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NEWTON-PUISEUX APPROXIMATION AND
LOJASIEWICZ EXPONENTS

HA Huy Vur aND PHaMm TIEN SO'N

Abstract

We give a process to construct what we call the Newton-Puiseux approximation for
a system of germs (at the origin and at infinity) and indicate how the Newton-Puiseux
approximation may be used to obtain formulas for the Lojasiewicz exponents.

1. Introduction

1. Let F:=(fi,f5,..., /) : (K*,0) — (K",0) be a germ of mapping of two
variables, where K = R or K = C. We define the Zojasiewicz exponent ¥(F)
of the germ F to be the greatest lower bound of the set of all real « > 0 which
satisfy the following condition: there exist positive constants ¢ and p such that

Jmax |fix, y)| z ell(x p)II", for (x, y) € By,

where B, is the ball centered at (0,0) with radius p.
In this paper, we first give a process to construct what we call the Newton-
Puiseux approximation of the germ F. This process (1) either yields all common

non-constant factors of the real (or complex) analytic functions fi, f3,...,f, in a
suitable neighbourhood of the origin; (2) or else, after a finite number of steps,
shows that (0,0) is a common isolated zero of the functions fi, f5,..., f,. In the

latter case, we apply the Newton-Puiseux approximation to obtain a formula for
the Lojasiewicz exponent Z(F), where F is a germ of real analytic, complex
analytic or smooth mapping.

For the case where F is a germ of real (or complex) analytic mapping, Z(F)
is finite if and only if F has an isolated zero at (0,0). In the case F is a germ of
smooth mapping it is well-known [13] that the following three statements are
equivalent

(i) The Lojasiewicz exponent .Z(F) is finite.

(i) The inclusion m* < (F) holds, where m® is the ideal of all flat germs
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of the ring &, of germs of smooth functions on (R? 0), and (F) is the ideal
generated by germs f1, f3,..., fu.

(iif) The ring &»/(F) is Noether.

Thus, the result of this paper also provides a way to check whether the
above statements (i) and (ii) hold.

In the case n =1 and F =f] is a germ of real analytic function, an exact
formula for Z(fi) was given by Kuo [10]. For the case n =2 and F = (fi, f2) is
a germ of complex analytic mapping, some results for #(F) obtained in [11], [3],
[14]. Their proofs depend heavily on the use of the Newton-Puiseux expansions
of the each components of F. On the other hand, our method is based on the
Newton-Puiseux approximation of the germ F = (fi, f>,..., f,). We have learnt
this idea from [8] (see Appendix).

2. We next suppose that F:=(fi, fs,...,f,): K> — K" is a polynomial
mapping of two variables. The Zojasiewicz exponent at infinity of F, denoted
by % (F), is defined to be the least upper bound of the set of all real o such
that

max [fi(x, )| 2 ¢ll(x, )l
I=1,2,...,n
for sufficiently large ||(x, y)|| and for ¢ > 0. If the set of all the exponents is
empty we put %, (F) = —oc0.

In the case n = 2, Ha [6] gave an exact formula for the Lojasiewicz exponent
at infinity, %, (grad f), of the gradient of a complex polynomial f, and he
showed a link between %, (grad f) and the singularities at infinity of f. In the
papers [4], [5] Chadzynski and Krasinski described the Lojasiewicz exponent at
infinity of a polynomial mapping F : C> — C?, and they obtained a character-
ization of a component of a polynomial automorphism of C? from a charac-
terization of %, (F). Recently, Lenarcik [12] gave an estimation of %, (fi, f2)
in terms of the Newton polygons of polynomials f, f>; while for non-degenerate
polynomials, the equality was obtained.

3. This paper is organized as follows. In Section 2 we shall describe
the Newton-Puiseux approximation and apply it to obtain a formula for the
Lojasiewicz exponent of a germ. In Section 3, we shall construct the Newton-
Puiseux approximation for a polynomial mapping in a neighbourhood of infinity
and we then indicate how this method may be used to give the Lojasiewicz
exponent at infinity. For the non-degenecrate case, the tojasiewicz exponents
(at the origin and at infinity) are obtained in terms of the Newton polygon of
F (Corollary 1 and 2).

2. Newton-Puiseux approximation

We shall only consider for the case where F = (fi, f5,...,f): (R*0) —
(R",0) is a germ of real analytic mapping. A slight change in the proof actually
shows that the proposed process also holds in the case where F is a germ of
complex analytic (or smooth) mapping (the details are left to the reader).
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Let mg := min;_; >, O(f1), where O(f;) is the order of f;. Then we can
write

ﬁ(x> J/) :fl,mo(x7 y) +ﬁ,mu+1(-x7 y) + - ) [ = 1a2a )
where f;;(x, y) are homogeneous polynomials of degree i.

Case 1. If the algebraic equations

(1) fl,mo(k, 1) = 07 f2,mo(k7 1) = 07 R 7f’l7'710(k7 1) = 07

have no common real finite or infinite roots then it easy to check that the func-
tions f1, f2,..., f» have no common (real) tangent lines. The process is finished,
g(F) = my.

Case 2. We will examine the case where (1) has one or several common
real solutions, say, ki,k3,...,k;. Then the polynomial functions

f‘l\}”O(x’ y)’ f‘2¢n10(x7y)7"'7ﬁ1-,m0(x7y)

vanish on the following 2s rays:
Li:{x=ky,y=0} Ly:{x=ky,y<0}

Log i {x=kyy,y>0}; Ly:{x=ky,y<0}

(if among the solutions ki, ks, ..., ks there is a solution k = oo, the rays y =0
(x>=0) and y =0 (x <0) correspond to this solution). We shall refer to the
rays L, as the degeneracy rays of the germ F.

We will denote by I;(¢) (6 =1,2,...,2s) the set of points which lie inside
the angle of 2¢ radians, whose bisector is L,; and by Z(F; L,) the greatest lower
bound of the set of all a > 0 such that the following inequality holds

l:IiI.lza.'.).(.,n |ﬁ(x7 y)| > C”(X, y>H17 (X, y) € Fﬂ(a) N Bﬂa
for some ¢,p > 0. We call #(F;L,) the Lojasiewicz exponent of the germ F
with respect to the ray L,.

Resolution of degeneracy of rays. We will now examine the case where the
polynomials f;,,, vanish on the 2s rays L,, 0 =1,2,...,2s.

The process described below, (1) either yields all common non-constant fac-
tors of the functions fi, f2,..., fy; or else (2), after a finite number of steps,
enables us to calculate the Lojasiewicz exponents #(F;L,) of the germ F with
respect to the rays L,, and hence the Lojasiewicz exponent Z(F).

Fix g e {l,2,...,2s}. Assume that the degeneracy ray under consideration,
L, coincides with the positive half of the y-axis, y > 0. This assumption does
not affect the generality of our argument, since we could in any case perform a
linear change of variables by an orthogonal matrix which transforms the ray L,
into the positive half of the y-axis. The transformed germ can be expressed, of
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course, in a form similar to the germ F; moreover, the Lojasiewicz exponent
P (F;L;) of the germ F with respect to the ray L, will remain unchanged.

Let us denote by a . the coefficients of x7y/ in the expansion of functions
fi(x, y) in powers of x and y. Let

m my— —
ﬁmO(x y) = moox Pt +a,umo ﬂxﬂy o 1=1,2,..n,

where at least one of the numbers aﬂ mo—w | = 1,2,...,n, is different from zero.

Cas 2.1 If there is no term a/ ;x'y/ such that i < u and j > my — u then

it is obvious that the functions f}, f>,...,f, have a common factor x#. The
process is finished.

CASE 2.2. Otherwise, we put

rO:min{4]_ﬂ Ol—i_ﬂ|l<,u,l+]>mo}

and let
‘/jla'x y Zaljxy7

the summation being taken over all values of (i,j) for which iry+j=
my +/1(r0 — 1).

Casg 2.2.1. If the algebraic equations

lplﬂ(k7 1) = 07 lpZ,a(k7 1) = 07 LR lpn,a(kﬂ 1) = 07

have no common real solutions, then the process of resolution of degeneracy of
the ray L, is finished.

Case 2.2.2. Let us pass to the case where the polynomials y, ,(k,1),
[=1,2,...,n, have common real solutions kg 1,ks 2, ... ks s)-

Let ro = p/q, where p and ¢ are two relatively prime numbers, p > ¢g. The
set {mo, u,ro, p,q} is called the characteristics of the ray L.
Fix te{1,2,...,s(0)}. We shall change the variables

x =y (kes+x1), y=)1,
and consider the functions
gri(xt, yi) = yy OGP ey 4 x1), p0), I=1,2,...n,
on the positive half of the y-axis, y; > 0. We shall refer to the ray
L,;,={x;1 =0,y =0}

as degeneracy of the germ G, := (911,921, ---,9n). It is easy to check that if
the germ F has an isolated zero at (0,0), then so does G,.
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The reasoning expounded above can be applied again to the degeneracy rays
L;;, and so on. If the germ F has (0,0) as an isolated zero in some neigh-
bourhood of (0,0) then after a finite number of recursive applications of the
above process we can calculate the Lojasiewicz exponent of the germ F with
respect to the ray L,. We will clarify this in the following. Let us call the
above passage from F to G; a Newton-Puiseux approximation.

ProposITION 1. If the germ F has an isolated zero at (0,0) then every
sequence of recursive Newton-Puiseux approximations, beginning with F, is finite.

Proof. Suppose that an infinite sequence of degeneracy L), (k=1,2,...),
of successively constructed germs, had been built up. We shall derive a con-
tradiction. The equation of L*) in the coordinate system (x, y) would have the
form

x = x(y) — C]y}'1 + Czy}’1+}'z +ee,
where ¢; # 0 and y; are positive rational numbers having a common denomi-
nate. It is found that this series coincides with one of the series obtained with
the help of Newton-Puiseux’s method applied to functions fi, f3,..., fx (see [2],
[15]). In accordance with a well-known theorem ([1], [2]) this series is conver-
gent and defines the general solution of the system of equations fi(x,y) =0,
[=1,2,...,n, which contradicts the fact that the functions fi, f5,..., f;, vanish
simultaneously only at 0. U

We now suppose that the germ F has an isolated zero at (0,0). Then the
process of resolution of degeneracy of L, gives us a tree T, whose vertices cor-
respond to the degeneracy rays of successively constructed germs, and the root
of T, corresponds to L,. We will denote by Lf,l),ng), e ,Lf,d<”)) the degener-
acy rays with respect to the leaves of the tree 7,. The equation of LE}) in the
coordinate system (x, y) would have the form of a certain finite sum in fractional
powers of y:

X = lmi(y) — C1y71 + cZy71+Vz 4+ 4 CkyV|+}’z+“‘+“r'k, 1> y > 0,
with ¢; #0, y; > 0. We call y; the valuation of the curve x = 4, ;() and denote
it by val(4,;) = 7.
THEOREM 1. Suppose that the germ F has an isolated zero at (0,0). Then

Z(F) = max |my, max max val(F(4,,(»), »))|-

Proof. 1f Case 1 holds, #(F)=my. Conversely, it is evident that
P(F) = max P (F;L,),

o=1,..,2s

since the germ F has an isolated zero at (0,0).
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Let TI(¢) be the closure of the set of points which do not lie in U?:] I,(¢).
The vector (fi,m (X, ), f2.my (X, ¥)s- -, famy (X, y)) are different from zero at the
non-zero points of II(¢). Therefore, there are numbers p > 0 and ¢ > 0 such that
for (x,y) eIl(e) N B, the following inequality holds

02X | fimg (6, )] Z el )™

and hence
Jmax i)l = el )™, (x,3) e T N B,

Since max;—1,2,.. x| f1,m,(x, ¥)| does not vanish at those points of I';(¢) which
do not lic on Lo, the following inequality takes place

(2)  max |f1 mo (X, P) 2 [ (e, T (> 05 (x, p) € To(2) N By).

We shall denote by y/(x,y) the sum of those terms in the expansion of
fi(x,y) in powers of x and y, for which i+; > my and j <my— and by
x7(x, ) the sum of all remaining terms which satisfy the condition i+ j > my.

We have
Za, Y < max [Zla | x|y

Z\a (tan &)y’ ”]xvl

for (x,y) e I,;(e) near (0,0). This implies

(1 (x, p)| = of|x|*y™ .

max |)(, (x, )| max ||

I=1,2,.., I=1,2,.n

2,y

3 max
(3) I=1,2,..n

Similarly, when (x, y) ¢ Rs(n) := {(x, y) € Is(e) | |x| <my™} we get
max |)(, (x, »)] ,_nax

J—mo+p my—p
=1,2,.., 1.2, Zaljxy [ZW | ||y o ]y o

[ZM |’7 (j—mo+u /10|x|t+/ mo+/1)/;0‘|y =~

Hence, by the definition of ry,
@) max |2 <ol (x,0) € Ro(o), (x. ) near (0,0),

where

o(n) lZIa o /»0] -0

as n — oo.
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We conclude from (2), (3) and (4) that there are positive numbers 7, p;, ¢1
such that the following inequality holds for all (x,y)e [[;(¢)\Rs(7)] N B,

(n=mnp):
(5) max |fi(x, )] 2 el " 2 ety D).

On the other hand, it is easily seen that

(6) |f1(x7 y)_lp/,o'(x7y)| :O(ym0+'u<r0_1))a [ = 1,2,...,}’1,

is valid on R,(7).
If Case 2.2.1 holds then there are positive numbers p,,c, such that

max [y o(x, p)] = eyl

for every (x,y)e R,(n)NB,,. Hence, from (6), it follows that
g(F;Lg) = my —&-,u(rg — 1)

Suppose now that Case 2.2.2 holds. We consider the germ F in “the horn
neighbourhood” (see [10], [11]) H,(z,w) of the curve x =k, y", 0<y<«]1,
where

Hy (6, w) ={(x,9) € Rs(n) | [x — kg, y"[ < wy™}

with 0 <w « L.
For all (x,y) e H,(t,w) we have

(7) Jmax |fiCep) = max p g, ()]
> ¢ ymww(p 9)+2(Gi; Le,1)
= c3y"1o+#(ro—1)+¥(Gr;La,,)/q (c3 > 0).
It is also easy to see that there are positive constants c4,p, such that
(8) max Y ,(x, y)| = cqytHo Y
for (x,y) \UI | Hy, (1, w)|N B,
From mequahtles (5), (6), (7) and (8), we deduce that
L(Gy; Lo,r)

L(F;L;) = -1 ma
( ) = mg + u(ro )Jrl N {(S(U) p

By solving the above recurrence equation, we obtain
P (F; Ly;) =max val(F(2,:(»), »)).
The proof is complete. Ul

Example ([9]). Consider F(x, y) = grad(x*—3xp3) = (3x>—3y%,—9xy?). In
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our case my =2, and the initial forms fi »(x,y) =3x% and fr2(x,y) =0 of F
vanish on two rays
Ly :{x:=4(y)=0,y=0}; Lp:{x:=1(y)=0,y <0}
It is easily seen that u =2, rp =3/2, and
Ui o(xp) =337 =3y, 4y ,(x,») =0, o=12.
The system of equations
Yk, 1) =0, ¥y (k1) =0

has two real solutions k;; =1, k2 =—1. Fix te{l,2}. To examine the ray
L, we perform the change of varlables (p=3,9=2):

x=yilkn +x1), y=yi.
Let us write the components of G, as follows

Gi(xr, 1) =y DR e+ x0), 0],
= (3x12 + 6k i x1, =% v1 — 9x1p1).
The initial forms of components of G, are
(6k1,1x1, =9k 1 1)

This germ does not vanish on L;,:={x; =0,y =0}, and so, the process of
resolution of degeneracy of L;, is finished; and the equation of L;, in the
coordinate system (x, y) is of the form

L {x:=2.y) = k17[y3/2, y = 0}.
On the other hand, the system of equations

Y2k, —1) =0, p,(k,—1)=0

has no real solutions. Hence the process of resolution of degeneracy of L, also
terminates.
Theorem 1 now implies

ZL(F) = max(val(F(42(y), »)), ?:1% val(F(21,(), »))) = max(3,;) :;

The case of non-degenerate germs. Let a! ;; denote the coefficients of x iy
in the expansion of fj(x,y) in powers of x and y, i.e.

y) = Z a,-l’jxiyj, I=1,2,...,n
i+j=0

Let supp(F) := {(i, j) e N*|there is / such that a/ ; #0}. The Newton poly-
gon N(F) is the set of compact faces of the boundary of the convex hull of
[supp(F) + (R*)%. We call F convenient if there are vertices of the Newton
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polygon N(F) which lie on the axes x =0 and y =0. For any edge e of the
Newton polygon N(F), let y; (x,y) be the sum all monomials a/ x'y/ in
fi such that (i,j) ee. The convenient germ F is called non-degenerate if for
every edge e of the Newton polygon N(F) one has the following: the algebraic
equations

(9) ‘/jlﬁ(’(x)y)zoa 121,2,...77’17

have no common real solutions in (R\{0}) x (R\{0}). One can check that the
non-degenerate condition is generic in the sense of Kouchnirenko (cf. [7]).

COROLLARY 1. Suppose that the germ F is convenient and non-degenerate,
and let (a,0) and (0,b) be the vertices of N(F) which lie on the axes. Then

Z(F) = max(a, b).

Proof. Since the germ F is non-degenerate, the equations
Srmales 1) =0, foomy (k1) = 0, fom ks 1) = 0
have common real solutions k =0 and k = c0. Let
Li={x=0,y>0}, Ly={x=0,y<0},
Ly={y=0,x>0}, Ly={y=0,x<0}.
Consider L;. Let {mo,u,ro, p,q} denote the characteristics of L;. If the seg-

ment e, which joints (0,b) and (u,mo — 1), belongs to the Newton polygon N(F),
then k=0 is not a solution to the system of equations (9) and so

ff(F; Ll) =b.
Otherwise, because the germ F is non-degenerate, (9) only has a solution k = 0.
By the change of variables x = y/x|, y = y{, there is only one degeneracy ray
Ly ={x1=0,y1 >0}

that needs to be considered. Let

g1 (x1, 1) = yl_[moq+#(p_q)]ﬁ(

It is easy to check that Gy := (91.1,92.1,---,9n1) is non-degenerate and the point
(0,bg — mog — u(p — q)), which lies on the axis x; =0, belongs to the Newton
polygon N(G;). Moreover, the number of vertices of N(Gp) is smaller that of
N(F). By Theorem 1 and by induction on the number of vertices of the Newton
polygon N(F), we can show that

yx,ylh), 1=12,....n.

ZL(Gy; L
SiFiL) = st )+ £
bq —mog — p(p — )

=mo+ u(ro— 1)+

q
=b.
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It follows from a similar argument that, ¥(F;L,)=b and Z(F;L3) =
Y (F;Ls) =a. Hence

& (F) = max(a,b). ]

3. Newton-Puiseux approximation at infinity

We now suppose that F = (fi, f>,..., ;) : K* — K" is a polynomial map-
ping of two variables. The aim of this section is to construct the Newton-Puiseux
approximation at infinity of F. From this method we immediately obtain a way
of calculating the Lojasiewicz exponent %, (F) of F.

The proofs of the results in this section are done by the same method as
in Section 2. Hence we shall only describe the Newton-Puiseux approximation
at infinity of F. Furthermore we will only consider the case where F is a real
polynomial mapping. Similar results can be obtained for complex polynomial
mappings.

Let d :=max;—;,,,deg(f;), where deg(f;) is the degree of f;. Then we
can write

f}(x7 J/) :f},d(x7 J’) +f),d71(xa J/) + Tty = 1,2,...,1’1,

where f;;(x, y) are homogeneous polynomials of degree i.

Case 1. If the algebraic equations
(10) fl.d(k71> :f2.,d(k>1):"':fn,d(k71)207
have no common real finite or infinite roots, then #F~!(0) = ) and £, (F) =d.
The algorithm is finished.

Casg 2. Otherwise, let ki, ks, ..., ks be common real roots of (10). Let

Li:{x=kyy>»0}; L:{x=ky,y<0}

Ly 1 :{x=ky,y>»0}; Ly:{x=ky,y<0}

We shall refer to L, as degeneracy rays at infinity of F.

We will denote by I,(e) (6 =1,2,...,2s5) the set of points which lie inside
the angle of 2¢ radians, whose bisector is L,; and by %, (F;L,) the smallest
upper bound of the set of all real o such that the following inequality holds

]:111’128'?_(,_" |ﬁ(x7 y)| Z C”(X, y)”“? (X, y) € ra'(e)\pr

for some ¢ >0, p>»>0. We call &, (F;L,) the Lojasiewicz exponent at infinity
of F with respect to the ray L,.
Fix 0 e{l1,2,...,2s}. Assume that L, = {x =0,y >» 0}.
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Let us denote by a

fl,d(xay):afl_’()xd‘f' +a,ud u yd_”, l:1,2,...,l’l,

1 2
where the vector (a, ;.. dy 4y - -

the coefficients of x’y/ in fj(x,y). Let

sy 4_,) 1 DOt zero.

Cast 2.1.  If there is no term a/ X 'yJ such that i < u then #F~1(0) = oo; the
process of resolution of degeneracy dt infinity of L, terminates.

Casg 2.2. Otherwise, let
Fo = max{——— | i<p
—

l///a'xy Zal/xya

and

the summation being taken over all values of (i,j) for which iry+j=
d+ u(ro—1).

Case 2.2.1. If the system of algebraic equations

lpl,a(ka 1) =0, lpZ.a(k’ 1) =0,..., lpn,a(ka 1) =0,
has no real solutions, then the process of resolution of degeneracy at infinity of
L, terminates and ¥, (F;L,) =d + u(ro — 1).

Case 2.2.2. Otherwise, suppose that ks 1,ks2,...,kq s are the common
real roots of the polynomials y,  (k,1), I=1,2,...,n

Let ro = p/q <1, where p and ¢ are two relatively prime numbers, g > 0.
Fix re{1,2,...,5(0)}. Consider the change the variables

x =y (ko +x1), y=y,
and the functions
gr.e(x1, 1) = iy} (ko + x1), 1), 1=1,2,...,n,
on the positive half of the yj-axis, y; > 0. We shall refer to
Ly ={x1=0,y1 >0}

as degeneracy at infinity of the mapping G, := (g1,1,92.4,-- > 9n1)-

Resolution of degeneracy at infinity of L,, We first note that, for each
x1 € R the function g, ,(x;, y;) is a Laurent series in y; with a finite number of
terms of positive degrees. We write

gr.(x1, 1) Zbl 1x1y1
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and put supp(G;) = {(i,) |31, b! i;#0}. Let (do,u') € supp(G;) denote the point
satisfying the following conditions

dy = max{j| (i, j) € supp(Gi)},
W = mindi| (i, do) € supp(Gy)}.
Casg 2.2.2(a). If there does not exist a point (i, j) € supp(G;) such that
i<u', j<dy then #F~'(0) = oo and the process of resolution of degeneracy at
infinity of L, , is finished.

Casg 2.2.2(b). Otherwise, let

mln{d
= u—

(1, v1) Zb, X,

the summation being taken over all values of (i, j) for which j —irj = dy — u'r{.

i<, ]<d0}

and

If the system of equations ¢;(k,1) =0, /=1,2,...,n, has no real solutions,
then the process of resolution of degeneracy at infinity of L, , terminates and
Loo(Gr; Lo) = do + 1/ (ry — 1).

Otherwise, suppose that kg 1 1,kq,1,2,- -, Kg,1 55,1 are the common real roots
of ¢;(k,1)=0. Let r,=p'/q' >0, where p’ and ¢’ are two relatively prime
numbers. Fix ue {1,2,...,5(c,7)}. Consider the change the variables

X1 :y;p (ka,l,u+x2)7 V1 :yg7

and the functions
B ou(32, 12) = gralyy? Ko+ 320,04, 1=1,2,...n,
on the positive half of the y,-axis, y, > 0. We shall refer to
L;uw={x2=0,y,>»0}

as degeneracy at infinity of the mapping H,, = (" 1uh2,0us - - n, )

We now repeat the process of resolution of degeneracy at infinity of L, ,. If
F ’1(0) < oo then after passing a finite number of steps from G, to H,, we can
calculate the Lojasiewicz exponent at infinity of G with respect to L, ,; and this
gives %, (F;L;). Moreover, the process of resolution of degeneracy at infinity
of L, gives us a tree 7, whose vertices are correspond to the degeneracy rays
of successively constructed mapping, and the root of T, is correspond to L,.
Denote by LETI),L(@, .. ,Lf,d(”)) the degeneracy rays with respect to the leaves of
T,. Assume that x =1, ,(y) (y»0),i=1,2,...,d(0g), are the equations of LY
in the coordinate system (x, y).
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With exactly the same method as in Theorem 1, we can prove the following

THEOREM 2. Suppose that F is a polynomial mapping satisfying
#F~1(0) < 0. Then

() = min( d.min min val(F(ir (3).) ).

1

Example ([6]). Consider the polynomial mapping
F(x,y) = grad(3x — x%y) = (3 — 3x%y, —x?).

In our case d = 3, and the polynomials fi 4(x,y) = —3x2y and f> 4(x,y) = —x3
vanish on two rays

L :{x:=4((y)=0,y>0}; Lr:{x:=A(y)=0,y«0}.

We shall examine the rays L; and L, simultaneously. It is easily seen that
u=2 ro=-1/2 and

lrbl,o'(xv y) :3_3x2ya l//2,o(x7y) :07 0= 172
The system of equations
lrbl.l(kvl):07 lpZ,l(kal):O

has two real solutions k=1, ki, =—1. Fix re{1,2}. We perform the
change of variables (p = —1,¢q = 2):

x=yitk+x), vy =1
Let us write the components of G; as follows
Gi(x1, 1) = Flyy (ki +x1), i,
= (=6k1,x1 =307, —k o = 3y = 3k edyy? = xip).
It follows that dp =0, ¢/ =1, rj=3, p’=3, ¢’ =1 and
p1(x1, 31) = —6k1x1,  pa(x1, 01) = =Ky

It is obvious that the system of equations ¢(k,1) = ¢,(k,1) =0 has no real
solutions. Therefore the process of resolution of degeneracy at infinity of
Ly, :={x; =0,y » 0} stops. Moreover, the equation of L;, in the coordinate
system (x, y) is

Li;:{x:=4,p) = k17ty71/2a y >0}
On the other hand, the system of equations
Yra(k,—1) =0, y,(k,=1)=0

has no real solutions. It follows that the process of resolution of degeneracy at
infinity of L, also stops.
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Theorem 2 now yields

. . . 3 3
P (F) = min(val(F(12(»), »)), min val(F(41,4(y),y))) = min (0, _§> =-3
The case with non-degenerate infinity. Let a! ; denote the coeflicients of xiyl
in fi(x, y):
fitx, )= al;xyl 1=12,....n

>0

We call the polynomial mapping F = (fi, f2,..., fn) convenient if F(x,0) and
F(0, y) are non-zero polynomial mappings in R[x, y]. We will denote by A(F)
the convex hull of the set

{(0,0)} U{(4, j) | there is / such that al{j #0}.

The Newton polygon at infinity N, (F) consists of all the boundary edges of A(F)
which are not contained in two axes. If ee N, (F) then we let y, (x,y) be
the sum all monomials a/ ;x'y/ in f; such that (i, j) e e. The convenient mapping
F is non-degenerate at infinity if for any e € N, (F), the system of equations

lpl,e(xa y) =0, ‘pz,e(xv y)=0,..., ‘//n,e(xﬂ y)=0,

has no solutions in (R\{0}) x (R\{0}).
In particular, Theorem 2 also has a simple geometrical meaning as follows.

COROLLARY 2. Suppose that the polynomial mapping F is convenient and
non-degenerate at infinity and let (a,0) and (0,b) be the vertices of N, (F) which
lay on the axes. Then

% (F) = min(a, b).
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