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Abstract. We extend a theorem of Haagerup and Kraus in the C∗-
algebra context: for a locally compact group with the approximation property
(AP), the reduced C∗-crossed product construction preserves the strong oper-
ator approximation property (SOAP). In particular their reduced group C∗-
algebras have the SOAP. Our method also solves another open problem: the
AP implies exactness for general locally compact groups.

1. Introduction.

Recent research (see e.g., [1], [2], [21], [27], [32], [33]) shows that non-discrete

locally compact groups also provide rich sources of interesting operator algebras. They

also reveal attractive and fruitful interactions between locally compact group theory

and theory of operator algebras. Considering these developments, it is natural and

important to attempt extending the results known only in the discrete case to general

locally compact groups.

In this paper, we carry out this idea for the approximation property (AP). This prop-

erty is introduced by Haagerup and Kraus in [19] (see also [8], [23]) as a natural group

and operator space analogue of Grothendieck’s Banach space approximation property

[12]. Among other things, they show a strong relation between the AP and the validity

of Fubini-type theorems of associated operator algebras. Indeed, for discrete groups, the

AP is characterized by slice map properties of the reduced group operator algebras. For

general locally compact groups with the AP, they show that the W∗-crossed product

construction preserves slice map properties. (In particular this applies to the group von

Neumann algebras.) See Theorems 3.1 and 3.2 of [19] for the precise statement. The

proofs of these theorems are, unlike the discrete case, based on hard manipulations in-

volving unbounded operator-valued weights ([13], [14], [15], [16]). Since there are no

analogous results in the C∗-algebra context, the C∗-algebra case has remained open.

In this paper, we solve this problem by extending completely bounded multiplier

operators to the reduced crossed products in a canonical way. We then develop a tech-

nique to understand their stable pointwise convergence conditions. This together with

mollification arguments gives nice approximations on the reduced crossed products. As

a byproduct of our approach, we obtain the implication

2010 Mathematics Subject Classification. Primary 22D25; Secondary 46L05, 46L55.
Key Words and Phrases. approximation property, exactness, locally compact groups.
This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (Start-up,

No. 17H06737) and tenure track funds of Nagoya University.

https://doi.org/10.2969/jmsj/83368336


264

264 Y. Suzuki

AP =⇒ exactness

for general locally compact groups. This is known for discrete groups [19], but the proof

does not extend to the general case. (For instance, for non-discrete groups, it is not

known if the exactness of a group follows from the exactness of the reduced group C∗-

algebra.) We note that, for second countable weakly amenable groups, this has been

proved in a recent paper [1] based on metric geometry. As a result of our theorem, [1],

and [5], we obtain important results on the Baum–Connes conjecture for locally compact

groups with the AP. See [1] for details.

Added in 25th Jan., 2019. After this paper has appeared on arXiv, the au-

thor was informed from Crann and Neufang that the implication ‘AP ⇒ exactness’ was

independently obtained in their forthcoming paper [7].

2. Preliminaries.

For general facts on locally compact groups and continuous crossed products, we

refer the reader to the books [10], [29]. For general backgrounds and applications of

finite dimensional approximations of groups and operator algebras, see [3].

2.1. Notations.

We first fix some notations used in the paper.

The symbols ‘⊙’, ‘⊗’, ‘⊗̄’ stand for the algebraic, minimal, and von Neumann algebra

tensor product respectively. The symbol ‘⊗’ is also used for Hilbert spaces.

For a C∗-algebra A, denote by M(A) the multiplier algebra of A.

We put K := K(ℓ2(N)) and B := B(ℓ2(N)) for short.
For a Banach space E and its dual space E∗, denote by ⟨, ⟩ the pairing map E×E∗ →

C.
Let A be a C∗-algebra. Let X be a locally compact (Hausdorff) space equipped with

a Radon measure µ. For a ∈ Cc(X,A), define

∥a∥1 :=

∫
X

∥a(x)∥dµ(x), ∥a∥∞ := max
x∈X

∥a(x)∥.

Let G be a locally compact group. Throughout the paper, we always equip G with

its fixed left Haar measure m. A G-C∗-algebra is a C∗-algebra equipped with a pointwise

norm continuous G-action. A G-W∗-algebra is a von Neumann algebra equipped with

a pointwise weak-∗ continuous G-action. A G-Hilbert space is a Hilbert space equipped

with a strongly continuous unitary representation of G. For a G-C∗-algebra A and a

G-W∗-algebra M , denote by A⋊rG, M ⋊̄G their reduced crossed product respectively.

For s ∈ G, denote by us the canonical implementing unitary elements of s in M(A⋊rG)

andM ⋊̄G. To avoid confusion, throughout the paper, we denote the product operations

of the twisted convolution algebras and the reduced crossed products by the symbol ‘∗’.
The usual product convention is reserved for the pointwise product.
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2.2. Haagerup–Kraus’s approximation property.

Let G be a locally compact group. Here we briefly review some definitions and facts

related to the AP. For details, we refer the reader to [9] and the introduction of [19].

Fourier algebra A(G): Define Ac(G) to be the space of compactly supported func-

tions φ of the form φ(s) = ⟨s.ξ, η⟩ for some ξ, η in a G-Hilbert space. For φ ∈ Ac(G),

define ∥φ∥A(G) to be the infimum of ∥ξ∥∥η∥, where ξ, η run over all vectors satisfying the

above equation. The Fourier algebra A(G) of G is the completion of the normed space

(Ac(G), ∥ · ∥A(G)). There is a canonical identification A(G) = L(G)∗.

Completely bounded multipliers M0A(G): A function φ : G → C is said to be a

multiplier of A(G) if it satisfies φ·A(G) ⊂ A(G). Since A(G)∗ = L(G), the multiplication

by a multiplier φ induces a normal operator Mφ on L(G). Define M0A(G) to be the

set of all multipliers φ of A(G) whose induced map Mφ is completely bounded. Note

that for any φ ∈ M0A(G) and a ∈ Cc(G), we have Mφ(a) = φ · a. By this formula,

each φ ∈ M0A(G) defines a completely bounded operator M̄φ := Mφ|C∗
r (G) on C∗

r (G).

We equip M0A(G) with the norm ∥φ∥M0A(G) := ∥Mφ∥cb = ∥M̄φ∥cb. With this norm,

M0A(G) forms a Banach space. Note that A(G) ⊂M0A(G) ⊂ Cb(G).

Predual Q(G) of M0A(G): Each f ∈ L1(G) defines an element of M0A(G)
∗ by

⟨φ, f⟩ :=
∫
G

φ(s)f(s)dm(s); φ ∈M0A(G).

The norm closure of L1(G) inM0A(G)
∗ is denoted by Q(G). The canonical pairing gives

the identification Q(G)∗ =M0A(G). See Proposition 1.10 (b) in [4] for a proof.

Now we are able to state the definition of the AP [19].

Definition 2.1. A locally compact group G is said to have the approximation

property (AP) if there is a net (φi)i∈I in A(G) converging to the constant function 1 in

the σ(M0A(G), Q(G))-topology.

As mentioned in Remark 1.2 of [19], when G has the AP, one can choose an approx-

imation net (φi)i∈I in the definition from Ac(G).

Recall that G is weakly amenable ([4], [6], [17]) if and only if the net (φi)i∈I in

Definition 2.1 can be chosen to be ∥ · ∥M0A(G)-bounded. In general weak amenability is

much stronger than the AP. An advantage of the AP is that it is stable under taking

various operations including extensions and free products [3], [19]. In contrast to the

AP, weak amenability is easily broken by taking extensions (see [18], [26], [28]), and it

is not known if weak amenability is stable under taking free products.

The AP is useful to analyze the position of an element in the tensor products and

reduced crossed products; see [19], [30], [31], [34], [35], [36], [37] for some applications.

2.3. Operator approximation properties and Fubini-type theorems.

Since the definition of the AP does not require boundedness, its operator algebraic

counterparts naturally involve unbounded approximations. To control behavior of un-

bounded approximations, it is natural and convenient to introduce the following topolo-

gies on the space of completely bounded operators. Here we recall their definitions.
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Stable pointwise topologies: For C∗-algebras A,B, denote by CB(A,B) the space

of completely bounded linear maps from A to B. A net (φi)i∈I in CB(A,B) is said to

converge to φ ∈ CB(A,B) in the stable point-norm topology if idK ⊗ φi converges to

idK ⊗ φ in the pointwise norm topology. A net (φi)i∈I in CB(A,B) is said to converge

to φ ∈ CB(A,B) in the strong stable point-norm topology if idB⊗φi converges to idB⊗φ
in the pointwise norm topology. A C∗-algebra A is said to have the operator approxi-

mation property (OAP) (resp. the strong OAP (SOAP)) if idA is in the closure of finite

rank operators in CB(A) := CB(A,A) in the stable (resp. the strong stable) point-norm

topology. Similarly, for von Neumann algebras N,M , denote by CBn(N,M) the space

of normal completely bounded linear maps from N to M . A net (φi)i∈I in CBn(N,M)

is said to converge to φ ∈ CBn(N,M) in the stable point-ultraweak topology if idB ⊗̄φi
converges to idB ⊗̄φ in the pointwise ultraweak topology. A von Neumann algebra M is

said to have the weak-∗ OAP (W∗OAP) if idM is in the closure of finite rank operators

in CBn(M) := CBn(M,M) in the stable point-ultraweak topology.

These approximation properties are strongly related to the slice map property [23].

We next review the slice map property and its connection with the OAPs.

Slice map property: For C∗-algebras A,B and a closed subspace X of B, define

F (A,B,X) := {x ∈ A⊗B : (ω ⊗ idB)(x) ∈ X for all ω ∈ A∗}.

It is clear from the definition that A⊗X, the norm closure of A⊙X in A⊗B, is contained

in F (A,B,X). A triplet (A,B,X) is said to have the slice map property if they satisfy

F (A,B,X) = A ⊗X. The validity of the equality is also called a Fubini-type theorem.

This property is useful to study C∗-subalgebras of tensor products (see e.g., [35], [37]).

There is a natural von Neumann algebra analogue of the slice map property, called

the weak slice map property. See Section 12.4 of [3] for details. It is worth stating that

Tomita’s tensor commutant theorem is equivalent to the validity of the weak slice map

property for all triplets of von Neumann algebras. See below Remark 12.4.5 of [3].

Kraus shows that the OAPs are characterized by slice map properties.

Theorem 2.2 ([23], see also Theorem 12.4.4 of [3]). The following statements hold

true.

(1) A C∗-algebra A has the OAP if and only if the triplet (A,K, X) has the slice map

property for all closed subspaces X of K.

(2) A C∗-algebra A has the SOAP if and only if the triplet (A,B,X) has the slice map

property for all C∗-algebras B and their closed subspaces X.

(3) A von Neumann algebra M has the W∗OAP if and only if the triplet (M,N,X) has

the weak slice map property for all von Neumann algebras N and their ultraweakly

closed subspaces X.

By the statement (2), the SOAP implies exactness.

Haagerup–Kraus [19] characterize the AP of a discrete group as follows.
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Theorem 2.3 ([19], Theorem 2.1). For a discrete group Γ, the following conditions

are equivalent :

(1) Γ has the AP,

(2) C∗
r (Γ) has the OAP,

(3) C∗
r (Γ) has the SOAP,

(4) L(Γ) has the W∗OAP.

For general locally compact groups, the implication “(1) ⇒ (4)” is shown in [19].

The implications “(2), (3), (4) ⇒ (1)” fail in general; the group G := SL(3,R) does not
have the AP [24], while C∗

r (G) and L(G) are amenable (cf. Remark 2.5 of [19]). In this

paper, we prove the new implications “(1) ⇒ (2), (3)”. To the author’s knowledge, this

was left open for a long time. The implications follow from a more general result on the

reduced crossed products (Theorem 3.6).

3. Main theorems.

One of the main ideas of the present paper is extending multiplier operators to the

reduced crossed product algebras. We then study their convergence conditions. This is

already appeared in the discrete case in the proof of Proposition 3.4 in [30].

Throughout this section, let G be a locally compact group.

Lemma 3.1. Let φ ∈M0A(G). Then the following statements hold true.

(1) Let A be a nonzero G-C∗-algebra. Then there is a completely bounded linear map

M̄A,φ : A⋊rG→ A⋊rG

satisfying

M̄A,φ(a) = φ · a for all a ∈ Cc(G,A).

Moreover we have ∥M̄A,φ∥cb = ∥φ∥M0A(G).

(2) Let M be a nonzero G-W∗-algebra. Then there is a normal completely bounded linear

map

MM,φ : M ⋊̄G→M ⋊̄G

satisfying

MM,φ(a) = φ · a for all a ∈ Cc(G,M).

Moreover we have ∥MM,φ∥cb = ∥φ∥M0A(G).

Proof. (2): For the W∗-algebra case, the construction is essentially the same as

the discrete case (cf. Proposition 3.4 of [30]). Fix a normal faithful ∗-representation
M ⋊̄G ⊂ B(H). Consider the covariant representation of M on H⊗ L2(G) given by
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x 7→ x⊗ idL2(G), s 7→ us ⊗ λs for x ∈M, s ∈ G.

Here λ denotes the left regular representation of G. Then, by Fell’s absorption prin-

cipal, this covariant representation is unitary equivalent to a faithful regular covariant

representation. Hence it extends to an injective normal ∗-homomorphism

δ : M ⋊̄G→ (M ⋊̄G) ⊗̄L(G).

Observe that idM ⋊̄G ⊗̄Mφ preserves Im(δ). Denote by γ : Im(δ) → M ⋊̄G the inverse

map of δ. Define

MM,φ := γ ◦ (idM ⋊̄G ⊗̄Mφ) ◦ δ.

We show that MM,φ possesses the desired properties. It is clear from the definition that

MM,φ is normal and satisfies ∥MM,φ∥cb = ∥φ∥M0A(G). Since φ ∈ Cb(G), it is easy to

check that Mφ(λs) = φ(s)λs for all s ∈ G. Therefore MM,φ(xus) = φ(s)xus for all

x ∈M and s ∈ G. As MM,φ is normal, this yields MM,φ(a) = φ · a for all a ∈ Cc(G,M).

(1): We first take a G-equivariant embedding of A into a G-W∗-algebra M . (For

instance, a faithful regular covariant representation gives such an embedding.) The

inclusion A ⊂ M induces A⋊rG ⊂ M ⋊̄G. Since MM,φ(Cc(G,A)) = φ · Cc(G,A) ⊂
Cc(G,A), the restriction map MM,φ|A⋊rG provides the desired map. □

The following lemma and its corollary are key observations. Note that even for the

trivial group actions, they generalize Propositions 1.3, 1.4, and Theorem 1.9 of [19] in

the C∗-algebra case.

Lemma 3.2. (1) Let A be a G-C∗-algebra. Let a ∈ A⋊rG, f ∈ (A⋊rG)
∗. Then

the linear functional ωa,f on M0A(G) defined by

ωa,f (φ) := ⟨M̄A,φ(a), f⟩; φ ∈M0A(G)

is contained in Q(G).

(2) Let M be a G-W∗-algebra. Let a ∈ M ⋊̄G, f ∈ (M ⋊̄G)∗, ψ ∈ Ac(G). Then the

linear functional ωa,f,ψ on M0A(G) defined by

ωa,f,ψ(φ) := ⟨MM,ψ∗φ(a), f⟩; φ ∈M0A(G)

is contained in Q(G).

Proof. (1): Lemma 3.1 implies ∥ωa,f∥M0A(G)∗ ≤ ∥a∥∥f∥ for all a ∈ A⋊rG and

f ∈ (A⋊rG)
∗. Hence it suffices to show the claim in the case a ∈ Cc(G,A). Fix

a ∈ Cc(G,A) and f ∈ (A⋊rG)
∗. Let fM be the extension of f to M(A⋊rG) which is

strictly continuous on the unit ball of M(A⋊rG). (The restriction of the double dual

map f∗∗ : (A⋊rG)
∗∗ → C to M(A⋊rG) ⊂ (A⋊rG)

∗∗ gives the desired extension.)

Define the map f̃ : G → A∗ to be ⟨x, f̃(s)⟩ := ⟨xus, fM⟩ for x ∈ A, s ∈ G. Then f̃ is

bounded and weak-∗ continuous. Observe that, with respect to the strict topology, we

have
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M̄A,φ(a) =

∫
G

φ(s)a(s)usdm(s).

By the strict continuity of fM, for any φ ∈ A(G),

ωa,f (φ) =

∫
G

⟨φ(s)a(s)us, fM⟩dm(s) =

∫
G

φ(s)⟨a(s), f̃(s)⟩dm(s).

Since a ∈ Cc(G,A) and f̃ is bounded and weak-∗ continuous, we conclude

ωa,f ∈ Cc(G) ⊂ Q(G).

(2): We fix a faithful normal ∗-representation M ⋊̄G ⊂ B(H). We then identify

M ⋊̄G with a von Neumann subalgebra of B(H) ⊗̄L(G) via the normal embedding

δ : M ⋊̄G→ (M ⋊̄G) ⊗̄L(G) ⊂ B(H) ⊗̄L(G)

defined in the proof of Lemma 3.1 (2). We extend f to a normal linear functional g on

B(H) ⊗̄L(G). Then, since δ ◦ MM,ϕ = (idM ⋊̄G ⊗̄Mϕ) ◦ δ for all ϕ ∈ M0A(G) (by the

definition of MM,ϕ), we obtain

ωa,f,ψ(φ) = ⟨(δ ◦MM,ψ∗φ)(a), g⟩ = ⟨(idB(H) ⊗̄Mψ∗φ)(δ(a)), g⟩ for all φ ∈M0A(G).

It is proved in Proposition 1.3 (a) of [19] that linear functionals of this form sit in

Q(G). □

Corollary 3.3. Let G be a locally compact group with the AP.

(1) Let A be a G-C∗-algebra. Then there is a net (φi)i∈I in Ac(G) with the following

property : the net M̄A,φi converges to idA⋊r G in the strong stable point-norm topology.

(2) Let M be a G-W∗-algebra. Then there is a net (φi)i∈I in Ac(G) with the following

property : the net MM,φi converges to idM ⋊̄G in the stable point-ultraweak topology.

Proof. (1): Since G has the AP, one can choose a net (φi)i∈I in Ac(G) converging

to 1 in the σ(M0A(G), Q(G))-topology. By applying Lemma 3.2 (1) to B ⊗ A, where B
is equipped with the trivial G-action, we conclude that the net idB ⊗ M̄A,φi pointwise

weakly converges to idB ⊗ idA⋊r G. Now a standard application of the Hahn–Banach

theorem implies the existence of the desired net in the convex hull of {φi : i ∈ I}.
(2): Take a non-negative function ψ in Ac(G) with

∫
G
ψdm = 1. Then observe that

ψ∗1 = 1. Take a net (φi)i∈I in Ac(G) converging to 1 in the σ(M0A(G), Q(G))-topology.

By Lemma 3.2 (2) (applied to B ⊗̄M), the net (ψ ∗ φi)i∈I has the desired property. □

The next lemma is important to carry out mollification arguments. For a locally

compact group G, denote by ∆G the modular function of G. That is, the continuous

multiplicative function ∆G : G → R×
+ satisfying m(Us) = ∆G(s)m(U) for all s ∈ G,

U ⊂ G.
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Lemma 3.4. Let A be a G-C∗-algebra. Then for any a ∈ Cc(G,A), b, c ∈ Cc(G),

and s ∈ G, we have ∥(b∗ ∗ a ∗ c)(s)∥A ≤ ∆G(s)
−1/2∥b∥2∥c∥2∥a∥A⋊r G.

Proof. Denote by ρ̃ : G↷ Cc(G) the (non-normalized) right translation action

ρ̃v(d)(w) := d(wv), d ∈ Cc(G), v, w ∈ G.

Then direct computations show

(b∗ ∗ a ∗ c)(s) = (b∗ ∗ a ∗ ρ̃s(c))(e), ∥ρ̃s(c)∥2 = ∆G(s)
−1/2∥c∥2.

Hence it suffices to show the statement for s = e.

Fix a non-degenerate faithful ∗-representation A⋊rG ⊂ B(H). Define a covariant

representation of A on L2(G)⊗ H = L2(G,H) as follows.

x 7→ idL2(G) ⊗ x, s 7→ λs ⊗ us; x ∈ A, s ∈ G.

By Fell’s absorption principal, this covariant representation induces a faithful ∗-represen-
tation

σ : A⋊rG→ B(L2(G,H)).

Denote its strictly continuous extension on M(A⋊rG) by the same symbol σ.

We next define V,W ∈ B(H, L2(G,H)) to be

[V (ξ)](s) := c(s)usξ, [W (ξ)](s) := b(s)usξ for ξ ∈ H, s ∈ G.

Note that ∥V ∥ ≤ ∥c∥2, ∥W∥ ≤ ∥b∥2. We show (b∗ ∗ a ∗ c)(e) = W ∗σ(a)V . By the above

inequalities, this completes the proof. To prove the claim, it suffices to show the equation

for xus ∈ M(A⋊rG) instead of a for each x ∈ A and s ∈ G. For x ∈ A, s ∈ G, ξ, η ∈ H,

⟨σ(xus)V ξ,Wη⟩ =
∫
G

⟨xusc(s−1t)us−1tξ, b(t)utη⟩dm(t)

=

∫
G

⟨b(t)αt−1(x)c(s−1t)ξ, η⟩dm(t)

=

∫
G

⟨b(t−1)∆G(t
−1)αt(x)c(s

−1t−1)ξ, η⟩dm(t)

= ⟨[(b∗ ∗ xus ∗ c)(e)]ξ, η⟩.

This proves (b∗ ∗ xus ∗ c)(e) =W ∗σ(xus)V . □

We now obtain another key result.

Proposition 3.5. Let A be a C∗-algebra with the SOAP (resp. OAP). Then

for any φ ∈ Ac(G), the map M̄A,φ is obtained as the limit of finite rank operators

in CB(A⋊rG) in the strong stable point-norm topology (resp. in the stable point-norm

topology).
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Proof. We only show the statement for the SOAP. The OAP case is essentially

the same.

Denote by F ⊂ CB(A⋊rG) the closure of the set of all finite rank operators in

CB(A⋊rG) with respect to the strong stable point-norm topology. Let N be the directed

set of all compact neighborhoods of e ∈ G. For each U ∈ N , put

θU := m(U)−2χU ∗ χU ∈ Cc(G) ⊂ M(A⋊rG).

Note that ∥θU∥M(A⋊r G) ≤ ∥θU∥1 = 1. From this, it is easy to show

lim
U∈N

θ∗U ∗ a ∗ θU = a

for all a ∈ A⋊rG. Therefore it suffices to show that the map

M̄A,φ,U := M̄A,φ(θ
∗
U ∗ · ∗ θU )

is contained in F for all U ∈ N .

Put V (φ) := φ−1(C \ {0}). Note that V (φ) is relatively compact and open in G.

We first show that Im(M̄A,φ,U ) ⊂ C0(V (φ), A) (⊂ A⋊rG). Let a ∈ Cc(G,A) be given.

Then

M̄A,φ,U (a) = φ · (θ∗U ∗ a ∗ θU ) ∈ C0(V (φ), A).

This implies

∥M̄A,φ,U (a)∥A⋊r G ≤ ∥M̄A,φ,U (a)∥1 ≤ m(V (φ))∥M̄A,φ,U (a)∥∞.

We will estimate the norm ∥M̄A,φ,U (a)∥∞. Put

Cφ := max{∆G(s)
−1/2 : s ∈ supp(φ)}.

Then Lemma 3.4 implies

∥M̄A,φ,U (a)∥∞ ≤ ∥φ∥∞∥(θ∗U ∗ a ∗ θU )|V (φ)∥∞ ≤ Cφ∥φ∥∞∥θU∥22∥a∥A⋊r G.

These inequalities yield

Im(M̄A,φ,U ) ⊂ C0(V (φ), A) (⊂ A⋊rG).

We next consider the map ΦA,φ,U : A⋊rG→ C0(V (φ))⊗A obtained by composing

M̄A,φ,U with the canonical linear isomorphism C0(V (φ), A) ∼= C0(V (φ)) ⊗ A. Observe

that ΦA,φ,U is bounded by the inequalities in the previous paragraph. We also observe

that the canonical inclusion map ιV (φ) : C0(V (φ)) ⊗ A ∼= C0(V (φ), A) → A⋊rG is

bounded. By passing to the stabilizations, we obtain complete boundedness of ΦA,φ,U
and ιV (φ).

Obviously M̄A,φ,U = ιV (φ) ◦ΦA,φ,U . Thus M̄A,φ,U factors through C0(V (φ))⊗A in

the category of operator spaces. Since C0(V (φ))⊗A has the SOAP, we have M̄A,φ,U ∈ F .

□
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Now we are able to prove the C∗-algebra analogues of Theorem 3.1 (a) and Theo-

rem 3.2 (a), (b) in [19]. We point out that their proofs involve unbounded operator-valued

weights ([13], [14], [15], [16]). Since there are no corresponding results for C∗-algebras,

their proofs do not seem to work in the C∗-algebra case.

Theorem 3.6. Let G be a locally compact group with the AP. Let A be a G-

C∗-algebra. Then the reduced crossed product A⋊rG has the SOAP if and only if the

C∗-algebra A has the SOAP. In particular the reduced group C∗-algebra C∗
r (G) has the

SOAP. The analogous statement also holds true for the OAP.

Proof. We only show the statement for the SOAP. The OAP case is essentially

the same.

When A has the SOAP, so does A⋊rG by Corollary 3.3 and Proposition 3.5.

We show the converse for general locally compact groups G. Assume that A does

not have the SOAP. By Theorem 2.2, there is a C∗-algebra B and a closed subspace X

satisfying F (A,B,X) ̸= A ⊗X. We will show that the triplet (A⋊rG,B,X) does not

have the slice map property. Take a non-negative function a ∈ Cc(G) with a(e) = 1.

Take x ∈ F (A,B,X) \ (A⊗X). Define b ∈ Cc(G,A⊗B) to be b(s) := a(s)x; s ∈ G. We

first show that b ∈ F (A⋊rG,B,X). As we have seen in the proof of Lemma 3.2, for any

ω ∈ (A⋊rG)
∗, there is a bounded weak-∗ continuous map ω̃ : G→ A∗ satisfying

(ω ⊗ idB)(b) =

∫
G

a(s)(ω̃(s)⊗ idB)(x)dm(s).

Since the integrants are norm continuous and take their values in X, we have b ∈
F (A⋊rG,B,X). We next show b ̸∈ (A⋊rG) ⊗ X. Let N be the directed set of all

compact neighborhoods of e ∈ G. Take φ ∈ Ac(G) satisfying φ(e) = 1. Then, on the one

hand, for any U ∈ N , we have

(ΦA,φ,U ⊗ idB)([A⋊rG]⊗X) ⊂ C0(V (φ))⊗A⊗X.

Here and below we adopt the notations in the proof of Proposition 3.5. On the other

hand, since b ∈ Cc(G,A⊗B), we have

lim
U∈N

[(ΦA,φ,U ⊗ idB)(b)](e) = lim
U∈N

(θ∗U ∗ b ∗ θU )(e) = x ̸∈ A⊗X.

Since A⊗X is closed in A⊗B, this yields that, for some U ∈ N ,

[(ΦA,φ,U ⊗ idB)(b)](e) ̸∈ A⊗X.

This concludes b ̸∈ (A⋊rG)⊗X. By Theorem 2.2 (2), A⋊rG cannot have the SOAP. □

As another consequence of our method, we establish the implication “AP ⇒ exact-

ness” for general locally compact groups. This strengthens Corollary E of [1], where

this implication is shown for second countable weakly amenable groups. However we

emphasize that weak amenability is much stronger than the AP. Recall from [22] that a

locally compact group G is said to be exact if the functor −⋊rG is exact. Note that not
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all groups are exact [11], [25], and there are exact groups without the AP [20], [24]. We

remark that it is not known in general if the exactness of a locally compact group follows

from the exactness of the reduced group C∗-algebra. Thus, unlike the discrete case, we

cannot deduce the following theorem from Theorem 3.6.

Theorem 3.7. All locally compact groups with the AP are exact.

Proof. Let G be a locally compact group with the AP. Let A be a G-C∗-algebra

and I be a closed G-invariant ideal of A. By Corollary 3.3, one can take a net (φi)i∈I in

Ac(G) such that the net (M̄A,φi)i∈I converges to idA⋊rG in the pointwise norm topology.

Let N denote the directed set of all compact neighborhoods of e in G. For U ∈ N , put

θU := m(U)−2χU ∗ χU . For i ∈ I and U ∈ N , define

M̄A,φi,U := M̄A,φi(θ
∗
U ∗ · ∗ θU ), M̄A/I,φi,U := M̄A/I,φi

(θ∗U ∗ · ∗ θU )

as in the proof of Proposition 3.5. Let π : A⋊rG → (A/I)⋊rG denote the canonical

quotient map. Then direct computations show that

π ◦ M̄A,φi,U = M̄A/I,φi,U ◦ π

for all i ∈ I and U ∈ N . (Indeed, by the boundedness of both sides, it suffices to check

the equality on Cc(G,A), which is obvious.) This shows M̄A,φi,U (ker(π)) ⊂ ker(π). It is

shown in the proof of Proposition 3.5 that Im(M̄A,φi,U ) ⊂ Cc(G,A). Therefore

M̄A,φi,U (ker(π)) ⊂ ker(π) ∩ Cc(G,A) = Cc(G, I).

Since x = limU∈N limi∈I M̄A,φi,U (x) for all x ∈ A⋊rG, we conclude ker(π) = I ⋊rG. □

Remark 3.8. Our proofs also work in the W∗-case after slight modifications. For

instance, the map Φ extends to a normal map as it can be given spatially (see Lemma 3.4).

We thus obtain alternative proofs of Theorem 3.1 (a) and Theorem 3.2 (a), (b) of [19].
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the Baum–Connes conjecture, Geom. Funct. Anal., 14 (2004), 491–528.

https://doi.org/10.1016/j.aim.2017.03.020
https://doi.org/10.1016/j.aim.2017.03.020
https://doi.org/10.1007/s00220-018-3091-2
https://doi.org/10.1090/gsm/088
https://doi.org/10.1090/gsm/088
https://doi.org/10.2307/2374423
https://doi.org/10.1007/s00039-004-0467-6


274

274 Y. Suzuki

[ 6 ] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple

Lie group of real rank one, Invent. Math., 96 (1989), 507–549.

[ 7 ] J. Crann and M. Neufang, A non-commutative Fejér theorem for crossed products, and applica-

tions, preprint, arXiv:1901.08700.

[ 8 ] E. G. Effros and Z.-J. Ruan, On approximation properties for operator spaces, Internat. J. Math.,

1 (1990), 163–187.
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