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Abstract. We prove sharp estimates for the renewal measure of a

strongly nonlattice probability measure on the real line. In particular we
consider the case where the measure has finite moments between 1 and 2. The
proof uses Fourier analysis of tempered distributions.

1. Introduction.

Let µ be a nonlattice probability measure on R. The renewal measure ν is defined

by

ν =
∞∑

n=0

µn∗,

where µn∗ is n-fold convolution of µ with itself and µ0∗ = δ is the Dirac measure at 0.

This paper considers the asymptotic behavior of ν at infinity. This study has a

long history. Our starting point is Blackwell’s renewal theorem from the middle of the

twentieth century, see [1], [2].

Theorem B. If µ is a nonlattice probability measure on the real line with a positive

first moment µ1 > 0, then

ν(x+ I)− |I|
µ1

→ 0, x→ ∞. (1.1)

Here I is a fixed interval and |I| its length.

Since then many authors have studied the rate of this convergence using different

techniques, see for instance [10], [5], [9] and [8]. The inspiration for this paper comes

mostly from [10] and [8] that uses Fourier methods. [5] uses Banach algebra methods

and [9] coupling methods.

We will use Fourier transforms of tempered distributions to prove the following

theorem.

Theorem 1.1. Assume that µ is a strongly nonlattice probability measure on the

real line with finite moments of order α > 1 and positive first moment µ1. Then, its

renewal measure ν satisfies

(a) if α ≥ 2,
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ν(x+ I) = |I|
(
H(x)

µ1
+

1

µ2
1

R1(x)

)
+ o

(
log |x|
|x|α

)
, |x| → +∞, (1.2)

and

(b) if 1 < α < 2,

ν(x+ I) = |I|
(
H(x)

µ1
+

1

µ2
1

R1(x) +
1

µ3
1

R2(x) + · · ·+ 1

µm+1
1

Rm(x)

)
+ o

(
log |x|
|x|α

)
, |x| → +∞, (1.3)

where m = [1/(α− 1)] + 1.

As in Theorem B I is a fixed interval and |I| its length. H is the Heaviside function.

That µ has finite moments of order α means that
∫
R |x|αdµ(x) <∞ and µ1 =

∫
R xdµ(x)

is its first moment. µ is a strongly nonlattice measure if lim inf |ξ|→∞ |1−f(ξ)| > 0, where

(as throughout this paper) f denotes the Fourier transform of µ, i.e. f(ξ) =
∫
R e

−ixξdµ(x).

The functions Rn (or rather their Fourier transforms) appear naturally in our proof.

For their definition see (3.2) and (3.3) in Section 3. For now we only state the following

lemma that is proved in Section 4.

Lemma 1.2. Assume that µ has finite moments of order α > 1. Then the functions

Rn are bounded.

Also,

R1(x) = o

(
1

|x|α−1

)
, |x| → ∞, (1.4)

and if n ≥ 2,

Rn(x) =


o

(
1

|x|α

)
, |x| → ∞, if α ≥ 2,

o

(
1

|x|2(α−1)

)
, |x| → ∞, if 1 < α < 2.

(1.5)

Note that if α ≥ 2 and n ≥ 2, then Rn(x) decays more rapidly than the remainder

in Theorem 1.1, and hence, although they simplify the proof, they do not appear in (1.2).

Also note that when 1 < α < 2, 2(α− 1) < α and the estimate of Rn(x) is weaker than

the remainder and thus Rn are needed in (1.3).

We are mostly interested in the case 1 < α < 2 in Theorem 1.1. The case when

α ≥ 2 is an integer was proved already by Stone, see [10, Theorem 3]. We include a

proof of (1.2), since the techniques developed to prove (1.3) give a simple proof also of

this case.

The function R2 was introduced by Isozaki [8] and he proved a version of (1.3)

when 3/2 < α < 2 (and also suggested generalizations to all 1 < α < 2). However he

was interested in the density of the renewal measure and assumed a strong regularity

assumption of the measure µ, namely that its Fourier transform is in some Lp(R), p ∈
[1,∞).
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We are interested in less regular measures and only need the weak regularity condi-

tion “strongly non-lattice”. This condition guarantees that 1/(1 − f(ξ)) is bounded at

infinity. To see that some regularity condition of µ is needed, we refer to [4].

1.1. Notation.

Our proof uses Fourier transforms of tempered distributions. For the necessary

background and the standard notation of distributions we refer to Hörmander’s book [7].

In order not to have to write too many absolute value signs, we let A(ξ) ≲ B(ξ)

mean that |A(ξ)| ≤ C|B(ξ)|, also when A(ξ) and B(ξ) are complex valued.

A(ξ) ∼ B(ξ) means that A(ξ) ≲ B(ξ) and B(ξ) ≲ A(ξ).

f(ξ) is always the Fourier transform of the measure µ.

2. Sketch of proof.

Assume that m is a positive integer. The general idea of our proof is that in order

to prove that

xmr(x) → 0, |x| → ∞, (2.1)

it is enough to show that

r̂ (m)(ξ) ∈ L1(R). (2.2)

This follows from the Riemann–Lebesgue lemma, and that multiplying a function by x

corresponds to differentiation of its Fourier transform.

We also have to generalize this to fractional powers α, see Section 5.

We start by discussing the Fourier transform of ν. It is not à priori clear that ν

exists but it is of course well-known. ν is also a tempered distribution and hence has a

well-defined Fourier transform. Formally,

ν̂(ξ) =
∞∑

n=0

fn(ξ) =
1

1− f(ξ)
.

This formula is not correct due to the singularity at the origin. But we have

Lemma 2.1. Assume that µ has finite moments of order α > 1. Then(
ν − 1

µ1
H

)∧

(ξ) =
1

1− f(ξ)
− 1

iµ1ξ
in S ′(R).

For a discussion of this see Section 3.

If ξ ̸= 0, we have

1

1− f(ξ)
− 1

iµ1ξ
=
f(ξ)− 1 + iµ1ξ

iµ1ξ

1

1− f(ξ)
,

or

1

1− f(ξ)
=

1

iµ1ξ
+
f(ξ)− 1 + iµ1ξ

iµ1ξ

1

1− f(ξ)
. (2.3)
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By the moment assumption, we have

f(ξ)− 1 + iµ1ξ =

∫
R

(
e−ixξ − 1 + ixξ

)
dµ(x) ≲ |ξ|min(α,2), ξ → 0.

Hence, for some γ > 0,

f(ξ)− 1 + iµ1ξ

iµ1ξ
≲ |ξ|min(α,2)−1 = |ξ|γ , ξ → 0. (2.4)

and

f(ξ)− 1 + iµ1ξ

iµ1ξ

1

1− f(ξ)
≲ |ξ|γ−1, ξ → 0. (2.5)

From this we make two observations.

One is that 1/(1 − f(ξ)) − 1/iµ1ξ is locally integrable and hence a well-defined

distribution.

The other is that (f(ξ) − 1 + iµ1ξ)/iµ1ξ is an improving factor; ((f(ξ) − 1 +

iµ1ξ)/iµ1ξ)(1/(1− f(ξ))) is less singular than 1/(1− f(ξ)) near the origin.

To be able to differentiate, we want to improve the estimate (2.5). This can be

obtained by the following bootstrapping argument. By replacing the last occurence of

1/(1− f(ξ)) in (2.3) with the whole formula we get

1

1− f(ξ)
=

1

iµ1ξ
+
f(ξ)− 1 + iµ1ξ

iµ1ξ

1

1− f(ξ)

=
1

iµ1ξ
+
f(ξ)− 1 + iµ1ξ

iµ1ξ
×
(

1

iµ1ξ
+
f(ξ)− 1 + iµ1ξ

iµ1ξ

1

1− f(ξ)

)
=

1

iµ1ξ
+
f(ξ)− 1 + iµ1ξ

(iµ1ξ)2
+

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)2
1

1− f(ξ)
.

Thus we gain one more factor (f(ξ)− 1 + iµ1ξ)/iµ1ξ.

This can be repeated any number of times and we get

1

1− f(ξ)
− 1

iµ1ξ

=
f(ξ)− 1 + iµ1ξ

(iµ1ξ)2
+

(
f(ξ)− 1 + iµ1ξ

)2
(iµ1ξ)3

+ · · ·+
(
f(ξ)− 1 + iµ1ξ

)m
(iµ1ξ)m+1

+

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)m+1
1

1− f(ξ)
. (2.6)

This is a pointwise identity for ξ ̸= 0. But both sides of the equality are locally integrable

functions and (2.6) is also an identity between tempered distributions.

By Fourier inversion we obtain

ν = ωm + rm(x),

where the main term ωm is
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ωm(x) =
H(x)

µ1
+

1

µ2
1

R1(x) +
1

µ3
1

R2(x) + · · ·+ 1

µm+1
1

Rm(x), (2.7)

with

R̂n(ξ) =

(
f(ξ)− 1 + iµ1ξ

)n
(iξ)n+1

, n = 1, 2, 3, . . . , (2.8)

and the remainder rm satisfies

r̂m(ξ) =

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)m+1
1

1− f(ξ)
. (2.9)

Let us prove that r̂m
(m)

(ξ) ∈ L1
loc(R) if µ has finite moment of integer order m ≥ 2.

(This is the main difficulty in proving (1.2) for integer α.)

By the moment condition f (m) exists and is continuous. Since γ = 1, we have

r̂m(ξ) =

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)m+1
1

1− f(ξ)
≲ |ξ|m, ξ → 0.

Also, as (
f(ξ)− 1 + iµ1ξ

)′
=

∫
R
−ix

(
e−ixξ − 1

)
dµ(x) ≲ |ξ|, ξ → 0,

successive derivatives of r̂m introduces at worst a multiplicative factor of size 1/ξ. Thus

r̂m
(m)

(ξ) ≲ |ξ|m−m = 1, ξ → 0,

so r̂m
(m)

is even bounded.

This simple argument can be compared with the delicate estimates needed to prove

that r̂1
(m) ∈ L1

loc(R) in Stone [10].

2.1. A truncation argument.

To prove Theorem 1.1 we want r̂m
(m)

(and a generalization of this to non-integer α)

to be integrable. As r̂m
(m)

(ξ) do not decay at infinity, this is clearly not true. However

there is a standard truncation argument to remedy this problem.

Let ϕϵ be a smooth approximative identity, i.e. ϕϵ(x) = (1/ϵ)ϕ(x/ϵ), where 0 ≤ ϕ ∈
C∞

0 (R),
∫
R ϕ(x)dx = 1 and (say) supp ϕ ⊂ [−1/2, 1/2] and 0 < ϵ ≤ 1/2. We also let χs

denote the characteristic function of Is = [−s, s]. Then ϕϵ ∗ χs−ϵ ≤ χs ≤ ϕϵ ∗ χs+ϵ.

Since ν is a positive measure we get

ϕϵ ∗ χs−ϵ ∗ ν(x) ≤ χs ∗ ν(x) = ν(Is + x) ≤ ϕϵ ∗ χs+ϵ ∗ ν(x).

By Lemma 1.2, ωm is bounded. Hence∣∣ωm(Is + x)− ϕϵ ∗ χs±ϵ ∗ ωm(x)
∣∣ ≲ ϵ.

Then we show that
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F(ϕϵ ∗ χs ∗ (ν − ωm))(ξ) = ϕ̂(ϵξ)
sin sξ

ξ
r̂m(ξ)

hasm derivatives in L1(R) with norm ≲ log 1/ϵ. Using a uniform version of the Riemann–

Lebesgue lemma we obtain

(ϕϵ ∗ χs ∗ (ν − ωm)) (x) = o

(
1

|x|m

)
log

1

ϵ
, |x| → +∞,

and

(ν − ωm)(Is + x) ≲ (ϕϵ ∗ χs±ϵ ∗ (ν − ωm)) (x) + ϵ

≲ o

(
1

|x|m

)
log

1

ϵ
+ ϵ, |x| → +∞,

where o(1/|x|m) is independent of ϵ. Letting ϵ = 1/|x|m, we obtain Theorem 1.1 for

integer m.

The details of this argument for general α are presented in Section 6.

3. Calculation of Fourier and inverse Fourier transforms.

Lemma 2.1 was proved in [3] under the assumption of a finite second moment.

However it holds for measures with finite moments of order α > 1. The moment condition

was used to prove that

lim
N→∞

fN (ξ)

(
1

1− f(ξ)
− 1

iµ1ξ

)
= 0 in D ′(R),

but that argument works provided 1/(1− f(ξ))− 1/iµ1ξ ∈ L1
loc(R). By (2.5) this holds

also under our weaker moment condition.

Remark 3.1. As is well-known Ĥ(ξ) = pv(1/iξ) + πδ, and by Lemma 2.1 we get

ν̂ = pv
1

1− f(ξ)
+

π

µ1
δ.

Next we compute Rn, the inverse Fourier transform of R̂n. We write (2.8) as

R̂n(ξ) =
f(ξ)− 1 + iµ1ξ

(iξ)2

(
f(ξ)− 1 + iµ1ξ

iξ

)n−1

= R̂1(ξ)R̂0

n−1
(ξ),

where

R̂0(ξ) =
f(ξ)− 1 + iµ1ξ

iξ
=
f(ξ)− 1

iξ
+ µ1.

Thus we have Rn = R1 ∗R(n−1)∗
0 .

If F (x) =
∫ x

−∞ dµ(y) is the distribution function of µ, then (F − H)′ = µ − δ in

D ′(R). Thus
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iξ(F −H)∧(ξ) = f(ξ)− 1 and (F −H)∧(ξ) =
f(ξ)− 1

iξ
+ Cδ

for some constant C. But

f(ξ)− 1

iξ
∈ L1(R) + L2(R) and lim

x→−∞
(F −H)(x) = 0.

Thus C = 0.

This implies that (F −H)∧(ξ) = (f(ξ)− 1)/iξ and

R0 = F −H + µ1δ.

For later use we note that

(F −H)(x) =


−
∫ +∞

x

dµ(y), x > 0,∫ x

−∞
dµ(y), x < 0.

Remark 3.2. When we consider integrals, such as F (x) =
∫ x

−∞ dµ(y) with respect

to measures that may have pointmasses, there is a choice to include the point x or not.

The standard choice is to include x, i.e. F (x) =
∫
(−∞,x]

dµ(y) (and thus 1 − F (x) =∫
(x,∞)

dµ(y)). However the choice does not matter as
∫
(−∞,x]

dµ(y) and
∫
(−∞,x]

dµ(y)

are equal almost everywhere and thus equal as distributions.

Remark 3.3. The Fourier transform of F − H can be computed with classical

means (the Fubini theorem) as F −H ∈ L1(R) when µ has a finite first moment. Our

proof is valid if some positive moment of µ is finite since this makes (f(ξ)− 1)/iξ locally

integrable.

Next we consider R1. Let R1 be that primitive of R0 = F −H + µ1δ that is given

by

R1(x) =

∫ x

−∞
R0(y)dy. (3.1)

Remark 3.4. Here and in the sequel we use the convention
∫ x

−∞ δ dy = H(x) so

that

R1(x) =

∫ x

−∞
(F −H)(y)dy + µ1H(x).

Note also that by Fubini’s theorem,
∫
R(F −H)(x)dx = −µ1, and hence

R1(x) =

∫ +∞

x

1− F (y)dy

if x > 0.
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We have iξR̂1(ξ) = R̂0(ξ). By divison, this implies

R̂1(ξ) =
1

iξ
R̂0(ξ) + Cδ =

f(ξ)− 1 + iµ1ξ

(iξ)2
+ Cδ.

Note that since µ has a finite moment greater than 1, (f(ξ)− 1 + iµ1ξ)/(iξ)
2 ∈ L1

loc(R),
and is a well-defined distribution. Arguing as above we get that C = 0 and R1 = R1.

To sum up,

R0 = F −H + µ1δ = µ1δ +


−
∫ +∞

x

dµ(y), x > 0,∫ x

−∞
dµ(y), x < 0,

R1(x) =


∫ +∞

x

1− F (y) dy, x ≥ 0,∫ x

−∞
F (y) dy, x < 0,

(3.2)

and if n ≥ 2,

Rn = R1 ∗R(n−1)∗
0 . (3.3)

4. Estimates of Rn.

Proof of Lemma 1.2. We only consider the case x → +∞, the case x → −∞
is similar.

The proof of (1.4) is simple. By Fubini’s theorem we have

xα−1R1(x) = xα−1

∫ ∞

x

(1− F (y))dy ≤
∫ ∞

x

yα−1

(∫ ∞

y

dµ(t)

)
dy

=

∫ ∞

x

(∫ t

x

yα−1dy

)
dµ(t) ≲

∫ ∞

x

tαdµ(t) → 0, x→ +∞.

With α = 1, the argument shows that R1 is bounded.

We will prove (1.5) by induction using that, by (3.3), we have

Rn+1 = R1 ∗Rn∗
0 = R1 ∗R(n−1)∗

0 ∗R0 = Rn ∗R0.

We first observe that if Q = F −H, then R0 = Q+ µ1δ and

xαQ(x) = −xα
∫ ∞

x

dµ(y) ≲
∫ ∞

x

yαdµ(y) → 0, x→ +∞,

i.e.

Q(x) = o

(
1

xα

)
, x→ +∞. (4.1)
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In particular Q ∈ L1(R) since α > 1. As Rn+1 = Rn ∗Q+µ1Rn, the boundedness of Rn

follows by induction.

Also, since
∫
RQ(x)dx = −µ1, we have

Rn+1(x) =

∫
R
(Rn(x− y)−Rn(x))Q(y)dy. (4.2)

We first prove (1.5) when α > 2. This case is somewhat simpler as then R1 ∈ L1(R)
(and by induction also Rn ∈ L1(R)) and xQ(x) ∈ L1(R).

For R2, we have

R2(x) =

∫
R
(R1(x− y)−R1(x))Q(y)dy.

We divide the range of integration into two parts, y ≤ x/2 and y > x/2.

By (3.1) (recall that R1 = R1), we have R1(x) =
∫ x

−∞R0(t)dt. Thus if y ≤ x/2,

and hence x− y ≥ x/2,

R1(x− y)−R1(x) =

∫ x−y

x

Q(t)dt ≲
∫ x−y

x

o

(
1

tα

)
dt ≲ o

(
1

xα

)
y. (4.3)

Thus, ∫
y≤x/2

(R1(x− y)−R1(x))Q(y)dy

≲ o

(
1

xα

)∫
R
|yQ(y)|dy = o

(
1

xα

)
, x→ +∞.

For the part where y > x/2 we have∫
y>x/2

(R1(x− y)−R1(x))Q(y)dy

≲ o

(
1

xα

)∫
y>x/2

|R1(x− y)|dy + o

(
1

xα−1

)∫
y>x/2

|Q(y)|dy

= o

(
1

xα

)
+ o

(
1

x2(α−1)

)
= o

(
1

xα

)
, x→ +∞,

as α > 2.

For n ≥ 2, we have Rn+1 = Rn ∗Q+ µ1Rn, and since by induction

Rn ∗Q(x) =

∫
R
Rn(x− y)Q(y)dy ≲ o

(
1

xα

)∫
y≤x/2

|Q(y)|dy

+ o

(
1

xα

)∫
y>x/2

|Rn(x− y)|dy = o

(
1

xα

)
, x→ +∞,

(1.5) follows.

When α = 2, the same argument basically holds. In the proof above, we used that

R1 ∈ L1(R) and xQ(x) ∈ L1(R). This do not follow from our decay estimates (4.1)
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and Q(x) = o(1/xα), x → +∞. However, by Fubini’s theorem it is not hard to see that

R1 ∈ L1(R) (and by induction also Rn ∈ L1(R)), and xQ(x) ∈ L1(R) also when α = 2.

We omit the details.

When 1 < α < 2, we let α = 1+β and first consider R2. Now we divide the integral

in (4.2) into four parts.

When y < −x/2, x− y ≥ x, and hence∫ −x/2

−∞
(R1(x− y)−R1(x))Q(y)dy

= o

(
1

xβ

)∫ −x/2

−∞
|Q(y)|dy = o

(
1

x2β

)
, x→ +∞.

If −x/2 ≤ y < x/2, then by (4.3),∫ x/2

−x/2

(R1(x− y)−R1(x))Q(y)dy

= o

(
1

xα

)∫ x/2

−x/2

|yQ(y)|dy = o

(
1

x2β

)
, x→ +∞.

When x/2 ≤ y < 3x/2, we have∫ 3x/2

x/2

(R1(x− y)−R1(x))Q(y)dy

= o

(
1

xα

)∫ 3x/2

x/2

|R1(x− y)|dy + o

(
1

xβ

)∫ 3x/2

x/2

|Q(y)|dy

= o

(
1

xα

)∫ x/2

−x/2

|R1(t)|dt+ o

(
1

xβ

)
x

xα
= o

(
1

x2β

)
, x→ +∞.

For the last part, we have∫ ∞

3x/2

(R1(x− y)−R1(x))Q(y)dy

= o

(
1

xβ

)∫ ∞

3x/2

|Q(y)|dy = o

(
1

x2β

)
, x→ +∞.

For the induction step it is enough to show that for n ≥ 2,∫
R
Rn(x− y)Q(y)dy ≲ o

(
1

x2β

)
, x→ +∞.

We have ∫ x/2

−∞
Rn(x− y)Q(y)dy

= o

(
1

x2β

)∫ x/2

−∞
|Q(y)|dy = o

(
1

x2β

)
, x→ +∞.
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Next,∫ 3x/2

x/2

Rn(x− y)Q(y)dy = o

(
1

xα

)∫ 3x/2

x/2

|Rn(x− y)|dy

= o

(
1

xα

)∫ x/2

−x/2

|Rn(y)|dy = o

(
1

x2β

)
, x→ +∞.

(Note that Rn(y) = o(1/yβ), y → ∞, is enough for the last estimate.)

Finally,∫ ∞

3x/2

Rn(x− y)Q(y)dy = o

(
1

x2β

)∫ ∞

3x/2

|Q(y)|dy = o

(
1

x2β

)
, x→ +∞. □

We conclude this section with the following simple lemma.

Lemma 4.1. ∫
x+I

Rn(y)dy = Rn(x)|I|+ o

(
1

|x|α

)
, |x| → ∞.

Proof. When n = 1 this follows directly from (4.3). If y ∈ x+ I, we get

R1(y)−R1(x) ≲ |I| o
(

1

xα

)
= o

(
1

xα

)
, x→ +∞.

For n > 1, the argument is the same after we have shown that

Rn(x) =

∫ x

−∞
Rn∗

0 (y)dy. (4.4)

Since by (3.1), R′
1 = R0, we have R′

n =
(
R1 ∗ R(n−1)∗

0

)′
= Rn∗

0 in D ′(R). Also the

distributional derivative of
∫ x

−∞Rn∗
0 (y)dy is Rn∗

0 and thus the integral differ from Rn by

at most a constant. But both Rn(x) and
∫ x

−∞Rn∗
0 (y)dy tends to zero as x → −∞ and

the constant vanishes. (In fact the value of the constant is irrelevant.) □

5. Fractional derivatives.

In this section we generalise (2.1) and (2.2) to non integers. We first define the

fractional derivative Dβ , when 0 < β < 1. Then if 1 < α = m + β, with m an integer

and 0 < β < 1, we let Dαg = Dβ(g(m)) where g(m) is the classical derivative of order m.

The fact that multiplying a function by x corresponds to differentiation of its Fourier

transform is a consequence of that the Fourier transform of xm is a constant times δ(m).

Here δ(m) is the m order derivative of the Dirac measure. Also δ(m) ∗ ĝ = ĝ (m). So

multiplication with xm corresponds to convolution with δ(m).

When 0 < β < 1 is natural to replace xm with |x|β in this argument. It is well-

known, see for instance [6, p.173], that if 0 < β < 1, cβ |̂x|β = fp(1/|ξ|1+β), for some (non-

vanishing) constant cβ . Thus the Fourier transform of cβ |x|βg(x) is fp(1/|ξ|1+β) ∗ ĝ and
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we can think of convolution with fp(1/|ξ|1+β) as a fractional derivative. The distribution

fp(1/|ξ|1+β) is defined by⟨
fp

1

|ξ|1+β
, φ

⟩
=

∫
R

φ(ξ)− φ(0)

|ξ|1+β
dξ, φ ∈ D(R).

For technical reasons we replace the integral over R with that over [−1, 1] and put

⟨uβ , φ⟩ =
∫ 1

−1

φ(ξ)− φ(0)

|ξ|1+β
dξ.

The difference between uβ and fp(1/|ξ|1+β) is a distribution defined by an integrable

function and a constant times the Dirac measure. The inverse Fourier transform of this

difference is bounded. Thus, if Uβ is the inverse Fourier transform of uβ , Uβ(x) differ

from cβ |x|β by a bounded function. So Uβ(x) ∼ |x|β , |x| → +∞.

We now define the fractional derivative as convolution with uβ .

Definition 5.1. If 0 < β < 1, the fractional derivative Dβg is

Dβg = uβ ∗ g, g ∈ D ′(R).

Thus the inverse Fourier transform of Dβ ĝ is Uβ(x)g(x) and Uβ(x) ∼ |x|β , |x| → ∞.

As uβ has compact support, Dβg is a well-defined distribution for any g ∈ D ′(R).
However, we want a more concrete representation for Dβg for certain g.

Definition 5.2. Assume that 0 < β < 1 and that g is a measurable function. If

|D|βg(ξ) =
∫ 1

−1

|g(ξ − t)− g(ξ)|
|t|1+β

dt <∞,

we say that g has a finite (fractional) derivative of order β at ξ.

Lemma 5.3. Assume that 0 < β < 1 and g is a locally integrable function such

that |D|βg(ξ) is finite almost everywhere and locally integrable. Then

Dβg(ξ) = uβ ∗ g(ξ) =
∫ 1

−1

g(ξ − t)− g(ξ)

|t|1+β
dt. (5.1)

Proof. If g ∈ D(R), (5.1) follows from the definition of convolution. As uβ has

compact support it holds also for φ ∈ C∞(R), i.e.

Dβφ(ξ) =

∫ 1

−1

φ(ξ − t)− φ(ξ)

|t|1+β
dt.

The convolution Dβg = uβ ∗ g is characterized by associativity,

Dβg ∗ φ = uβ ∗ (g ∗ φ), φ ∈ D(R).

Now g ∗ φ ∈ C∞(R), and we get
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Dβg ∗ φ(ξ) =
∫ 1

−1

g ∗ φ(ξ − t)− g ∗ φ(ξ)
|t|1+β

dt.

Using ⟨uβ , φ⟩ = uβ∗
∨
φ (0), where

∨
φ (ξ) = φ(−ξ), we obtain

⟨
Dβg, φ

⟩
= (uβ ∗ g) ∗

∨
φ (0) = uβ ∗

(
g∗

∨
φ

)
(0) = uβ ∗

(
∨
g ∗φ

)∨

(0)

=

⟨
uβ ,

∨
g ∗φ

⟩
=

∫ 1

−1

∨
g ∗φ(t)−

∨
g ∗φ(0)

|t|1+β
dt.

But
∨
g ∗φ(t) =

∫
R g(ξ − t)φ(ξ)dξ, and by Fubini’s theorem we obtain

⟨
Dβg, φ

⟩
=

∫ 1

−1

(∫
R
(g(ξ − t)− g(ξ))φ(ξ)dξ

)
1

|t|1+β
dt

=

∫
R

(∫ 1

−1

g(ξ − t)− g(ξ)

|t|1+β
dt

)
φ(ξ)dξ

as desired.

We may change the order of integration since |D|βg ∈ L1
loc(R). □

We need a couple of results about fractional derivatives. The first is

Lemma 5.4. If µ has finite moments of order β, 0 < β < 1, then Dβf is a bounded

uniformly continuous function.

Proof. We first show that

|D|βf(ξ) =
∫ 1

−1

|f(ξ − t)− f(ξ)|
|t|1+β

dt ∈ L∞(R).

Since

f(ξ − t)− f(ξ) =

∫
R
e−ixξ(eixt − 1)dµ(x) ≲

∫
R
min(1, |xt|)dµ(x), (5.2)

we get, changing the order of integration,

|D|βf(ξ) ≲
∫
R

(∫ 1

−1

min(1, |xt|)
|t|1+β

dt

)
dµ(x). (5.3)

The inner integral satisfies∫ 1

−1

min(1, |xt|)
|t|1+β

dt ≤
∫
|t|≤1/|x|

|x|
|t|β

dt+

∫
|t|>1/|x|

1

|t|1+β
dt ≲ |x|β ,

and altogether we have

|D|βf(ξ) ≲
∫
R
|x|βdu(x) <∞,
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as desired.

To prove the uniform continuity, assume that |ξ − η| < δ. Since

(f(ξ − t)− f(ξ))− (f(η − t)− f(η)) =

∫
R

(
e−ixξ − e−ixη

)(
e−ixt − 1

)
dµ(x),

and e−ixξ − e−ixη ≲ |xδ|, (5.2) can be sharpened to

(f(ξ − t)− f(ξ))− (f(η − t)− f(η)) ≲
∫
R
min(1, |xt|, |xδ|)dµ(x),

and (5.3) to

Dβf(ξ)−Dβf(η) ≲
∫ 1

−1

(∫
R

min(1, |xt|, |xδ|)
|t|1+β

dµ(x)

)
dt.

As min(1, |xt|, |xδ|)/|t|1+β ≲ min(1, |xt|)/|t|1+β ∈ L1(dµ(x)dt), we get by dominated

convergence that

lim
δ→0

(
Dβf(ξ)−Dβf(η)

)
= 0,

uniformly in ξ and η. □

Lemma 5.5. If g is bounded and g and h have finite derivatives of order β,

0 < β < 1, then so has gh, and

|D|β(gh)(ξ) ≤ ∥g∥Iξ |D|βh(ξ) + |h(ξ)| |D|βg(ξ),

where Iξ = [ξ − 1, ξ + 1].

Proof. Since

gh(ξ − t)− gh(ξ) = g(ξ − t)(h(ξ − t)− h(ξ)) + h(ξ)(g(ξ − t)− g(ξ)),

we have

|D|β(gh)(ξ) =
∫ 1

−1

∣∣g(ξ − t)(h(ξ − t)− h(ξ)) + h(ξ)(g(ξ − t)− g(ξ))
∣∣

|t|1+β
dt

≤ ∥g∥Iξ |D|βh(ξ) + |h(ξ)| |D|βg(ξ). □

Lemma 5.6. If g is differentiable with a bounded derivative, then g has a finite

(fractional) derivative of order β, 0 < β < 1, and

|D|βg(ξ) ≲ ∥g′∥Iξ .

Furthermore, Dβg is Hölder continuous of degree 1− β, in particular Dβg is uniformly

continuous.

Proof. First, by the mean value theorem,



695(25)

Renewal theory 695

|D|βg(ξ) =
∫ 1

−1

|g(ξ − t)− g(ξ)|
|t|1+β

dt =

∫ 1

−1

|g′(ηt)|
dt

|t|β
≲ ∥g′∥Iξ .

Secondly, if |ξ − η| < 1,

Dβg(ξ)−Dβg(η) =

∫
|t|≤|ξ−η|

(g(ξ − t)− g(ξ))− (g(η − t)− g(η))

|t|1+β
dt

+

∫
|ξ−η|<|t|≤1

(g(ξ − t)− g(η − t))− (g(ξ)− g(η))

|t|1+β
dt

≲
∫
|t|≤|ξ−η|

∥g′∥∞
|t|β

dt+

∫
|ξ−η|<|t|≤1

∥g′∥∞|ξ − η|
|t|1+β

dt ≲ ∥g′∥∞|ξ − η|1−β .

□

We remark that ∥g′∥∞ can be sharpened to ∥g′∥[ξ−2,ξ+2].

We also need the following sharpening of Lemma 5.6.

Lemma 5.7. Assume that −1 < a < 1 and that

g(ξ) ≲ 1

|ξ|a
and g′(ξ) ≲ 1

|ξ|a+1
.

Then, if , 0 < β < 1, we have

|D|βg(ξ) ≲ 1

|ξ|a+β
.

Before the proof we note that 1/|ξ|a ∈ L1
loc(R), and that 1/|ξ|a+1 → ∞, ξ → 0.

Also, if β < 1− a, then |D|βg is locally integrable and Dβg is well-defined by (5.1).

Proof. For notational convenience we assume that ξ > 0. To estimate |D|βg(ξ),
we first consider |t| ≤ ξ/2. By the mean value theorem g(ξ − t) − g(ξ) = g′(η)t. Since

η ∼ ξ, we get |g(ξ − t)− g(ξ)| ≲ t/|ξ|a+1. Thus∫ ξ/2

−ξ/2

|g(ξ − t)− g(ξ)|
|t|1+β

dt ≲ 1

|ξ|a+1

∫ ξ/2

−ξ/2

dt

|t|β
≲ 1

|ξ|a+β
.

For the remaining region of integration we estimate g(ξ − t) and g(ξ) separately.

If ξ/2 ≤ t ≤ 3ξ/2, we have∫ 3ξ/2

ξ/2

|g(ξ − t)|
|t|1+β

dt ≲ 1

|ξ|1+β

∫ 3ξ/2

ξ/2

|g(ξ − t)|dt = 1

|ξ|1+β

∫ ξ/2

−ξ/2

|g(s)|ds

≲ 1

|ξ|1+β

∫ ξ/2

−ξ/2

1

|s|a
ds ≲ 1

|ξ|a+β
.

If t /∈ [ξ/2, 3ξ/2], ξ− t ≳ ξ and both g(ξ− t) and g(ξ) are bounded by 1/|ξ|a. Hence,

their contribution to the integral can be estimated by
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1

|ξ|a

∫
|t|>ξ/2

dt

|t|1+β
≲ 1

|ξ|a+β
. □

We conclude this section with

Lemma 5.8. Assume that 0 < β < 1 and that g, |D|βg, h and |D|βh are bounded

and g, Dβg, h and Dβh are uniformly continuous. Then Dβgh is uniformly continuous.

Proof. The proof is elementary but somewhat tedious. Writing gh(x − t) −
gh(x) = h(x− t)(g(x− t)− g(x)) + g(x)(h(x− t)− h(x)), we get

Dβgh(x) =

∫ 1

−1

h(x− t)(g(x− t)− g(x))

|t|1+β
dt

+ g(x)

∫ 1

−1

h(x− t)− h(x)

|t|1+β
dt = I (x) + g(x)Dβh(x).

Since g and Dβh are bounded and uniformly continuous so is gDβh.

It remains to consider I (x). Let ϵ > 0. By assumption we can choose δ so that

if |x − y| < δ, then |g(x) − g(y)| < ϵ, |Dβg(x) − Dβg(y)| < ϵ, |h(x) − h(y)| < ϵ and

|Dβh(x)−Dβh(y)| < ϵ. We have

I (x)− I (y) =

∫ 1

−1

h(x− t)(g(x− t)− g(x))− h(y − t)(g(y − t)− g(y))

|t|1+β
dt.

Writing

g(y − t)− g(y) =
(
g(x− t)− g(x)

)
+
((
g(y − t)− g(x− t)

)
−

(
g(y)− g(x)

))
,

we get

h(x− t)(g(x− t)− g(x))− h(y − t)(g(y − t)− g(y))

=
(
h(x− t)− h(y − t)

)(
g(x− t)− g(x)

)
− h(y − t)

((
g(y − t)− g(x− t)

)
−
(
g(y)− g(x)

))
= A (x, y)− B(x, y).

As h is uniformly continuous, we get |A (x, y)| ≤ ϵ|g(x− t)− g(x)| and∫ 1

−1

|A (x, y)|
|t|1+β

dt ≲ ϵ

∫ 1

−1

|g(x− t)− g(x)|
|t|1+β

dt ≤ ϵ
∥∥|D|βg

∥∥
∞ ≲ ϵ

if |x− y| < δ.

Finally, to deal with B, we write

B(x, y) = h(y)
((
g(y − t)− g(y)

)
−
(
g(x− t)− g(x)

))
+
(
h(y − t)− h(y)

)((
g(y − t)− g(x− t)

)
−
(
g(y)− g(x)

))
.
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If |x− y| < δ this implies, as g is uniformly continuous,∫ 1

−1

B(x, y)

|t|1+β
dt ≲ h(y)

(
Dβg(y)−Dβg(x)

)
+ ϵ|D|βh(y) ≲ ϵ.

In last estimate the boundedness of h and |D|βh, and the uniform continuity of Dβg is

used. □

6. The proof.

To prove Theorem 1.1 it is enough to prove that∫
R
eixξDα

(
ϕ̂(ϵξ)

sin sξ

ξ
r̂m(ξ)

)
dξ = O(1) + o (1) log 1/ϵ, x→ ∞, (6.1)

where O(1) and o(1) do not depend on ϵ and s in bounded sets. Here m = [1/(α−1)]+1

if 1 < α < 2 and m is sufficiently large if α ≥ 2 (m = [α] + 1 is enough).

By the truncation argument in Section 2.1, (6.1) implies

(ν − ωm)(Is + x) ≲ O(1)

|x|α
+
o(1)

|x|α
log

1

ϵ
+ ϵ, |x| → +∞.

Letting ϵ = 1/|x|α, we obtain

ν(Is + x) = ωm(Is + x) + o

(
log |x|
|x|α

)
, |x| → +∞,

and Theorem 1.1 follows by Lemma 4.1.

To prove (6.1), we divide the integral into three parts, |ξ| ≤ 10, 10 < |ξ| ≤ 1/ϵ and

|ξ| > 1/ϵ.

By the discussion in the previous section it follows that the function

Dα
(
ϕ̂(ϵξ)(sin sξ/ξ)r̂m(ξ)

)
is bounded and uniformly continuous when |ξ| > 10.

Furthermore the strongly non-lattice condition and the rapid decrease of ϕ̂(ϵξ) and

its derivatives implies

Dα

(
ϕ̂(ϵξ)

sin sξ

ξ
r̂m(ξ)

)
≲ ψ(ϵξ)

|ξ|
,

for some ψ ∈ S (R). Thus∫
|ξ|>1/ϵ

eixξDα

(
ϕ̂(ϵξ)

sin sξ

ξ
r̂m(ξ)

)
dξ ≲

∫
|ξ|>1/ϵ

ψ(ϵξ)
dξ

|ξ|
=

∫
|ξ|>1

ψ(ξ)
dξ

|ξ|
≲ 1.

When 10 < |ξ| ≤ 1/ϵ, we have Dα
(
ϕ̂(ϵξ)(sin sξ/ξ)r̂m(ξ)

)
≲ 1/|ξ| and hence its L1-

norm is bounded by log 1/ϵ. By the following uniform Riemann–Lebesgue lemma, we

get ∫
10<|ξ|≤1/ϵ

eixξDα

(
ϕ̂(ϵξ)

sin sξ

ξ
r̂m(ξ)

)
dξ = o (1) log

1

ϵ
, x→ ∞.
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Lemma 6.1. Assume that ψλ(ξ) are uniformly bounded and uniformly equicontin-

uous functions on R. Then∫
10≤|ξ|≤N

eixξ
ψλ(ξ)

ξ
dξ = o (1) logN, |x| → ∞,

where o (1) is uniform in N and λ.

Sketch of proof. Let ϵ > 0. Let ϕδ, 0 < δ < 1 be a C∞ approximation of the

identity and ψδ
λ = ϕδ ∗ψλ. Note that, since (ψ

δ
λ)

′ = (ϕδ)
′ ∗ψλ = (1/δ)(ϕ′)δ ∗ψλ, we have

∥(ψδ
λ)

′∥∞ ≲ 1/δ. Also, if δ is small enough, ∥ψλ − ψδ
λ∥∞ < ϵ. Write∫

10≤|ξ|≤N

eixξ
ψλ(ξ)

ξ
dξ =

∫
10≤|ξ|≤N

eixξ
ψλ(ξ)− ψδ

λ(ξ)

ξ
dξ +

∫
10≤|ξ|≤N

eixξ
ψδ
λ(ξ)

ξ
dξ.

The first integrand is bounded by ϵ/|ξ|, and thus the integral by ϵ logN . An integration

by parts shows that the second integral is bounded by (1/δ|x|) logN . So if |x| > 1/δϵ,∫
10≤|ξ|≤N

eixξ
ψλ(ξ)

ξ
dξ ≲ ϵ logN. □

The hardest part to estimate is when |ξ| ≤ 10. This is the content of the next

proposition.

Proposition 6.2. Assume that µ has a finite moment of order α. Then

Dα
(
ϕ̂(ϵξ)(sin sξ/ξ)r̂m(ξ)

)
is locally integrable.

Proof. We will only prove the case 1 < α < 2.

The case α ≥ 2 is easier as we may take m sufficiently large and prove that

Dαϕ̂(ϵξ)(sin sξ/ξ)r̂m(ξ) is bounded. By (1.4), we may then discard the terms containing

Rk with k ≥ 2.

So assume that α < 2 and consider first 3/2 < α < 2. Let β = α−1 and δ = α−3/2.

When 3/2 < α < 2, we have m = 2 and by (2.9) and (2.4)

r̂2(ξ) =

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)3
1

1− f(ξ)
≲ |ξ|3β−1 = |ξ|3δ+1/2, |ξ| → 0.

Let ρ(ξ) = ϕ̂(ϵξ)(sin sξ/ξ)r̂2(ξ), and consider ρ′. By Leibniz formula it consists of several

terms, two of which contain f ′. One of these appears when we differentiate 1/(1− f(ξ))

and one when we differentiate (f(ξ)− 1 + iµ1ξ)
3. We write

ρ′(ξ) = ρ1(ξ) + ρ2(ξ)f
′(ξ) + ρ3(ξ)h(ξ),

where h(ξ) = f ′(ξ) + iµ1. The functions ρ1, ρ2 and ρ3 has one more classical derivative

if ξ ̸= 0. Since a derivative of ρ, not acting on (f(ξ)−1+ iµ1ξ)
3, introduces a singularity

at most 1/ξ, we get

ρj(ξ) ≲ |ξ|3δ−1/2 and ρ′j(ξ) ≲ |ξ|3δ−3/2, j = 1, 2.
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By Lemma 5.7, this implies

|D|βρi(ξ) ≲ |ξ|3δ−1/2−β = |ξ|2δ−1, i = 1, 2.

In particular Dβρ1 ∈ L1
loc(R).

By Lemma 5.4, |D|βf ′ is bounded. Hence, by Lemma 5.5,

|D|β(ρ2f ′)(ξ) ≤ |ρ2(ξ)| |D|βf ′(ξ) + ∥f ′∥Iξ |D|βρ2(ξ)

≲ |ξ|3δ−1/2 + |ξ|2δ−1 ≲ |ξ|2δ−1.

Thus also Dβ(ρ2f
′) ∈ L1

loc(R).
The last term is slightly different as ρ3 is more singular (ρ′3 is not locally integrable).

By Lemma 5.7,

ρ3(ξ) ≲ |ξ|2δ−1, ρ′3(ξ) ≲ |ξ|2δ−2 and |D|βρ3(ξ) ≲ |ξ|2δ−1−β .

On the other hand,

h(ξ) = f ′(ξ) + iµ1 =

∫
R
−ix

(
e−ixξ − 1

)
dµ(x) ≲ |ξ|β

is small at the origin.

Arguing as in the proof of Lemma 5.5, we have

|D|β(ρ3h)(ξ) ≤
∫ 1

−1

|ρ3(ξ − t)| |h(ξ − t)− h(ξ)|
|t|1+β

dt+ |h(ξ)| |D|βρ3(ξ).

As

|h(ξ)| |D|βρ3(ξ) ≲ |ξ|β+2δ−1−β = |ξ|2δ−1 ∈ L1
loc(R),

it remains to estimate the integral. The argument is similar to the proof of Lemma 5.7.

We have∫
|t|≤1,|ξ−t|≤ξ/2

|ρ3(ξ − t)| |h(ξ − t)− h(ξ)|
|t|1+β

dt ≲ |ξ|β 1

|ξ|1+β

∫
|ξ−t|≤ξ/2

|ρ3(ξ − t)|dt

= |ξ|−1

∫
|t|≤ξ/2

|ρ3(t)|dt ≲ |ξ|−1

∫
|t|≤ξ/2

|t|2δ−1dt ≲ |ξ|2δ−1 ∈ L1
loc(R).

When |ξ − t| > ξ/2, we get∫
|t|≤1,|ξ−t|>ξ/2

|ρ3(ξ − t)| |h(ξ − t)− h(ξ)|
|t|1+β

dt

≲
∫
|t|≤1,|ξ−t|>ξ/2

|ξ − t|2δ−1 |h(ξ − t)− h(ξ)|
|t|1+β

dt

≲ |ξ|2δ−1|D|βh(ξ) ≲ |ξ|2δ−1 ∈ L1
loc(R).



700(30)

700 H. Carlsson

The proof for arbitrary α, 1 < α < 2 is basically the same. Assume that 1 + 1/m <

α ≤ 1 + 1/(m − 1), and consider for instance the term ρ2f
′ above, but now with r̂2

replaced with

r̂m(ξ) =

(
f(ξ)− 1 + iµ1ξ

iµ1ξ

)m+1
1

1− f(ξ)
.

If α = 1 + β and β = 1/m+ δ, ρ2 satisfies

ρ2(ξ) ≲ |ξ|(m+1)(1/m+δ)−2 = |ξ|1/m+δ+mδ−1, ρ′2(ξ) ≲ |ξ|1/m+δ+mδ−2

and

|D|βρ2(ξ) ≲ |ξ|1/m+δ+mδ−1−β = |ξ|mδ−1.

Thus

|D|β(ρ2f ′)(ξ) ≤ |ρ2(ξ)| |D|βf ′(ξ) + ∥f ′∥Iξ |D|βρ2(ξ) ≲ |ξ|mδ−1,

which is locally integrable. □

7. Concluding remarks.

A slightly different way to prove Theorem 1.1, also when 1 < α < 2, is to include

more terms in (1.3). If M is (much) larger than m, r̂M satisfies a better estimate than

r̂m and it is easier to prove Proposition 6.2 for this M . Then one needs to prove that

Rk(x) decays rapidly when k > m so that they can be discarded in (1.3).

Since R̂m+1 and r̂m have the same singularity at the origin, using the Fourier meth-

ods in Section 6, we can prove this. Namely, we have Rn(x) = o(1/|x|α), |x| → ∞ when

n > [1/(α − 1)] + 1. The logarithmic factor is not needed due to the decay of R̂n at

infinity. However the proof of these estimate of Rn is almost as hard as that of rn, so

altogether this approach is not a simplification of the proof of Theorem 1.1.

If on the other hand, by sharpening the arguments in Section 4, we could prove the

necessary estimates of Rn directly, this could simplify the proof. But I have not been

able to do this.

We can also prove Rn(x) = o(1/|x|nβ), |x| → ∞, when n ≤ [1/(α − 1)] + 1 except

possibly when β = 1/k and n = k + 1, k = 2, 3, 4, . . . . Note that nβ = α in this case.
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