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Abstract. A multiobjective optimization problem is Cr simplicial if the
Pareto set and the Pareto front are Cr diffeomorphic to a simplex and, under
the Cr diffeomorphisms, each face of the simplex corresponds to the Pareto set
and the Pareto front of a subproblem, where 0 ≤ r ≤ ∞. In the paper titled

“Topology of Pareto sets of strongly convex problems”, it has been shown that
a strongly convex Cr problem is Cr−1 simplicial under a mild assumption
on the ranks of the differentials of the mapping for 2 ≤ r ≤ ∞. On the

other hand, in this paper, we show that a strongly convex C1 problem is C0

simplicial under the same assumption. Moreover, we establish a specialized
transversality theorem on generic linear perturbations of a strongly convex Cr

mapping (r ≥ 2). By the transversality theorem, we also give an application

of singularity theory to a strongly convex Cr problem for 2 ≤ r ≤ ∞.

1. Introduction.

In this paper, m and n are positive integers, and we denote the index set {1, . . . ,m}
by M .

We consider the problem of optimizing several functions simultaneously. More pre-

cisely, let f : X → Rm be a mapping, where X is a given arbitrary set. A point x ∈ X

is called a Pareto optimum of f if there does not exist another point y ∈ X such that

fi(y) ≤ fi(x) for all i ∈ M and fj(y) < fj(x) for at least one index j ∈ M . We denote

the set consisting of all Pareto optimums of f by X∗(f), which is called the Pareto set of

f . The set f(X∗(f)) is called the Pareto front of f . The problem of determining X∗(f)

is called the problem of minimizing f .

Let f = (f1, . . . , fm) : X → Rm be a mapping, where X is a given arbitrary set. For

a non-empty subset I = {i1, . . . , ik} of M such that i1 < · · · < ik, set

fI = (fi1 , . . . , fik).

The problem of determining X∗(fI) is called a subproblem of the problem of minimizing

f . Set

∆m−1 =

{
(w1, . . . , wm) ∈ Rm

∣∣∣∣∣
m∑
i=1

wi = 1, wi ≥ 0

}
.
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We also denote a face of ∆m−1 for a non-empty subset I of M by

∆I =
{
(w1, . . . , wm) ∈ ∆m−1

∣∣wi = 0 (i ̸∈ I)
}
.

For a Cr manifold N (possibly with corners) and a subset V of Rℓ, a mapping

g : N → V is called a Cr mapping (resp., a Cr diffeomorphism) if g : N → Rℓ is of class

Cr (resp., g : N → Rℓ is a Cr immersion and g : N → V is a homeomorphism), where

r ≥ 1. In this paper, C0 mappings and C0 diffeomorphisms are continuous mappings

and homeomorphisms, respectively.

By referring to [2], we give the definition of (weakly) simplicial problems in this

paper.

Definition 1. Let f = (f1, . . . , fm) : X → Rm be a mapping, where X is a

subset of Rn. The problem of minimizing f is Cr simplicial if there exists a Cr mapping

Φ : ∆m−1 → X∗(f) such that both the mappings Φ|∆I : ∆I → X∗(fI) and f |X∗(fI) :

X∗(fI) → f(X∗(fI)) are Cr diffeomorphisms for any non-empty subset I of M , where

0 ≤ r ≤ ∞. The problem of minimizing f is Cr weakly simplicial1 if there exists a Cr

mapping ϕ : ∆m−1 → X∗(f) such that ϕ(∆I) = X∗(fI) for any non-empty subset I of

M , where 0 ≤ r ≤ ∞.

As described in [2], simpliciality is an important property, which can be seen in

several practical problems ranging from facility location studied half a century ago [7]

to sparse modeling actively developed today [2]. If a problem is simplicial, then we can

efficiently compute a parametric-surface approximation of the entire Pareto set with few

sample points [6].

A subset X of Rn is convex if tx + (1 − t)y ∈ X for all x, y ∈ X and all t ∈ [0, 1].

Let X be a convex set in Rn. A function f : X → R is strongly convex if there exists

α > 0 such that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
αt(1− t) ∥x− y∥2

for all x, y ∈ X and all t ∈ [0, 1], where ∥z∥ is the Euclidean norm of z ∈ Rn. The constant

α is called a convexity parameter of the function f . A mapping f = (f1, . . . , fm) : X →
Rm is strongly convex if fi is strongly convex for any i ∈ M . The problem of minimizing

a strongly convex Cr mapping is called the strongly convex Cr problem.

In [2], we have the following result for the simpliciality of strongly convex Cr prob-

lems, where 2 ≤ r ≤ ∞.

Theorem 1 ([2]). Let f : Rn → Rm be a strongly convex Cr mapping, where

2 ≤ r ≤ ∞. Then, the problem of minimizing f is Cr−1 simplicial if the rank of the

differential dfx is equal to m− 1 for any x ∈ X∗(f).

We give the following remark on Theorem 1.

1In [2], the problem of minimizing f : X → Rm is said to be Cr weakly simplicial if there exists a Cr

mapping ϕ : ∆m−1 → f(X∗(f)) satisfying ϕ(∆I) = f(X∗(fI)) for any non-empty subset I of M . On
the other hand, a surjective mapping of ∆m−1 into X∗(f) is important to describe X∗(f). Hence, the
definition of weak simpliciality in this paper is updated from that in [2].
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Remark 1. It is shown that if we remove the assumption on the rank of dfx in

Theorem 1, then the problem becomes Cr−1 weakly simplicial in the sense of [2] (for the

definition of weak simpliciality in the sense of [2], see also Footnote 1 in this paper). In

this paper, we show that the problem becomes Cr−1 weakly simplicial in the sense of

Definition 1 (for the result, see Theorem 5 in Section 7.1).

As in [2], the assumption r ≥ 2 is essentially used in the proof of Theorem 1. It is

difficult to apply the same method as in the proof of Theorem 1 to strongly convex C1

mappings. Hence, as the first purpose of this paper, we give a theorem in the case r = 1

as follows:

Theorem 2. Let f : Rn → Rm be a strongly convex C1 mapping. Then, the

problem of minimizing f is C0 weakly simplicial. Moreover, this problem is C0 simplicial

if the rank of the differential dfx is equal to m− 1 for any x ∈ X∗(f).

In [2], as an application of singularity theory to a strongly convex problem, we have

the following result (Theorem 3) on generic linear perturbations of a strongly convex

Cr mapping (2 ≤ r ≤ ∞). Here, note that strong convexity is preserved under linear

perturbations (see Lemma 14 in Section 5). Let L(Rn,Rm) be the space consisting of

all linear mappings of Rn into Rm. In what follows we will regard L(Rn,Rm) as the

Euclidean space (Rn)m in the obvious way.

Theorem 3 ([2]). Let f : Rn → Rm (n ≥ m) be a strongly convex Cr mapping,

where 2 ≤ r ≤ ∞. If n − 2m + 4 > 0, then there exists a Lebesgue measure zero

subset Σ of L(Rn,Rm) such that for any π ∈ L(Rn,Rm)−Σ, the problem of minimizing

f + π : Rn → Rm is Cr−1 simplicial.

In Theorem 3, in order to make a given strongly convex Cr problem simplicial,

linear perturbations of all functions f1, . . . , fm are considered, where f1, . . . , fm are the

components of f . On the other hand, as the second purpose of this paper, we show that

it is sufficient to consider linear perturbations of only m− 1 functions (see Theorem 4).

Let s be an arbitrary integer satisfying 1 ≤ s ≤ m. Set

L(Rn,Rm)s =
{
(π1, . . . , πm) ∈ L(Rn,Rm)

∣∣πs = 0
}
.

Theorem 4. Let f : Rn → Rm (n ≥ m) be a strongly convex Cr mapping, where

2 ≤ r ≤ ∞. Let s be an arbitrary integer satisfying 1 ≤ s ≤ m. If n − 2m + 4 > 0,

then there exists a Lebesgue measure zero subset Σ of L(Rn,Rm)s such that for any

π ∈ L(Rn,Rm)s − Σ, the problem of minimizing f + π : Rn → Rm is Cr−1 simplicial.

In this paper, in order to prove Theorem 4, we also give a specialized transversality

theorem on generic linear perturbations of a strongly convex mapping (see Proposition 2

in Section 5). Hence, Theorem 4 is also an application of singularity theory to a strongly

convex problem.

The remainder of this paper is organized as follows. In Section 2, some examples

of (weakly) simplicial problems and remarks on Theorems 2 and 4 are presented. By

lemmas prepared in Section 3, we prove Theorem 2 in Section 4. Moreover, in Section 5,

preliminaries for the proof of Theorem 4 are given, where the specialized transversality



968(298)

968 N. Hamada and S. Ichiki

theorem (Proposition 2) is shown. By the transversality theorem, we show Theorem 4

in Section 6. Section 7 is an appendix for Remark 1 and Lemma 1 (for Lemma 1, see

Section 2).

2. Examples of (weakly) simplicial problems and remarks on Theorems 2

and 4.

First, we give some examples of (weakly) simplicial problems. In order to show given

mappings are strongly convex, we prepare Lemma 1, which is a well-known result. For

the sake of readers’ convenience, the proof of Lemma 1 is given in Section 7.2.

Let X be a convex subset of Rn. A function f : X → R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ X and all t ∈ [0, 1].

Lemma 1. Let X be a convex subset of Rn. Then, a function f : X → R is strongly

convex with a convexity parameter α > 0 if and only if the function g : X → R defined

by g(x) = f(x)− (α/2)∥x∥2 is convex.

Example 1. Let f = (f1, f2, f3) : R3 → R3 be the mapping defined by

f1(x1, x2, x3) = a(x1 − 1)2 + x2
2 + x2

3 (a > 0),

f2(x1, x2, x3) = x2
1 + (x2 − 1)2 + x2

3,

f3(x1, x2, x3) = x2
1 + x2

2 + (x3 − 1)2.

First, we show that f is strongly convex.

Let f̃ : R3 → R be the mapping defined by f̃(x) =
∑3

i=1 ci(xi − pi)
2, where ci > 0

for any i = 1, 2, 3, x = (x1, x2, x3) and (p1, p2, p3) ∈ R3. Set α = min{c1, c2, c3} and

g(x) = f̃(x)− (α/2)∥x∥2. Then, we have

g(x) =
3∑

i=1

((
ci −

α

2

)
x2
i − 2cipixi + cip

2
i

)
.

Since ci − α/2 > 0 for all i = 1, 2, 3, the function g is convex. Therefore, f̃ is a strongly

convex function with a convexity parameter α by Lemma 1.

Since f̃ is strongly convex, f is also strongly convex for all a > 0. Since rank dfx ≥ 2

for any x ∈ R3 and a > 0, the problem of minimizing f is C∞ simplicial for any a > 0 by

Theorem 1 (see Figure 1). With the parameter a, the shapes of the Pareto set and the

Pareto front change while the simpliciality is maintained. If a = 1, the Pareto set is a

triangle as shown in Figure 1 (b). If a = 4 or a = 1/4, the Pareto set is a curved triangle

as shown in Figures 1 (c) and 1 (d). For the precise description of X∗(f), see Remark 7

in Section 4.

In Example 2, we give a simple example of a strongly convex C1 mapping which is

not of class C2.
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(d) Pareto set (left) and Pareto front (right) of f with a = 1/4.

Figure 1. Example 1 with a = 1, 4, 1/4.
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Example 2. Let f = (f1, f2) : R → R2 be the mapping defined by

f1(x) = (x− 2)2,

f2(x) =

{
x2 if x < 1,

x2 + (x− 1)2 if x ≥ 1.

Let gi : R → R be the function defined by gi(x) = fi(x) − (2/2)x2, where i = 1, 2.

Since g1 and g2 are convex, f1 and f2 are strongly convex functions with a convexity

parameter 2 by Lemma 1, respectively. Hence, f is strongly convex. Since f2 is not

of class C2, we cannot apply Theorem 1 to f . However, since f is of class C1, we can

apply Theorem 2. Since rank dfx = 1 for any x ∈ R, the problem of minimizing f is C0

simplicial by Theorem 2.

Remark 2. We give the following remarks on Theorem 2.

1. Note that (strict) convexity of a mapping does not necessarily imply that the prob-

lem is C0 simplicial. For example, the problem of minimizing f : R → R defined

by f(x) = ex does not have a Pareto optimum (i.e. a minimizer). Thus, it is not

C0 simplicial although f is strictly convex.

2. We give an example such that Theorem 2 does not hold without the rank assump-

tion. Let f = (f1, f2) : R → R2 be the mapping defined by f(x) = (x2, x2). By

Lemma 1, the mapping f is strongly convex. Since 0 ∈ R is a Pareto optimum and

rank df0 = 0, the mapping f does not satisfy the rank assumption in Theorem 2.

Since X∗(f) = {0}, the problem of minimizing f is not C0 simplicial.

Remark 3. We give a remark on Theorem 4. Let f = (f1, f2, f3) : R3 → R3 be

the mapping defined by fi(x) = ∥x∥2 for any integer i (1 ≤ i ≤ 3). By Lemma 1, the

mapping f is strongly convex. In order to make the problem of minimizing f simplicial

by generic linear perturbations, it is necessary to perturb at least two components of f .

First, we consider the case without linear perturbations. Since f1, f2 and f3 have

the unique minimizer 0 ∈ R3, we have X∗(f) = {0}. Hence, the problem of minimizing

f is not C0 simplicial.

Next, we linearly perturb only one component fs1 of f , where s1, s2 and s3 are three

elements satisfying {s1, s2, s3} = {1, 2, 3}. Set

L(R3,R3)(s2,s3) =
{
(π1, π2, π3) ∈ L(R3,R3)

∣∣πs2 = πs3 = 0
}
.

Let π = (π1, π2, π3) be an arbitrary element of L(R3,R3)(s2,s3). Since

(fs2 + πs2)(x) = (fs3 + πs3)(x) = ∥x∥2,

the origin 0 ∈ R3 is the unique minimizer of fs2 + πs2 and fs3 + πs3 . Since fs1 + πs1 is a

distance-squared function, fs1 + πs1 has a unique minimizer. Let p ∈ R3 be the unique

minimizer. Then, it is not hard to see that

X∗(f + π) =
{
tp ∈ R3

∣∣ t ∈ [0, 1]
}
.
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Therefore, the problem of minimizing f + π is not C0 simplicial.

Finally, we consider linear perturbations of two components of f . Let s be an

arbitrary integer satisfying 1 ≤ s ≤ 3. By Theorem 4, there exists a Lebesgue measure

zero subset Σ of L(R3,R3)s such that for any π ∈ L(R3,R3)s − Σ, the problem of

minimizing f + π : R3 → R3 is C∞ simplicial.

3. Preliminaries for the proof of Theorem 2.

In this section, we prepare some lemmas for the proof of Theorem 2.

Let f : U → Rm be a C1 mapping, where U is a non-empty open subset of Rn. A

point x ∈ U is called a critical point of f if rank dfx < m. We denote the set consisting

of all critical points of f by C(f). The following lemma gives a relationship between

critical points and Pareto optimums.

Lemma 2. Let f : U → Rm be a C1 mapping, where U is a non-empty open subset

of Rn. Then, X∗(f) ⊂ C(f).

Proof of Lemma 2. In the case n < m, since C(f) = U , Lemma 2 clearly

holds. Next, we consider the case n ≥ m. Suppose that there exists x ∈ X∗(f) such that

x ̸∈ C(f). Since x ̸∈ C(f), there exists an open neighborhood Ux of x such that f(Ux)

is an open neighborhood of f(x) by the implicit function theorem. This contradicts

x ∈ X∗(f). □

We give the following two lemmas (Lemmas 3 and 4) in [8].

Lemma 3 ([8, Theorem 3.1.3 in Part II (p.79)]). Let f = (f1, . . . , fm) : Rn → Rm

be a (not necessarily continuous) mapping and let (w1, . . . , wm) ∈ ∆m−1. If x ∈ Rn is

the unique minimizer of the function
∑m

i=1 wifi, then x ∈ X∗(f).

The following is a special case of the Karush–Kuhn–Tucker necessary condition for

Pareto optimality.

Lemma 4 ([8, Theorem 3.1.5 in Part I (p.39)]). Let f = (f1, . . . , fm) : Rn → Rm

be a C1 mapping. If x ∈ X∗(f), then there exists an element (w1, . . . , wm) ∈ ∆m−1

satisfying
∑m

i=1 wi(dfi)x = 0.

Now, we prepare the following four lemmas (Lemmas 5 to 8) on strongly convex

mappings.

Lemma 5 ([9, Theorem 2.2.6 (p.85)]). A strongly convex C1 function f : Rn → R
has a unique minimizer.

Lemma 6 ([9, Theorem 2.1.9 (p.64)]). A C1 function f : Rn → R is strongly

convex with a convexity parameter α > 0 if and only if

f(x) + dfx · (y − x) +
α

2
∥y − x∥2 ≤ f(y)

for any x, y ∈ Rn.
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Lemma 7 ([9, Lemma 2.1.4 (p.64)]). Let fi : Rn → R be a strongly convex C1

function with a convexity parameter αi > 0, where i is a positive integer (1 ≤ i ≤ m).

Then, for any w = (w1, . . . , wm) ∈ ∆m−1, the function
∑m

i=1 wifi : Rn → R is a strongly

convex C1 function with a convexity parameter
∑m

i=1 wiαi.

Lemma 8 ([3]). Let f : X → Rm be a strongly convex (not necessarily continuous)

mapping, where X is a convex subset of Rn. Then, f |X∗(f) : X
∗(f) → Rm is injective.

In order to give the last lemma (Lemma 12) in this section, which is essentially used

in the proof of Theorem 2, we prepare the following three lemmas (Lemmas 9 to 11).

Let f : X → Rm be a mapping, where X is a given arbitrary set. A point x ∈ X

is called a weakly Pareto optimum of f if there does not exist another point y ∈ X such

that fi(y) < fi(x) for all i ∈ M . Then, by Xw(f), we denote the set consisting of all

weakly Pareto optimums of f .

Lemma 9 ([3]). Let f : Rn → Rm be a strongly convex (not necessarily continuous)

mapping. Then, we have X∗(f) = Xw(f).

Lemma 10. Let f : X → Rm be a continuous mapping, where X is a topological

space. Then, Xw(f) is a closed set of X.

Proof of Lemma 10. For the proof, it is sufficient to show that X −Xw(f) is

open. Let x0 ∈ X − Xw(f) be an arbitrary element. Then, there exists x̃0 ∈ X such

that fi(x̃0) < fi(x0) for any i ∈ M , where f = (f1, . . . , fm). Set

O =
{
(y1, . . . , ym) ∈ Rm

∣∣ fi(x0)− εi < yi for any i ∈ M
}
,

where

εi =
fi(x0)− fi(x̃0)

2
.

Since f is continuous and O is an open neighborhood of f(x0), the set f
−1(O) is an open

neighborhood of x0. Since f−1(O) ⊂ X −Xw(f), the set X −Xw(f) is open in X. □

Lemma 11. Let f : Rn → Rm be a strongly convex C1 mapping. Then, X∗(f) is

compact.

Proof of Lemma 11. By Lemmas 9 and 10, it follows that X∗(f) is closed.

Thus, for the proof, it is sufficient to show that X∗(f) is bounded. Let αi > 0 be a

convexity parameter of fi, where f = (f1, . . . , fm) and i ∈ M . By Lemma 5, the function

fi has a unique minimizer for any i ∈ M . Let xi ∈ Rn be the unique minimizer of fi.

Set

Ωi =
{
x ∈ Rn

∣∣∣ fi(xi) +
αi

2
∥x− xi∥2 ≤ fi(x1)

}
.

Since every Ωi is compact, Ω =
∪m

i=1 Ωi is also compact. Hence, in order to show that

X∗(f) is bounded, it is sufficient to show that X∗(f) ⊂ Ω. Suppose that there exists an

element x′ ∈ X∗(f) such that x′ ̸∈ Ω. Then, it follows that
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fi(xi) +
αi

2
∥x′ − xi∥2 > fi(x1) (3.1)

for any i ∈ M . Since (dfi)xi
= 0 for any i ∈ M , by Lemma 6, we have

fi(xi) +
αi

2
∥x′ − xi∥2 ≤ fi(x

′). (3.2)

From (3.1) and (3.2), it follows that fi(x
′) > fi(x1) for any i ∈ M . This contradicts

x′ ∈ X∗(f). □

Now, we give a mapping from ∆m−1 into X∗(f), which is introduced in [2].

Let w = (w1, . . . , wm) ∈ ∆m−1. Since
∑m

i=1 wifi : Rn → R is a strongly convex

C1 function by Lemma 7, the function
∑m

i=1 wifi has a unique minimizer by Lemma 5.

By Lemma 3, this minimizer is contained in X∗(f). Hence, we can define a mapping

x∗ : ∆m−1 → X∗(f) as follows:

x∗(w) = arg min
x∈Rn

(
m∑
i=1

wifi(x)

)
, (3.3)

where argminx∈Rn(
∑m

i=1 wifi(x)) is the minimizer of
∑m

i=1 wifi.

Lemma 12. Let f = (f1, . . . , fm) : Rn → Rm be a strongly convex C1 mapping.

Let αi > 0 be a convexity parameter of fi and Ki be the maximal value of Fi : X
∗(f)×

X∗(f) → R defined by Fi(x, y) = |fi(x) − fi(y)| for any i ∈ M . Then, for any w =

(w1, . . . , wm), w̃ = (w̃1, . . . , w̃m) ∈ ∆m−1, we have that

∥x∗(w)− x∗(w̃)∥ ≤

√√√√K0

α0

m∑
i=1

|wi − w̃i|,

where α0 = min{α1, . . . , αm} and K0 = max{K1, . . . ,Km}.

Remark 4. In Lemma 12, the Pareto set X∗(f) is compact by Lemma 11. Hence,

for any i ∈ M , the function Fi has the maximal value Ki.

Proof of Lemma 12. Let w, w̃ ∈ ∆m−1 be arbitrary elements. By Lemma 7, the

function
∑m

i=1 wifi : Rn → R (resp.,
∑m

i=1 w̃ifi : Rn → R) is a strongly convex function

with a convexity parameter
∑m

i=1 wiαi (resp.,
∑m

i=1 w̃iαi). Since x∗(w) (resp., x∗(w̃)) is

the minimizer of the function
∑m

i=1 wifi (resp.,
∑m

i=1 w̃ifi), we get d(
∑m

i=1 wifi)x∗(w) = 0

(resp., d(
∑m

i=1 w̃ifi)x∗(w̃) = 0). Thus, by Lemma 6, we obtain(
m∑
i=1

wifi

)
(x∗(w)) +

∑m
i=1 wiαi

2
∥x∗(w̃)− x∗(w)∥2 ≤

(
m∑
i=1

wifi

)
(x∗(w̃)), (3.4)

(
m∑
i=1

w̃ifi

)
(x∗(w̃)) +

∑m
i=1 w̃iαi

2
∥x∗(w)− x∗(w̃)∥2 ≤

(
m∑
i=1

w̃ifi

)
(x∗(w)). (3.5)

By (3.4) and (3.5), we get
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i=1 wiαi

2
∥x∗(w̃)− x∗(w)∥2 ≤

m∑
i=1

wi

(
fi(x

∗(w̃))− fi(x
∗(w))

)
, (3.6)

∑m
i=1 w̃iαi

2
∥x∗(w̃)− x∗(w)∥2 ≤

m∑
i=1

w̃i

(
fi(x

∗(w))− fi(x
∗(w̃))

)
, (3.7)

respectively. By (3.6) and (3.7), we have∑m
i=1(wi + w̃i)αi

2
∥x∗(w̃)− x∗(w)∥2 ≤

m∑
i=1

(wi − w̃i)
(
fi(x

∗(w̃))− fi(x
∗(w))

)
.

By the inequality above and
∑m

i=1(wi + w̃i) = 2, we obtain

α0∥x∗(w̃)− x∗(w)∥2 ≤
m∑
i=1

(wi − w̃i)
(
fi(x

∗(w̃))− fi(x
∗(w))

)
. (3.8)

We also have

m∑
i=1

(wi − w̃i)
(
fi(x

∗(w̃))− fi(x
∗(w))

)
≤

m∑
i=1

|wi − w̃i|
∣∣fi(x∗(w̃))− fi(x

∗(w))
∣∣

≤
m∑
i=1

|wi − w̃i|Ki.

≤ K0

m∑
i=1

|wi − w̃i|.

By the inequality above and (3.8), we obtain

α0∥x∗(w)− x∗(w̃)∥2 ≤ K0

m∑
i=1

|wi − w̃i|.

Hence, it follows that

∥x∗(w)− x∗(w̃)∥ ≤

√√√√K0

α0

m∑
i=1

|wi − w̃i|. □

4. Proof of Theorem 2.

First, we give an essential result for the proof of Theorem 2 as follows (for the

definition of x∗ : ∆m−1 → X∗(f) in Proposition 1, see (3.3)).

Proposition 1. Let f : Rn → Rm be a strongly convex C1 mapping. Then, the

following properties hold.

(1) The mapping x∗ : ∆m−1 → X∗(f) is surjective and continuous. Moreover, if

rank dfx = m− 1 for any x ∈ X∗(f), then x∗ is a homeomorphism.
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(2) The mapping f |X∗(f) : X
∗(f) → Rm is a homeomorphism into the image.

Thus, Theorem 2 follows from Proposition 1 as follows: let I = {i1, . . . , ik} (i1 <

· · · < ik) be an arbitrary non-empty subset of M as in Section 1. Since fI : Rn → Rk

is a strongly convex C1 mapping, x∗|∆I : ∆I → X∗(fI) is surjective and continuous by

Proposition 1 (1). Hence, the problem of minimizing f is C0 weakly simplicial. Next,

suppose that rank dfx = m− 1 for any x ∈ X∗(f). Since

X∗(fI) = x∗(∆I) ⊂ x∗(∆m−1) = X∗(f),

it follows that rank(dfI)x ≥ k − 1 for any x ∈ X∗(fI). By Lemma 2, it follows that

rank(dfI)x = k − 1 for any x ∈ X∗(fI). Therefore, by Proposition 1 (1), the map-

ping x∗|∆I : ∆I → X∗(fI) is a homeomorphism. Since X∗(fI) ⊂ X∗(f), the mapping

f |X∗(fI) : X∗(fI) → Rm is a homeomorphism into the image. Thus, the problem of

minimizing f is C0 simplicial.

By the argument above, in order to complete the proof of Theorem 2, it is sufficient

to show Proposition 1.

Proof of Proposition 1 (1). Note that the bijectivity of x∗ is shown by the

same method as in the proof of [2]. For the sake of readers’ convenience, we give the

proof in this paper.

First, we show that x∗ is surjective. Let x ∈ X∗(f) be an arbitrary point. By

Lemma 4, there exists w = (w1, . . . , wm) ∈ ∆m−1 such that
∑m

i=1 wi(dfi)x = 0. Namely,

we get d(
∑m

i=1 wifi)x = 0. Since the function
∑m

i=1 wifi is strongly convex, the point x

is the unique minimizer of
∑m

i=1 wifi by Lemma 6. This implies x∗(w) = x. Hence, x∗

is surjective.

Second, we show that x∗ is continuous. Let w̃ = (w̃1, . . . , w̃m) ∈ ∆m−1 be an

arbitrary element. For the proof, it is sufficient to show that x∗ is continuous at w̃. Let

ε be an arbitrary positive real number. Then, there exists an open neighborhood V of w̃

in ∆m−1 satisfying √√√√K0

α0

m∑
i=1

|wi − w̃i| < ε

for any w ∈ V , where K0 and α0 are defined in Lemma 12. From Lemma 12, it follows

that

∥x∗(w)− x∗(w̃)∥ < ε

for any w ∈ V .

Finally, we show that x∗ is a homeomorphism if rank dfx = m−1 for any x ∈ X∗(f).

Since x∗ is surjective and continuous from a compact space ∆m−1 into a Hausdorff space,

for this proof, it is sufficient to show that x∗ is injective.

Suppose that x∗(w) = x∗(w̃), where w = (w1, . . . , wm) and w̃ = (w̃1, . . . , w̃m). Since

x∗(w) ∈ X∗(f) is the unique minimizer of
∑m

i=1 wifi, we have d(
∑m

i=1 wifi)x∗(w) = 0.

Namely, we get
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(w1, . . . , wm)dfx∗(w) = (0, . . . , 0).

By the above argument, we also have (w̃1, . . . , w̃m)dfx∗(w̃) = (0, . . . , 0). Since x∗(w) =

x∗(w̃), we obtain

(w̃1, . . . , w̃m)dfx∗(w) = (0, . . . , 0).

Since m = dimKer dfx∗(w) + rank dfx∗(w) and rank dfx∗(w) = m − 1, it follows that

dimKer dfx∗(w) = 1. Since w, w̃ ∈ Ker dfx∗(w) ∩∆m−1, we obtain w = w̃. □

Proof of Proposition 1 (2). By Proposition 1 (1), X∗(f) (= x∗(∆m−1)) is

compact. By Lemma 8, f |X∗(f) : X∗(f) → Rm is injective. Since f |X∗(f) : X∗(f) →
f(X∗(f)) is a bijective and continuous mapping from a compact space into a Hausdorff

space, the mapping f |X∗(f) is a homeomorphism onto the image. □

Finally, as supplements to this section, we give the following two remarks.

Remark 5. In Proposition 1 (1), the assumption that rank dfx = m − 1 for any

x ∈ X∗(f) yields m− 1 ≤ n. On the other hand, when m− 1 > n, it is impossible that

x∗ : ∆m−1 → X∗(f)(⊂ Rn) is a homeomorphism by the invariance of domain theorem.

For the invariance of domain theorem, see [4].

Remark 6. The mapping x∗ in Proposition 1 (1) is not necessarily differentiable

as follows. Let f = (f1, f2) : R → R2 be the mapping defined in Example 2 of Section 2.

Let φ : [0, 1] → ∆1 be the diffeomorphism defined by φ(w1) = (w1, 1 − w1). Since if

x∗(w1, w2) = x then d(w1f1 + w2f2)x = 0, we can easily obtain the following:

x∗ ◦ φ(w1) =


2w1 if 0 ≤ w1 <

1

2
,

w1 + 1

−w1 + 2
if

1

2
≤ w1 ≤ 1.

Since

lim
h→+0

(x∗ ◦ φ)(1/2 + h)− (x∗ ◦ φ)(1/2)
h

=
4

3
,

lim
h→−0

(x∗ ◦ φ)(1/2 + h)− (x∗ ◦ φ)(1/2)
h

= 2,

the mapping x∗ ◦ φ is not differentiable at w1 = 1/2.

Remark 7. The mapping x∗ in Proposition 1 (1) is useful for describing a Pareto

set as follows.

Let f : R3 → R3 be the mapping defined by Example 1. Let w = (w1, w2, w3) ∈ ∆2.

Since x∗(w) is a minimizer of
∑3

i=1 wifi by the definition of x∗, we have

d(
∑3

i=1 wifi)x∗(w) = 0. Thus, by simple calculations, x∗ : ∆2 → X∗(f) can be described

as follows:

x∗(w1, w2, w3) =

(
aw1

aw1 + (1− w1)
, w2, w3

)
.



977(307)

Simpliciality of strongly convex problems 977

Since x∗(∆2) = X∗(f), the Pareto set X∗(f) can be described as follows:

X∗(f) =

{(
aw1

aw1 + (1− w1)
, w2, w3

)
∈ R3

∣∣∣∣ (w1, w2, w3) ∈ ∆2

}
.

5. Preliminaries for the proof of Theorem 4.

In this section, unless otherwise stated, all manifolds are without boundary and

assumed to have countable bases.

The purpose of this section is to establish the specialized transversality theorem

(Proposition 2) for generically linearly perturbed strongly convex mappings, which is an

essential tool for the proof of Theorem 4. First, we prepare the following two lemmas.

Lemma 13 ([9, Theorem 2.1.11 (p.65)]). Let U be a convex open subset of Rn

(U ̸= ∅). A C2 function f : U → R is strongly convex with a convexity parameter α > 0

if and only if m(f)x ≥ α for any x ∈ U , where m(f)x is the minimal eigenvalue of the

Hessian matrix of f at x.

Lemma 14 ([2]). Let f : Rn → Rm be a strongly convex mapping. Then, for any

π ∈ L(Rn,Rm), the mapping f + π : Rn → Rm is also strongly convex.

For the statement and the proof of Proposition 2, we prepare some definitions. Let

U be a non-empty open set of Rn and J1(U,Rm) be the space of 1-jets of mappings of

U into Rm. Then, note that J1(U,Rm) is a C∞ manifold. For a given Cr mapping

f : U → Rm (r ≥ 2), the mapping j1f : U → J1(U,Rm) is defined by x 7→ j1f(x). Then,

notice that j1f : U → J1(U,Rm) is of class Cr−1. Further, set

Σk =
{
j1f(0) ∈ J1(n,m)

∣∣ corank Jf(0) = k
}
,

where J1(n,m) = {j1f(0) | f : (Rn, 0) → (Rm, 0)}, corankJf(0) = min{n,m} −
rank Jf(0) and k = 1, . . . ,min{n,m}. Set

Σk(U,Rm) = U × Rm × Σk.

Then, the set Σk(U,Rm) is a submanifold of J1(U,Rm) satisfying

codimΣk(U,Rm) = dim J1(U,Rm)− dimΣk(U,Rm)

= (n− v + k)(m− v + k),

where v = min{n,m}. For details on j1f : U → J1(U,Rm), Σk and Σk(U,Rm), see [1].

Now, we recall the definition of transversality.

Definition 2. Let X and Y be Cr manifolds, and Z be a Cr submanifold of Y

(r ≥ 1). Let f : X → Y be a C1 mapping.

1. We say that f : X → Y is transverse to Z at x ∈ X if f(x) ̸∈ Z or in the case

f(x) ∈ Z, the following holds:

dfx(TxX) + Tf(x)Z = Tf(x)Y.
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2. We say that f : X → Y is transverse to Z if for any x ∈ X, the mapping f is

transverse to Z at x.

The following is the basic transversality result, which is a key lemma for the proof

of Proposition 2.

Lemma 15 ([1], [5]). Let X, A and Y be Cr manifolds, Z be a Cr submanifold of Y

and Γ : X×A → Y be a Cr mapping. If r > max{dimX−codimZ, 0} and Γ is transverse

to Z, then there exists a Lebesgue measure zero subset Σ of A such that for any a ∈ A−Σ,

the Cr mapping Γa : X → Y is transverse to Z, where codimZ = dimY − dimZ and

Γa(x) = Γ(x, a), x ∈ X.

In [1], Lemma 15 is shown in the case that all manifolds and mappings are of class

C∞. By the same method, Lemma 15 can be shown (cf. [5]).

Proposition 2. Let f : U → Rm be a strongly convex Cr mapping, where U is a

convex open subset of Rn (U ̸= ∅). Let s be an arbitrary integer satisfying 1 ≤ s ≤ m,

and k be an arbitrary integer satisfying 1 ≤ k ≤ min{n,m}. If

r > max
{
n− codimΣk(U,Rm), 0

}
+ 1,

then there exists a Lebesgue measure zero subset Σ of L(Rn,Rm)s such that for any

π ∈ L(Rn,Rm)s−Σ, the mapping j1(f+π) : U → J1(U,Rm) is transverse to Σk(U,Rm).

Remark 8. We give an example such that Proposition 2 does not hold without

the hypothesis of strong convexity. Let f = (f1, f2) : R2 → R2 be the mapping defined

by f1(x1, x2) = 0 and f2(x1, x2) = x2
1 + x2

2. Note that f1 is not strongly convex by

Lemma 1. Let π = (π1, π2) ∈ L(R2,R2)1 be an arbitrary element. Then, it follows that

j1(f + π)(p) ∈ Σ2(R2,R2) and rank d(j1(f + π))p ≤ 2, where p is the unique minimizer

of f2 + π2. Since codimΣ2(R2,R2) = 4, the mapping j1(f + π) is not transverse to

Σ2(R2,R2).

Proof of Proposition 2. In the case m = 1, Proposition 2 clearly holds by

Lemma 13.

Hence, we will consider the case m ≥ 2. For a positive integer ℓ, we denote the ℓ× ℓ

unit matrix by Eℓ. For simplicity, set

A = L(Rn,Rm)s.

In order to show Proposition 2, it is sufficient to give the proof in the case s = 1.

Let Γ : U ×A → J1(U,Rm) be the Cr−1 mapping defined by

Γ(x, π) = j1(f + π)(x).

Note that r − 1 > max{n − codimΣk(U,Rm), 0}. If Γ is transverse to Σk(U,Rm), then

there exists a Lebesgue measure zero subset Σ of A such that for any π ∈ A − Σ,

the mapping Γπ : U → J1(U,Rm) is transverse to Σk(U,Rm) by Lemma 15, where

Γπ(x) = Γ(x, π), x ∈ U . Thus, in order to finish the proof, it is sufficient to show that
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Γ is transverse to Σk(U,Rm). Let (x̃, π̃) ∈ U × A be an arbitrary element satisfying

Γ(x̃, π̃) ∈ Σk(U,Rm). Then, it is sufficient to show that

dim
(
dΓ(x̃,π̃)

(
T(x̃,π̃)(U ×A)

)
+ TΓ(x̃,π̃)Σ

k(U,Rm)
)
= n+m+ nm. (5.1)

Let (aij)1≤i≤m,1≤j≤n be a representing matrix of a linear mapping π ∈ A. Since

s = 1, note that a1j = 0 for any j (1 ≤ j ≤ n). Thus, f +π : U → Rm is given as follows:

(f + π)(x) =

(
f1(x), f2(x) +

n∑
j=1

a2jxj , . . . , fm(x) +
n∑

j=1

amjxj

)
,

where f = (f1, . . . , fm), x = (x1, . . . , xn) and (a21, . . . , a2n, . . . , am1, . . . , amn) ∈
(Rn)m−1.

Hence, the mapping Γ is given by

Γ(x, π)

=

(
x, (f + π)(x),

∂f1
∂x1

(x), . . . ,
∂f1
∂xn

(x),

∂f2
∂x1

(x) + a21, . . . ,
∂f2
∂xn

(x) + a2n, . . . . . . ,
∂fm
∂x1

(x) + am1, . . . ,
∂fm
∂xn

(x) + amn

)
.

The Jacobian matrix of Γ at (x̃, π̃) is as follows:

JΓ(x̃,π̃) =



En

∗ 0
H(f1)x̃

∗ En 0
... 0

. . .

∗ En


,

where H(f1)x̃ is the Hessian matrix of f1 at x̃. Notice that there are m − 1 copies of

En in the lower right partition of the above description of JΓ(x̃,π̃). Since Σk(U,Rm) is a

sub-bundle of J1(U,Rm) with the fiber Σk, in order to show (5.1), it is sufficient to show

that the matrix R has rank n+m+ nm:

R =


En+m ∗ 0

0 H(f1)x̃ 0

∗ En 0

0
... 0

. . .

∗ En

 .

Notice that there are m−1 copies of En in the above description of R. Note that for any

i (1 ≤ i ≤ nm), the (n + m + i)-th column vector of R coincides with the i-th column

vector of JΓ(x̃,π̃). Since f1 is a strongly convex C2 function, we have rankH(f1)x̃ = n by

Lemma 13. Hence, it follows that rankR = n+m+nm. Therefore, we obtain (5.1). □



980(310)

980 N. Hamada and S. Ichiki

6. Proof of Theorem 4.

Since Theorem 4 clearly holds by combining the following result (Corollary 1) and

Theorem 1, in order to show Theorem 4, it is sufficient to prove Corollary 1.

Corollary 1. Let f : Rn → Rm (n ≥ m) be a strongly convex Cr mapping

(r ≥ 2). Let s be an arbitrary integer satisfying 1 ≤ s ≤ m. If n − 2m + 4 > 0,

then there exists a Lebesgue measure zero subset Σ of L(Rn,Rm)s such that for any

π ∈ L(Rn,Rm)s − Σ and any x ∈ Rn, we have rank d(f + π)x ≥ m− 1.

Proof of Corollary 1. In the case m = 1, Corollary 1 clearly holds.

Hence, we consider the case m ≥ 2. Since n ≥ m, we have

codimΣ2(Rn,Rm) = 2(n−m+ 2).

Since n− 2m+ 4 > 0, we also have codimΣ2(Rn,Rm) > n.

Let k be an arbitrary integer satisfying 2 ≤ k ≤ m. It follows that

n− codimΣk(Rn,Rm) ≤ n− codimΣ2(Rn,Rm) < 0. (6.1)

Furthermore, we have

r ≥ 2 > max
{
n− codimΣk(Rn,Rm), 0

}
+ 1.

By Proposition 2, there exists a Lebesgue measure zero subset Σk of L(Rn,Rm)s such

that for any π ∈ L(Rn,Rm)s − Σk, the mapping j1(f + π) is transverse to Σk(Rn,Rm).

Set Σ =
∪m

k=2 Σk. Then, Σ has Lebesgue measure zero in L(Rn,Rm)s.

Let π ∈ L(Rn,Rm)s−Σ and x ∈ Rn be arbitrary elements. Suppose rank d(f+π)x ≤
m−2. Then, there exists an integer k (2 ≤ k ≤ m) satisfying j1(f+π)(x) ∈ Σk(Rn,Rm).

Since the mapping j1(f + π) is transverse to Σk(Rn,Rm), we obtain

d(j1(f + π))x(TxRn) + Tj1(f+π)(x)Σ
k(Rn,Rm) = Tj1(f+π)(x)J

1(Rn,Rm).

This equation implies that

dim d(j1(f + π))x(TxRn) ≥ codimΣk(Rn,Rm).

This contradicts (6.1). □

7. Appendix.

7.1. On Remark 1.

As described in Remark 1, we show that the problem of minimizing a strongly convex

Cr mapping f : Rn → Rm (2 ≤ r ≤ ∞) becomes Cr−1 weakly simplicial in the sense of

Definition 1 as follows.

Theorem 5. Let f : Rn → Rm be a strongly convex Cr mapping, where 2 ≤ r ≤ ∞.

Then, the problem of minimizing f is Cr−1 weakly simplicial.
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In order to show Theorem 5, we prepare the following result in [2].

Proposition 3 ([2]). Let f = (f1, . . . , fm) : Rn → Rm be a strongly convex Cr

mapping (2 ≤ r ≤ ∞). Then, x∗ : ∆m−1 → X∗(f) is a surjective mapping of class Cr−1.

Proof of Theorem 5. Let I = {i1, . . . , ik} (i1 < · · · < ik) be an arbitrary non-

empty subset of M as in Section 1. Since fI : Rn → Rk is a strongly convex Cr mapping,

x∗|∆I : ∆I → X∗(fI) is a surjective mapping of class Cr−1 by Proposition 3, where

2 ≤ r ≤ ∞. Hence, the problem of minimizing f is Cr−1 weakly simplicial. □

7.2. Proof of Lemma 1.

In order to show Lemma 1, we prepare the following lemma.

Lemma 16. For any t ∈ R and any x, y ∈ Rn, we have

t ∥x∥2 + (1− t) ∥y∥2 − ∥tx+ (1− t)y∥2 = t(1− t) ∥x− y∥2 .

Proof of Lemma 16. We have

t ∥x∥2 + (1− t) ∥y∥2 − ∥tx+ (1− t)y∥2

= t
n∑

i=1

x2
i + (1− t)

n∑
i=1

y2i −
n∑

i=1

(txi + (1− t)yi)
2

= t(1− t)
n∑

i=1

(x2
i + y2i − 2xiyi)

= t(1− t) ∥x− y∥2 ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). □

Now, we will prove Lemma 1. A mapping f : X → R is strongly convex with a

convexity parameter α > 0 if and only if for all t ∈ [0, 1] and all x, y ∈ X, we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
αt(1− t) ∥x− y∥2 . (7.1)

By Lemma 16, the inequality (7.1) holds for all t ∈ [0, 1] and all x, y ∈ X if and only if

we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
α
(
t ∥x∥2 + (1− t) ∥y∥2 − ∥tx+ (1− t)y∥2

)
,

(7.2)

for all t ∈ [0, 1] and all x, y ∈ X. The inequality (7.2) holds for all t ∈ [0, 1] and all

x, y ∈ X if and only if we have

f(tx+ (1− t)y)− 1

2
α ∥tx+ (1− t)y∥2 ≤ t

(
f(x)− 1

2
α ∥x∥2

)
+ (1− t)

(
f(y)− 1

2
α ∥y∥2

)
(7.3)
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for all t ∈ [0, 1] and all x, y ∈ X. The inequality (7.3) holds for all t ∈ [0, 1] and all

x, y ∈ X if and only if the function g : X → R defined by g(x) = f(x) − (α/2)∥x∥2 is

convex. □
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