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Abstract. Let X ⊂ Rn be a compact semialgebraic set and let f : X →
R be a nonzero Nash function. We give a Solernó and D’Acunto–Kurdyka type
estimation of the exponent ϱ ∈ [0, 1) in the  Lojasiewicz gradient inequality

|∇f(x)| ≥ C|f(x)|ϱ for x ∈ X, |f(x)| < ε for some constants C, ε > 0, in
terms of the degree of a polynomial P such that P (x, f(x)) = 0, x ∈ X. As a
corollary we obtain an estimation of the degree of sufficiency of non-isolated
Nash function singularities.

1. Introduction.

 Lojasiewicz inequalities are important tools in various branches of mathematics:

differential equations, singularity theory and optimization (for more detailed references,

see for example [16], [18], [19], [22] and [34]). Quantitative aspects, like estimates (or

exact computation), of these exponents are subject of intensive study in real and complex

algebraic geometry (see for instance [18], [19], [20] and [33]). The main results of this

paper are effective estimations of the exponent in the  Lojasiewicz gradient inequality for

Nash functions (Theorems 2.1 and 2.2). As a corollary we obtain an effective estimation

of the degree of sufficiency of non-isolated Nash functions singularities and a sufficient

condition for Nash function germs at zero to be isotopical and topologically trivial along

[0, 1] (Corollary 1.3).

Determinacy of jets of functions with isolated singularity at zero was investigated

by many authors, including Kuiper [14], Kuo [15], Bochnak and  Lojasiewicz [2] for real

functions and Chang and Lu [5], Teissier [40] and Bochnak and Kucharz [1] for complex

functions. Similar investigations were also carried out for functions in a neighbourhood

of infinity by Cassou-Noguès and Vui [4] (see also [35], [37]). The case of real jets with

non-isolated singularities was studied among others by Grandjean [11] and Xu [41], and

for complex functions by Siersma [36] and Pellikaan [30]. In the case of nondegenerate

analytic functions f , g, a condition for topological triviality of deformations f + tg,

t ∈ [0, 1] in terms of Newton polyhedra was obtained by Damon and Gaffney [8], and for

blow analytic triviality by Fukui and Yoshinaga [9]. Some algebraic conditions for finite

determinacy of a smooth function jet were obtained by Kushner [21].
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1.1.  Lojasiewicz gradient inequality.

Let U ⊂ Rn be an open semialgebraic set and let a ∈ U . Let f, F : U → R be

continuous semialgebraic functions such that a ∈ F−1(0) ⊂ f−1(0) ⊂ U . Then the

following  Lojasiewicz inequality holds:

|F (x)| ≥ C|f(x)|η in a neighbourhood of a ∈ Rn for some constant C > 0. (1.1)

The lower bound of the exponents η in (1.1) is called the  Lojasiewicz exponent of the

pair (F, f) at a and is denoted by La(F, f). It is known that La(F, f) is a rational

number (see [3]) and the inequality (1.1) holds actually with η = La(F, f) on some

neighbourhood of the point a for some positive constant C (see for instance [39]). An

asymptotic estimate for La(F, f) was obtained by Solernó [38]:

La(F, f) ≤ DMcℓ

, (S)

where D is a bound for the degrees of the polynomials involved in a description of F ,

f and U ; M is the number of variables in these formulas; ℓ is the maximum number

of alternating blocks of quantifiers in these formulas; and c is an unspecified universal

constant.

In this paper, we consider the case when F is equal to the gradient ∇f :=

(∂f/∂x1, . . . , ∂f/∂xn) : U → Rn of a Nash function f in x = (x1, . . . , xn). Recall

that semialgebraic and analytic functions are called Nash functions.

Our main goal is to obtain an effective estimate for the exponent ϱ ∈ [0, 1) in the

following  Lojasiewicz gradient inequality (see [23] or [24], cf. [40]):

|∇f(x)| ≥ C|f(x)|ϱ in a neighbourhood of a ∈ Rn for some constant C > 0 ( L)

for an arbitrary Nash function f : U → R, where f(a) = 0, in terms of the degree of a

polynomial P ∈ R[x, y] describing the graph of f . We denote by |∇f(x)| the Euclidean

norm of ∇f(x), i.e. |∇f(x)|2 = ((∂f/∂x1)(x))2 + · · · + ((∂f/∂xn)(x))2.

The smallest exponent ϱ in ( L), denoted by ϱa(f), is called the  Lojasiewicz exponent

in the gradient inequality at a. It is known that ( L) holds with ϱ = ϱa(f).

In the case of a polynomial function f : Rn → R of degree d > 0 such that 0 is an

isolated point of f−1(0), Gwoździewicz [12] (cf. [13]) proved that

ϱ0(f) ≤ 1 − 1

(d− 1)n + 1
, (G2)

and in the general case of an arbitrary polynomial f , D’Acunto and Kurdyka [6] (cf. [7],

[10] and [31]) showed that

ϱ0(f) ≤ 1 − 1

d(3d− 3)n−1
, provided d ≥ 2. (DK)

If f is a rational function of the form f = p/q, where p, q ∈ R[x], p(0) = 0 and q(0) ̸= 0,

then ϱ0(f) = ϱ0(p), so (G2) and (DK) hold with d = deg p.

The aim of this paper is to show generalizations of the above estimates for Nash
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functions. The main results are Theorems 2.1 and 2.2 in Section 2. More precisely, let

U ⊂ Rn be a neighbourhood of a ∈ Rn and let f : U → R be a nonzero Nash function.

We give a Solernó and D’Acunto–Kurdyka type estimation of the exponent ϱ ∈ [0, 1) in

the  Lojasiewicz gradient inequality ( L) in terms of the degree d of a nonzero polynomial

P such that P (x, f(x)) = 0, x ∈ U . Namely, in Theorem 2.2 we obtain

ϱa(f) ≤ 1 − 1

2(2d− 1)3n+1
.

If additionally n ≥ 2 and (∂P/∂y)(a, f(a)) ̸= 0, then in Theorem 2.1 we obtain

ϱa(f) ≤ 1 − 1

d(3d− 2)n + 1
, provided d ≥ 2.

The above estimates are comparable with the Solernó estimate (S), but our estimates

are explicit.

As a corollary, we obtain the following inequality (see Corollary 3.6):

|∇f(x)| ≥ C dist(x, f−1(0))2(2d−1)3n+1−1 in a neighbourhood of a. (1.2)

If additionally n ≥ 2 and (∂P/∂y)(a, f(a)) ̸= 0, then

|∇f(x)| ≥ C dist(x, f−1(0))d(3d−2)n in a neighbourhood of a. (1.3)

The inequalities (1.2), (1.3) are essential points in the effective estimate of the degree of

sufficiency of non-isolated Nash function singularities given in the next section. The proof

of these inequalities is based on Theorem 2.2 and estimates of the length of trajectories

of the vector field ∇f in U \ f−1(0) (see Theorem 3.4).

1.2. Sufficiency of non-isolated Nash function singularities.

Let C k
a (n) denote the set of C k real functions defined in neighbourhoods of a ∈ Rn.

By a k-jet at a ∈ Rn in the class C ℓ we mean a family of functions w ⊂ C ℓ
a (n),

called C ℓ-realizations of this jet, possessing the same Taylor polynomial of degree k at

a. We also say that f determines a k-jet at a in C ℓ if f is a C ℓ-realization of this jet.

For a function f ∈ C k
a (n), we denote by jkf(a) the k-jet at a (in C k) determined by f .

Let Z ⊂ Rn be a set such that 0 ∈ Z and let k ∈ Z, k > 0. By a k-Z-jet in

the class C k, or briefly a k-Z-jet, we mean an equivalence class w ⊂ C k
0 (n) of the

following equivalence relation: f ∼ g iff for some neighbourhood U ⊂ Rn of the origin,

jkf(a) = jkg(a) for a ∈ Z ∩ U (cf. [27], [41]). The functions f ∈ w are called C k-Z-

realizations of the jet w and we write w = jkZf . The set of all jets jkZf is denoted by

Jk
Z(n).

The k-Z-jet w ∈ Jk
Z(n) is said to be C r-Z-sufficient (resp. Z-v-sufficient) in the

class C k if for every pair of its C k-Z-realizations f and g there exist sufficiently small

neighbourhoods U1, U2 ⊂ Rn of 0, and a C r diffeomorphism φ : U1 → U2, such that

f ◦ φ = g in U1 (resp. there exists a homeomorphism φ : [f−1(0) ∪ Z] ∩ U1 → [g−1(0) ∪
Z] ∩ U2 with φ(0) = 0 and φ(Z ∩ U1) = Z ∩ U2).

The classical and significant result on sufficiency of jets is the following:
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Theorem 1.1 (Kuiper, Kuo, Bochnak– Lojasiewicz). Let w be a k-jet at 0 ∈ Rn

and let f be its C k-realization. If f(0) = 0 then the following conditions are equivalent :

(a) w is C 0-sufficient in C k,

(b) w is v-sufficient in C k,

(c) |∇f(x)| ≥ C|x|k−1 in a neighbourhood of the origin for some C > 0.

The implication (c)⇒(a) was proved by Kuiper [14] and Kuo [15], (b)⇒(c) by

Bochnak and  Lojasiewicz [2], and (a)⇒(b) is obvious (cf. [29]).

Let us recall the notions of isotopy and topological triviality. Let Ω ⊂ Rn be a

neighbourhood of 0 ∈ Rn and let Z ⊂ Rn with 0 ∈ Z.

A continuous mapping H : Ω × [0, 1] → Rn is called an isotopy near Z at zero if:

(a) H0(x) = x for x ∈ Ω and Ht(x) = x for t ∈ [0, 1] and x ∈ Ω ∩ Z,

(b) for any t the mapping Ht : Ω → Rn is a homeomorphism onto Ht(Ω),

where Ht(x) = H(x, t) for x ∈ Ω, t ∈ [0, 1].

Functions f : Ω1 → R, g : Ω2 → R, where Ω1,Ω2 ⊂ Rn are neighbourhoods of

0 ∈ Rn, are called isotopical near Z at zero if there exists an isotopy near Z at zero,

H : Ω × [0, 1] → Rn, with Ω ⊂ Ω1 ∩ Ω2, such that f(H1(x)) = g(x), x ∈ Ω.

A deformation f + tg is called topologically trivial near Z along [0, 1] if there exists

an isotopy near Z at zero, H : Ω× [0, 1] → Rn, with Ω ⊂ Ω1∩Ω2, such that f(H(t, x)) +

tg(H(t, x)) does not depend on t.

Theorem 1.1 concerns the case of an isolated singularity of f at 0, i.e. 0 is an isolated

zero of ∇f . In the case of a non-isolated singularity of f at 0, from [27, Theorems 1.3

and 1.4] (cf. [41]) we have the following criterion for sufficiency of jets.

Theorem 1.2. Let f ∈ C k
0 (n) be a C k-Z-realization of a k-Z-jet w ∈ Jk

Z(n),

where k > 1 and Z = f−1(0), 0 ∈ Z, and suppose (∇f)−1(0) ⊂ Z. Then the following

conditions are equivalent :

(a) The k-Z-jet w is C 0-Z-sufficient in C k.

(b) For any C k-Z-realizations f1, f2 of w, the deformation f1 + t(f2 − f1), t ∈ R, is

topologically trivial along [0, 1].

(c) Any two C k-Z-realizations of w are isotopical at zero.

(d) The k-Z-jet w is Z-v-sufficient in C k.

(e) There exists a positive constant C such that

|∇f(x)| ≥ C dist(x,Z)k−1 in a neighbourhood of the origin.

Let f : U → R be a Nash function, where U ⊂ Rn is a neighbourhood of the origin,

let Z = f−1(0), and suppose 0 ∈ Z.

As a consequence of Theorem 1.2 and inequality (1.2) we obtain

Corollary 1.3. Let k = 2(2d− 1)3n+1, where d = deg0 f , and let w ∈ Jk
Z(n) be

the k-Z-jet for which f is a C k-Z-realization. Then the following conditions hold :
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(a) The k-Z-jet w is C 0-Z-sufficient in C k.

(b) For any C k-Z-realizations f1, f2 of w, the deformation f1 + t(f2 − f1), t ∈ R, is

topologically trivial along [0, 1].

(c) Any two C k-Z-realizations of w are isotopical at zero.

(d) The k-Z-jet w is Z-v-sufficient in C k.

Under additional assumption on f , from Theorem 1.2 and inequality (1.3), we obtain

Corollary 1.4. Assume that there exists a nonzero polynomial P ∈ R[x, y] such

that P (x, f(x)) = 0 for x ∈ U and (∂P/∂y)(a, f(a)) ̸= 0. Then the assertion of Corol-

lary 1.3 holds with k = d(3d− 2)n + 1, where d = degP .

Remark 1.5. If f is a polynomial of degree d > 1 or a rational function f = p/q,

where p(0) = 0, q(0) ̸= 0 and d = deg p, then from Theorem 1.2 and by (DK), the

assertion of Corollary 1.3 holds with k = d(3d − 3)n−1. If additionally the origin is an

isolated zero of f , then by (G2) the assertion of Corollary 1.3 holds with k = (d−1)n +1.

2.  Lojasiewicz gradient inequality.

Let f : U → R, where U ⊂ Rn is a connected neighbourhood of a ∈ Rn, be a Nash

function. Let P ∈ R[x, y] be the unique irreducible real polynomial such that

P (x, f(x)) = 0 for x ∈ U, (2.1)

and let

d = degP.

We will call this number d the degree of the Nash function f at a and denote it by dega f .

Obviously d = dega f > 0 is uniquely determined. For d = 1, the function f is linear and

( L) holds with ϱ = 0, so we will assume that d > 1. We will also assume that ∇f(a) = 0,

because in the opposite case ( L) holds with ϱ = 0.

Put

R(n, d) = max{2d(2d− 1), d(3d− 2)n} + 1.

The main result of this section is the following theorem.

Theorem 2.1. Let f : U → R be a nonzero Nash function such that f(a) = 0 and

∇f(a) = 0. Assume that for the unique polynomial P satisfying (2.1) we have

∂P

∂y
(a, f(a)) ̸= 0. (2.2)

Then ϱa(f) ≤ 1 − 1/R(n, d). Moreover, for ϱ = 1 − 1/R(n, d) and some constants

C, ε > 0,
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|∇f(x)| ≥ C|f(x)|ϱ for |x− a| < ε, |f(x)| < ε. (2.3)

Without the assumption (2.2), we have a somewhat weaker estimation of the expo-

nent ϱa(f) than that in Theorem 2.1. Namely, let

S(n, d) = 2(2d− 1)3n+1.

Theorem 2.2. Let f : U → R be a nonzero Nash function such that f(a) = 0

and ∇f(a) = 0 and let P be the unique polynomial satisfying (2.1). Then ϱa(f) ≤
1 − 1/S(n, d). Moreover, (2.3) holds actually with ϱ = 1 − 1/S(n, d).

Theorems 2.1 and 2.2 are generalizations for Nash functions of the above mentioned

results by Gwoździewicz, D’Acunto and Kurdyka in the polynomial function case. They

are also comparable with Solernó’s estimate (S), but our estimates are explicit. In the

case of Nash functions with isolated singularity at zero, a similar result was obtained in

[17].

We give the proofs of Theorems 2.1 and 2.2 in Section 5.

3.  Lojasiewicz inequality.

Let X ⊂ Rn be a compact semialgebraic set and let f : X → R be a Nash function.

Then f is defined in a neighbourhood of X. So, there exists a compact semialgebraic set

Y ⊂ Rn such that X ⊂ IntY and f is defined on Y .

The degree of f is defined to be sup{dega f : a ∈ X} and is denoted by degX f . In

fact, degX f = max{dega f : a ∈ X}. Moreover, one can assume that Y was chosen in

such a manner that degX f = degY f .

Let dist(x, V ) denote the distance of a point x ∈ Rn to a set V ⊂ Rn in the Euclidean

norm (with dist(x, V ) = 1 if V = ∅).

3.1. Global  Lojasiewicz gradient inequality.

Theorems 2.1 and 2.2 have a local character. From these theorems we obtain a global

 Lojasiewicz gradient inequality.

Corollary 3.1. Let d = degX f . If (∇f)−1(0) ⊂ f−1(0) then for some positive

constant C,

|∇f(x)| ≥ C|f(x)|ϱ for x ∈ X (3.1)

with ϱ = 1 − 1/S(n, d). If additionally there exists a polynomial P ∈ R[x, y] such that

P (x, f(x)) = 0 and (∂P/∂y)(x, f(x)) ̸= 0 for x ∈ X and d1 = degP , then (3.1) holds

with ϱ = 1 − 1/R(n, d1).

Denote by ϱX(f) the smallest exponent ϱ for which (3.1) holds. We call it the

 Lojasiewicz exponent in the gradient inequality on X. It is known that the inequality

(3.1) holds with ϱ = ϱX(f). So, from Corollary 3.1 we obtain

Corollary 3.2. ϱX(f) ≤ 1 − 1/S(n, d).
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3.2. Length of trajectory.

Let f : X → R be a nonzero Nash function such that (∇f)−1(0) ⊂ f−1(0), let

ϱ ∈ (0, 1) and C > 0 be such that the global inequality (3.1) in Corollary 3.1 holds in X,

and let V = f−1(0). Then ∇f(x) ̸= 0 for x ∈ X \ V .

Let φ(t) = |t|1−ϱ for t ∈ R. By the same argument as in the proof of [18, Proposi-

tion 1] we obtain (cf. [16])

Proposition 3.3 (Kurdyka– Lojasiewicz inequality). Under the above notations,

|∇(φ ◦ f)(x)| ≥ (1 − ϱ)C for x ∈ X \ V.

We will also assume that IntX \ V = X. Let

UX,f =

{
x ∈ IntX :

1

C(1 − ϱ)
|f(x)|1−ϱ < dist(x,Rn \X)

}
.

Then UX,f ⊂ X is a neighbourhood of (IntX) ∩ V .

Take a global trajectory γ : [0, s) → UX,f \ V of the vector field

H(x) = − sign f(x)
∇f(x)

|∇f(x)|
for x ∈ UX,f \ V.

Then the function f ◦ γ is monotonic, so the limit limt→s f ◦ γ(t) exists.

Let length γ denote the length of γ. Since |γ′(t)| = 1, we have length γ = s.

The following generalization of [18, Theorem 1] has a similar proof.

Theorem 3.4. The limit limt→s γ(t) exists and belongs to V . Moreover,

dist(γ(0), V ) ≤ length γ ≤ 1

(1 − ϱ)C
|f(γ(0))|1−ϱ.

From Theorem 3.4 we have

Corollary 3.5. Under the assumptions and notations of Theorem 3.4,

|f(x)| ≥ (C(1 − ϱ))
1/(1−ϱ)

dist(x, V )1/(1−ϱ), x ∈ UX,f ,

and

|∇f(x)| ≥ (C(1 − ϱ))
ϱ/(1−ϱ)

dist(x, V )ϱ/(1−ϱ), x ∈ UX,f .

Similarly to [18], we obtain a version of the above corollary in the complex case with

the same formulation.

From Corollaries 3.1, 3.5 and Theorem 2.2, we immediately obtain

Corollary 3.6. Let d = degX f . Then there exists a positive constant C such

that

|f(x)| ≥ C dist(x, V )2(2d−1)3n+1

, x ∈ X,
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and

|∇f(x)| ≥ C dist(x, V )2(2d−1)3n+1−1, x ∈ X.

If additionally n ≥ 2 and there exists a polynomial P ∈ R[x, y] such that

P (x, f(x)) = 0 and (∂P/∂y)(x, f(x)) ̸= 0 for x ∈ X, and d = degP , then

|f(x)| ≥ C dist(x, V )d(3d−2)n+1, x ∈ X,

and

|∇f(x)| ≥ C dist(x, V )d(3d−2)n , x ∈ X.

3.3.  Lojasiewicz exponent.

Corollary 3.5 implies the known fact that the exponents α > 0 in the inequality

|f(x)| ≥ C dist(x, V )α, x ∈ X, (3.2)

for some positive constant C, are bounded below. The inequality (3.2) is called the

 Lojasiewicz inequality for f on X and the lower bound of the exponents α > 0 is the

 Lojasiewicz exponent of f on X, denoted by LX(f). It is known that (3.2) holds with

α = LX(f) and some positive constant C.

From Theorem 3.4 we obtain

Corollary 3.7. LX(f) ≤ 1

1 − ϱX(f)
.

Corollary 3.5 implies

Corollary 3.8. If d = degX f , then LX(f) ≤ 2(2d− 1)3n+1.

For n ≥ 4 the above estimate is sharper than the one given in [20] for continuous

semialgebraic functions: LX(f) ≤ d(6d − 3)n+r−1, where r ≤ n(n + 1)/2 is the degree

of complexity of f , equal to the number of inequalities necessary to define the graph of

f , and d is the maximal degree of polynomials describing the graph of f . Consequently,

this gives the estimate LX(f) ≤ d(6d − 3)n+n(n+1)/2−1 in terms of the degree only. So,

the estimate in Corollary 3.8 is more exact than the one above for n ≥ 4.

4. Total degree of algebraic sets.

Let C[x] denote the ring of complex polynomials in x = (x1, . . . , xn).

Let f = (f1, . . . , fr) : Cn → Cr be a polynomial mapping with deg fi > 0 for

i = 1, . . . , r. Let V = f−1(0) ⊂ Cn.

The total degree of V is the number

δ(V ) = deg V1 + · · · + deg Vs,

where V = V1 ∪ · · · ∪ Vs is the decomposition into irreducible components (see [25]).

We have the following useful fact (see [25]).
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Fact 4.1. If V,W ⊂ Cn are algebraic sets, then

δ(V ∩W ) ≤ δ(V )δ(W ).

From Fact 4.1 and the definition of total degree of algebraic sets we have the following

two facts (cf. [25]).

Fact 4.2. δ(V ) ≤ deg f1 · · · deg fr. In particular, for any irreducible component

Vj of V we have

deg Vj ≤ deg f1 · · ·deg fr.

Fact 4.3. Let L : Cn → Ck be a linear mapping. Then

δ(L(V )) ≤ δ(V ).

We will need the following lemma (see [17, Lemma 3.20]).

Lemma 4.4. Let Vj be an irreducible component of the set V, and suppose dimVj≥1.

Then for a generic linear mapping L = (L1, . . . , Ln−1) : Cr → Cn−1 the set Vj is an

irreducible component of the set of common zeros of the system of equations

Li ◦ f = 0, i = 1, . . . , n− 1.

In particular,

deg Vj ≤ deg(L1 ◦ f) · · · deg(Ln−1 ◦ f).

Moreover, we can take L1(y1, . . . , yr) = y1.

5. Proofs of Theorems 2.1 and 2.2.

The idea of the proofs is similar to that in [17, Proof of Theorem 1.2].

Without loss of generality, we may assume that a = 0. Let f : U → R be a nonzero

Nash function defined in an open neighbourhood U ⊂ Rn of the origin such that f(0) = 0

and ∇f(0) = 0. Let P ∈ R[x, y] be the unique irreducible polynomial satisfying (2.1)

and let d = degP .

Since the set of critical values of a differentiable semialgebraic function is finite, we

have

Fact 5.1. There exists ε > 0 such that f has no critical values in the interval

(−ε, ε) except 0.

Let ε > 0 be as in Fact 5.1. Take r > 0. Denote by Ω the closed ball

Ω := {x ∈ Rn : |x| ≤ r}

and by ∂Ω the sphere {x ∈ Rn : |x| = r}. Suppose that Ω ⊂ U . Define a semialgebraic

set Γ ⊂ Ω by
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Γ :=
{
x ∈ Ω : ∀ζ∈Ω f(x) = f(ζ) ⇒ |∇f(x)| ≤ |∇f(ζ)|

}
.

Then by the definition of Γ we have

Fact 5.2. Let ϱ ∈ R and let C > 0. If |∇f(x)| ≥ C|f(x)|ϱ for x ∈ Γ such that

|f(x)| < ε, then |∇f(x)| ≥ C|f(x)|ϱ for x ∈ Ω, |f(x)| < ε.

Let ϱ0 = ϱ0(f). Then, decreasing r if necessary, we can assume that

|∇f(x)| ≥ C|f(x)|ϱ0 for x ∈ Ω and some constant C > 0. (5.1)

Let us fix such an r.

Consider the case n = 1. Denote by ord0 f the order of f at zero. Then f has an

isolated zero and singularity at zero, ord0 f > 0 and the inequality (2.3) holds with

ϱ0(f) =
ord0 f − 1

ord0 f
= 1 − 1

ord0 f
. (5.2)

Let the polynomial P be of the form P (x1, y) = p0(x1)yd + p1(x1)yd−1 + · · · + pd(x1),

where p0, . . . , pd ∈ R[x1]. As P is irreducible, pd ̸= 0 and ord0 pd ≤ d. Since

−pd(x1) = f(x1)
(
p0(x1)(f(x1))d−1 + p1(x1)(f(x1))d−2 + · · · + pd−1(x1)

)
,

we have ord0 f ≤ ord0 pd ≤ d. Together with (5.2) this gives (2.3) with ϱ0(f) = 1 − 1/d

and the assertions of Theorems 2.1 and 2.2 in the case n = 1.

In the remainder of this article we will assume that n > 1.

By (5.1) and the curve selection lemma, there exists an analytic curve φ : [0, 1) → Ω

for which f(φ(0)) = 0, f(φ(ξ)) ̸= 0 for ξ ∈ (0, 1) and for some constant C1 > 0,

C|f(φ(ξ))|ϱ0 ≤ |∇f(φ(ξ))| ≤ C1|f(φ(ξ))|ϱ0 , ξ ∈ [0, 1) (5.3)

(cf. [39]). By Fact 5.2 we may assume that φ([0, 1)) ⊂ Γ. Then we have two cases:

I. φ
(
(0, 1)

)
⊂ Int Ω,

II. φ
(
[0, 1)

)
⊂ ∂Ω.

We will use the Lagrange multipliers theorem to describe the relation between the

values y = f(x) and u = |∇f(x)|2 for x ∈ Γ, so we put

ΓI =
{
x ∈ Ω : ∃λ∈R ∇|∇f(x)|2 − λ∇f(x) = 0

}
,

ΓII =
{
x ∈ ∂Ω : |f(x)| < ε ∧ ∃λ1,λ2∈R ∇|∇f(x)|2 − λ1∇f(x) − 2λ2x = 0

}
.

To fulfill the assumptions of the Lagrange theorem we will need

Lemma 5.3. There exists ε > 0 such that for every x ∈ ∂Ω and every y ∈ R such

that 0 < |y| < ε and y = f(x), the vectors ∇
(
|x|2 − r2

)
and ∇f(x) (that is, 2x and

∇f(x)) are linearly independent.

Proof. If f |∂Ω is a constant function then the assertion is obvious. Assume that

f is not constant on ∂Ω. Then, by Fact 5.1, there exists ε > 0 such that ∇f(x) ̸= 0 for

x ∈ ∂Ω, 0 < |f(x)| < ε.
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Suppose to the contrary that for any ε > 0 there exist x ∈ ∂Ω and yε ∈ R with 0 <

|yε| < ε such that yε = f(x) and ∇f(x) = ξ · 2x for some ξ ∈ R \ {0}. Then by the curve

selection lemma there exist analytic curves γ : [0, 1) → ∂Ω with γ((0, 1)) ⊂ Ω \ f−1(0)

and f(γ(0)) = 0, and α : [0, 1) → R, such that for t ∈ (0, 1),

∇f
(
γ(t)

)
= α(t) · 2γ(t).

Then

(f ◦ γ)′(t) = ⟨∇f(γ(t)), γ′(t)⟩ = α(t)⟨γ(t), γ′(t)⟩ = 0,

since |γ(t)|2 = 1, and consequently f◦γ is a constant function equal to 0. This contradicts

the choice of γ and ends the proof. □

By the Lagrange multipliers theorem, Fact 5.1 and Lemma 5.3 we obtain

Fact 5.4. Let ε > 0 fulfill Fact 5.1 and Lemma 5.3. Take a point x0 ∈ Ω such

that 0 < |f(x0)| < ε.

(a) If x0 ∈ Γ ∩ Int Ω then x0 is a critical point of the function Ω ∋ x 7→ |∇f(x)|2 ∈ R
on the set f−1(f(x0)) ∩ Ω. In particular, Γ ∩ Int Ω ⊂ ΓI .

(b) If n ≥ 3, x0 ∈ Γ ∩ ∂Ω then x0 is a critical point of the function ∂Ω ∋ x 7→
|∇f(x)|2 ∈ R on the set f−1(f(x0)) ∩ ∂Ω. In particular, Γ ∩ ∂Ω ⊂ ΓII .

Let M = Cn × C× C× Cn × Cn, and let X ⊂ M be the Zariski closure of the set{(
x, f(x), |∇f(x)|2,∇f(x),∇|∇f(x)|2

)
∈ M : x ∈ Ω

}
.

We will determine polynomials describing a certain algebraic set Y ⊂ M containing X
as an irreducible component. Let G ∈ C[x, y, u], where u is a variable, be the polynomial

defined by

G(x, y, u) =
n∑

i=1

(
∂P

∂xi
(x, y)

)2

−
(
∂P

∂y
(x, y)

)2

· u. (5.4)

It is easy to observe that G(x, f(x), |∇f(x)|2) = 0 for x ∈ Ω. In particular, the polynomial

G vanishes on X.

Take systems of variables t = (t1, . . . , tn), z = (z1, . . . , zn), and let G1, G2,i, G3,i ∈
C[x, y, u, t, z] be defined by

G1(u, t) = u− t21 − · · · − t2n,

G2,i(x, y, t) =
∂P

∂xi
(x, y) +

∂P

∂y
(x, y)ti, 1 ≤ i ≤ n,

G3,i(x, y, u, t, z) =
∂G

∂xi
(x, y, u) +

∂G

∂y
(x, y, u) ti −

(
∂P

∂y
(x, y)

)2

· zi, 1 ≤ i ≤ n.

Let Y ⊂ M be the closure of the constructible set
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Y0 =

{
w = (x, y, u, t, z) ∈ M : P (x, y) = 0,

∂P

∂y
(x, y) ̸= 0, G1(x, y, u) = 0,

G2,i(x, y, t) = 0, G3,i(w) = 0, 1 ≤ i ≤ n

}
.

Obviously X ⊂ Y, and locally Y0 is the graph of a complex Nash mapping (i.e. a holomor-

phic mapping whose graph is contained in a complex algebraic set of the same dimension).

Moreover, we have

Lemma 5.5. The set X is an irreducible component of Y. Moreover, Y0 is a

Zariski open and dense subset of Y, and any point w = (x0, y0, u0, t0, z0) ∈ Y0 has a

neighbourhood B ⊂ M such that Y ∩B = Y0 ∩B and

Y0 ∩B =
{
w = (x, g(x), h(x),∇g(x),∇h(x)) ∈ M : x ∈ ∆

}
for some holomorphic function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of x0, and

h(x) = ((∂g/∂x1)(x))2 + · · · + ((∂g/∂xn)(x))2.

Proof. Since P is an irreducible polynomial, ∂P/∂y does not vanish on X. So,

by the implicit function theorem, {w = (x, y, u, t, z) ∈ X : (∂P/∂y)(x, y) ̸= 0} is an open

and dense subset of X, and moreover it is a smooth and connected submanifold of Y0.

Consequently, X is an irreducible component of Y. The “moreover” part of the assertion

follows immediately from the implicit function theorem. □

Define G0, G4,i,j , G4,i,j,k ∈ C[x, y, u, t, z] by

G0(x) = x2
1 + · · · + x2

n − r2,

G4,i,j(t, z) = det

[
ti zi
tj zj

]
, 1 ≤ i < j ≤ n,

G4,i,j,k(x, t, z) = det

ti zi xi

tj zj xj

tk zk xk

 , 1 ≤ i < j < k ≤ n,

where the polynomials G4,i,j,k are defined if n ≥ 3. Put

XI =
{
w = (x, y, u, t, z) ∈ X : G4,i,j(t, z) = 0, 1 ≤ i < j ≤ n

}
,

XII =
{
w = (x, y, u, t, z) ∈ X : G0(x) = 0, G4,i,j,k(x, t, z) = 0, 1 ≤ i < j < k ≤ n

}
,

LI =
{

(w, λ) = (x, y, u, t, z, λ) ∈ X× C : z = λt
}
,

LII =
{

(w, λ1, λ2) = (x, y, u, t, z, λ1, λ2) ∈ X× C× C : G0(x) = 0, z = λ1t + λ2x
}
,

YI =
{
w = (x, y, u, t, z) ∈ Y : G4,i,j(t, z) = 0, 1 ≤ i < j ≤ n

}
,

YII =
{
w = (x, y, u, t, z) ∈ Y : G0(x) = 0, G4,i,j,k(x, t, z) = 0, 1 ≤ i < j < k ≤ n

}
,

ZI =
{
w = (x, y, u, t, z) ∈ X : x ∈ ΓI

}
,

ZII =
{
w = (x, y, u, t, z) ∈ X : x ∈ ΓII

}
,

F =
{
w = (x, y, u, t, z) ∈ X : x ∈ φ((0, 1))

}
,
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where the sets XII , LII and YII are defined for n ≥ 3.

Obviously XI ⊂ YI and XII ⊂ YII . Moreover, any irreducible component of XI is

an irreducible component of YI . The same holds for XII and YII . Additionally, by the

Lagrange multiplier theorem and Facts 5.1, 5.4 we immediately obtain

Fact 5.6. (a) Let

AI =
{
w ∈ X : ∃λ∈C (w, λ) ∈ LI

}
.

If φ((0, 1)) ⊂ Int Ω then F ⊂ ZI ⊂ AI ⊂ XI ⊂ YI and there exists an irreducible

component XI,∗ of AI which contains F and is an irreducible component of XI .

(b) Let

AII =
{
w ∈ X : ∃λ1,λ2∈C (w, λ1, λ2) ∈ LII

}
.

If φ((0, 1)) ⊂ ∂Ω then F ⊂ ZII ⊂ AII ⊂ XII ⊂ YII and there exists an irreducible

component XII,∗ of AII which contains F and is an irreducible component of XII .

Proof. From Fact 5.4(a) we have F ⊂ {(x, y, u, t, z) ∈ X : x ∈ ΓI} ⊂ AI . Since

all the polynomials G4,i,j vanish on XI , the vectors t, z are linearly dependent provided

(x, y, u, t, z) ∈ XI for some x, y, u. So XI = XI ∪AI , where

XI =
{
w = (x, y, u, t, z) ∈ XI : t = 0

}
.

Obviously, the set XI is contained in the hyperplane H defined by t = 0, and by Fact 5.1

we have F \ H ̸= ∅, so AI has an irreducible component containing F which is an

irreducible component of XI . This gives assertion (a).

Analogously, from Fact 5.4(b) we obtain F ⊂ AII . Moreover, the vectors x, t, z are

linearly dependent provided (x, y, u, t, z) ∈ XII for some y, u, so XII = XII ∪AII , where

XII =
{
w = (x, y, u, t, z) ∈ XI : G0(x) = 0, G4,i,j(x, t) = 0, 1 ≤ i < j ≤ n

}
.

Obviously, XII is contained in the set W defined by G4,i,j(x, t) = 0, 1 ≤ i < j ≤ n. By

Lemma 5.3 we have F \W ̸= ∅, so as above, the set AII has an irreducible component

satisfying (b). □

From Fact 5.6 and Lemmas 4.4 and 5.5 and the definition of Y we have

Fact 5.7. δ(XI,∗) ≤ δ(YI) ≤ 2(2d− 1)3n+1 and δ(XII,∗) ≤ δ(YII) ≤ 2(2d− 1)3n+1.

The proofs of Theorems 2.1 and 2.2 consist in showing that the projections of the

sets XI,∗ and XII,∗ onto the space of (y, u) ∈ C2 are proper algebraic subsets of C2, since

we have

Lemma 5.8. If Q ∈ C[y, u] is a nonzero polynomial of degree D such that

Q
(
f(φ(t)), |∇f(φ(t))|2

)
= 0 for t ∈ [0, 1),

where φ is the curve fulfilling (5.3), then
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(a) ϱ0(f) ≤ 1 − 1

D
if D is even,

(b) ϱ0(f) ≤ 1 − 1

D + 1
if D is odd.

Proof. Let ord0(f ◦ φ) = M and ord0 |∇f ◦ φ|2 = K. Then M,K > 0 and

ord0(f ◦ φ)K = ord0 |∇f ◦ φ|2M ,

i.e. |f ◦ φ|K/2M ∼ |∇f ◦ φ| near zero1, so by (5.3) we have

ϱ0(f) =
K

2M
. (5.5)

Then, by definitions of M and K there exists a pair of different monomials αuNyS and

βuN1yS1 of the polynomial Q such that

N + S ≤ D and N1 + S1 ≤ D,

and

NK + SM = N1K + S1M.

Hence N −N1 ̸= 0, S1 − S ̸= 0, and

K

2M
=

S1 − S

2(N −N1)
.

Since M > 0, we have ord0 |∇f ◦ φ| ≤ M − 1, and so K ≤ 2M − 2, and K/2M < 1.

On the other hand, |S1 − S|, |N − N1| ∈ {1, . . . , D}, so by (5.5), ϱ0(f) is estimated

from above by the maximal possible rational number less than 1 with numerator from

the set {1, . . . , D} and denominator from {2, 4, . . . , 2D}. Consequently, we obtain the

assertion. □

5.1. Proof of Theorem 2.1 in case I when φ((0, 1)) ⊂ Int Ω.

By the assumption (2.2), in the definition of Y one can take the polynomials

K3,i(x, y, u, z) =
∂G

∂xi
(x, y, u)

∂P

∂y
(x, y) − ∂G

∂y
(x, y, u)

∂P

∂xi
(x, y)

−
(
∂P

∂y
(x, y)

)3

· zi (5.6)

instead of G3,i, 1 ≤ i ≤ n; also in the definitions of XI and YI one can take

K4,i,j(x, y, u) =
∂P

∂xi
(x, y)

∂G

∂xj
(x, y, u) − ∂P

∂xj
(x, y)

∂G

∂xi
(x, y, u)

instead of G4,i,j , 1 ≤ i < j ≤ n.

1That is, there are C1, C2 > 0 such that C1|f ◦ φ|K/2M ≤ |∇f ◦ φ| ≤ C2|f ◦ φ|K/2M near zero.
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From the above and Fact 5.6 we obtain the following fact.

Fact 5.9. For x ∈ ΓI and v = (x, y, u) = (x, f(x), |∇f(x)|2) we have

P (v) = 0, (5.7)

G(v) = 0, (5.8)

K4,i,j(v) = 0, 1 ≤ i < j ≤ n. (5.9)

Let Y I,0 ⊂ M , where M = Cn × C× C, be an algebraic set defined by the system

of equations (5.7)–(5.9), and let

Y0
I =

{
(x, y, u, t, z) ∈ YI :

∂P

∂y
(x, y) ̸= 0

}
,

Y 0
I =

{
(x, y, u) ∈ Y I,0 :

∂P

∂y
(x, y) ̸= 0

}
,

Y I = Y 0
I .

We have the following fact (cf. [17, Fact 2.11]).

Fact 5.10. The mapping

Y0
I ∋ (x, y, u, t, z) 7→ (x, y, u) ∈ Y 0

I

is a bijection.

Proof. Taking any (x, y, u, t, z) ∈ Y0
I (respectively (x, y, u) ∈ Y 0

I ), by the implicit

function theorem there are a neighbourhood ∆ ⊂ Cn of x, a holomorphic function g :

∆ → C and neighbourhoods U1 ⊂ C × C × Cn × Cn and U2 ⊂ C × C of (y, u, t, z) and

(y, u) respectively such that

Y0
I ∩ (∆ × U1) =

{
(ζ, g(ζ), h(ζ),∇g(ζ),∇h(ζ)) ∈ M : ζ ∈ ∆ ∩ V

}
,

Y 0
I ∩ (∆ × U2) =

{
(ζ, g(ζ), h(ζ)) ∈ M : ζ ∈ ∆ ∩ V

}
,

where h(ζ) = ((∂g/∂x1)(ζ))2 + · · · + ((∂g/∂xn)(ζ))2, and

V =
{
ζ ∈ ∆ : K4,i,j(ζ, g(ζ), h(ζ)) = 0, 1 ≤ i < j ≤ n

}
.

In particular, g(x) = y, u = h(x), t = ∇g(x) and z = ∇h(x). Thus, we obtain the

assertion. □

Let LI ⊂ M × C be the Zariski closure of the set

LI,0 =
{

(x, y, u, λ) ∈ Ω × R× R× R : y = f(x), u = |∇f(x)|2,∇|∇f(x)|2 = λ∇f(x)
}
.

From Fact 5.6(a) we obtain
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Fact 5.11. There exists an irreducible component LI,∗ of LI which contains a

Zariski open and dense subset U such that for any (x, y, u, λ) ∈ U there exist t, z ∈ Cn

such that (x, y, u, t, z) ∈ XI,∗ and in particular z = λt.

Proof. The set LI is the projection of the union of some irreducible components

of LI onto (x, y, u, λ) ∈ M × C. So by Fact 5.6(a) we obtain the assertion. □

Let

π : M × C ∋ (x, y, u, λ) 7→ (x, y, u) ∈ M ,

let LI,∗ be an irreducible component of LI as in Fact 5.11 and let

XI := π(LI,∗).

Lemma 5.12. The set XI is an irreducible component of the algebraic set Y I .

Moreover, XI contains a Zariski open and dense subset UI such that UI ⊂ Y 0
I ∩π(LI,∗),

and any point (x0, y0, u0) ∈ UI has a neighbourhood B ⊂ M such that Y I ∩B = UI ∩B

and

UI ∩B =

{(
x, g(x),

(
∂g

∂x1
(x)

)2

+ · · · +

(
∂g

∂xn
(x)

)2
)

: x ∈ ∆ ∩ V

}
(5.10)

for some analytic set V ⊂ ∆ with x0 ∈ V and a holomorphic function g : ∆ → C, where

∆ ⊂ Cn is a neighbourhood of x0.

Proof. By Facts 5.6, 5.10 and 5.11 we have π(LI,0) ⊂ Y I , so XI ⊂ Y I and XI

is an algebraic subset of Y I . Since any irreducible component of XI is an irreducible

component of YI , the same holds for π(LI) and Y I , because these sets are projections

onto the space M of some collections of irreducible components of XI and YI , respec-

tively. In particular, this holds for XI and Y I . This gives the first part of the assertion.

We prove the “moreover” part analogously to Fact 5.10. □

Let

πy : XI ∋ v = (x, y, u) 7→ y ∈ C,
πu : XI ∋ v = (x, y, u) 7→ u ∈ C.

We have the following lemma (cf. [17, Lemma 2.12 and Lemma 2.14]):

Lemma 5.13. For generic y0 ∈ C, i.e. for any y0 ∈ C off a finite set, the function

πu is constant on each connected component of (πy)−1(y0).

Proof. If dimXI = 0 or dim(πy)−1(y) ≤ 0 for generic y ∈ C, then the assertion

holds. Assume that dimXI > 0 and dim(πy)−1(y) > 0 for generic y ∈ C. Then by

Lemma 5.12, and under the notations of this lemma, we have πy(UI) = πy(XI) = C and

(πy)−1(y) ∩ UI ̸= ∅ for generic y ∈ C.
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Take any y0 ∈ C such that (πy)−1(y0) ∩ UI ̸= ∅. Take any x0 ∈ Cn and u0 ∈ C
such that (x0, y0, u0) ∈ UI . By Lemma 5.12 there exist a neighbourhood B ⊂ M of

(x0, y0, u0) and a holomorphic function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of

x0, such that (5.10) holds for some analytic set V ⊂ ∆.

Take any smooth curve γ : [0, 1] → ∆ ∩ V such that g(γ(t)) = y0 for t ∈ [0, 1]. Let

h(x) = ((∂g/∂x1)(x))2+ · · ·+((∂g/∂xn)(x))2 for x ∈ ∆ and take a function u : [0, 1] → C
defined by

u(t) = h ◦ γ(t).

Observe that the function u is constant. Indeed, by definition of UI we see that for any

x ∈ ∆ ∩ V there exists λx ∈ C such that

∇h(x) = λx∇g(x).

So,

u′(t) = λγ(t)⟨∇g(γ(t)), γ′(t)⟩ for t ∈ [0, 1],

where ⟨·, ·⟩ denotes the standard Hermitian product in Cn. Since g(γ(t)) = y0 for t ∈
[0, 1], we have ⟨∇g(γ(t)), γ′(t)⟩ = 0, and consequently u′(t) = 0 for t ∈ [0, 1] and u is

constant. Summing up, the function πu is constant on each connected component of

(πy)−1(y0) ∩ UI .

Since UI is a Zariski open and dense subset of XI , any irreducible component of

XI \ UI has dimension smaller than the dimension of XI , and for generic y ∈ C any

irreducible component A of the fibre π−1
y (y) has a dense subset of the form A ∩ UI (see

[28, Chapter 3]). Then by the above we obtain the assertion. □

Since Γ is an infinite set, it follows that dimLI,0 ≥ 1, so by Fact 5.10, dimLI ≥ 1,

and since d = degP ≥ 2, Lemma 4.4 and the definition of Y I yield δ(XI) ≤ d(3d− 2)n,

where δ(XI) is the total degree of XI . So, from Lemma 5.13, the closure of the projection

of XI , W = {(y, u) ∈ C2 : ∃x∈Cn (x, y, u) ∈ XI}, is a proper algebraic subset of C2 and

by Fact 4.3, δ(W ) ≤ δ(XI). Then there exists a nonzero polynomial Q ∈ C[y, u] such

that

degQ ≤ d(3d− 2)n ≤ R(n, d) − 1

and Q(y, u) = 0 for (x, y, u) ∈ XI . In particular, Q(f(φ(t)), |∇f(φ(t))|2) = 0 for

t ∈ [0, 1). Since D = d(3d − 2)n may be odd, by Lemma 5.8(b) we obtain the assertion

of Theorem 2.1 in case I.

5.2. Proof of Theorem 2.1 in case II when φ
(
[0, 1)

)
⊂ ∂Ω.

For any x ∈ ∂Ω \ f−1(0) sufficiently close to f−1(0) the tangent spaces to ∂Ω and

f−1(f(x)) are transversal, as shown in Lemma 5.3.

We will prove Theorem 2.1 in two dimensions and in the multidimensional case

separately.
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Proof of Theorem 2.1 in case II for n = 2. Take a polynomial G ∈ C[x, y, u],

where x = (x1, x2) and y, u are single variables, defined by (5.4), i.e. G(x, y, u) =∑2
i=1((∂P/∂xi)(x, y))2 − ((∂P/∂y)(x, y))2 · u. Let

Y II,0 =
{

(x, y, u) ∈ C2 × C× C : P (x, y) = 0, G0(x) = 0, G(x, y, u) = 0
}
,

Y 0
II =

{
(x, y, u) ∈ Y II,0 :

∂P

∂y
(x, y) ̸= 0

}
,

Y II = Y 0
II .

Then for any x ∈ Γ ∩ ∂Ω we have (x, f(x), |∇f(x)|2) ∈ Y II . Consequently,(
φ(t), f(φ(t)), |∇f(φ(t))|2

)
∈ Y II for t ∈ [0, 1).

In particular, dimY II ≥ 1 and by Fact 4.2 we have δ(Y II) ≤ 2d(2d− 1).

Since P is an irreducible polynomial of positive degree with respect to y, for any

y ∈ C \ {0} sufficiently close to 0 the set {x ∈ C2 : P (x, y) = 0, G0(x) = 0} is finite, so

the set {(x, u) ∈ C2 × C : (x, y, u) ∈ Y II} is also finite. Then the projection

W =
{

(y, u) ∈ C2 : ∃x∈C2(x, y, u) ∈ Y II

}
is contained in a proper algebraic subset of C2. By Fact 4.3,

δ(W ) ≤ 2d(2d− 1) ≤ R(n, d).

Then there exists a nonzero polynomial Q ∈ C[y, u] of degree degQ ≤ δ(W ) ≤ R(n, d)

which vanishes on W . Since 2d(2d−1) is even, by Lemma 5.8(a) we obtain the assertion

of Theorem 2.1 in case II for n = 2. □

Let us consider the case n ≥ 3. Let ε > 0 be as in Lemma 5.3.

By the assumption (2.2), in the definition of the set Y one can take the polynomials

K3,i of the form (5.6) instead of G3,i; also, in the definitions of XII and YII , one can take

the polynomials

K4,i,j,k(x, y, u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P

∂xi
(x, y)

∂G

∂xi
(x, y, u) xi

∂P

∂xj
(x, y)

∂G

∂xj
(x, y, u) xj

∂P

∂xk
(x, y)

∂G

∂xk
(x, y, u) xk

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

instead of G4,i,j,k for 1 ≤ i < j < k ≤ n, where G is defined in (5.4). Then

XII =
{
w = (x, y, u, t, z) ∈ X : G0(x) = 0, K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n

}
,

YII =
{
w = (x, y, u, t, z) ∈ Y : G0(x) = 0, K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n

}
.

Let Y II,0 ⊂ M , where M = Cn × C× C, be the algebraic set defined by
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Y II,0 =
{

(x, y, u) ∈ M : P (x, y) = 0, G0(x) = 0, G(x, y, u) = 0,

K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n
}

and let

Y0
II =

{
(x, y, u, t, z) ∈ YII :

∂P

∂y
(x, y) ̸= 0

}
,

Y 0
II =

{
(x, y, u) ∈ VII,0 :

∂P

∂y
(x, y) ̸= 0

}
,

Y II = Y 0
II .

By an analogous argument to the proof of Fact 5.10 we obtain

Fact 5.14. The mapping

Y0
II ∋ (x, y, u, t, z) 7→ (x, y, u) ∈ Y 0

II

is a bijection.

Let LII ⊂ M × C2 be the Zariski closure of the set

LII,0 =
{

(x, y, u, (λ1, λ2)) ∈ ∂Ω × R× R× R2 : y = f(x), u = |∇f(x)|2,
∇|∇f(x)|2 = λ1∇f(x) + λ2x

}
.

By a similar argument to the proof of Fact 5.11, from Fact 5.6(b) we obtain

Fact 5.15. There exists an irreducible component LII,∗ of LII which contains a

Zariski open, dense subset U such that for any (x, y, u, λ1, λ2) ∈ U there exist t, z ∈ Cn

such that (x, y, u, t, z) ∈ XII,∗ and in particular z = λ1t + λ2x.

Let

π′ : M × C2 ∋ (x, y, u, (λ1, λ2)) 7→ (x, y, u) ∈ M ,

and let

XII = π′(LII,∗).

By an analogous argument to the proof of Lemma 5.12 we obtain

Lemma 5.16. The set XII is an irreducible component of the algebraic set Y II .

Moreover, XII contains a Zariski open and dense subset UII such that UII ⊂ Y 0
II ∩

π′(LII,∗) and any point (x0, y0, u0) ∈ UII has a neighbourhood B ⊂ M such that Y II∩B =

UII ∩B and

UII ∩B =

{(
x, g(x),

(
∂g

∂x1
(x)

)2

+ · · · +

(
∂g

∂xn
(x)

)2
)

: x ∈ ∆ ∩ V

}
(5.11)
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for some analytic set V ⊂ ∆, where x0 ∈ V and G0 vanishes on V , and a holomorphic

function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of x0.

Let

πy : XII ∋ v = (x, y, u) 7→ y ∈ C, πu : XII ∋ v = (x, y, u) 7→ u ∈ C.

We have the following lemma (cf. Lemma 5.13 and [17, Lemmas 2.12, 2.14]).

Lemma 5.17. For generic y0 ∈ C the function πu is constant on each connected

component of (πy)−1(y0).

Proof. As in the proof of Lemma 5.13, we may assume that dimXII > 0 and

dim (πy)−1(y) > 0 for generic y ∈ C. Then by Lemma 5.16, and under the notations of

that lemma, πy(UII) = πy(XII) = C and (πy)−1(y) ∩ UII ̸= ∅ for generic y ∈ C.

Take any y0 ∈ C such that (πy)−1(y0)∩UII ̸= ∅. Take any x0 ∈ Cn and u0 ∈ C such

that (x0, y0, u0) ∈ UII . By Lemma 5.16 there exist a neighbourhood B ⊂ Cn × C× C of

(x0, y0, u0) and a holomorphic function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of

x0, such that (5.11) holds for some analytic set V ⊂ ∆ such that G0 vanishes on V .

Take a smooth curve γ = (γ1, . . . , γn) : [0, 1] → ∆ ∩ V such that g(γ(t)) = y0. Then

G0(γ(t)) = 0 for t ∈ [0, 1]. (5.12)

Let h(x) = ((∂g/∂x1)(x))2 + · · ·+ ((∂g/∂xn)(x))2, x ∈ ∆. Take a function u : [0, 1] → C
defined by

u(t) = h ◦ γ(t), t ∈ [0, 1].

Observe that the function u is constant. Indeed, by definition of UII , for any x ∈ ∆ ∩ V

there exist λ1,x, λ2,x ∈ C such that

∇h(x) = λ1,x∇g(x) + λ2,xx.

So

u′(t) = λ1,γ(t)⟨∇g(γ(t)), γ′(t)⟩ + λ2,γ(t)⟨γ(t), γ′(t)⟩ for t ∈ [0, 1].

Since g(γ(t)) = y0, we have ⟨∇g(γ(t)), γ′(t)⟩ = 0 for t ∈ [0, 1]. Moreover, by (5.12)

we have ⟨γ(t), γ′(t)⟩ = 0 for t ∈ [0, 1]. Consequently, u′(t) = 0 for t ∈ [0, 1] and u is

constant. Summing up, the function πu is constant on each connected component of

(πy)−1(y0) ∩ UII . Since UII is a dense subset of XII , we obtain the assertion. □

Since Γ is an infinite set, we have dimLII,0 ≥ 1, so by Fact 5.14, dimLII ≥ 1, and

since d = degP ≥ 2, Lemma 4.4 and the definition of Y II yield δ(XII) ≤ d(3d − 2)n.

So, from Lemma 5.17, the closure of the projection of XII ,

W =
{

(y, u) ∈ C2 : ∃x∈Cn (x, y, u) ∈ XII

}
,
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is a proper algebraic subset of C2 and δ(W ) ≤ δ(XII). Then there exists a nonzero

polynomial Q ∈ C[y, u] such that degQ ≤ 2(3d− 2)n ≤ R(n, d) − 1 and Q(y, u) = 0 for

(x, y, u) ∈ XII . Since D = 2(3d − 2)n is an even number, by Lemma 5.8(a) we obtain

the assertion of Theorem 2.1 in case II.

5.3. Proof of Theorem 2.2.

Analogously to the proof of Lemma 5.13, we prove that the set

W =
{

(y, u) ∈ C2 : ∃x∈Cn ∃t∈Cn ∃z∈Cn (x, y, u, t, z) ∈ YI

}
is a proper algebraic subset of C2. Moreover, by Fact 5.7 we have δ(W ) ≤ δ(YI) ≤
2d(2d−1) if n = 1 and δ(W ) ≤ δ(YI) ≤ 2(2d−1)3n+1 for n ≥ 2. Then by Lemma 5.8(a)

we obtain the assertion of Theorem 2.2 in case I. An analogous argument gives the

assertion in case II.
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[12] J. Gwoździewicz, The  Lojasiewicz exponent of an analytic function at an isolated zero, Comment.

Math. Helv., 74 (1999), 364–375.

[13] J. Kollár, An effective  Lojasiewicz inequality for real polynomials, Period. Math. Hungar., 38

(1999), 213–221.

[14] N. H. Kuiper, C1-equivalence of functions near isolated critical points, In: Proceedings of Sympo-

sium on Infinite-Dimensional Topology, Baton Rouge, 1967, Ann. of Math. Studies, 69, Princeton

Univ. Press, Princeton, NJ, 1972, 199–218.

[15] T.-C. Kuo, On C0-sufficiency of jets of potential functions, Topology, 8 (1969), 167–171.
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