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ON EFFECTIVE DIVISORS ON SMOOTH PROJECTIVE SURFACES
YosHiakl Fukuma

Abstract

Let X be a smooth projective surface defined over the complex number field and let
D be an effective divisor on X. In this paper we will propose a special class of effective
divisors which has some properties similar to that of the case where D is ample and we
will study this divisor.

Introduction

Let X be a smooth projective variety defined over the complex number field
and let L be a divisor on X. Then the pair (X,L) is called a prepolarized
manifold. 1f L is ample, then (X, L) is called a polarized manifold.

In this paper we consider the case where dim X =2, and we study some
special type of effective divisors.

In previous papers ([Fkl], [Fk2], [Fk3], [Fk5], [Fk6] and [Fk7]), we classified
polarized surfaces (X, L) by using the value of g(L), where g(L) is the sectional
genus of L, that is, g(L) =1+ (1/2)(Kx +L)L. (Here Ky is the canonical
divisor on X.) The details are as follows: If h°(L) > 0, then we can prove that
g(L) > q(X) (see Lemma 1.2 in [Fk2]), where ¢(X) is the irregularity of X, and
we classified (X, L) with 4°(L) >0 and 0 < g(L) — g(X) <1 (see [Fkl], [Fk2],
[Fk3] and [Fk5]). Furthermore in [Fk6] and [Fk7], we classified (X, L) such that
(X, L) satisfies one of the following:

(a) g(L) = q¢(X) +m and h°(L) = m+ 2,

(b) g(L) = q(X) +m, h°(L) =m+1, and dim Bs|L| <0,
where m is a non-negative integer.

When we classify (X, L) by the value of g(L) — ¢(X), we need to study a
lower bound for KyL. So in [Fk4] we studied the intersection number KyL.
For example we obtained that KyL > 2¢g(X) — 4 for any polarized surface (X, L)
with x(X) >0 and h°(L) > 2. The above results are useful to study projective
surfaces.

But the author feels that in order to study projective surfaces more deeply, it
is necessary to study more general effective divisors than ample effective divisors.
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So the author wants to find a class % of effective divisors on X which satisfies the
following:

(1) Any effective divisor which is a member of the class % has properties

similar to that of ample effective divisors.

(2) We can easily check whether an effective divisor D is a member of the

class % or not.

(3) Any ample effective divisor is a member of the class €.

If we can find the class ¥ which satisfies the above three conditions, then it seems
to be very useful to study projective surfaces.

As the first attempt, in [Fk4] we proposed a special effective divisor, which is
called a CNNS-divisor (see Definition 1.1 below). We note that any ample
effective divisor is a CNNS-divisor. If X is minimal and L is a CNNS-divisor,
then L has properties similar to that of ample effective divisors. (For example,
see [Fk4].) But when X is not minimal and L is a CNNS-divisor, L does not
always have properties similar to that of ample effective divisors. For example,
assume that 7 : X — X’ is a birational morphism, where X’ is a smooth pro-
jective surface. If L is ample, then u, (L) is ample and KxyL > Ky/(u, (L)) is
always true. If L is a CNNS-divisor, then so is p, (L), but KyL > Ky/(u, (L)) is
not always true. So it needs to consider some special type of CNNS-divisors on
X and to study these.

Hence in this paper we propose a new class of effective divisors and we study
effective divisors of this class. We define a new class of effective divisors as
follows:

(#) Let D be effective divisors on X such that D=B+T;+---+ T4,

where B is an effective divisor on X, and Ty, 7T},...,T,_1 IS a sequence
of reduced effective divisors on X such that (B;Ty,...,T,-1) is a
generalized composite series with respect to B (see Definition 2.1).

Let D be an effective divisor on X such that D has the property (#) and B is
a reduced CNNS-divisor. Then this effective divisor has properties similar to
that of ample effective divisors. (For example, the sectional genus g(D), the
intersection number Ky D, and the vanishing of 2/(—D).) We will study these in
Section 2.

In Section 3, we prove that if D is a nef and big effective Q-divisor on X,
then [D] has the property (#) such that B is a reduced CNNS-divisor. (See
Theorem 3.1.) We also prove that if D is an s-connected effective divisor on X,
then D has the property (#). (See Proposition 3.2.)

Theorem 3.1 determines a kind of a structure theorem of the Zariski
decomposition for nef and big effective Q-divisors on X, and is very useful to
study nef and big effective Q-divisors. For example, as an application of
Theorem 3.1, we get that ¢g([D]) > ¢(X) by Theorem 2.4 and Theorem 3.1,
where D is a nef and big effective Q-divisors. Furthermore we can classify
(X, D) with g([D]) = 0 (see Proposition 4.1). Here we note that Proposition 4.1
is a new result.

Here we note the following: when we study polarized surfaces (X, L), it is
difficult to study (X, L) with A°(L) = 0. But since any ample divisor is a nef and
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big effective Q-divisor, we can expect that some results of this paper give one
direction for studying polarized surfaces (X, L) with 2°(L) = 0, and we hope that
sc())me results in this paper become useful to study an ample divisor L with
h°(L) = 0.

We will study (X, D) with g([D]) = ¢(X) in a future paper.

We use the customary notation in algebraic geometry. In this paper we
mainly study smooth projective surfaces defined over the complex number field.

The author would like to thank the referee for giving some useful comments
and suggestions.

1. Preliminaries

DErFINITION 1.1 (see Definition 4.3 in [Fk4]). Let X be a smooth projective
surface and let D be an effective divisor on X. Then D is called a CNNS-divisor
if the following conditions hold:

(1) D is connected.

(2) the intersection matrix ||(C;, G)||

semidefinite.

;; of D=3%7rC is not negative

THEOREM 1.2. Let X be a minimal smooth projective surface and let D be an
effective CNNS-divisor on X such that one of the following conditions hold,

(1) K(X) = 0,1,

(2) k(X) =2 and h°(D) > 2.
Then KxD = 2q(X) — 4.

Proof. (1) The case in which x(X) = 0.

Then ¢(X) <2. Since Ky is nef, we get that KyD > 0. Hence KyD >
0=>29(X)— 4.

(IT) The case in which x(X) = 1.

Let /' : X — C be an elliptic fibration over a smooth curve C. If ¢(C) < 1,
then ¢(X) <2. Hence KyD >0 > 2¢(X) —4. Therefore we assume g(C) > 2.
By the canonical bundle formula of elliptic fibrations, we get that

KyD > (29(C) — 2+ x(Ox))DF

for a general fiber F of f. Since D is a CNNS-divisor on X, there exists a curve
B such that B is not contained in a fiber of f. Thus we get that DF > 1.
Hence

>29(C) =2+ x(Ox)
> 29(C) -2
=29(C)+2—4

> 2¢q(X) — 4.
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Let M be the movable part of |D| and let Z be the fixed part of |D|. Then
M is nef. If M? >0, then M is nef and big. So we get that KyD >
KxM >2g(X)—2 by Theorem 3.1 in [Fk4].

If M? =0, then M is nef but not big. Moreover we get Bs|M| =0. So we
get a fiber space f: X — B defined by |M|, where B is a smooth projective
curve. We remark that M is numerically equivalent to aF for a natural number
a, where F is a general fiber of f.

If g(B) =0, then

KyD > KxM > KyF

=2g(F) -

2
>2q(X) -2
If g(B) > 1, then

KX/BD > KX/BM

>2¢g(F)—2
because Ky,p is nef by Arakelov’s theorem (see [Be]). Therefore
KyD > (2g(B) — 2)DF +2g(F) — 2.

Since D is a CNNS-divisor, there exists a curve C such that C is not contained in
a fiber of f but contained in D. So we obtain that DF > 1. Hence

KxD >2g(B) —2+2¢g(F) —2
>2¢(X) — 4. O

THEOREM 1.3. Let X be a minimal smooth surface of general type and let D
be a CNNS-divisor with h°(D) =1 on X. If D is not of the following type (%),
then KyD > 2q(X) —4;

(*x) D= Ci+ Y .,1Cy; CF > 0 and the intersection matrix ||(Cj, Ci)|l 22 452

of 2]22 r;C; is negative semidefinite.

Proof. See Theorem 4.5, Theorem 4.6 and Theorem 4.11 in [Fk4]. O

DEerINITION 1.4 (see Definition 3.1 in [Mi]). Let X be a smooth projective
surface and let D be an effective divisor on X. Then D is called s-connected (in
the sense of [Mi]) if there exists a decomposition of D, D=Cy+ C,+---+ C;
such that (Cy+ -+ Ci—1)C; > 0 for i = 1,...,r, where C; is an irreducible curve
for any i.

Remark 1.4.1.

(1) The notion of s-connectedness in Definition 1.4 is different from the
notion of m-connectedness in [BPV] (see p. 69 Definition in [BPV]),
where m is a positive integer.

(2) If D is a l-connected effective divisor, then D is s-connected. In
particular if D is a nef and big effective divisor, then D is s-connected.
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PrROPOSITION 1.5.  Let X be a smooth projective surface. An effective divisor
D is not s-connected if and only if there exists a nontrivial decomposition
D = Dy + D, into effective divisors such that D1C <0 for any irreducible com-
ponent C of D;.

Proof. See Proposition 3.3 in [Mi]. O

DEerFINITION 1.6 (see p. 69 Definition in [BPV]). Let X be a smooth pro-
jective surface. Then an effective divisor D on X is said to be 1-connected if
DD, > 0 for any nonzero effective divisors D; and D, with D = D; + D;.

Remark 1.6.1. If D is a reduced and connected effective divisor on X, then
D is 1-connected.

ProposITION 1.7. Let X be a smooth projective surface and let D be an
effective 1-connected divisor. Let m: X — X, be the blowing down of a (—1)-curve
E and we put Dy := (D) in the sense of cycle theory. Then Dy is effective and
l-connected. ~Furthermore if D* >0, then D} > 0.

Proof. We put D=n*(D))+aE for aeZ. Let Dy=D; 1+ Dy, be a
decomposition of effective divisors with Dy | # 0 and D; » # 0. Then there exist
integers a; and a, such that z*(D) ;) + a1 E and n* (D) ) + ax E are effective and

D= (n"(D11)+ai1E)+ (n*(D12) + a2 E).
If aja, = 0, then by assumption we get that
0< (n*(D1,1) +@mE)(n*(D12) + mE)
=D 1D —aa
< Di 1D .

If aja; < 0, then we may assume that a; >0 and @, < 0. Then we consider a
decomposition

D = (z*(D1.1)) + (z*(D1.2) + (a1 + @) E).
Since 7n*(D12) + ;E is effective, so is n*(D;2) + (a1 + a2)E. Then
0 < (n*(D1,1))(n"(D1,2) + (a1 + a2)E)
=D11Dq 5.
Therefore D; is 1-connected. On the other hand, 0 < D?= D? —a* < D3
O

DeriNITION 1.8 (see Definition 1.9 in [Fk2]).
(1) Let X be a smooth projective surface and let D be a divisor on X. Then
(X, D) is said to be D-minimal if DE # 0 for any (—1)-curve E on X.
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(2) For any prepolarized surface (X, D), there exist a smooth projective
surface Xy, a divisor Dy, and a birational morphism p: X — X, such
that D = p*(Dy) and (Xo, Do) is Do-minimal. Then we call (Xy,Dy) a
D-minimalization of (X, D).

THEOREM 1.9. Let X be a smooth projective surface and let D be an effective
1-connected divisor on X. Then there exist a smooth projective surface S, an
effective 1-connected divisor Dg on S, a birational morphism n:X — S, and
D =7n"1Dg +>",a;C; for nonnegative integers a; and smooth rational curves C;
with C? < —1 such that g(D) = g(Ds) and one of the following holds:

(1) (S,Ds) = (P, 0(1)),

() (S.Ds) = (P 0(2)),

(3) (S,Ds) is a scroll over a smooth curve,
(4) Ks+ Ds is nef,

(5) Ds is a smooth rational curve with D% < —2,

where n~'Dg denotes the strict transform of Dg via m.

Proof. We put Xp:=X, and D(0):=D. First we take a Dy(0)-
minimalization of (Xy, Do(0)); 7o : Xo — X;, where X| is a smooth projective
surface and 7y is a birational morphism. Let D;:= (m),(Do(0)). For
(X1,Dy), if Ky, +D; is nef, then we are done. So we assume that
Ky, + Dy is not nef. Then there exists an irreducible curve C; such that
(KXI —|—D1)C1 < 0.

If Ky, Cy <0, then X is isomorphic to P2, P'-bundle over a smooth curve,
or X| has a (—1)-curve Ej.

If X7 is the first two cases, then we are done.

If X; is the last case, then Ky, E; =—1 and DE; =0. But this is
impossible because (X, D;) is D;-minimal.

If Ky, C; =0, then

0> (KXI +C + (Dl — Cl))C1
= 2g(C1) -2+ (D] — C])C].

Since D; is l-connected by Proposition 1.7, (D; — C;)C; > 0. Hence ¢g(C;) =0
and (Dy — C1)Cy = 1. Furthermore C} < —2 because g(C;) = 0 and Ky, C; > 0.
We put Di(1):= Dy — C;. Then D;(1) is effective since D;C, = C12 +1<-1
and so Supp D; o Cj.

Cram 1.9.1. Dy(1) is an effective 1-connected divisor.

Proof. Let Di(1) = By + B, be a decomposition of D;(1) with B} # 0 and
B, #0, where B; and B, are effective divisors. Then D; = Di(1)+ C; = B +
B, + C;. Since 1 = (D; — C)Cy = (B + B;)C), we may assume that B,C; < 0.
Then by l-connectedness of D, we get that 0 < (B) + C;)B, < B|B,. This
completes the proof of Claim 1.9.1. O
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(Here we note that Claim 1.9.1 can be proved also by Appendix (A.4)
Lemma in [CFL].)

Cram 1.9.2. ¢(Dy(0)) = g(D1(1)).
Proof.

9(Do(0)) = 1+ (Kx + Dof0)) Do(0)

1
=1 +§(KX1 + D)D,;

1 1 1
= 143 (Kx, + D1 = C1)(D1 = C1) + 5 (Ky, C1) + 5 (=C7 +2D1 Cy)

= g(D1(1) + 5 (Kx +2D; — C)C.
On the other hand, we get that
(Ky +2D, — C1)Cy = (Kx + D1 + D) — C1)C,y
=(Kx+C+2(D;—-C1))C
=-242
=0.
This completes the proof. O

Next we consider a pair (X;, D;(i)) for an effective 1-connected divisor D;(i)
on X,

First we take a D;(i)-minimalization of (X;, D;(i)); m; : X; — X;+1, where
X;11 is a smooth projective surface and 7z; is a birational morphism. We put
Djyy = (m),(Dii)).

If Kx,., + Di+1 is nef, then this is stopped.

If Kx,., + Di+1 is not nef, then there exists an irreducible curve C;;; such
that (KXH + D,-+1)C,‘+1 < 0.

If Ky,.,Ciy1 <0, then X;; is isomorphic to P?, P'-bundle over a smooth
curve, or X;;; has a (—1)-curve E;;.

If the first two cases occur, then this is stopped. If X;;; has a (—1)-curve
Ei, then Ky, E;1 =—1 and D;;Eiy; =0. But this is impossible because
(Xi+1,Diy1) is Djyq-minimal.

If KXI.+1CZ'+1 > 0, then

0> (Ky,, + Cip1 + (Diy1 — Ci1))Cin
=29(Cit1) =2+ (Diy1 — Ciy1)Cip1-

Since D;;; is l-connected by Proposition 1.7, (D;y1 — Cit1)Ciy1 > 0. Hence
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g(Ci+1) =0 and (Djy1 — Ciy1)Ciyg = 1. Furthermore C,-Z+1 < —2 because
g(Ciy1) =0 and Ky, , Ciy1 >=0. We put D (i+1):=Diyy — Ciy1. Then
D1 (i + 1) is effective since D;1Ciy1 = C,a_l +1< -1 and so Supp D;11 o Ciyy.
Then by the same argument as in the claim above, we can prove that D;y;(i + 1)
is 1-connected and ¢(D;(i)) = g(Dis1(i + 1)).

Assume that D,(#) =0 for some ¢. Then D, is a smooth rational curve.
Since (X;, D,) is D,minimal, we get that (X;,D,) satisfies one of the above
conditions in Theorem 1.9. This completes the proof of Theorem 1.9. O

Remark 1.9.3. We remark that D? = (D,_(i —1))* and
D,(i)* = (D; — C))* = D? —2D;C; + C?
=D? - 2(D; — C))C; — C?
>D?—2+2
=D?

fori=1,...,t. Hence we obtain that if D> > 0, then D% > 0 and the type (5) in
Theorem 1.9 is excluded.

THEOREM 1.10. Let X be a smooth projective surface and let D be a nef and
big Q-divisor on X. Then H?(X,Kx + [D]) =0 for p=1,2.

Proof. See Theorem 5.1 in [Sa]. (See also [Ka] and [V].) O

LemMma 1.11. Let X be a smooth projective surface and let D be an effective
divisor on X such that D is numerically 1-connected. If H'(COy)— H'(Up) is
injective, then h'(—D) = 0.

Proof. We consider the following exact sequence:
0— H°(—D) — H°(Oy) — H"(Op)
— H'(=D) — H'(Oy) — H'(Op).
Here we note that h°(—D) =0 and h°(0x) = 1. By the assumption and p. 69

(12.3) Corollary in [BPV], we get that h°(0p) = 1. Since H'(Oyx) — H'(0Op) is
injective, we get that 4!'(—D) = 0. ]

2. Some properties of special effective divisors

Here we define the following notion which is a generalization of effective nef
and big divisor.

DermNiTION 2.1. Let X be a smooth projective surface defined over the
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complex number field. Let B be an effective divisor on X, and let
To,T1,...,T,—1 be a sequence of reduced effective divisors on X. We put
By:=Band B;:=B;_1+ T;—y fori=1,...,n. Then (B;Ty,...,T,—) is called a
generalized composite series with respect to B if g(T;)+ B;T; —1 >0 for any
i=0,...,n—1.

Next we study some properties of this.

PropoSITION 2.2. Let X be a smooth projective surface defined over the
complex number field. Let (B; Ty, ..., T,—1) be a generalized composite series with
respect to B. We put D:=B+Ty+---+ T,_1. Then g(D) > g(B).

Proof. First we get that

g(B1) = g(Bo + To)
=g(Bo) +¢g(To) + BoTo — 1
g

In general, we can prove that

g(Biv1) = g(Bi + T;)
(B:)) +9(T)) + B, T; — 1

Therefore ¢(D) > g(By—1) = -+ = ¢g(By) = g(B). This completes the proof of
Proposition 2.2. O

Remark 2.3. We put m; = g(T;) + B;T; — 1. Then

By Proposition 2.2, we can prove the following theorem.

THEOREM 2.4. Let X be a smooth projective surface defined over the complex
number field. Let (B;Ty,...,T,—1) be a generalized composite series with respect
to B. Assume that B is a reduced CNNS-divisor. Then ¢g(D) > q(X) for
D=B+Ty+- -+ Ty.

Proof. By Proposition 2.2 we can prove that g(D) > g(B). Since B is a
reduced and connected effective divisor, we get that g(B) > 0. So if ¢(X) =0,
then g(D) > ¢g(B) > 0=¢(X). So we may assume that ¢(X) > 1. Then let

a(B) = dim Ker(H'(Ox) — H'(0p)).
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If «(B) > 0, then by Lemma 1.3 in [Fk1] there exists a morphism f§: X — A4 such
that f(B) is a point on A4, where A4 is an abelian variety. But since B is a
CNNS-divisor, this is impossible. Therefore a(B) =0, that is, ¢(X) < h'(0p).
Since B is a reduced connected effective divisor, we get that g(B) = h'(0p).
Hence g(B) = h'(0p) > q(X) and we get that g(D) > g(B) > q(X). This com-
pletes the proof. O

LemMMA 2.5.  Let X be a minimal smooth projective surface with ic(X) = 0 and
let (B;Ty,...,Ty—1) be a generalized composite series with respect to B.  We put
D:=B+Ty+---+T,.1. Then KyD > KyB.

Proof. Since x(X) >0 and X is minimal, we get that Ky is nef. So this
lemma can be easily proved. O

PropoSITION 2.6. Let X be a minimal smooth projective surface with
k(X)) =0. Let (B;To,...,Ty—1) be a generalized composite series with respect to
B. Weput D:=B+Ty+ -+ T,_1. Assume that B is a reduced CNNS-divisor
such that B does not satisfy the following condition (%x):

(%x) h°(B) = 1 and there exists only one irreducible component By of B such

that B} >0 and B — B, is negative semidefinite.
Then KyD > 2q(X) — 4.

Proof. By Lemma 2.5 KyD > KyB. Hence it is sufficient to prove
KyB >2q(X)—4. But this is true by Theorem 1.2 and Theorem 1.3. O

Next we study the case where X is not minimal.

ProposiTiON 2.7. Let X and S be smooth projective surfaces. Let
(B; To, ..., Ty—1) be a generalized composite series with respect to B on X. Let
u:X — S be a blowing down of E on X. Assume that B is a reduced connected
divisor with u,(B) # 0 and T; is connected for any i. We put D:=B+Ty+ -+
T,—1 and Ds = u, (D). Then KxyD > KsDs.

Proof. Let B):=u,(By) #0 and T/ :=pu (T;) for i=0,...,n— 1.
Cramm 2.7.1. B; = pu*(B]) — aE for a >0, where B, = u . (B;).

Proof of Claim 2.7.1. First we consider Bj.

If Ty = E, then ByTy = 1 because ¢g(Tp) + BoTo — 1 > 0. Hence we get that
By = pu*(B)) —aE for a>1. Therefore B; = By+ Ty = u*(Bj) —(a—1)E for
a—12>0. Hence KyB, > KsB| = KsB|), where B] =y, (B;). (We remark that
in this case B] = u,(B)) = By.)

If To # E, then Ty =u*(Ty) —bE for b >0 because T, is reduced and
connected. Since By is reduced and connected, we get that By = u*(B))) — aE for
a>0. Hence By =By+ Ty =p*(By+T;) — (a+b)E for a+b >0.
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For i =k, we assume that By = u*(B)) — arE for a; = 0. We consider the
case in which i =k + 1.

If Tx =E, then ByE >1 because ¢g(7%)+ BxTx-1 —1>0. Hence B =
u*(By) —aE for a>1. Since Ty =E, we get that By = By + T = u*(B}) —
(a—1)E for a—12>0.

If Ty #E, then Ty = u*(T]) — cE for ¢ >0 because T is reduced and
connected. Furthermore by assumption By = u*(B) — axE for a; > 0. Hence

By =B+ T = y*(B,’( + Tlé) — ((,Zk + C)E
=W (Biyy) — (akr1)E
for a;,1 > 0. Therefore this completes the proof of Claim 2.7.1. O

By this claim, we get that D= u*(Ds)—dE for d >0. Therefore
KyD > KsDg. O

ProposiTioN  2.8. Let X and S be smooth projective surfaces,
(B; Ty, ..., Ty1) a generalized composite series with respect to B on X. Assume
that B is a reduced, connected, and effective divisor and T; is connected for any i.
Let p:X — S be a blowing down of a (—1)-curve E. Let B’ =u(B) and
T! = n(T;), and assume that T] # 0 for some i and B' #0. Then there exists a
sequence of natural numbers ty,...,t; with 0 <ty <---<t;<n—1 such that
(B';T,,...,T;) is a generalized composite series with respect to B'.

Proof. Let X and S be smooth projective surfaces and let (B; Ty, ..., T,—1)
be a generalized composite series with respect to B. Let u: X — S be a
blowing down of a (—1)-curve E. Recall B;=B; |+ T;-; and By:=B. We
put B/ :=u,(B;). Then Ds:=B,>B, ,>---> B] > B|.

By reindexing we may assume that B, , # B; for any k. Then u (T%) # 0,
and Ty =u*(T)) —arE for ar>0. By Claim 2.7.1 we get that By =
u*(By) — b E with b > 0. Hence in this case

/ al% — dk %l
9(T) + Bi Ty — 1 = g(T}) — — BTy — axbr — 1.
Therefore

az,—a
g(T}) + BiT} — 1 = g(Ty;) + BTy — 1+~ F

+ arby
>0

This completes the proof of Proposition 2.8. O

COROLLARY 2.9. Let X be a smooth projective surface with k(X) > 0 and let
(B; Ty, ..., Ty—1) be a generalized composite series with respect to B. Assume that
B is a reduced CNNS-divisor with h°(B) > 2, and T; is connected for any i. Then
KxD>2q(X)—4 for D=B+To+ -+ Ty1.
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Proof. Let pu: X — S be a minimalization of X. Let Dg:= u (D) and
Bs := u,(B). By Proposition 2.7 KxD > KsDs. By Lemma 2.5 and Proposi-
tion 2.8 we have KsDg > KgBs. By Claim 2.7.1 we get that Bg is a CNNS-
divisor. Since #°(Bs) > h°(B) >2, we obtain that KgBs>2q(S)—4=
2g(X) —4 by Theorem 1.2. Therefore we get the assertion. O

Next we consider a vanishing theorem.

THEOREM 2.10. Let X be a smooth projective surface and let (B; To, ..., Ty-1)
be a generalized composite series with respect to B. We put T; => ", T;x for
i=0,...,n—1, where T; is an irreducible and reduced divisor on X, and r; is the
number of irreducible components of T;. We put By:= B and B; := B;_1 + T;_,
for i=1,...,n. Assume that the following hold.

(1) B is a reduced CNNS-divisor on X.

(2) BiT;x >0 for any integers i and k with 0 <i<n—1 and 1 <k <r;.
Then h'(Ky +D) =0 for D=B+To+---+ Ty_1.

Proof. We put B;o:=B; and B; y := B;y_1 + T;x for 1 <k <r;. Here we
note that B;, = Biy1.

We consider the following exact sequence:

0— O(Ky + Biy-1) = O(Kx + Bix-1 + Tix) = o1, @ O(Bik-1)|7,, — 0,
where wr,, is the dualizing sheaf of 7;;. Then we get that

H'(Ky + Bix-1) — H'(Ky + Bix) — H' (07, ® O(Bi k1)l ,)-
We note that T; ; # T, for s # ¢ because 7; is reduced by Definition 2.1. Hence
by the assumption (2) above, we get that, for k=1,...,r;,
BixaTiy=@Bi+Ti1+-+Tix-1)Tix > 0.
Since Tj is irreducible and reduced, we get that h'(wr, ® O(Bii-1)ly,) =
/10((9(—8,'1/(,1)\3;/{) =0 because deg(B,-’k,1|Ti_k) = Bix-1T;; > 0. Therefore
hl(KX + B,-.’kfl) > h1<KX + Bi,k)

for any integers i and k with 0 <i<n—1 and 1 <k <r;.

By the assumption, By is a reduced and connected effective divisor on X.
Furthermore since By is a CNNS-divisor, H!(Ox) — H'(0p,) is injective by
Lemma 1.3 in [Fk1]. Hence by Lemma 1.11 and the Serre duality, we get that
hl(KX —+ BQ) =0.

Therefore we get that

0 =h'"(Ky + By)
> hI(KX +B()7])

Y

2 hl (KX + BO.I‘())
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:/11(KX +Bl)

and this completes the proof of Theorem 2.10. O

By considering the above properties, it is natural to consider the following
type:
(x**) Let X be a smooth projective surface, and let (B;Ty,...,T,_1) be a
generalized composite series with respect to B. Assume that B is a
reduced CNNS-divisor and 7; is connected for any i=0,...,n— 1.
Here we remark that if D=B+Ty+---+ 7,1 is a CNNS-divisor with
D..q = B, then B is a CNNS-divisor.
In the next section we will give some examples of (x % *).

3. Some examples

THEOREM 3.1. Let X be a smooth projective surface. If D is a nef and
big effective Q-divisor, then there exists a generalized composite series with respect
to B, (B;Ty,...,T,—1) such that [D] =B+ To+ -+ T,_1, ([D])yeq =B, and
(B; Ty, ..., Ty—1) satisfies (x*x).

Proof. Let D be an effective Q-divisor on X such that D is nef and big.
We put D=>,bD; for b;e Q.. Let

o-on{})

If ¢ =0, then [D] is a reduced divisor, and we put B=[D] and Ty =--- =
T,-1 =0.

So we assume that ¢y # 0. Then [D] — [egD] is a reduced effective divisor.
We put

No = [D] — [egD],D(0) := D
and we put
D(1) := ¢y D(0).

In general, let
D(j) = biD;

and let
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11
e = max{“)]’ ] }
’ i bj,,‘

Then [D(j)] — [¢;D(j)] is a reduced effective divisor. Let
N; = [D(j)] — [¢;D(j)]
and we put
D(j+1) :=eD(j).

We do this process repeatedly and we stop this process if ¢, = 0. And we obtain

that there exist a reduced effective divisor B and a sequence of reduced divisors

No,...,N; such that [D]| =B+ No+---+N; and ([D]),.q = B=[e;---eD].
Let

and

be a decomposition of connected component of N; for 0 <i </, where ¢ is a
positive integer. We put B; = B;_ |+ N, and By = B. Then by the choice of
N;, we get that B; = [f;D] for 0 <i </, where f;=¢,_;---¢y and B;. = [D].
Hence h!'(Ky + B;) =0 for any integer i with 0 <i</+1 by Theorem 1.10.
On the other hand, there exists the following exact sequence for any integer i with
0<i<l!

O — (Q(KX —|—B,) — @(KX +B,‘+]) — (Q(KX + Bi+1)|N,> — 0
Hence
H'(Ky + Bis1) — H'((Kx + Biy1)|y,) — H*(Kx + B)

is exact. Since /*(Ky + B;) =0, we get that h'((Ky + Bjy1)|y ) = 0. Therefore
h'((Ky + B; +Ni-,m)|N,-,”) =0 for any i,m because N;, NN, =0 for m #m'.
Furthermore "

(A) hl (KX + Bi + ZNi,ln)

m=1

Nir

for any r=1,....¢.

CLam 3.1.1.

hl <KX + B; + ZNi,m> =0
m=1

for any r=1,... 1.
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Proof. We prove this by induction. Since Ah'(Ky+ B;)=0 and
h'((Ky + Bi+ Ni1)ly,,) =0 by (A), we get that 4'(Ky + B; + N; 1) =0.
Assume that

h! <KX +B,-+ZN,»,m> =0

m=1

for 1 <u<t. By using (A) we obtain that

u+1
h! (KX +B+ Y Ni,m) = 0.

m=1

Hence we get the assertion of Claim 3.1.1. |

Let Bjo:=B; and B;y =B;jj-1+ N; for 0<i</ and 1<k <y, and
Biy10=B;, for 0<i</—1. Here we note that B;, = [D].

Then by Claim 3.1.1 we have h'(Ky + B; ;) = 0 for any integers i and k with
0<i</land 0 <k <¢. Since h*(Ky + B;)) =0, we get the following by the
Riemann-Roch theorem:

h*(Kx + Bi k) — h°(Kx) = g(Bix) — q(X)
=g(Bik-1) —q(X)+gWNix) + Bi k-1 Nix — 1
and
h°(Ky + Bi 1) — h°(Ky) = g(Bix-1) — q(X).
Therefore
Ky + Bix) — h°(Ky 4+ Bi k1) = g(Nix) + Bix_1Nig — 1.

On the other hand 4°(Ky + B; ;) — h°(Ky + Bix_1) = 0 by construction. Hence
g(Nix) + Bix-1Nix —1=0.

Therefore (B;No.1,..-,No4sNi1,---sNiyys---»Ni1,...,Niy) 1s a general-
ized composite series with respect to B which satisfies (x x x). This completes the
proof of Theorem 3.1. O

By Proposition 1.5 and the definition of an s-connected effective divisor, we
can also prove the following result.

ProposiTiION 3.2. Let X be a smooth projective surface. If D is an s-
connected effective divisor, then there exists a generalized composite series with
respect to By, (Bo; To, ..., Ty—1) such that D=By+ To+ -+ + T,—1, Drea = By,
and T; is irreducible for any 1i.

Proof. Assume that D is s-connected. We put D =) .b;D; Let
By = Dreq. Assume that D # Drq. We put B) =D — By. Then by Proposition
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1.5 there exists an irreducible component Cj of B such that ByCj>0. We
put By =By+ C,. If D=B, then this is stop. If D # Bj, then we put
B{ =D — B;. Then by Proposition 1.5 there exists an irreducible component
C| of B such that B;C{ >0. We put B, =B+ C{. For any i, if D= B,
then this is stop. If D # B;, then we put B/ = D — B;. Then by Proposition 1.5
there exists an irreducible component C/ of B/ such that B;C/>0. We
put By = B;+ C]. We do this process repeatedly. So we get a generalized
composite series with respect t0 Dreq, (Dred; Cp,--.,C/), and D = Dyeq+
Cy+---+ C/. This completes the proof of Proposition 3.2. O

4. Sectional genus of the round up of nef and big effective Q-divisors

Here we consider the sectional genus of the round up of effective nef and big
Q-divisor D. Let X be a smooth projective surface. Then g([D]) = ¢(X) by
Theorem 3.1 and Theorem 2.4 (or Theorem 1.10). So in particular g([D]) > 0.
Here we will classify (X, D) with g([D]) =0.

PROPOSITION 4.1. Let X be a smooth projective surface and let D be a nef
and big effective Q-divisor on X. If g([D]) =0, then there exist a smooth
projective surface S, an effective divisor Ds, and a birational morphism 7 : X — S
such that ([D)),eq =7 'Ds+Y.,a;C; for nonnegative integers a; and smooth
rational curves C; with C? < —1, ¢([D]) = g(Ds) and one of the following
holds:

(1) (S.Ds) = (P2,0(1)),

(2) (S.Ds) = (P?,0(2)),

(3) (S,Ds) is a scroll over P,

@) (ID))yed =2 Ciy CG:C; <1 for any i # j, and the dual graph of this is tree,
where n='Dg denotes the strict transform of Ds via m.

Proof. By Theorem 3.1, there exists a generalized composite series with
respect to B, (B; Ty, ..., T,—1) such that [D]| =B+ To+---+ T,_1, ([D]);eq = B,
and (B;To,...,T,—1) satisfies (xx%). Let B;=B;_1+ T;-; and By:=B. So
we get that ¢([D]) > g(By-1) =--->g(By). Since ¢g(By) >0, we get that
0=9g([D]) =g(By-1)=---=9g(By) and ¢(T;)+BT;—1=0. So we study
(X, By) with g(By) =0. Here we use Theorem 1.9 for (X, B;). Then we get
that there exist a smooth projective surface S, a birational morphism 7z : X — S,
and a reduced connected effective divisor Dg on S such that g(By) = ¢g(Ds) and
By=n"'Dg+ >, a;C; for nonnegative integers ¢; and smooth rational curves C;
with C? < —1. Since g(Ds) = g(By) = 0, we get that (Ks+ Ds)Ds < 0, and by
Theorem 1.9 one of the following holds:

(I) (SvDS) = (P2a6(1>);

(1) (S,Ds) = (P2.0(2)),

(III) (S, Ds) is a scroll over a smooth curve,

(IV) Dg is a smooth rational curve.

For the first two cases we find that g([D]) = g(Ds) = 0.
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If (S,Ds) is a scroll over a smooth curve C, then g(Ds) = g(C). Hence
g9(C) = 0.

Next we study the last case. Since g(Ds)=g([D]) =g(By) =0, by the
proof of Theorem 1.9 we get that ([D]),.q = >_; Ci, where C; is a smooth rational
curve with C;C; <1 for any i #/ and the dual graph of D is a tree. O

QuesTioN 4.2. If x(X) >0, then does there exist an example of the last
case?

An answer of this question is YES.

Example 4.3. Let X be a smooth projective surface with x(X) =1.
Assume that X is minimal. Then there exists an elliptic fibration f: X — C.
Furthermore we assume that C = P!, f has a section Cp, and f has a singular
fiber of type I, II*, III*, or IV*. The dual graph of any fiber of these types
is a tree. Let F be one of its singular fiber. Then Cy+ mF is a nef and
big effective divisor for any large m. For large N >0, we get that D=
(1/N)(Co +mF) is a nef and big Q-divisor such that [D] = (Cy + mF),4. Then

g([D]) = 0.

Example 4.4. Let & be a normalized vector bundle of rank 2 on P' and let
p:P(6) — P! be its projection. Let C; be a minimal section of p and F its
fiber. (For the definition of the minimal section of p, see [Ha].) Let e = —CZ.
Then e>0. We put B=3Cy+ (3e+1)F. Then [2B|=[6Cy+ (6e+2)F]|.
Since |Cy+ eF| is base point free, we get that there exist smooth divisors
Dy,...,D¢ such that D;e|Cy+eF| for any i=1,...,6. Then D;D;=
(Co+eF)>=e>0. Assume that e=1. Let T = Ui<j(D,- ND;). Then T is
a finite set with T'# 0. Let F; and F, be fibers of p such that F,NT =
for i=1,2. On the other hand, (Cy+ F)Cy=0. So CoND;=0¢ for any
i. Let {x;;} =F,ND;. Here we consider a double covering branched at
Di+---+Dg+F +F. Since T#0 and F,ND; #0, in order to make a
double covering between smooth projective surfaces we take the canonical
resolution of the double covering. (See Section 2 in [Ho].)

Here we take the minimal even resolution of Dj+---+ D¢+ F) + F>;
u:P — P(&). Then u*(Cy+ F;) is composed with rational curves for i =1,2.
Moreover, (u*(Co + F)),eq 1S @ simple normal crossing divisor and the dual graph
of (1*(Co+ F)),eq is @ tree. Then we get a double covering #: X — P whose
branch locus is the strict transform of Dy + --- + Dg + Fy + F> via u, where X is a
smooth projective surface. By construction we get that x(X) =2 and ¢(X) = 0.
Furthermore 7% o u*(Cy + F;) is nef and big, g((n* o u*(Co + F;)),eq) =0, and

1
37 0 (Cot F)| = (8" 00" (Gt i

This is an example.
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