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Abstract. A rational number r is called a left orderable slope of a knot

K ⊂ S3 if the 3-manifold obtained from S3 by r-surgery along K has left
orderable fundamental group. In this paper we consider the double twist
knots C(k, l) in the Conway notation. For any positive integers m and n, we
show that if K is a double twist knot of the form C(2m,−2n), C(2m+ 1, 2n)

or C(2m + 1,−2n) then there is an explicit unbounded interval I such that
any rational number r ∈ I is a left orderable slope of K.

1. Introduction.

The motivation of this paper is the L-space conjecture of Boyer, Gordon and Watson

[BGW] which states that an irreducible rational homology 3-sphere is an L-space if and

only if its fundamental group is not left orderable. Here a rational homology 3-sphere

Y is an L-space if its Heegaard Floer homology ĤF(Y ) has rank equal to the order of

H1(Y ;Z), and a non-trivial group G is left orderable if it admits a total ordering < such

that g < h implies fg < fh for all elements f, g, h in G. A knot K in S3 is called

an L-space knot if it admits a positive Dehn surgery yielding an L-space. It is known

that non-torus alternating knots are not L-space knots, see [OS]. In view of the L-space

conjecture, this would imply that any non-trivial Dehn surgery along a non-torus alter-

nating knot produces a 3-manifold with left orderable fundamental group.

A rational number r is called a left orderable slope of a knot K ⊂ S3 if the 3-

manifold obtained from S3 by r-surgery along K has left orderable fundamental group.

As mentioned above, one would expect that any rational number is a left orderable slope

of any non-torus alternating knot. It is known that any rational number r ∈ (−4, 4) is

a left orderable slope of the figure eight knot, and any rational number r ∈ [0, 4] is a

left orderable slope of the hyperbolic twist knot 52, see [BGW] and [HTe2] respectively.

Consider the double twist knot C(k, l) in the Conway notation as in Figure 1, where k, l

denote the numbers of horizontal half-twists with sign in the boxes. Here the sign of

is positive in the box k and is negative in the box l. Then the following results were

shown in [HTe1], [Tr] by using continuous families of hyperbolic SL2(R)-representations
of knot groups. If m,n are integers ≥ 1, any rational number r ∈ (−4n, 4m) is a

left orderable slope of C(2m, 2n). If m,n are integers ≥ 2 then any rational number

r ∈ [0,max{4m, 4n}) is a left orderable slope of C(2m,−2n) and any rational number

r ∈ [0, 4] is a left orderable slope of both C(2m,−2) and C(2,−2n). Note that C(2, 2) is
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the figure eight knot and C(4,−2) is the twist knot 52. Moreover C(2,−2) is the trefoil

knot, which is the (2, 3)-torus knot.

Figure 1. The double twist knot/link C(k, l) in the Conway notation.

In this paper, by using continuous families of elliptic SL2(R)-representations of knot
groups we extend the range of left orderable slopes of C(2m,−2n). Moreover, we also

give left orderable slopes of C(2m+ 1,±2n).

Theorem 1. Suppose K is a double twist knot of the form C(2m,−2n), C(2m+

1, 2n) or C(2m + 1,−2n) in the Conway notation for some positive integers m and n.

Let

LOK =


(−∞, 1) if K = C(2m,−2n),

(−∞, 2n− 1) if K = C(2m+ 1, 2n),

(3− 2n,∞) if K = C(2m+ 1,−2n) and n ≥ 2.

Then any rational number r ∈ LOK is a left orderable slope of K.

Combining this with results in [HTe1], [Tr], we conclude that if m and n are in-

tegers ≥ 2 then any rational number r ∈ (−∞,max{4m, 4n}) is a left orderable slope

of C(2m,−2n) and any rational number r ∈ (−∞, 4] is a left orderable slope of both

C(2m,−2) and C(2,−2n). In the subsequent paper [KTT] we will use continuous fam-

ilies of hyperbolic SL2(R)-representations of knot groups to extend the range of left

orderable slopes of C(2m + 1,−2n). More specifically, we will show that any rational

number r ∈ (−4n, 4m) is a left orderable slope of C(2m+1,−2n) detected by hyperbolic

SL2(R)-representations of the knot group.

We remark that in the case of C(2m+1,±2n), where m and n are positive integers,

Gao [Ga] independently obtains similar results. She proves a weaker result that any

rational number r ∈ (−∞, 1) is a left orderable slope of C(2m + 1, 2n) and a stronger

result that any rational number r ∈ (−4n,∞) is a left orderable slope of C(2m+1,−2n).

As in [BGW], [CD], [HTe1], [HTe2], [Tr] the proof of Theorem 1 is based on

the existence of continuous families of elliptic SL2(R)-representations of the knot groups

of double twist knots C(2m,−2n) and C(2m + 1,±2n) into SL2(R) and the fact that

S̃L2(R), which is the universal covering group of SL2(R), is a left orderable group.

This paper is organized as follows. In Section 1, we study certain real roots of the

Riley polynomial of double twist knots C(k,−2p), whose zero locus describes all non-

abelian representations of the knot group into SL2(C). In Section 2, we prove Theorem 1.
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2. Real roots of the Riley polynomial.

For a knot K in S3, let G(K) denote the knot group of K which is the fundamental

group of the complement of an open tubular neighborhood of K.

Consider the double twist knot/link C(k, l) in the Conway notation as in Figure 1,

where k, l are integers such that |kl| ≥ 3. Note that C(k, l) is the rational knot/link

corresponding to continued fraction k + 1/l. It is easy to see that C(k, l) is the mirror

image of C(l, k) = C(−k,−l). Moreover, C(k, l) is a knot if kl is even and is a two-

component link if kl is odd. In this paper, we only consider knots and so we can assume

that k > 0 and l = −2p is even.

Note that C(k,−2p) is the mirror image of the double twist knot J(k, 2p) in [HS].

Then, by [HS], the knot group of C(k,−2p) has a presentation

G(C(k,−2p)) = ⟨a, b | awp = wpb⟩

where a, b are meridians and

w =

{
(ab−1)m(a−1b)m if k = 2m,

(ab−1)mab(a−1b)m if k = 2m+ 1.

Moreover, the canonical longitude of C(k,−2p) corresponding to the meridian µ = a is

λ = (wp(wp)∗a−2ε)−1, where ε = 0 if k = 2m and ε = 2p if k = 2m+1. Here, for a word

u in the letters a, b we let u∗ be the word obtained by reading v backwards.

Suppose ρ : G(C(k,−2p)) → SL2(C) is a nonabelian representation. Up to conjuga-

tion, we may assume that

ρ(a) =

[
M 1

0 M−1

]
and ρ(b) =

[
M 0

2− y M−1

]
(2.1)

where (M,y) ∈ C2 satisfies the matrix equation ρ(awp) = ρ(wpb). It is known that this

matrix equation is equivalent to a single polynomial equation RC(k,−2p)(x, y) = 0, where

x = (tr ρ(a))2 and RK(x, y) is the Riley polynomial of K, see [Ri]. This polynomial can

be described via the Chebychev polynomials as follows.

Let {Sj(v)}j∈Z be the Chebychev polynomials in the variable v defined by S0(v) = 1,

S1(v) = v and Sj(v) = vSj−1(v)−Sj−2(v) for all integers j. Note that Sj(v) = −S−j−2(v)

and Sj(±2) = (±1)j(j + 1). Moreover, we have Sj(v) = (sj+1 − s−(j+1))/(s − s−1) for

v = s+ s−1 ̸= ±2. Using this identity one can prove the following.

Lemma 2.1. For any integer j and any positive integer n we have

(1) S2
j (v)− vSj(v)Sj−1(v) + S2

j−1(v) = 1.

(2) Sn(v)− Sn−1(v) =
n∏

j=1

(
v − 2 cos

(2j − 1)π

2n+ 1

)
.

(3) Sn(v) + Sn−1(v) =
n∏

j=1

(
v − 2 cos

2jπ

2n+ 1

)
.
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(4) Sn(v) =
n∏

j=1

(
v − 2 cos

jπ

n+ 1

)
.

The Riley polynomial of C(k,−2p), whose zero locus describes all non-abelian rep-

resentations of the knot group of C(k,−2p) into SL2(C), is

RC(k,−2p)(x, y) = Sp(t)− zSp−1(t)

where

t = tr ρ(w) =

{
2 + (y + 2− x)(y − 2)S2

m−1(y) if k = 2m,

2− (y + 2− x)(Sm(y)− Sm−1(y))
2 if k = 2m+ 1,

and

z =

{
1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y)) if k = 2m,

1− (y + 2− x)Sm(y)(Sm(y)− Sm−1(y)) if k = 2m+ 1.

Moreover, for the representation ρ : G(C(k,−2p)) → SL2(C) of the form (2.1) the image

of the canonical longitude λ = (wp(wp)∗a−2ε)−1 has the form ρ(λ) =
[
L ∗
0 L−1

]
, where

L = −M−1(Sm(y)− Sm−1(y))−M(Sm−1(y)− Sm−2(y))

M(Sm(y)− Sm−1(y))−M−1(Sm−1(y)− Sm−2(y))
if k = 2m

and

L = −M4pM
−1Sm(y)−MSm−1(y)

MSm(y)−M−1Sm−1(y)
if k = 2m+ 1.

See e.g. [Pe], [Tr].

Lemmas (2.2)–(2.4) below describe continuous families of real roots of the Riley

polynomials of the double twist knots C(2m,−2n), C(2m + 1, 2n) and C(2m + 1,−2n)

respectively, where m and n are positive integers.

Lemma 2.2. There exists a continuous real function y : [4 − 1/(mn), 4] → [2,∞)

in the variable x such that

• y(4− 1/(mn)) = 2 and

• RC(2m,−2n)(x, y(x)) = 0 for all x ∈ [4− 1/(mn), 4].

Proof. Let K = C(2m,−2n). We have RK(x, y) = Sn(t)− zSn−1(t) where

t = 2 + (y + 2− x)(y − 2)S2
m−1(y),

z = 1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y)).

Consider real numbers x ∈ [4− 1/(mn), 4] and y ∈ [2,∞). Since y ≥ 2 ≥ x− 2, we have

t ≥ 2 and z ≥ 1. This implies that zSn−1(t) − Sn−2(t) ≥ Sn−1(t) − Sn−2(t) > 0, by

Lemma 2.1. The equation RK(x, y) = 0 is then equivalent to
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Sn(t)− zSn−1(t)

)(
Sn−2(t)− zSn−1(t)

)
= 0. (2.2)

Let P (x, y) denote the left hand side of equation (2.2). By Lemma 2.1, we have

S2
n(t)− tSn(t)Sn−1(t)+S2

n−1(t) = 1. This can be written as Sn(t)Sn−2(t) = S2
n−1(t)−1.

From this and Sn(t) + Sn−2(t) = tSn−1(t) we get

P (x, y) = (z2 − tz + 1)S2
n−1(t)− 1.

By a direct calculation, using S2
m(y) + S2

m−1(y)− ySm(y)Sm−1(y) = 1, we have

z2 − tz + 1

= (z − 1)2 − (t− 2)z

= (y + 2− x)2S2
m−1(y)(Sm(y)− Sm−1(y))

2

− (y + 2− x)(y − 2)S2
m−1(y)

[
1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y))

]
= (y + 2− x)S2

m−1(y)
[
4− x+ (y + 2− x)(y − 2)S2

m−1(y)
]

= (y + 2− x)S2
m−1(y)(t+ 2− x).

Hence P (x, y) = (y + 2− x)S2
m−1(y)(t+ 2− x)S2

n−1(t)− 1.

By Lemma 2.1(4), for any positive integer l the Chebychev polynomial Sl(v) =∏l
j=1(v − 2 cos(jπ/(l + 1))) is a strictly increasing function in v ∈ [2,∞). This implies

that, for a fixed real number x ∈ [4− 1/(mn), 4], the polynomials t = 2+ (y+2−x)(y−
2)S2

m−1(y) ≥ 2 and P (x, y) = (y + 2 − x)S2
m−1(y)(t + 2 − x)S2

n−1(t) − 1 are strictly

increasing functions in y ∈ [2,∞). Note that limy→∞ P (x, y) = ∞ and

lim
y→2+

P (x, y) = P (x, 2) = (4− x)2m2n2 − 1 ≤ 0.

Hence there exists a unique real number y(x) ∈ [2,∞) such that P (x, y(x)) = 0. Since

P (4− 1/mn, 2) = 0 we have y(4− 1/mn) = 2. Finally, by the implicit function theorem

y = y(x) is a continuous function in x ∈ [4− 1/(mn), 4]. □

Lemma 2.3. There exists a continuous real function x : [2,∞) → (4 cos2((2n −
1)π/(4n+ 2)),∞) in the variable y such that

• x(2) < 4 cos2
(2n− 2)π

4n+ 2
,

• limy→∞ x(y) = ∞ and

• RC(2m+1,2n)(x(y), y) = 0 for all y ∈ [2,∞).

Proof. Let K = C(2m+ 1, 2n). We have RK(x, y) = S−n(t)− zS−n−1(t) where

t = 2− (y + 2− x)(Sm(y)− Sm−1(y))
2,

z = 1− (y + 2− x)Sm(y)(Sm(y)− Sm−1(y)).

Note that RK(x, y) = (t− z)S−n−1(t)− S−n−2(t) = Sn(t)− (t− z)Sn−1(t).

By Lemma 2.1 we have
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Sn(t)− Sn−1(t) =
n∏

j=1

(
t− 2 cos

(2j − 1)π

2n+ 1

)
,

Sn(t) + Sn−1(t) =

n∏
j=1

(
t− 2 cos

2jπ

2n+ 1

)
.

Let tj = 2 cos(jπ/(2n + 1)) for j = 1, . . . , 2n. By writing t2j−1 = eiθ + e−iθ where

θ = (2j − 1)π/(2n+ 1), we have

Sn(t2j−1) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin
(
(2j − 1)(n+ 1)π/(2n+ 1)

)
sin

(
(2j − 1)π/(2n+ 1)

)
=

sin
(
jπ − π/2 + (2j − 1)π/2(2n+ 1)

)
sin(2j − 1)π/(2n+ 1)

= (−1)j−1 cos
(
(2j − 1)π/2(2n+ 1)

)
sin

(
(2j − 1)π/(2n+ 1)

) .

This implies that (−1)j−1Sn(t2j−1) > 0. Similarly, (−1)jSn(t2j) > 0.

Fix a real number y ≥ 2. Let sj(y) = y + 2 − (2 − tj)/(Sm(y) − Sm−1(y))
2 for

j = 1, . . . , 2n. We also let s0 = y + 2. Since −2 < t2n < · · · < t1 < 2 we have

s2n(y) < · · · < s1(y) < y + 2 = s0(y). At x = s2j−1(y) we have t = t2j−1 and so

Sn(t) = Sn−1(t). This implies that

RK(s2j−1(y), y) = (1− (t− z))Sn(t2j−1)

= −(y + 2− s2j−1(y))Sm−1(y)(Sm(y)− Sm−1(y))Sn(t2j−1).

Since y ≥ 2, by Lemma 2.1 we have Sm(y) − Sm−1(y) ≥ Sm(2) − Sm−1(2) = 1 and

Sm−1(y) ≥ Sm−1(2) = m. Hence (−1)jRK(s2j−1(y), y) > 0.

Similarly, for 1 ≤ j ≤ n we have

RK(s2j(y), y) = (1 + t− z)Sn(t2j)

=
[
2 + (y + 2− s2j−1(y))Sm−1(y)(Sm(y)− Sm−1(y))

]
Sn(t2j),

which implies that (−1)jRK(s2j(y), y) > 0.

For each 1 ≤ j ≤ n− 1, since

RK(s2j+1(y), y)RK(s2j(y), y) < 0

there exists xj(y) ∈ (s2j+1(y), s2j(y)) such that RK(xj(y), y) = 0. Since

RK(s0(y), y) = RK(y + 2, y) = 1

and RK(s1(y), y) < 0 there exists x0(y) ∈ (s1(y), s0(y)) such that RK(x0(y), y) = 0.

Since RK(x, y) = zSn−1(t)−Sn−2(t), we see that RK(x, y) is a polynomial of degree

n in x for each fixed real number y ≥ 2. This polynomial has exactly n simple real roots

x0(y), . . . , xn−1(y) satisfying xn−1(y) < · · · < x0(y) < y + 2, hence the implicit function

theorem implies that each xj(y) is a continuous function in y ≥ 2.

By letting x(y) = xn−1(y) for y ≥ 2, we have RK(x(y), y) = 0. Moreover, since
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x(y) > s2n−1(y) = y + 2−
2− 2 cos

(
(2n− 1)π/(2n+ 1)

)
(Sm(y)− Sm−1(y))2

we have limy→∞ x(y) = ∞ and x(y) > 4− (2− 2 cos((2n− 1)π/(2n+1))) = 4 cos2((2n−
1)π/(4n+ 2)) for y ≥ 2.

Finally, since x(y) < s2n−2(y) for all y ≥ 2 we have x(2) < s2n−2(2) = 4 cos2((2n−
2)π/(4n+ 2)). □

Lemma 2.4. Suppose n ≥ 2. Then there exists a continuous real function x :

[2,∞) → (4 cos2((2n− 1)π/(4n+ 2)),∞) in the variable y such that

• x(2) < 4 cos2
(2n− 3)π

4n+ 2
,

• limy→∞ x(y) = ∞ and

• RC(2m+1,−2n)(x(y), y) = 0 for all y ∈ [2,∞).

Proof. Let K = C(2m+ 1,−2n). We have RK(x, y) = Sn(t)− zSn−1(t) where

t = 2− (y + 2− x)(Sm(y)− Sm−1(y))
2,

z = 1− (y + 2− x)Sm(y)(Sm(y)− Sm−1(y)).

Fix a real number y ≥ 2. Choose tj and sj(y) for 1 ≤ j ≤ 2n as in Lemma 2.3.

Since

RK(s2j−1(y), y) = (1− z)Sn(t2j−1)

= (y + 2− s2j−1(y))Sm(y)(Sm(y)− Sm−1(y))Sn(t2j−1),

we have (−1)j−1RK(s2j−1(y), y) > 0. Hence, there exists xj(y) ∈ (s2j+1(y), s2j−1(y))

such that RK(xj(y), y) = 0 for each 1 ≤ j ≤ n− 1.

By writing RK(x, y) = (t− z)Sn−1(t)− Sn−2(t) and noting that

t− z = 1 + (y + 2− x)(Sm(y)− Sm−1(y))Sm−1(y),

we see that RK(x, y) is a polynomial of degree n in x with negative highest coefficient for

each fixed real number y ≥ 2. Since limx→∞ RK(x, y) = −∞ and RK(y+2, y) = 1, there

exists x0(y) ∈ (y+2,∞) such that RK(x0(y), y) = 0. For a fixed real number y ≥ 2, the

polynomial RK(x, y) of degree n in x has exactly n simple real roots x0(y), . . . , xn−1(y)

satisfying xn−1(y) < · · · < x1(y) < y + 2 < x0(y), hence the implicit function theorem

implies that each xj(y) is a continuous function in y ≥ 2.

By letting x(y) = xn−1(y) for y ≥ 2, we have RK(x(y), y) = 0. Moreover, since

x(y) > s2n−1(y) = y + 2−
2− 2 cos

(
(2n− 1)π/(2n+ 1)

)
(Sm(y)− Sm−1(y))2

we have limy→∞ x(y) = ∞ and x(y) > 4− (2− 2 cos((2n− 1)π/(2n+1))) = 4 cos2((2n−
1)π/(4n+ 2)) for y ≥ 2.
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Finally, since x(y) < s2n−3(y) for all y ≥ 2 we have x(2) < s2n−3(2) = 4 cos2((2n−
3)π/(4n+ 2)). □

3. Proof of Theorem 1.

Suppose K is a double twist knot of the form C(2m,−2n), C(2m+1, 2n) or C(2m+

1,−2n) in the Conway notation for some positive integers m and n. Let X be the

complement of an open tubular neighborhood ofK in S3, andXr the 3-manifold obtained

from S3 by r-surgery along K. Recall that

LOK =


(−∞, 1) if K = C(2m,−2n),

(−∞, 2n− 1) if K = C(2m+ 1, 2n),

(3− 2n,∞) if K = C(2m+ 1,−2n) and n ≥ 2.

An element of SL2(R) is called elliptic if its trace is a real number in (−2, 2). A

representation ρ : Z2 → SL2(R) is called elliptic if the image group ρ(Z2) contains an

elliptic element of SL2(R). In which case, since Z2 is an abelian group every non-trivial

element of ρ(Z2) must also be elliptic.

Using Lemmas 2.2–2.4 we first prove the following.

Proposition 3.1. For each rational number r ∈ LOK \ {0} there exists a repre-

sentation ρ : π1(Xr) → SL2(R) such that ρ
∣∣
π1(∂X)

: π1(∂X) ∼= Z2 → SL2(R) is an elliptic

representation.

Proof. We first consider the case K = C(2m,−2n). Let θ0 =

arccos
√
1− 1/(4mn). For θ ∈ (0, θ0) ∪ (π − θ0, π) we let x = 4 cos2 θ. Then

x ∈ (4− 1/(mn), 4). Consider the continuous real function

y : [4− 1/(mn), 4] → [2,∞)

in Lemma 2.2. Let M = eiθ. Then x = 4 cos2 θ = (M +M−1)2. Since RK(x, y(x)) = 0

there exists a non-abelian representation ρ : π1(X) → SL2(C) such that

ρ(a) =

[
M 1

0 M−1

]
and ρ(b) =

[
M 0

2− y(x) M−1

]
.

Note that x is the square of the trace of a meridian. Moreover, the image of the canonical

longitude λ corresponding to the meridian µ = a has the form ρ(λ) =
[
L ∗
0 L−1

]
, where

L = −M−1α−Mβ

Mα−M−1β

and α = Sm(y(x))− Sm−1(y(x)), β = Sm−1(y(x))− Sm−2(y(x)). Note that α > β > 0,

since y(x) > 2.

It is easy to see that |L| =
√
LL̄ = 1, where L̄ denotes the complex conjugate of L.

Moreover, by a direct calculation, we have
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Re(L) =
(
2αβ − (α2 + β2) cos 2θ

)
/|Mα−M−1β|2,

Im(L) = (α2 − β2) sin 2θ/|Mα−M−1β|2.

Note that Im(L) > 0 if θ ∈ (0, θ0) and Im(L) < 0 if θ ∈ (π − θ0, π). Let

φ(θ) =

arccos
[(
2αβ − (α2 + β2) cos 2θ

) / ∣∣eiθα− e−iθβ
∣∣2] if θ ∈ (0, θ0),

− arccos
[(
2αβ − (α2 + β2) cos 2θ

) / ∣∣eiθα− e−iθβ
∣∣2] if θ ∈ (π − θ0, π).

Then L = eiφ(θ). Note that φ(θ) ∈ (0, π) if θ ∈ (0, θ0) and φ(θ) ∈ (−π, 0) if θ ∈ (π−θ0, π).

The function f(θ) := −φ(θ)/θ is a continuous function on each of the intervals (0, θ0)

and (π− θ0, π). As θ → 0+ we have M → 1 and L = −(M−1α−Mβ)/(Mα−M−1β) →
−1, so φ(θ) → π. As θ → θ−0 we have x → 4 − 1/(mn), y(x) → 2 and α, β → 1, so

L = −(M−1α−Mβ)/(Mα−M−1β) → 1 and φ(θ) → 0. This implies that

lim
θ→0+

−φ(θ)

θ
= −∞ and lim

θ→θ−
0

−φ(θ)

θ
= 0.

Hence the image of f(θ) on the interval (0, θ0) contains the interval (−∞, 0).

Similarly, since

lim
θ→(π−θ0)+

−φ(θ)

θ
= 0 and lim

θ→π−
−φ(θ)

θ
= 1,

the image of f(θ) on the interval (π − θ0, π) contains the interval (0, 1).

Suppose r = p/q is a rational number such that r ∈ (−∞, 0) ∪ (0, 1). Then r =

f(θ) = −φ(θ)/θ for some θ ∈ (0, θ0) ∪ (π − θ0, π). Since MpLq = ei(pθ+qφ(θ)) = 1, we

have ρ(µpλq) = I. This means that the non-abelian representation ρ : π1(X) → SL2(C)
extends to a representation ρ : π1(Xr) → SL2(C). Finally, since 2 − y(x) < 0, a result

in [Kh, p.786] implies that ρ can be conjugated to an SL2(R)-representation. Note

that the restriction of this representation to the peripheral subgroup π1(∂X) of the

knot group is an elliptic representation. This completes the proof of Proposition 3.1 for

K = C(2m,−2n).

We now consider the case K = C(2m+1, 2n). Consider the continuous real function

x : [2,∞) →
(
4 cos2

(2n− 1)π

4n+ 2
,∞

)
in Lemma 2.3. Since x(2) < 4 cos2((2n − 2)π/(4n + 2)) and limy→∞ x(y) = ∞, there

exists y∗ > 2 such that x(y∗) = 4 and 4 cos2((2n − 1)π/(4n + 2)) < x(y) < 4 for all

y ∈ [2, y∗).

For each y ∈ [2, y∗) we let θ(y) = arccos(
√
x(y)/2). Then θ(2) > (2n−2)π/(4n+2),

and for y ∈ [2, y∗) we have 0 < θ(y) < (2n− 1)π/(4n+ 2) and x(y) = 4 cos2 θ(y). Since

RK(x(y), y) = 0 there exists a non-abelian representation ρ : π1(X) → SL2(C) such that

ρ(a) =

[
M 1

0 M−1

]
and ρ(b) =

[
M 0

2− y M−1

]
,
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where M = eiθ(y). Moreover, the image of the canonical longitude λ corresponding to

the meridian µ = a has the form ρ(λ) =
[
L ∗
0 L−1

]
, where

L = −M−4nM
−1γ −Mδ

Mγ −M−1δ

and γ = Sm(y), δ = Sm−1(y). Note that γ > δ > 0, since y > 2.

As in the previous case, we write L = eiφ(y) where

φ(y) = (2n− 2)π − 4nθ(y) + arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2] .

Since (2n− 2)π/(4n+ 2) < θ(2) < (2n− 1)π/(4n+ 2) we have −2π/(2n+ 1) < φ(2) <

2π − 3π/(2n+ 1).

As y → 2+, ρ approaches a reducible representation and so L → 1, φ(y) → φ(2) =

k2π for some integer k. Since −2π/(2n + 1) < φ(2) < 2π − 3π/(2n + 1), we must have

φ(2) = 0. As y → (y∗)−, we have x(y) → 4, M → 1, L = −M−4n(M−1γ −Mδ)/(Mγ −
M−1δ) → −1 and hence θ(y) → 0+, φ(y) → (2l − 1)π for some integer l. Since

(2l − 1)π = lim
y→(y∗)−

(2n− 2)π − 4nθ(y)

+ arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2]

= lim
y→(y∗)−

(2n− 2)π

+ arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2] ,

we have (2n − 2)π ≤ (2l − 1)π ≤ (2n − 1)π. This implies that 2l − 1 = 2n − 1 and

φ(y) → (2n− 1)π as y → (y∗)−. Hence the image of g(y) := −φ(y)/θ(y) on the interval

(2, y∗) contains the interval (−∞, 0).

Similarly, with θ1(y) = π − θ(y) we have x(y) = 4 cos2(θ1(y)) and hence for each

y ∈ [2, y∗) there exists a non-abelian representation ρ1 : π1(X) → SL2(C) such that

ρ1(a) =

[
M 1

0 M−1

]
and ρ1(b) =

[
M 0

2− y M−1

]
,

where M = eiθ1(y). Moreover, the image of the canonical longitude λ corresponding to

the meridian µ = a has the form ρ1(λ) =
[
L ∗
0 L−1

]
, where L = eiφ1(y) and

φ1(y) = −(2n− 2)π + 4nπ − 4nθ1(y)

− arccos
[(
2γδ − (γ2 + δ2) cos 2θ1(y)

) / ∣∣eiθ1(y)γ − e−iθ1(y)δ
∣∣2]

= −(2n− 2)π + 4nθ(y)

− arccos
[(
2γδ − (γ2 + δ2) cos 2θ1(y)

) / ∣∣eiθ1(y)γ − e−iθ1(y)δ
∣∣2] .

Since (2n − 2)π/(4n + 2) < θ(2) < (2n − 1)π/(4n + 2) we have −2π + 3π/(2n + 1) <

φ1(2) < 2π/(2n+ 1).
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As y → 2+, ρ1 approaches a reducible representation and so L → 1, φ1(y) → 0. As

y → (y∗)−, we have x(y) → 4, M → −1, L = −M−4n(M−1γ−Mδ)/(Mγ−M−1δ) → −1

and hence θ1(y) → π, φ1(y) → −(2n − 1)π. This implies that the image of g1(y) :=

−φ1(y)/θ1(y) on the interval (2, y∗) contains the interval (0, 2n− 1).

The rest of the proof of Proposition 3.1 for C(2m + 1, 2n) is similar to that for

C(2m,−2n).

Lastly, we consider the caseK = C(2m+1,−2n) and n ≥ 2. Consider the continuous

real function

x : [2,∞) →
(
4 cos2

(2n− 1)π

4n+ 2
,∞

)
in Lemma 2.4. Since x(2) < 4 cos2(2n−3)π/(4n+2) and limy→∞ x(y) = ∞, there exists

y∗ > 2 such that x(y∗) = 4 and 4 cos2(2n− 1)π/(4n+ 2) < x(y) < 4 for all y ∈ [2, y∗).

For each y ∈ [2, y∗) we let θ(y) = arccos(
√
x(y)/2). Then θ(2) > (2n−3)π/(4n+2),

and for y ∈ [2, y∗) we have 0 < θ(y) < (2n− 1)π/(4n+ 2) and x(y) = 4 cos2 θ(y). Since

RK(x(y), y) = 0 there exists a non-abelian representation ρ : π1(X) → SL2(C) such that

ρ(a) =

[
M 1

0 M−1

]
and ρ(b) =

[
M 0

2− y M−1

]
,

where M = eiθ(y). Moreover, the image of the canonical longitude λ corresponding to

the meridian µ = a has the form ρ(λ) =
[
L ∗
0 L−1

]
, where

L = −M4nM
−1γ −Mδ

Mγ −M−1δ

and γ = Sm(y), δ = Sm−1(y). Note that γ > δ > 0, since y > 2.

As above, we write L = eiφ(y) where

φ(y) = −(2n−2)π+4nθ(y)+arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2] .

Since (2n − 3)π/(4n + 2) < θ(2) < (2n − 1)π/(4n + 2) we have −2π + 4π/(2n + 1) <

φ(2) < 2π − (2n− 1)π/(2n+ 1).

As y → 2+, ρ approaches a reducible representation and so L → 1, φ(y) → φ(2) =

k2π for some integer k. Since −2π + 4π/(2n+ 1) < φ(2) < 2π − (2n− 1)π/(2n+ 1), we

must have φ(2) = 0.

As y → (y∗)−, we have x(y) → 4,M → 1, L = −M4n(M−1γ−Mδ)/(Mγ−M−1δ) →
−1 and hence θ(y) → 0+, φ(y) → (2l − 1)π for some integer l. Since

(2l − 1)π = lim
y→(y∗)−

−(2n− 2)π + 4nθ(y)

+ arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2]

= lim
y→(y∗)−

−(2n− 2)π

+ arccos
[(
2γδ − (γ2 + δ2) cos 2θ(y)

) / ∣∣eiθ(y)γ − e−iθ(y)δ
∣∣2] ,
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we have −(2n − 2)π ≤ (2l − 1)π ≤ −(2n − 3)π. This implies that 2l − 1 = −(2n − 3)

and φ(y) → −(2n − 3)π as y → (y∗)−. Hence the image of h(y) := −φ(y)/θ(y) on the

interval (2, y∗) contains the interval (0,∞).

Similarly, with θ1(y) = π − θ(y) we have x(y) = 4 cos2(θ1(y)) and hence for each

y ∈ [2, y∗) there exists a non-abelian representation ρ1 : π1(X) → SL2(C) such that

ρ1(a) =

[
M 1

0 M−1

]
and ρ1(b) =

[
M 0

2− y M−1

]
,

where M = eiθ1(y). Moreover, the image of the canonical longitude λ corresponding to

the meridian µ = a has the form ρ1(λ) =
[
L ∗
0 L−1

]
, where L = eiφ1(y) and

φ1(y) = (2n− 2)π − 4nπ + 4nθ1(y)

− arccos
[(
2γδ − (γ2 + δ2) cos 2θ1(y)

) / ∣∣eiθ1(y)γ − e−iθ1(y)δ
∣∣2]

= (2n− 2)π − 4nθ(y)

− arccos
[(
2γδ − (γ2 + δ2) cos 2θ1(y)

) / ∣∣eiθ1(y)γ − e−iθ1(y)δ
∣∣2] .

Since (2n−3)π/(4n+2) < θ(2) < (2n−1)π/(4n+2) we have −2π+(2n−1)π/(2n+1) <

φ1(2) < 2π − 4π/(2n+ 1).

As y → 2+, ρ1 approaches a reducible representation and so L → 1, φ1(y) →
φ1(2) = 0. As y → (y∗)−, we have x(y) → 4, M → −1, L = −M4n(M−1γ−Mδ)/(Mγ−
M−1δ) → −1 and hence θ1(y) → π, φ1(y) → (2n− 3)π. This implies that the image of

h1(y) := −φ1(y)/θ1(y) on the interval (2, y∗) contains the interval (−(2n− 3), 0).

The rest of the proof of Proposition 3.1 for C(2m + 1,−2n) is similar to that for

C(2m,−2n). □

We now finish the proof of Theorem 1. Suppose r is a rational number such that

r ∈ LOK . If r ̸= 0, by Proposition 3.1, there exists a representation ρ : π1(Xr) →
SL2(R) such that ρ

∣∣
π1(∂X)

is an elliptic representation. This representation lifts to a

representation ρ̃ : π1(Xr) → S̃L2(R), where S̃L2(R) is the universal covering group of

SL2(R). See e.g. [CD, Section 3.5] and [Va, Section 2.2]. Note that Xr is an irreducible

3-manifold (by [HTh]) and S̃L2(R) is a left orderable group (by [Be]). Hence, by [BRW],

π1(Xr) is a left orderable group. Finally, 0-surgery along a knot always produces a prime

manifold whose first Betti number is 1, and by [BRW] such manifold has left orderable

fundamental group.
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