d + dd*)o. Let o = |du|” *du which is a u~'TN-valued 1-form.
Substituting it into the above formula, we have

1
(12) A2 = CA )y + |9 )
- Z |du| (R (due;, due;)due;, due;)
+ Z \du)*~*du Ric™ e;, due;y.

If p=2 and u is harmonic, then the first term of the right hand side above
vanishes. But for general p, it does not. Generally,

(13) | catanran a2any
=—j |d*<|du|f’*2du>|2—j Al )2
M M
:—J w-J d(ldu|? ).
M M

If u is a p-H-harmonic map, then the above equality becomes as
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(14) J CA(dulP2du), |dul”du
M
- _J |dul”~* " Hess H (due;, due;) —J |d(|dul? 2 du)|*
M M

where we have used (6). Integrating (12) and then taking (14) into account, we
have

(15) 0=—| |dul”*> Hess H(due;,due;) +J |\SV(|dul?*du))?
M M

-, |du|*~* (RN (due;, due;)due;, due;

+ | |du|**<du Ric™ e;, due;)
M
where SV(|du|” *du) denotes the symmetric part of V(|du|” *du).

Remark. In general, V(|du|” *du) is not symmetric. But it can be decom-
posite into a summation of symmetric and anti-symmetric parts. In fact, we
have

(16) V(|dul?2du)(X, Y)
=%((V(|du|”’2du))(X, Y) + (V(|du”2du))(Y, X))
+%((V(|du|”’2du))(z\’7 Y) = (V(|du|”*du))(Y, X))

= SV(|du|”2du)(X, Y) + d(|du|”2du) (X, Y)

and
(17) ISV (|dul”du)|* + |d(|du|”2du))* = |V(|dul”*du)|*.
The following formula of Bochner type is also needed in this paper:
(18) 1A|du|f’
P

= Vo <t(u), |dul” P due;y — {x(u), T, (u)) + |dul” > |Vdu|®
— |du|"? Z (R" (due;, due;)due;, due;
+ |dul?~? Z (du Ric™ e, due;y + (p — 2)|dul?|V|du| |
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whenever |du| # 0. Here t(u) :=7,(u). This formula deduce easily from the
sequel three equalities; it can also be found in [12].

(19) 2 Aldl” = Al = 3 " Al + (p — 2?1Vl *,

1
(20) §A|du|2 = (Adu,duy + |Vdu|* = " (R" (due;, due;)due;, due;
+ Z {du RicM ¢;, due;y,

(21) |dul" "2 Adu, duy = " Vo (o), |dul”duery — <t(u), 7p(u)).

3. Stability

A p-H-harmonic map is called stable, if (0°E, y(u,)/01*)|,_o =0 for all
variations u, of u.

Now, we suppose that M be a submanifold of the Euclidean space R"*%0.
In order to examine the stability of p-H-harmonic maps from M or into M"™,
we need to establish the second varational estimates.

Let {X4,A=1,...,m+ko} be an orthonormal base of R0 each member
of which is a constant vector, and let {¢;,i=1,... . m;e,,u=m+1,...,m+ko}
be a local orthonormal field of frame of R™* around a point x of M™, of
which, restricting to M™, the first m members are tangent to M, and the others
are normal to M”. We can let such that V,e; =0 at a fixed point under con-
sideration. Denote the tangent part and the normal part of X4 by X] and X}

respectively. Then
XAT = Z <XA,€,'>61' = ZU{Q@,’,
XN = Z (X, e, =: Z vhe,.

It is not difficult to check

(22)

vavAC:(SBC A,B,Ce{l,... . m+ky}
VX[ = Zuﬁhgej

where hi‘; is the second fundamental tensor of M™ in R™ 0.
In fact,

(24) dpc = {ep,ec)
= (Xu,epdXy- D (Xu,ecHXy

_ B, C
—§ Ugly,

(23)
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(25) vMxl = (VR x )T
m+k
= (VX" (X - X'
. _(VgrwkoXAN)T _ Ae,-XN h”vAej

Let N" be any Riemannian manifold. On it, we always take a local field
of frame {¢,,a =1,...,n} near a point under consideration. We have

LemMMA 1. Let u be a p-H-harmonic map from M™ to N". then
(26) > 5u(duX [ dux)
<(p-2) JM Z Hess H (due;, due;)
+(p-1 JM |du|”2> " Wbl {duey, duey.y
-2(p—1) JM |u)” ZR;”(duei, due;)
+(p-2) JM || P> Z (R" (due;, due;)due;, due;

where R} is the Ricci curvature tensor, and R™(-,-) is the Riemannian curvature
operator of N".

Proof. From (23), we have
o (duX ] ZUA (Ve,du)ej + Zvﬁh due;.

Taking use of this together with Gaussian equation of M, we get

(27) D O IV(duX )P = [Vdul* + > hlihlyduey, dueyy
= |Vdu|* + Zh”h”(duej, duey >

ki
— Rj/,‘(” {due;, duey ).

On the other hand, by (23) again, one has
(28) Z (RN (due;, duXAT)due[, duXAT> = Z (R (due;, duej)due;, due; .

Substituting (27) and (28) into (10), we reach
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29 . bnlax daX[) < (p = 1) |l Vel
M
+((-1) JM ||~ th,ih{;(duej, duey.>
—(p—1) JM || P Z Rj1}f<duej, duey
- J || P> Z (RN (due;, due;)due;, due;
M
- J Z Hess H (due;, due;).
M
Integrating both sides of (18), we know
60 | vl < | ot
M M
+ J ||~ Z (RY (due;, due;)due;, due;
M
- J |du|"—? Z R{i”(duej, due;y
J ZHess H (due;, due;)
+J |du|”~ 2Z<RN (due;, due;)due;, due;y

—J |du|?™ ZZR {due;, due;)

where we have used [,, <t(u),7,(u)> = [,, > Hess H(due;, due;). Insert (30) in

(29). Then the lemma follows.

LEMMA 2. Let u be a p-H-harmonic map from N" to M™. Then
6D LT X)) < (=) | Y kg

J |du|”™ ZZRf}fu’ k J AyHou
where we have denoted due, = ule;.

Proof. By (23), we have V, X[ =V XT =35 ulVYX[ =5 ulvhh
So by (23) again together with Gaussian equation, we have
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T2 _ i kg u
(32) SOV X = wlulhlng,
_ i kppugpu i, kpM
- Z uyu, hikhjj - Z u,u, Rik :

We easily check

(33) > CRM (due, X [ )due,, XY = " R ulul,
and
(34) > Hess H(X[, X[) =" Hess H(e;, er) = Ay H.

Inserting (32), (33) and (34) in (10), we obtain the estimate of Lemma 2.
Now we are in a position to discuss the stability.

THEOREM 2. Let M™ be a submanifold of R with the second fundamental
tensor hjy. Set A* = (hy), . = the maximal eigenvalue of 3 A"A*, and n = the
mean curvature vector of M™ in R™™ . Let N" be a Riemannian manifold with
K as the upper bound of the sectional curvatures.

(i) Assume that u is a stable p-H-harmonic map from M™ to N". If RicY >
(1/2(p — D) ((p — Vm|n|V24 + (p — 2)x|du|?) and (p —2) Hess H o u < 0, then u
is constant.

(i) Assume that u is a stable p-H-harmonic map from N" to M". If RicY >
((p— Dm/p)|p|v/% and AyH ou >0, then u is constant.

Proof. By Lemma 1 and the assumptions, we have

(35) > 5g(duX [ dux)
<(p- 1)J > S W htduey, duey >
" ;
-2(p—-1) JM |du| P~ Z R} {due;, due;)
+(p-2) J | du|PH2.
M

It is easy to check

(36) > hihliddue;, dueiy

< 2}; Z(h},i(duei,duek})z-
ik \

< m|y| V2| dul*.
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Therefore
(37) > bu(duX ] dux )

< | (0= DIV -+ = 2)lal? = 205~ Dplal”

where p is a Ricci lower bound of M™. From this estimate, the first part of the
theorem is proven.

The proof of the second part follows from Lemma 2 and an estimate similar
to (36). Q.E.D.

THEOREM 3. Let M™ be a submanifold of S™*% with the second fundamental
tensor hy. Set A" = (h}), A= the maximal eigenvalue of Y A*A*, and 1 = the
mean curvature vector of M™ in S"tk . Let N" be a Riemannian manifold with
K as the upper bound of the sectional curvatures.

(i) Assume that u is a stable p-H-harmonic map from M™ to N”. If Ric" >
(1/@(p = 1))((p— Vm+ (p— Vimln[V/Z+ (p — 2)xldul) and (p— 2) Hess H o
u <0, then u is constant.

(i) Assume that u is a stable p-H-harmonic map from N" to M"™. If RicY >
((p = Dm/p)(|n|V2A+1) and AyyH ou >0, then u is constant.

Proof. Regard M" as a submanifold of R”™ ™ Then Lemmas 1 and 2
can be used. Denote the second fundamental tensor of M” in R™*! by hy,

where u=1,...,m+ko+1. Note that we take e, +1 to be the unit outward
normal vector of R™%. Then hl""*'=—5;. So similar to the proof of
Theorem 2 we can verify Theorem 3. Q.E.D.

Remark. Theorem 2(ii) can be regarded as a generalization and an improve-
ment of Leung’s stability ([8]); Theorem 3 extends the Ohnita’s theorem ([9]).
Theorems 2 and 3 origins from Y.-L. Xin’s and Leung’s stability theorems (see
[13] and [8]).

4. Pointwise quantum theorem

For harmonic maps, Sealey obtained a pointwise quantum theorem (see [10]).
Here we generalize his result to p-H-harmonic maps.

THEOREM 4. Let u: M™ — N" be a p-H-harmonic map such that Hess H o
u<0. Suppose that Ric™ > B > 0, and that the sectional curvatures K™ of N are
not more than another positive number A, and that the rank of u is not great than gq.
If |dul* < (g/(g— 1))(B/A), then we have |du| =0 or |du|* = (q/(q —1))(B/A).
And the latter implies that u is totally geodesic.

Remark. Matei in [6] proved that E,(u) < ((¢ —1)/q)(A/B)E,»(u) for p-
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harmonic maps and the equality implies that u is constant or geodesic. On
the other hand if |du|* < (¢/(q — 1))(B/A), then Matei’s inequality becomes an
equality. Hence we have that u is constant or geodesic. In the following we
give a different proof of this theorem for p-H-harmonic maps.

Proof. By (15) we have
(38) 0> —AJ |du| ™~ |due; A due;|* + BJ |2
M ' M

By the assumption on the rank, without loss of generality, we can suppose that
duey 1 = --- = due,, = 0. We have

(39) Z |due; A duej\2 = Z {due;, due; y{due;, due;y — Z {due;, duej>2

q
< |du|4 — Z {due;, due; »*

i

2
1 q
< |dul* ~y (Z |duei|2)

—1
=L ).
q

Hence

(40) 0>J \du |2P2(B 9 A|d|)

from which we have |du|=0 or |du|*=(q/(qg—1))(B/A). When |du|* =
(q/(q —1))(B/A), all inequalities above become equalities. Hence by (15) and
(38), we get SV(|du|”>du) = 0, and hence Vdu = 0 since |du|? > = const.

Q.E.D.

For a p-H-harmonic map u with Hess H ou < /, then by Bochner formula
we have

(41) 0 zJ |du|p<|du|sz—i—q_1Adu">.
M q
When p =2, we obtain the following

THEOREM 5. Let u: M™ — N" be a harmonic map with potential H, where
M"™ and N" are as in Theorem 4, and Hess Hou < A, 0</1<B If |du|* <

(¢/(q— 1)((B—1)/A), then |dul =0 or 2=0 and |du* = (g/(q —1))(B/A).
The latter implies u is totally geodesic.
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Proof. By (41), if du # 0, then |du|* = (¢/(q¢—1))((B—1)/A). Thus (41)
becomes as an equality which implies that u is totally geodesic. Q.E.D.

Remark. In Theorems 4 and 5, when |du|* = (¢/(q —1))((B— 1)/A), then
M is a Riemannian product of two totally geodesic submanifolds, one of which
is a g dimensional space form. Here g = rank u.

5. Conservation law and Liouville theorems

5.1. Conservation law
Set u:(M,g) — (N,h) be a smooth map whose tangent map is du and
cotangent map is u*. Define stress p-energy tensor by

(42) Sp,u = Gp(u)g — |du|p_21/l*h.
Then, for any X € TM
(43)  (div Sy (X) = (VoSpa) e X)
= VeiSp,u(eiv X) - Sp,u(eh Ve,»X) - Sp,u(ve;ei7 X)

=V, (; due;, due;Y"*{ei, X'y — {|du|P 2 due;, duX})

—ep(u)<e;, Vo, X ) + |du|?~*{due;, duV o, X
= (|du|""2 (Y, due;, due;Y{ei, X > + e,(u){er, Vo, XD
— (Vo (|du|"due;), duX > — |dul""*{due;, Vo, duX >)
—ep(u)<e;, Vo, X ) + |du|"_2<duei, duV, X
= |du|" (Y, du)e;, due; Yei, X >
— (Ve |du|" 2 du)e;, duX y — {|du|"due;, (V,,du) X )
— |du|" P due;, duV, X > + |dul? " due;, duV,, X
= |du|"*{(Vydu)e;, due;y — {(V,,|dul?*du)e;, duX )
— |du|p_2<due,-7 (Ve,du) Xy
= —{1p(u), duX
where 7,(u) = —d*(|du|”2du) = (V,,(|du]” 2du))(e;).
(44) div(e,(u)X) = (Ve (e,(u)X), e;>
= {(Ve,ep(u) X, € + €y (u){Ve X, €1)
= Vxep(u) + €, (u)<Ve, X, €1,
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1
(45) Vye,(u) = p Vy<{due;, due;>"*

= |du|"2{(Vydu)e;, due;)
= |du|" 2 {(Vo,du) X , due;y
= (Vo (duX), |du|"due;y — |du|”>{duV,, X , due;
=V, {duX , |dul? *due;y — {duX , (V,,(|dul”*du))e;>
— |dul?"*{duV, X , due;»
= div(|du|" > duX , due;Ye;) — {duX ,T,(u))
— |du|P VX uth,
where VX(V, W) :=<VyX,W). Hence we have
(46) div(e,(u)X) = div(|du|’ > {duX , due;Ye;) — {duX 7, (u)>
— |dul” VX uth) + e, (u){Ve X, e;>
= div(|du|" > {duX , due;Ye;) — {duX ,T,(u))
+ {Sp.us VX

If Supp X is compact, by Green formula, we have
(47) J (div S.0)(X) + J (Spu VX =0,
M M
Take D = M, we have
(43) J ey(u)<{X,ny = J |dulP 2 duX , dun + J (div S, ) (X)
oD oD D

+J (S VX,
D
where n is the outward normal vector field of dD.

5.2. Liouville theorems

Let u: M™ — N" be a map. For any fixed xo € M™, r(x) denotes the
distance function from xy to x, Br(xg) stands for the geodesic ball with radius R
and center xo. We say that the energy of u is divergent slowly if there exists a
positive function y(7) with Lf(‘)(dl/ (1)) = oo (Ry > 0), such that

| e(1)(x)
49) P Lm W) <




114 ZHEN-RONG ZHOU

In this section, we prove two Liouville theorems. One is for p-harmonic
maps and another for p-H-harmonic maps.

THEOREM 6. Let M™ be a complete, simply connected Riemannian manifold
with non-positive sectional curvature K. Assuming that K satisfies

(1) —a®> < K < —b?, where a >0, b >0 and (m—1)b— pa > 0; or

(2) —A/(1+7r2) <K <0, where 0 < A < (1/4)(2m/p —1)* —1/4.

If u is a p-harmonic map (m > p) from M™ whose energy is divergent slowly,
then, u is constant.

Proof. By the definitions, we have
(50) Sy VXD = (ep(u)<en, e — |dul” > (dues, dueyy) Ve, X, ep
=e,(u){Ve, X, e,y — |du|" ™~ due,, duegy{Ve, X, ep).
Let X =r(0/0r), then

0
(51) VojarX =75

(52) Ve, X =1V, >

(53) {Ve,X,e,y =1+ r Hess(r)(es, e)

= r Hess(r)(ey, e;)es;

where {es,0/0r} is the orthonormal frame field of Bg(xp). Substituting (51), (52)
and (53) into (50), we have

(54) {Spu, VXD = e,(u)(1 + r Hess(r) (e, e5))
— |du|" " duey, due, YV, X , e,

0 0 0
— dulP2 2 du— =
|du| <du ar,a’u ar><V@/@,X, 6r>

0
- |du|p2<duar ) du€t> NVojarX s e

- |a’u|p2<dues7 du?> <V6YX, 6>
or or

= e,(u)(1 + r Hess(r)(es, e5))
— |dul?~*{ duey, due,>r Hess(r)(ey, ;)

0 0
—NdulP 2 du—  du—
|du| <du ar,a’u ar>'

Under the assumption in Theorem 6, by Hessian comparison theorem
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(55) b coth(br)(g — dr ® dr) < Hess(r) < a coth(ar)(g — dr ® dr)

we have
(56) <Spus VX = e,(u)(1 + (m —1)(br) coth(br))
— |du|”~2(ar) coth(ar){duey, due)

o @
_ p=2 R
|du| <du a3 du 6r>
= |du|"~ 2( (br) coth(br) +1—> <d g du >
P p OV r

+ |du|P (% + mT—l (br) coth(br) — (ar) coth(ar)) {duey, dueyy

=P Ll
> » |du| <du6r’du6r>

+ |du|P (; + r coth(br) (pb - a) > {duey, dueyy

> Ce,(u)

where C is a positive constant.
Under the assumption (2), by Hessian comparison theorem, we also have

(57) {Sp.us VX = Cep(u).

In fact, in this case, the Hessian comparison theorem is
(58) 1(g dr ® dr) < Hess(r) < ﬁ(g dr ® dr)

where f=1/2+ (1/2)(1+44)"*. Applying it to (54), we have
(59) {Sp,u, VXD = mey(u) — |du|P 2 pduey, duey)

0 0
—Naul”* du— . du—
|du| <du 3 du 6r>

Pl L
- |du| <du6r’du6r>

+ m%pﬂ |dul’ =% duey, duey>

> Ce,(u)

as desired.

For any fixed xo € M™, take D = Bg(xp). Then on dD, n=0/dr. Hence
we have
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(60) J e (u) (X1 — J \dulP~2duX, dun’

0 0
_ P20 = du—
J Re,(u J R|dul <du6r’du8r>
R

J e, (u).

(61) LD e, (u){X,ny — LD |dulP > duX , duny

IA

More precisely, we have

IA

@’%)RJ |dul” ey (ul ).

oD

From (43), (48), (56), (57) and (60) or (61), we have

(62) RJ e,(u) = CJ ep(u)
0Bgr(xo) Br(xo)
or
— 1R .
(©) DR e itep) = €[ )
p DBR(X()) BR(X'(])
If u is not constant, then
(64) J e)(u) = E(e) > 0.
B(x0)
So when R >¢, we have from (62)
E
(65) J ep(u) > ¢ (8)
0BR(xo) R
Therefore
. e,(u)(x) “ dR
66 lim J P J J u
(66) R= ) gy Y(r(X)) o Y(R) Jome(no) )
“ dR
> CE(s J _dR
@), Rp®
“ dR
> CE(e J = o0
) ) IR

which is a contradiction.

Remark. From (63), if ulsp,,) =P, then u is constant.

Q.E.D.

This is a gen-

eralization of Karcher and Wood’s result. For p-H-harmonic maps, we have
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THEOREM 7. Let M™ be as in Theorem 6, Br(xo) be a geodesic ball of M™
with radius R and center xy. Assume that u is a p-H-harmonic map from Br(x)
to N" with ulsp, () = P, where P e N" satisfies H(P) = maxyen» H(p). Then, u
is constant.

X0

For p =2, this theorem is proven by Qun Chen in [2]; for general p, the
proof is similar. For completeness, we prove it as follows.

Proof. From (43), (48), (56), (57) and (61), we have
(p B I)RJ )
67 w— " dulP e (u
) p ?BR(xo)‘ 1" -1 (ulomy i)

. J div S,.4(X) +J (Spu VX
Br(xo) Br(xo)

oH
ZJ P ou—i—CJ e, (u).
Br(x0) or Bg(xo)

Let J(6,r) dfdr be the volume element of Bg(xo) in polar coordinates around xy.
Because (0/0r)(rJ(0,r)) >0 (see [2]), we have

R ou R
(68) JO raHTJ(Q, ¥) dr = RJ(0, RVH(P) — JO H o u(0, r)%(r](ﬂ, ") dr

R

> RJ(0, R)H(P) — H(P) L %(ﬂ(@, r) dr

H R oH
(69) J yoHou <J v OuJ(H,r)dr) do
BR(X0> ar 6BR(X0) 0 ar

> 0.

By (67) and (69) and e, 1(ul;5,y,)) =0, we have IBR(-VO) ep(u) <0. Q.E.D.

X0

REFERENCES

[1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J., 22 (1999), 243-263.

[2] Q. Cauen, Stability and constant boundary-value problems of harmonic maps with potential,
J. Austral. Math. Soc. Ser. A, 68 (2000), 145-154.

[3] J. EeLLs AND L. LEMAIRE, Selected Topics in Harmonic Maps, CBMS Regional Conference
Series in Mathematics 50, American Mathematical Society, Providence, 1983.

[4] R. E. GreeneE AND H. Wu, Function Theory on Manifolds Which Possess a Pole, Lecture
Notes in Math. 699, Springer-Verlag, Berlin, 1979.



[9]
[10]
[11]
[12]
[13]

(14]

(15]

ZHEN-RONG ZHOU

H. S. Hu, A nonexistence theorem for harmonic maps with slowly divergent energy, Chinese
Ann. Math. Ser. B, 5 (1984), 737-740.

A.-M. MaTEl, Gap phenomena for p-harmonic maps, Ann. Global Anal. Geom., 18 (2000),
541-554.

N. NakAucHI AND S. TAKAKUWA, A remark on p-harmonic maps, Nonlinear Anal., 25
(1995), 169-185.

P. F. LEUNG, On the stability of harmonic maps, Harmonic Maps (R. J. Knill, M. Kalka
and H. C. J. Sealey eds.), Lecture Notes in Math. 949, Springer-Verlag, Berlin, 1982,
122-129.

Y. Onnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math.
J. (2), 38 (1986), 259-267.

H. C. J. SEaLEY, Harmonic maps of small energy, Bull. London Math. Soc., 13 (1981),
405-408.

H. TAkeucHI, Stability and Liouville theorems of p-harmonic maps, Japan. J. Math. (N.S.),
17 (1991), 317-332.

S. W. WEL, Representing homotopy groups and spaces of maps by p-harmonic maps,
Indiana Univ. Math. J., 47 (1998), 625-670.

Y. L. XN, Some results on stable harmonic maps, Duke Math. J., 43 (1980), 609-613.

Y. L. XN, Liouville type theorems and regularity of harmonic maps, Differential Geometry
and Differential Equations (Gu Chaohao, M. Berger and R. L. Bryant eds.), Lecture Notes
in Math. 1255, Springer-Verlag, Berlin, 1987, 198-208.

Y. L. XiNn, Harmonic Maps, Shanghai Scientific & Technical Publishers, Shanghai, 1995.

DEPARTMENT OF MATHEMATICS
CENTRAL CHINA NORMAL UNIVERSITY
WuHAN, 430079

P.R. CHINA

e-mail: zrzhou@ccnu.edu.cn



