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NEWTON-PUISEUX APPROXIMATION AND

ŁOJASIEWICZ EXPONENTS

Hà Huy Vui and Pha
˙

m Tiê´n So’n

Abstract

We give a process to construct what we call the Newton-Puiseux approximation for

a system of germs (at the origin and at infinity) and indicate how the Newton-Puiseux

approximation may be used to obtain formulas for the Łojasiewicz exponents.

1. Introduction

1. Let F :¼ ð f1; f2; . . . ; fnÞ : ðK 2; 0Þ ! ðK n; 0Þ be a germ of mapping of two
variables, where K ¼ R or K ¼ C . We define the Łojasiewicz exponent LðFÞ
of the germ F to be the greatest lower bound of the set of all real a > 0 which
satisfy the following condition: there exist positive constants c and r such that

max
l¼1;2;...;n

j flðx; yÞjb ckðx; yÞka; for ðx; yÞ A Br;

where Br is the ball centered at ð0; 0Þ with radius r.
In this paper, we first give a process to construct what we call the Newton-

Puiseux approximation of the germ F . This process (1) either yields all common
non-constant factors of the real (or complex) analytic functions f1; f2; . . . ; fn in a
suitable neighbourhood of the origin; (2) or else, after a finite number of steps,
shows that ð0; 0Þ is a common isolated zero of the functions f1; f2; . . . ; fn. In the
latter case, we apply the Newton-Puiseux approximation to obtain a formula for
the Łojasiewicz exponent LðF Þ, where F is a germ of real analytic, complex
analytic or smooth mapping.

For the case where F is a germ of real (or complex) analytic mapping, LðFÞ
is finite if and only if F has an isolated zero at ð0; 0Þ. In the case F is a germ of
smooth mapping it is well-known [13] that the following three statements are
equivalent

(i) The Łojasiewicz exponent LðF Þ is finite.
(ii) The inclusion my H ðFÞ holds, where my is the ideal of all flat germs
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of the ring E2 of germs of smooth functions on ðR2; 0Þ, and ðFÞ is the ideal
generated by germs f1; f2; . . . ; fn.

(iii) The ring E2=ðFÞ is Noether.
Thus, the result of this paper also provides a way to check whether the

above statements (i) and (ii) hold.
In the case n ¼ 1 and F ¼ f1 is a germ of real analytic function, an exact

formula for Lð f1Þ was given by Kuo [10]. For the case n ¼ 2 and F ¼ ð f1; f2Þ is
a germ of complex analytic mapping, some results for LðFÞ obtained in [11], [3],
[14]. Their proofs depend heavily on the use of the Newton-Puiseux expansions
of the each components of F . On the other hand, our method is based on the
Newton-Puiseux approximation of the germ F ¼ ð f1; f2; . . . ; fnÞ. We have learnt
this idea from [8] (see Appendix).

2. We next suppose that F :¼ ð f1; f2; . . . ; fnÞ : K 2 ! K n is a polynomial
mapping of two variables. The Łojasiewicz exponent at infinity of F , denoted
by LyðFÞ, is defined to be the least upper bound of the set of all real a such
that

max
l¼1;2;...;n

j flðx; yÞjb ckðx; yÞka

for su‰ciently large kðx; yÞk and for c > 0. If the set of all the exponents is
empty we put LyðF Þ ¼ �y.

In the case n ¼ 2, Hà [6] gave an exact formula for the Łojasiewicz exponent
at infinity, Lyðgrad f Þ, of the gradient of a complex polynomial f , and he
showed a link between Lyðgrad f Þ and the singularities at infinity of f . In the
papers [4], [5] Chadzynski and Krasinski described the Łojasiewicz exponent at
infinity of a polynomial mapping F : C 2 ! C 2, and they obtained a character-
ization of a component of a polynomial automorphism of C 2 from a charac-
terization of LyðF Þ. Recently, Lenarcik [12] gave an estimation of Lyð f1; f2Þ
in terms of the Newton polygons of polynomials f1; f2; while for non-degenerate
polynomials, the equality was obtained.

3. This paper is organized as follows. In Section 2 we shall describe
the Newton-Puiseux approximation and apply it to obtain a formula for the
Łojasiewicz exponent of a germ. In Section 3, we shall construct the Newton-
Puiseux approximation for a polynomial mapping in a neighbourhood of infinity
and we then indicate how this method may be used to give the Łojasiewicz
exponent at infinity. For the non-degenerate case, the Łojasiewicz exponents
(at the origin and at infinity) are obtained in terms of the Newton polygon of
F (Corollary 1 and 2).

2. Newton-Puiseux approximation

We shall only consider for the case where F ¼ ð f1; f2; . . . ; fnÞ : ðR2; 0Þ !
ðRn; 0Þ is a germ of real analytic mapping. A slight change in the proof actually
shows that the proposed process also holds in the case where F is a germ of
complex analytic (or smooth) mapping (the details are left to the reader).
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Let m0 :¼ minl¼1;2;...;n Oð flÞ, where Oð flÞ is the order of fl . Then we can
write

flðx; yÞ ¼ fl;m0
ðx; yÞ þ fl;m0þ1ðx; yÞ þ � � � ; l ¼ 1; 2; . . . ; n;

where fl; iðx; yÞ are homogeneous polynomials of degree i.

Case 1. If the algebraic equations

f1;m0
ðk; 1Þ ¼ 0; f2;m0

ðk; 1Þ ¼ 0; . . . ; fn;m0
ðk; 1Þ ¼ 0;ð1Þ

have no common real finite or infinite roots then it easy to check that the func-
tions f1; f2; . . . ; fn have no common (real) tangent lines. The process is finished,
LðF Þ ¼ m0.

Case 2. We will examine the case where (1) has one or several common
real solutions, say, k1; k2; . . . ; ks. Then the polynomial functions

f1;m0
ðx; yÞ; f2;m0

ðx; yÞ; . . . ; fn;m0
ðx; yÞ

vanish on the following 2s rays:

L1 : fx ¼ k1y; yb 0g; L2 : fx ¼ k1y; ya 0g;
� � �

L2s�1 : fx ¼ ksy; yb 0g; L2s : fx ¼ ksy; ya 0g;

(if among the solutions k1; k2; . . . ; ks there is a solution k ¼ y, the rays y ¼ 0
ðxb 0Þ and y ¼ 0 ðxa 0Þ correspond to this solution). We shall refer to the
rays Ls as the degeneracy rays of the germ F .

We will denote by GsðeÞ ðs ¼ 1; 2; . . . ; 2sÞ the set of points which lie inside
the angle of 2e radians, whose bisector is Ls; and by LðF ;LsÞ the greatest lower
bound of the set of all a > 0 such that the following inequality holds

max
l¼1;2;...;n

j flðx; yÞjb ckðx; yÞka; ðx; yÞ A GsðeÞVBr;

for some c; r > 0. We call LðF ;LsÞ the Łojasiewicz exponent of the germ F
with respect to the ray Ls.

Resolution of degeneracy of rays. We will now examine the case where the
polynomials fl;m0

vanish on the 2s rays Ls, s ¼ 1; 2; . . . ; 2s.
The process described below, (1) either yields all common non-constant fac-

tors of the functions f1; f2; . . . ; fn; or else (2), after a finite number of steps,
enables us to calculate the Łojasiewicz exponents LðF ;LsÞ of the germ F with
respect to the rays Ls, and hence the Łojasiewicz exponent LðF Þ.

Fix s A f1; 2; . . . ; 2sg. Assume that the degeneracy ray under consideration,
Ls, coincides with the positive half of the y-axis, yb 0. This assumption does
not a¤ect the generality of our argument, since we could in any case perform a
linear change of variables by an orthogonal matrix which transforms the ray Ls

into the positive half of the y-axis. The transformed germ can be expressed, of
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course, in a form similar to the germ F ; moreover, the Łojasiewicz exponent
LðF ;LsÞ of the germ F with respect to the ray Ls will remain unchanged.

Let us denote by al
i; j the coe‰cients of xiy j in the expansion of functions

flðx; yÞ in powers of x and y. Let

fl;m0
ðx; yÞ ¼ al

m0;0
xm0 þ � � � þ al

m;m0�mx
mym0�m; l ¼ 1; 2; . . . ; n;

where at least one of the numbers al
m;m0�m, l ¼ 1; 2; . . . ; n, is di¤erent from zero.

Case 2.1. If there is no term al
i; jx

iy j such that i < m and j > m0 � m then

it is obvious that the functions f1; f2; . . . ; fn have a common factor xm. The
process is finished.

Case 2.2. Otherwise, we put

r0 ¼ min
j �m0 þ m

m� i
j i < m; i þ j > m0

� �

and let

cl;sðx; yÞ ¼
X
ði; jÞ

al
i; jx

iy j ;

the summation being taken over all values of ði; jÞ for which ir0 þ j ¼
m0 þ mðr0 � 1Þ.

Case 2.2.1. If the algebraic equations

c1;sðk; 1Þ ¼ 0; c2;sðk; 1Þ ¼ 0; . . . ;cn;sðk; 1Þ ¼ 0;

have no common real solutions, then the process of resolution of degeneracy of
the ray Ls is finished.

Case 2.2.2. Let us pass to the case where the polynomials cl;sðk; 1Þ,
l ¼ 1; 2; . . . ; n, have common real solutions ks;1; ks;2; . . . ; ks; sðsÞ.

Let r0 ¼ p=q, where p and q are two relatively prime numbers, p > q. The
set fm0; m; r0; p; qg is called the characteristics of the ray Ls.

Fix t A f1; 2; . . . ; sðsÞg. We shall change the variables

x ¼ y
p
1 ðks; t þ x1Þ; y ¼ y

q
1 ;

and consider the functions

gl; tðx1; y1Þ ¼ y
�½m0qþmðp�qÞ�
1 flðyp

1 ðks; t þ x1Þ; yq
1 Þ; l ¼ 1; 2; . . . ; n;

on the positive half of the y1-axis, y1 b 0. We shall refer to the ray

Ls; t ¼ fx1 ¼ 0; y1 b 0g
as degeneracy of the germ Gt :¼ ðg1; t; g2; t; . . . ; gn; tÞ. It is easy to check that if
the germ F has an isolated zero at ð0; 0Þ, then so does Gt.
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The reasoning expounded above can be applied again to the degeneracy rays
Ls; t, and so on. If the germ F has ð0; 0Þ as an isolated zero in some neigh-
bourhood of ð0; 0Þ then after a finite number of recursive applications of the
above process we can calculate the Łojasiewicz exponent of the germ F with
respect to the ray Ls. We will clarify this in the following. Let us call the
above passage from F to Gt a Newton-Puiseux approximation.

Proposition 1. If the germ F has an isolated zero at ð0; 0Þ then every
sequence of recursive Newton-Puiseux approximations, beginning with F, is finite.

Proof. Suppose that an infinite sequence of degeneracy LðkÞ; ðk ¼ 1; 2; . . .Þ,
of successively constructed germs, had been built up. We shall derive a con-
tradiction. The equation of LðkÞ in the coordinate system ðx; yÞ would have the
form

x ¼ xðyÞ ¼ c1y
g1 þ c2y

g1þg2 þ � � � ;
where ci 0 0 and gi are positive rational numbers having a common denomi-
nate. It is found that this series coincides with one of the series obtained with
the help of Newton-Puiseux’s method applied to functions f1; f2; . . . ; fn (see [2],
[15]). In accordance with a well-known theorem ([1], [2]) this series is conver-
gent and defines the general solution of the system of equations flðx; yÞ ¼ 0,
l ¼ 1; 2; . . . ; n, which contradicts the fact that the functions f1; f2; . . . ; fn vanish
simultaneously only at 0. r

We now suppose that the germ F has an isolated zero at ð0; 0Þ. Then the
process of resolution of degeneracy of Ls gives us a tree Ts whose vertices cor-
respond to the degeneracy rays of successively constructed germs, and the root

of Ts corresponds to Ls. We will denote by L
ð1Þ
s ;L

ð2Þ
s ; . . . ;L

ðdðsÞÞ
s the degener-

acy rays with respect to the leaves of the tree Ts. The equation of L
ðiÞ
s in the

coordinate system ðx; yÞ would have the form of a certain finite sum in fractional
powers of y:

x :¼ ls; iðyÞ ¼ c1y
g1 þ c2y

g1þg2 þ � � � þ cky
g1þg2þ���þgk ; 1g yb 0;

with ci 0 0, gi > 0. We call g1 the valuation of the curve x ¼ ls; iðyÞ and denote
it by valðls; iÞ ¼ g1.

Theorem 1. Suppose that the germ F has an isolated zero at ð0; 0Þ. Then

LðF Þ ¼ max m0;max
s

max
i

valðFðls; iðyÞ; yÞÞ
� �

:

Proof. If Case 1 holds, LðF Þ ¼ m0. Conversely, it is evident that

LðFÞ ¼ max
s¼1;...;2s

LðF ;LsÞ;

since the germ F has an isolated zero at ð0; 0Þ.
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Let PðeÞ be the closure of the set of points which do not lie in 62s

s¼1
GsðeÞ.

The vector ð f1;m0
ðx; yÞ; f2;m0

ðx; yÞ; . . . ; fn;m0
ðx; yÞÞ are di¤erent from zero at the

non-zero points of PðeÞ. Therefore, there are numbers r > 0 and c > 0 such that
for ðx; yÞ A PðeÞVBr the following inequality holds

max
l¼1;2;...;n

j fl;m0
ðx; yÞjb ckðx; yÞkm0 ;

and hence
max

l¼1;2;...;n
j flðx; yÞjb ckðx; yÞkm0 ; ðx; yÞ A PðeÞVBr:

Since maxl¼1;2;...;nj fl;m0
ðx; yÞj does not vanish at those points of GsðeÞ which

do not lie on Ls, the following inequality takes place

max
l¼1;2;...;n

j fl;m0
ðx; yÞjb c 0jxjmkðx; yÞkm0�m ðc 0 > 0; ðx; yÞ A GsðeÞVBr 0 Þ:ð2Þ

We shall denote by w1l ðx; yÞ the sum of those terms in the expansion of
flðx; yÞ in powers of x and y, for which i þ j > m0 and jam0 � m; and by
w2l ðx; yÞ the sum of all remaining terms which satisfy the condition i þ j > m0.
We have

max
l¼1;2;...;n

jw1l ðx; yÞj ¼ max
l¼1;2;...;n

X
i; j

al
i; jx

iy j

�����
�����a max

l¼1;2;...;n

X
i; j

jal
i; jj jxj

i�m
y j

" #
jxjm

a max
l¼1;2;...;n

X
i; j

jal
i; jjðtan eÞ i�m

yiþj�m

" #
jxjm

for ðx; yÞ A GsðeÞ near ð0; 0Þ. This implies

max
l¼1;2;...;n

jw1l ðx; yÞj ¼ o½jxjmym0�m�:ð3Þ

Similarly, when ðx; yÞ B RsðhÞ :¼ fðx; yÞ A GsðeÞ j jxja hyr0g we get

max
l¼1;2;...;n

jw2l ðx; yÞj ¼ max
l¼1;2;...;n

X
i; j

al
i; jx

iy j

�����
�����a max

l¼1;2;...;n

X
i; j

jal
i; jj jxj

i
y j�m0þm

" #
ym0�m

a max
l¼1;2;...;n

X
i; j

jal
i; jjh�ð j�m0þmÞ=r0 jxj iþð j�m0þmÞ=r0

" #
ym0�m:

Hence, by the definition of r0,

max
l¼1;2;...;n

jw2l ðx; yÞja dðhÞjxjmym0�m; ðx; yÞ B RsðhÞ; ðx; yÞ near ð0; 0Þ;ð4Þ

where

dðhÞ ¼ max
l¼1;2;...;n

X
i; j

jal
i; jjh�ð j�m0þmÞ=r0

" #
! 0

as h ! y.
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We conclude from (2), (3) and (4) that there are positive numbers h0; r1; c1
such that the following inequality holds for all ðx; yÞ A ½GsðeÞnRsðhÞ�VBr1
ðhb h0Þ:

max
l

j flðx; yÞjb c1jxjmym0�m
b c1h

mr0ym0þmðr0�1Þ:ð5Þ

On the other hand, it is easily seen that

j flðx; yÞ � cl;sðx; yÞj ¼ oðym0þmðr0�1ÞÞ; l ¼ 1; 2; . . . ; n;ð6Þ
is valid on RsðhÞ.

If Case 2.2.1 holds then there are positive numbers r2; c2 such that

max
l¼1;2;...;n

jcl;sðx; yÞjb c2y
m0þmðr0�1Þ

for every ðx; yÞ A RsðhÞVBr2 . Hence, from (6), it follows that

LðF ;LsÞ ¼ m0 þ mðr0 � 1Þ:
Suppose now that Case 2.2.2 holds. We consider the germ F in ‘‘the horn

neighbourhood’’ (see [10], [11]) Hr0ðt;wÞ of the curve x ¼ ks; ty
r0 , 0a yf 1,

where

Hr0ðt;wÞ ¼ fðx; yÞ A RsðhÞ j jx� ks; ty
r0 j < wyr0g

with 0 < wf 1.
For all ðx; yÞ A Hr0ðt;wÞ we have

max
l¼1;2;...;n

j flðx; yÞj ¼ max
l¼1;2;...;n

y
m0qþmðp�qÞ
1 jgl; tðx1; y1Þjð7Þ

b c3y
m0qþmðp�qÞþLðGt;Ls; tÞ
1

¼ c3y
m0þmðr0�1ÞþLðGt;Ls; tÞ=q ðc3 > 0Þ:

It is also easy to see that there are positive constants c4; r4 such that

max
l

jcl;sðx; yÞjb c4y
m0þmðr0�1Þð8Þ

for ðx; yÞ A ½RsðhÞn6 sðsÞ
t¼1

Hr0ðt;wÞ�VBr4 .

From inequalities (5), (6), (7) and (8), we deduce that

LðF ;LsÞ ¼ m0 þ mðr0 � 1Þ þ max
t¼1;2;...; sðsÞ

LðGt;Ls; tÞ
q

:

By solving the above recurrence equation, we obtain

LðF ;LsÞ ¼ max
i

valðFðls; iðyÞ; yÞÞ:

The proof is complete. r

Example ([9]). Consider Fðx; yÞ ¼ gradðx3�3xy3Þ ¼ ð3x2�3y3;�9xy2Þ. In
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our case m0 ¼ 2, and the initial forms f1;2ðx; yÞ ¼ 3x2 and f2;2ðx; yÞ ¼ 0 of F
vanish on two rays

L1 : fx :¼ l1ðyÞ ¼ 0; yb 0g; L2 : fx :¼ l2ðyÞ ¼ 0; ya 0g:
It is easily seen that m ¼ 2, r0 ¼ 3=2, and

c1;sðx; yÞ ¼ 3x2 � 3y3; c2;sðx; yÞ ¼ 0; s ¼ 1; 2:

The system of equations

c1;1ðk; 1Þ ¼ 0; c2;1ðk; 1Þ ¼ 0

has two real solutions k1;1 ¼ 1, k1;2 ¼ �1. Fix t A f1; 2g. To examine the ray
L1 we perform the change of variables ðp ¼ 3; q ¼ 2Þ:

x ¼ y31ðk1; t þ x1Þ; y ¼ y21 :

Let us write the components of Gt as follows

Gtðx1; y1Þ ¼ y
�½m0qþmðp�qÞ�
1 F ½ y31ðk1; t þ x1Þ; y21 �;

¼ ð3x2
1 þ 6k1; tx1;�9k1; ty1 � 9x1y1Þ:

The initial forms of components of Gt are

ð6k1; tx1;�9k1; t y1Þ:
This germ does not vanish on L1; t :¼ fx1 ¼ 0; y1 b 0g, and so, the process of
resolution of degeneracy of L1; t is finished; and the equation of L1; t in the
coordinate system ðx; yÞ is of the form

L1; t : fx :¼ l1; tðyÞ ¼ k1; t y
3=2; yb 0g:

On the other hand, the system of equations

c1;2ðk;�1Þ ¼ 0; c2;2ðk;�1Þ ¼ 0

has no real solutions. Hence the process of resolution of degeneracy of L2 also
terminates.

Theorem 1 now implies

LðF Þ ¼ maxðvalðF ðl2ðyÞ; yÞÞ; max
t¼1;2

valðFðl1; tðyÞ; yÞÞÞ ¼ max 3;
7

2

� �
¼ 7

2
:

The case of non-degenerate germs. Let al
i; j denote the coe‰cients of xiy j

in the expansion of flðx; yÞ in powers of x and y, i.e.

flðx; yÞ ¼
X
iþ jb0

al
i; jx

iy j; l ¼ 1; 2; . . . ; n:

Let suppðF Þ :¼ fði; jÞ A N 2 j there is l such that al
i; j 0 0g. The Newton poly-

gon NðFÞ is the set of compact faces of the boundary of the convex hull of
½suppðF Þ þ ðRþÞ2�. We call F convenient if there are vertices of the Newton
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polygon NðFÞ which lie on the axes x ¼ 0 and y ¼ 0. For any edge e of the
Newton polygon NðF Þ, let cl; eðx; yÞ be the sum all monomials al

i; jx
iy j in

fl such that ði; jÞ A e. The convenient germ F is called non-degenerate if for
every edge e of the Newton polygon NðF Þ one has the following: the algebraic
equations

cl; eðx; yÞ ¼ 0; l ¼ 1; 2; . . . ; n;ð9Þ
have no common real solutions in ðRnf0gÞ � ðRnf0gÞ. One can check that the
non-degenerate condition is generic in the sense of Kouchnirenko (cf. [7]).

Corollary 1. Suppose that the germ F is convenient and non-degenerate,
and let ða; 0Þ and ð0; bÞ be the vertices of NðF Þ which lie on the axes. Then

LðF Þ ¼ maxða; bÞ:

Proof. Since the germ F is non-degenerate, the equations

f1;m0
ðk; 1Þ ¼ 0; f2;m0

ðk; 1Þ ¼ 0; . . . ; fn;m0
ðk; 1Þ ¼ 0

have common real solutions k ¼ 0 and k ¼ y. Let

L1 ¼ fx ¼ 0; yb 0g; L2 ¼ fx ¼ 0; ya 0g;
L3 ¼ fy ¼ 0; xb 0g; L4 ¼ fy ¼ 0; xa 0g:

Consider L1. Let fm0; m; r0; p; qg denote the characteristics of L1. If the seg-
ment e, which joints ð0; bÞ and ðm;m0 � mÞ, belongs to the Newton polygon NðF Þ,
then k ¼ 0 is not a solution to the system of equations (9) and so

LðF ;L1Þ ¼ b:

Otherwise, because the germ F is non-degenerate, (9) only has a solution k ¼ 0.
By the change of variables x ¼ y

p
1x1, y ¼ y

q
1 , there is only one degeneracy ray

L1;1 ¼ fx1 ¼ 0; y1 b 0g
that needs to be considered. Let

gl;1ðx1; y1Þ ¼ y
�½m0qþmð p�qÞ�
1 flðyp

1x1; y
q
1 Þ; l ¼ 1; 2; . . . ; n:

It is easy to check that G1 :¼ ðg1;1; g2;1; . . . ; gn;1Þ is non-degenerate and the point
ð0; bq�m0q� mðp� qÞÞ, which lies on the axis x1 ¼ 0, belongs to the Newton
polygon NðG1Þ. Moreover, the number of vertices of NðG1Þ is smaller that of
NðF Þ. By Theorem 1 and by induction on the number of vertices of the Newton
polygon NðFÞ, we can show that

LðF ;L1Þ ¼ m0 þ mðr0 � 1Þ þLðG1;L1;1Þ
q

¼ m0 þ mðr0 � 1Þ þ bq�m0q� mðp� qÞ
q

¼ b:

newton-puiseux approximation 9



It follows from a similar argument that, LðF ;L2Þ ¼ b and LðF ;L3Þ ¼
LðF ;L4Þ ¼ a. Hence

LðF Þ ¼ maxða; bÞ: r

3. Newton-Puiseux approximation at infinity

We now suppose that F ¼ ð f1; f2; . . . ; fnÞ : K 2 ! K n is a polynomial map-
ping of two variables. The aim of this section is to construct the Newton-Puiseux
approximation at infinity of F . From this method we immediately obtain a way
of calculating the Łojasiewicz exponent LyðFÞ of F .

The proofs of the results in this section are done by the same method as
in Section 2. Hence we shall only describe the Newton-Puiseux approximation
at infinity of F . Furthermore we will only consider the case where F is a real
polynomial mapping. Similar results can be obtained for complex polynomial
mappings.

Let d :¼ maxl¼1;2;...;n degð flÞ, where degð flÞ is the degree of fl . Then we
can write

flðx; yÞ ¼ fl;dðx; yÞ þ fl;d�1ðx; yÞ þ � � � ; l ¼ 1; 2; . . . ; n;

where fl; iðx; yÞ are homogeneous polynomials of degree i.

Case 1. If the algebraic equations

f1;dðk; 1Þ ¼ f2;dðk; 1Þ ¼ � � � ¼ fn;dðk; 1Þ ¼ 0;ð10Þ

have no common real finite or infinite roots, then #F�1ð0Þ ¼ j and LyðF Þ ¼ d.
The algorithm is finished.

Case 2. Otherwise, let k1; k2; . . . ; ks be common real roots of (10). Let

L1 : fx ¼ k1y; yg 0g; L2 : fx ¼ k1y; yf 0g;
� � �

L2s�1 : fx ¼ ksy; yg 0g; L2s : fx ¼ ksy; yf 0g;

We shall refer to Ls as degeneracy rays at infinity of F .

We will denote by GsðeÞ ðs ¼ 1; 2; . . . ; 2sÞ the set of points which lie inside
the angle of 2e radians, whose bisector is Ls; and by LyðF ;LsÞ the smallest
upper bound of the set of all real a such that the following inequality holds

max
l¼1;2;...;n

j flðx; yÞjb ckðx; yÞka; ðx; yÞ A GsðeÞnBr;

for some c > 0, rg 0. We call LyðF ;LsÞ the Łojasiewicz exponent at infinity
of F with respect to the ray Ls.

Fix s A f1; 2; . . . ; 2sg. Assume that Ls ¼ fx ¼ 0; yg 0g.
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Let us denote by al
i; j the coe‰cients of xiy j in flðx; yÞ. Let

fl;dðx; yÞ ¼ al
d;0x

d þ � � � þ al
m;d�mx

myd�m; l ¼ 1; 2; . . . ; n;

where the vector ða1m;d�m; a
2
m;d�m; . . . ; a

n
m;d�mÞ is not zero.

Case 2.1. If there is no term al
i; jx

iy j such that i < m then #F�1ð0Þ ¼ y; the
process of resolution of degeneracy at infinity of Ls terminates.

Case 2.2. Otherwise, let

r0 ¼ max
j � d þ m

m� i
j i < m

� �

and

cl;sðx; yÞ ¼
X
ði; jÞ

al
i; jx

iy j ;

the summation being taken over all values of ði; jÞ for which ir0 þ j ¼
d þ mðr0 � 1Þ.

Case 2.2.1. If the system of algebraic equations

c1;sðk; 1Þ ¼ 0; c2;sðk; 1Þ ¼ 0; . . . ;cn;sðk; 1Þ ¼ 0;

has no real solutions, then the process of resolution of degeneracy at infinity of
Ls terminates and LyðF ;LsÞ ¼ d þ mðr0 � 1Þ.

Case 2.2.2. Otherwise, suppose that ks;1; ks;2; . . . ; ks; sðsÞ are the common
real roots of the polynomials cl;sðk; 1Þ, l ¼ 1; 2; . . . ; n.

Let r0 ¼ p=q < 1, where p and q are two relatively prime numbers, q > 0.
Fix t A f1; 2; . . . ; sðsÞg. Consider the change the variables

x ¼ y
p
1 ðks; t þ x1Þ; y ¼ y

q
1 ;

and the functions

gl; tðx1; y1Þ ¼ flðyp
1 ðks; t þ x1Þ; yq

1 Þ; l ¼ 1; 2; . . . ; n;

on the positive half of the y1-axis, y1 g 0. We shall refer to

Ls; t ¼ fx1 ¼ 0; y1 g 0g
as degeneracy at infinity of the mapping Gt :¼ ðg1; t; g2; t; . . . ; gn; tÞ.

Resolution of degeneracy at infinity of Ls; t. We first note that, for each
x1 A R the function gl; tðx1; y1Þ is a Laurent series in y1 with a finite number of
terms of positive degrees. We write

gl; tðx1; y1Þ ¼
X
i; j

bl
i; jx

i
1y

j
1

newton-puiseux approximation 11



and put suppðGtÞ ¼ fði; jÞ j bl; bl
i; j 0 0g. Let ðd0; m 0Þ A suppðGtÞ denote the point

satisfying the following conditions

d0 ¼ maxf j j ði; jÞ A suppðGtÞg;
m 0 ¼ minfi j ði; d0Þ A suppðGtÞg:

Case 2.2.2(a). If there does not exist a point ði; jÞ A suppðGtÞ such that
i < m 0, j < d0 then #F�1ð0Þ ¼ y and the process of resolution of degeneracy at
infinity of Ls; t is finished.

Case 2.2.2(b). Otherwise, let

r 00 ¼ min
d0 � j

m 0 � i
j i < m 0; j < d0

� �

and

jlðx1; y1Þ ¼
X
ði; jÞ

bl
i; jx

i
1y

j
1;

the summation being taken over all values of ði; jÞ for which j � ir 00 ¼ d0 � m 0r 00.

If the system of equations jlðk; 1Þ ¼ 0, l ¼ 1; 2; . . . ; n, has no real solutions,
then the process of resolution of degeneracy at infinity of Ls; t terminates and
LyðGt;Ls; tÞ ¼ d0 þ m 0ðr 00 � 1Þ.

Otherwise, suppose that ks; t;1; ks; t;2; . . . ; ks; t; sðs; tÞ are the common real roots

of jlðk; 1Þ ¼ 0. Let r 00 ¼ p 0=q 0 > 0, where p 0 and q 0 are two relatively prime
numbers. Fix u A f1; 2; . . . ; sðs; tÞg. Consider the change the variables

x1 ¼ y
�p 0

2 ðks; t;u þ x2Þ; y1 ¼ y
q 0

2 ;

and the functions

hl; t;uðx2; y2Þ ¼ gl; t½y�p 0

2 ðks; t;u þ x2Þ; yq 0

2 �; l ¼ 1; 2; . . . ; n;

on the positive half of the y2-axis, y2 g 0. We shall refer to

Ls; t;u ¼ fx2 ¼ 0; y2 g 0g
as degeneracy at infinity of the mapping Ht;u :¼ ðh1; t;u; h2; t;u; . . . ; hn; t;uÞ.

We now repeat the process of resolution of degeneracy at infinity of Ls; t. If
F�1ð0Þ < y then after passing a finite number of steps from Gt to Ht;u we can
calculate the Łojasiewicz exponent at infinity of G with respect to Ls; t; and this
gives LyðF ;LsÞ. Moreover, the process of resolution of degeneracy at infinity
of Ls gives us a tree Ts whose vertices are correspond to the degeneracy rays
of successively constructed mapping, and the root of Ts is correspond to Ls.

Denote by L
ð1Þ
s ;L

ð2Þ
s ; . . . ;L

ðdðsÞÞ
s the degeneracy rays with respect to the leaves of

Ts. Assume that x ¼ ls; iðyÞ ðyg 0Þ, i ¼ 1; 2; . . . ; dðsÞ, are the equations of L
ðiÞ
s

in the coordinate system ðx; yÞ.
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With exactly the same method as in Theorem 1, we can prove the following

Theorem 2. Suppose that F is a polynomial mapping satisfying
#F�1ð0Þ < y. Then

LyðF Þ ¼ min d;min
s

min
i

valðFðls; iðyÞ; yÞÞ
� �

:

Example ([6]). Consider the polynomial mapping

F ðx; yÞ ¼ gradð3x� x3yÞ ¼ ð3� 3x2y;�x3Þ:
In our case d ¼ 3, and the polynomials f1;dðx; yÞ ¼ �3x2y and f2;dðx; yÞ ¼ �x3

vanish on two rays

L1 : fx :¼ l1ðyÞ ¼ 0; yg 0g; L2 : fx :¼ l2ðyÞ ¼ 0; yf 0g:
We shall examine the rays L1 and L2 simultaneously. It is easily seen that

m ¼ 2, r0 ¼ �1=2 and

c1;sðx; yÞ ¼ 3� 3x2y; c2;sðx; yÞ ¼ 0; s ¼ 1; 2:

The system of equations

c1;1ðk; 1Þ ¼ 0; c2;1ðk; 1Þ ¼ 0

has two real solutions k1;1 ¼ 1, k1;2 ¼ �1. Fix t A f1; 2g. We perform the
change of variables ðp ¼ �1; q ¼ 2Þ:

x ¼ y�1
1 ðk1; t þ x1Þ; y ¼ y21 :

Let us write the components of Gt as follows

Gtðx1; y1Þ ¼ F ½y�1
1 ðk1; t þ x1Þ; y21 �;

¼ ð�6k1; tx1 � 3x2
1 ;�k1; ty

�3
1 � 3x1y

�3
1 � 3k1; tx

2
1y

�3
1 � x3

1y
�3
1 Þ:

It follows that d0 ¼ 0, m 0 ¼ 1, r 00 ¼ 3, p 0 ¼ 3, q 0 ¼ 1 and

j1ðx1; y1Þ ¼ �6k1; tx1; j2ðx1; y1Þ ¼ �k1; ty
�3
1 :

It is obvious that the system of equations j1ðk; 1Þ ¼ j2ðk; 1Þ ¼ 0 has no real
solutions. Therefore the process of resolution of degeneracy at infinity of
L1; t :¼ fx1 ¼ 0; y1 g 0g stops. Moreover, the equation of L1; t in the coordinate
system ðx; yÞ is

L1; t : fx :¼ l1; tðyÞ ¼ k1; ty
�1=2; yg 0g:

On the other hand, the system of equations

c1;2ðk;�1Þ ¼ 0; c2;2ðk;�1Þ ¼ 0

has no real solutions. It follows that the process of resolution of degeneracy at
infinity of L2 also stops.

newton-puiseux approximation 13



Theorem 2 now yields

LyðFÞ ¼ minðvalðFðl2ðyÞ; yÞÞ; min
t¼1;2

valðF ðl1; tðyÞ; yÞÞÞ ¼ min 0;� 3

2

� �
¼ � 3

2
:

The case with non-degenerate infinity. Let al
i; j denote the coe‰cients of xiy j

in flðx; yÞ:
flðx; yÞ ¼

X
iþjb0

al
i; j x

iy j; l ¼ 1; 2; . . . ; n:

We call the polynomial mapping F ¼ ð f1; f2; . . . ; fnÞ convenient if F ðx; 0Þ and
F ð0; yÞ are non-zero polynomial mappings in R½x; y�. We will denote by DðFÞ
the convex hull of the set

fð0; 0ÞgU fði; jÞ j there is l such that al
i; j 0 0g:

The Newton polygon at infinity NyðF Þ consists of all the boundary edges of DðFÞ
which are not contained in two axes. If e A NyðF Þ then we let cl; eðx; yÞ be

the sum all monomials al
i; jx

iy j in fl such that ði; jÞ A e. The convenient mapping

F is non-degenerate at infinity if for any e A NyðFÞ, the system of equations

c1; eðx; yÞ ¼ 0; c2; eðx; yÞ ¼ 0; . . . ;cn; eðx; yÞ ¼ 0;

has no solutions in ðRnf0gÞ � ðRnf0gÞ.
In particular, Theorem 2 also has a simple geometrical meaning as follows.

Corollary 2. Suppose that the polynomial mapping F is convenient and
non-degenerate at infinity and let ða; 0Þ and ð0; bÞ be the vertices of NyðFÞ which
lay on the axes. Then

LyðF Þ ¼ minða; bÞ:
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