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Abstract. Bott, Cattaneo and Rossi defined invariants of long knots
Rn ↪→ Rn+2 as combinations of configuration space integrals for n odd ≥ 3.
Here, we give a more flexible definition of these invariants. Our definition
allows us to interpret these invariants as counts of diagrams. It extends to

long knots inside more general (n+2)-manifolds, called asymptotic homology
Rn+2, and provides invariants of these knots.

1. Introduction.

In [Bot96], Bott introduced an isotopy invariant Z2 of knots Sn ↪→ Rn+2 in odd

dimensional Euclidean spaces. The invariant Z2 is defined as a linear combination of

configuration space integrals associated to graphs by integrating forms associated to the

edges, which represent directions in Rn or in Rn+2. The involved graphs have four vertices

of two kinds and four edges of two kinds.

This invariant was generalized to a whole family (Zk)k∈N\{0} of isotopy invariants of

long knots Rn ↪→ Rn+2, for odd n ≥ 3, by Cattaneo and Rossi in [CR05] and by Rossi

in his thesis [Ros02]. The degree k Bott–Cattaneo–Rossi (BCR for short) invariant Zk
involves diagrams with 2k vertices.

In [Wat07], Watanabe proved that, when restricted to ribbon long knots, the BCR

invariants are finite type invariants with respect to some operations on ribbon knots, and

he used this property to prove that the invariants Zk are not trivial for even k ≥ 1, and

that they are related to the Alexander polynomial, for long ribbon knots.

In Theorem 2.10, which is the main theorem of this article, we generalize the invari-

ants (Zk)k≥2 to long knots in the parallelized asymptotic homology Rn+2 of Section 2.1

when n ≥ 3 is odd, using the notion of propagating forms. When the ambient space

is Rn+2, our extended definition also provides a more flexible definition for the original

invariants (Zk)k≥2. In Theorem 2.13, we equivalently define our generalized BCR invari-

ants as rational combinations of intersection numbers of chains in configuration spaces.

In particular, our generalized invariants are rational. Theorem 2.17 asserts that Zk is

additive under connected sum. In [Let20a], we use our flexible definition to express

our generalized Z2 in terms of linking numbers or of Alexander polynomials for all long

knots in parallelizable asymptotic homology Rn+2, when n ≡ 1 mod 4. In [Let20b],

we extend the BCR invariants Zk to 1-dimensional long knots in (rational) asymptotic
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816 D. Leturcq

homology R3, and the results of [Let20a] express these extended invariants and the usual

Alexander polynomial in terms of each other.

Our invariants Zk are precisely defined in Section 2, where the three forementioned

theorems are stated. Their proofs are given in the following sections.

Our definition of Zk involves a parallelization of the ambient space, which is a trivi-

alization of its tangent bundle that is standard outside a compact as precisely explained

in Definition 2.1. In Section 6, we prove that Zk does not depend on the parallelization

when it exists. In order to prove this result, we prove Theorem 6.2, which asserts that,

up to homotopy, any two parallelizations of a parallelizable asymptotic homology Rn+2

that are standard outside a compact coincide outside an (arbitrarily small) ball.

The author does not know whether any asymptotic homology Rn+2 admits a par-

allelization in the sense of Definition 2.1. However, using the fact that the connected

sum of any odd-dimensional asymptotic homology Rn+2 with itself is parallelizable in

the sense of Definition 2.1 (Proposition 2.18) and that Zk is additive (Theorem 2.17),

we extend our invariants to long knots in any (possibly non-parallelizable) asymptotic

homology Rn+2 with n odd ≥ 3 in Definition 2.19.

Acknowledgements. The author thank his advisor Christine Lescop for her help

with the redaction of this article. He also thank the referee for her/his helpful comments.

2. Definition of the BCR invariants.

2.1. Parallelized asymptotic homology Rn+2 and long knots.

In this article, we fix an odd integer n ≥ 3, and M denotes an (n + 2)-dimensional

closed smooth oriented manifold, such that H∗(M ;Z) = H∗(Sn+2;Z). Such a manifold

is called a homology (n+ 2)-sphere.

In such a homology sphere, choose a point ∞ and a closed ball B∞(M) around

this point. Fix an identification of this ball B∞(M) with the complement B∞ of the

open unit ball of Rn+2 in Sn+2 = Rn+2 ∪ {∞}. Let M◦ denote the manifold M \ {∞}
and let B◦

∞(M) denote the punctured ball B∞(M) \ {∞}. In all the following, this

punctured ball B◦
∞(M) is identified with the complement B◦

∞ of the open unit ball in

Rn+2. Let B(M) denote the closure of M◦ \ B◦
∞. Then, the manifold M◦ can be seen

as M◦ = B(M)∪B◦
∞, where B◦

∞ ⊂ Rn+2 (see Figure 1). Note that such a manifold M◦

has the same homology as Rn+2. The manifold M◦ equipped with the decomposition

M◦ = B(M) ∪B◦
∞ is called an asymptotic homology Rn+2.

M

∞

B(M)

B∞(M)

M◦

B◦
∞(M) = B◦

∞

B(M)

Figure 1.

Long knots of such a space M◦ are smooth embeddings ψ : Rn ↪→ M◦ such that

ψ(x) = (0, 0, x) ∈ B◦
∞ when ||x|| ≥ 1, and ψ(x) ∈ B(M) when ||x|| ≤ 1.
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Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots 817

Two long knots ψ and ψ′ are isotopic if there exists a family (ψt)0≤t≤1 of long knots,

such that the map (t, x) ∈ [0, 1] × Rn 7→ ψt(x) ∈ M◦ is smooth, and that ψ0 = ψ and

ψ1 = ψ′. Such a family is called an isotopy (between ψ and ψ′).

Definition 2.1. A parallelization of an asymptotic homology Rn+2 is a bundle

isomorphism τ : M◦ × Rn+2 → TM◦ that coincides with the canonical trivialization of

TRn+2 on B◦
∞×Rn+2. An asymptotic homology Rn+2 equipped with such a paralleliza-

tion is called a parallelized asymptotic homology Rn+2.

Two parallelizations τ and τ ′ are homotopic if there exists a smooth family (τt)0≤t≤1

of parallelizations such that τ0 = τ and τ1 = τ ′. Given a parallelization τ and x ∈ M◦,

τx denotes the isomorphism τ(x, ·) : Rn+2 → TxM
◦.

2.2. BCR diagrams.

The definition of the BCR invariants involves the following graphs, called BCR

diagrams.

Definition 2.2. A BCR diagram is an oriented connected graph Γ, defined by a

set V (Γ) of vertices, decomposed into V (Γ) = Vi(Γ) ⊔ Ve(Γ), and a set E(Γ) of ordered

pairs of distinct vertices, decomposed into E(Γ) = Ei(Γ) ⊔ Ee(Γ), whose elements are

called edges1, where the elements of Vi(Γ) are called internal vertices, those of Ve(Γ),

external vertices, those of Ei(Γ), internal edges, and those of Ee(Γ), external edges, and

such that, for any vertex v, one of the five following properties holds:

1. v is external and trivalent, with two incoming external edges and one outgoing

external edge, and one of the incoming edges comes from a univalent vertex.

2. v is internal and trivalent, with one incoming internal edge, one outgoing internal

edge, and one incoming external edge, which comes from a univalent vertex.

3. v is internal and univalent, with one outgoing external edge.

4. v is internal and bivalent, with one incoming external edge and one outgoing inter-

nal edge.

5. v is internal and bivalent, with one incoming internal edge and one outgoing exter-

nal edge.

The external edges that come from a (necessarily internal) univalent vertex are called the

legs of Γ. The subgraph of Γ made of all the other edges, and the non univalent vertices

is called the cycle of Γ.

Define the degree of a BCR diagram Γ as deg(Γ) = (1/2)Card(V (Γ)), and let Gk
denote the set of all BCR diagrams of degree k.

In the following, internal edges are depicted by solid arrows, external edges by dashed

arrows, internal vertices by black dots, and external vertices by white dots (circles).

This is the same convention as in [Wat07], but it is the opposite of what was done in

1Note that this implies that our graphs have neither loops nor multiple edges with same orientation.
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818 D. Leturcq

[CR05], where the internal edges are dashed, and the external ones are solid. With these

conventions, the five behaviors of Definition 2.2 are depicted in Figure 2.

1

v

2

v

3

v

4

v

5

v

Figure 2.

Definition 2.2 implies that any BCR diagram consists of one cycle with some legs

attached to it, which is a cyclic sequence of pieces as in Figure 3 with as many pieces of

the first type as those of the second type. In particular, the degree of a BCR diagram is

an integer.

Figure 3.

For example, Figure 4 depicts the five degree 2 BCR diagrams, which respectively

have two, two, one, one, and no legs.

Figure 4. The degree 2 BCR diagrams.

Since any vertex has exactly one outgoing edge, every BCR diagram of degree k has

exactly 2k edges. A numbering of a degree k BCR diagram Γ is a bijection σ : E(Γ) →
{1, . . . , 2k}, and G̃k denotes the set of all degree k numbered BCR diagrams (Γ, σ) (up

to numbered graph isomorphisms).

2.3. Two-point configuration spaces.

If P is a submanifold of a manifold Q such that P is transverse to the boundary ∂Q

of Q and ∂P = P ∩ ∂Q, its normal bundle NP is the bundle over P whose fibers are

NxP = TxQ/TxP . A fiber UNxP of the unit normal bundle UNP of P is the quotient of

NxP \ {0} by dilations2. The differential blow-up of Q along P is the manifold obtained

by replacing P with its unit normal bundle UNP . It is diffeomorphic to the complement

in Q of an open tubular neighborhood of P . The boundary of the obtained manifold is

canonically identified with (∂Q \ ∂P ) ∪ UNP , and its interior is Q \ (P ∪ ∂Q).

2Dilations are homotheties with positive ratio.
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Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots 819

Let X be a d-dimensional closed smooth oriented manifold, let ∞ be a point of X,

and set X◦ = X \ {∞}. Here, we give a short overview of the compactification C2(X
◦)

of the two-point configuration space defined in [Les15, Section 2.2]. Let C2(X
◦) be the

space defined from X2 by blowing up the point (∞,∞), and next the closures of the sets

∞×X◦, X◦ ×∞ and ∆X◦ = {(x, x) | x ∈ X◦}.
The manifold C2(X

◦) is compact and comes with a canonical map pb : C2(X
◦) → X2.

This map induces a diffeomorphism from the interior of C2(X
◦) to the open configuration

space C0
2 (X

◦) = {(x, y) ∈ (X◦)2 | x ̸= y}, and C2(X
◦) has the same homotopy type as

C0
2 (X

◦). The manifold C2(X
◦) is called the two-point configuration space of X◦.

Let T∞X denote the tangent bundle to X at ∞. Identify a punctured neighborhood

of ∞ in X with B◦
∞. Identify T∞X \ {0} with Rd \ {0} so that u ∈ Rd \ {0} is the

tangent vector at 0 of the path γ such that γ(0) = ∞ and for any t ∈]0, 1/||u||], γ(t) =
tu/||tu||2 ∈ B◦

∞ ⊂ X◦. Use this identification to see the unit tangent space U∞X to X

at ∞ as Sd−1, so that we have the following description of ∂C2(X
◦).

Notation 2.3. The boundary of C2(X
◦) is the union of:

• the closed face ∂∞,∞C2(X
◦) = p−1

b ({(∞,∞)}), whose interior3 is the set of all

classes of pairs (u, v) ∈ (Rd \ {0})2 ∼= (T∞X \ {0})2 such that u ̸= v, up to

dilations.

• the unit normal bundles to X◦ × {∞} and {∞} ×X◦, which are ∂X◦,∞C2(X
◦) =

X◦ × U∞X ∼= X◦ × Sd−1 and ∂∞,X◦C2(X
◦) = U∞X ×X◦ ∼= Sd−1 ×X◦,

• the face ∂∆C2(X
◦) = p−1

b (∆X◦), which is identified with the unit normal bundle

to the diagonal ∆X◦ , which is diffeomorphic to the unit tangent bundle UX◦ via

the map [(u, v)](x,x) ∈ UN(x,x)∆X◦ 7→ [v − u]x ∈ UxX
◦.

The following lemma can be proved as [Les15, Lemma 2.2].

Lemma 2.4. When X◦ = Rd, the Gauss map

C0
2 (Rd) → Sd−1

(x, y) 7→ y − x

||y − x||

extends to a map G : C2(Rd) → Sd−1.

Furthermore, G reads as follows on the faces4 of codimension 1 of C2(Rd):

G(c) =



v/||v||2 − u/||u||2∥∥v/||v||2 − u/||u||2
∥∥ if c = [u, v] is in the interior of ∂∞,∞C2(Rd),

−u if c = (u, y) ∈ ∂∞,RdC2(Rd) = Sd−1 × Rd,
u if c = (x, u) ∈ ∂Rd,∞C2(Rd) = Rd × Sd−1,
u

||u||
if c = [u]x ∈ UxRd ⊂ URd ∼= ∂∆C2(Rd).

3The boundary of this closed face contains the three codimension 2 faces of C2(X◦), which we do not
describe here.

4Here, we do not give the expression of G on the three codimension 2 faces. It can be found inside

the proof of [Les15, Lemma 2.2].
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820 D. Leturcq

This map G exists only when X◦ = Rd, but, if (M◦, τ) is a parallelized asymptotic

homology Rn+2, it is possible to define an analogue Gτ of G on the boundary of C2(M
◦),

as in [Les15, Proposition 2.3].

Definition 2.5. Let (M◦, τ) be a parallelized asymptotic homology Rn+2. Note

that the face ∂∞,∞C2(M
◦) is canonically identified with ∂∞,∞C2(Rn+2).

Then, we can define a smooth map Gτ : ∂C2(M
◦) → Sn+1 by the following formula:

Gτ (c) =


G(c) if c ∈ ∂∞,∞C2(M

◦) ∼= ∂∞,∞C2(Rn+2),

−u if c = (u, y) ∈ ∂∞,M◦C2(M
◦) = Sn+1 ×M◦,

u if c = (x, u) ∈ ∂M◦,∞C2(M
◦) =M◦ × Sn+1,

τ−1
x (u)

||τ−1
x (u)||

if c = [u]x ∈ UxM
◦ ⊂ UM◦ ∼= ∂∆C2(M

◦).

One can think of this map as a limit of the Gauss map when one or both points

approach infinity (where everything is standard), or when they are close to each other.

In the latter case, the limit is defined by the parallelization.

2.4. Configuration spaces.

Let Γ be a BCR diagram, let (M◦, τ) be a parallelized asymptotic homology Rn+2,

and let ψ : Rn ↪→M◦ be a long knot. Let C
0

Γ(ψ) denote the open configuration space

C
0

Γ(ψ) = {c : V (Γ) ↪→M◦ | there exists ci : Vi(Γ) ↪→ Rn satisfying c|Vi(Γ) = ψ ◦ ci}.

An element c of C
0

Γ(ψ) is called a configuration. By definition, the images of the

vertices under a configuration are distinct, and the images of internal vertices are on the

knot.

This configuration space is a non-compact smooth manifold. It admits a compacti-

fication CΓ(ψ), which is defined in [Ros02, Section 2.4], and which is the closure of the

image of the map c ∈ C
0

Γ(ψ) 7→ c∗ ∈ CV (Γ)∪{∗}(M), where c∗|V (Γ) = c and c∗(∗) = ∞,

and where CV (Γ)∪{∗}(M) is the compact configuration space defined in [Sin04].

Theorem 2.6 (Rossi, Sinha). The manifold CΓ(ψ) is a compact manifold with

corners, such that :

• The interior of CΓ(ψ) is canonically diffeomorphic to C
0

Γ(ψ).

• For any two internal vertices v and w, the map c ∈ C
0

Γ(ψ) 7→ (ci(v), ci(w)) ∈
C2(Rn) extends to a smooth map pψ,iv,w : CΓ(ψ) → C2(Rn).

• For any two vertices v and w, the map c ∈ C
0

Γ(ψ) 7→ (c(v), c(w)) ∈ C2(M
◦) extends

to a smooth map pψv,w : CΓ(ψ) → C2(M
◦).

Definition 2.7. The manifold CΓ(ψ) is called the (compact) configuration space

associated to Γ and ψ. For any edge e of Γ going from a vertex v to a vertex w, Ce
denotes the configuration space C2(Rn) if e is internal, and C2(M

◦) if e is external, and

pψe : CΓ(ψ) → Ce denotes the map pψ,iv,w if e is internal, and the map pψv,w if e is external.

When there is no ambiguity on the knot ψ, pψe is simply denoted by pe.
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Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots 821

Orient C0
Γ(ψ) as follows.

Let dY vi denote the i-th coordinate form of the internal vertex v (parametrized by

Rn) and let dXv
i denote the i-th coordinate form of the external vertex v (in an oriented

chart of M◦).

Split each external edge e in two halves: the tail e− and the head e+. Define a form

Ωe± for these external half-edges as follows:

• for the head e+ of a leg going to an external vertex v, Ωe+ = dX1
v ,

• for the head e+ of an edge that is not a leg, going to an external vertex v, Ωe+ =

dX2
v ,

• for the tail e− of an edge coming from an external vertex v, Ωe− = dX3
v∧· · ·∧dXn+2

v ,

• for any (external) half-edge e± adjacent to an internal vertex v, Ωe± = dY 1
v ∧ · · · ∧

dY nv .

Note that this distributes the coordinates of each vertex on the half-edges that are adja-

cent to it, as in Figure 5.

v

w

dX2
v

e+

e− Ωe−

dX3
v ∧ · · · ∧ dXn+2

v

f+

Ωf+f−

dX1
v

dY 1
w ∧ · · · ∧ dY nw

Figure 5. The forms associated to some external half-edges.

Let NT,i(Γ) denote the number of internal trivalent vertices, and define the sign of

a BCR diagram as ε(Γ) = (−1)NT,i(Γ)+Card(Ee(Γ)). The orientation of C0
Γ(ψ) is given by

the form Ω(Γ) = ε(Γ)
∧
e∈Ee(Γ)

Ωe, where Ωe = Ωe− ∧ Ωe+ for any external edge e.

2.5. Propagating forms.

Here we define the notion of propagating forms, which allows us to extend the

definition of the BCR invariants to all parallelizable asymptotic homology Rn+2.

For any even integer d, an antisymmetric form on Sd is a form ω such that

(−IdSd)
∗(ω) = −ω, where −IdSd is the antipodal map of the sphere.

Definition 2.8. An internal propagating form (or internal propagator) is a closed

(n− 1)-form α on C2(Rn) such that α|∂C2(Rn) = (G|∂C2(Rn))
∗(ωα) for an antisymmetric

(n−1)-form ωα on Sn−1 with
∫
Sn−1 ωα = 1, where G : C2(Rn) → Sn−1 is the map defined

in Lemma 2.4.

An external propagating form (or external propagator) of (M◦, τ) is a closed (n+1)-

form β on C2(M
◦) such that β|∂C2(M◦) = Gτ

∗(ωβ) for some antisymmetric (n+ 1)-form

ωβ on Sn+1 with
∫
Sn+1 ωβ = 1, where Gτ is the map of Definition 2.5.
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822 D. Leturcq

For a given integer k, a family F = (αi, βi)1≤i≤2k of propagating forms of (M◦, τ) is

the data of 2k internal propagating forms (αi)1≤i≤2k and 2k external propagating forms

(βi)1≤i≤2k of (M◦, τ).

Given such a family and a degree k numbered BCR diagram (Γ, σ), for each edge e

of Γ, set

ωFe,σ =

{
pe

∗(ασ(e)) if e is internal,

pe
∗(βσ(e)) if e is external.

For any edge e, n(e) denotes the integer n − 1 if e is internal, and n + 1 if e is

external, so that ωFe,σ is an n(e)-form on CΓ(ψ). We will see in Corollary 3.4 that

families of propagating forms exist.

2.6. Definition and properties of generalized BCR invariants of long

knots.

Fix an integer k ≥ 2, and a family F = (αi, βi)1≤i≤2k of propagating forms of

(M◦, τ).

Let ψ be a long knot.

For any numbered BCR diagram (Γ, σ) of degree k, define5 the form ωF (Γ, σ, ψ)

on CΓ(ψ) as ωF (Γ, σ, ψ) =
∧
e∈E(Γ) ω

F
e,σ, and set IF (Γ, σ, ψ) =

∫
CΓ(ψ)

ωF (Γ, σ, ψ). This

integral is a real number because of the following lemma.

Lemma 2.9. For any BCR diagram Γ, dim(CΓ(ψ)) = deg(ωF (Γ, σ, ψ)).

Proof. Split any edge e of Γ in two halves e− (the tail) and e+ (the head), and

let v(e±) denote the vertex adjacent to the half-edge e±. Assign an integer d(e±) to each

half-edge as follows:

• If e is external, d(e+) = 1 and d(e−) = n as in
n 1
e− e+

.

• If e is internal, d(e+) = 0 and d(e−) = n− 1 as in
n− 1 0
e− e+

.

Note that, with these notations:

• for any edge e ∈ E(Γ), d(e+) + d(e−) = n(e).

• for any vertex v ∈ V (Γ), as it can be checked in Figure 6,

∑
e±,v(e±)=v

d(e±) =

{
n if v is internal,

n+ 2 if v is external.

5The order of the forms inside the wedge product is not important since they have even degrees.
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v

1

n1

v

0

n − 1
1

v

n

v

1

n − 1
v

0

n

Figure 6.

Then,

deg(ωF (Γ, σ, ψ)) =
∑

e∈E(Γ)

(d(e+) + d(e−)) =
∑

v∈V (Γ)

∑
e±,v(e±)=v

d(e±)

=
∑

v∈Vi(Γ)

n+
∑

v∈Ve(Γ)

(n+ 2) = dim(CΓ(ψ)). □

Theorem 2.10. Set

ZFk (ψ) =
1

(2k)!

∑
(Γ,σ)∈G̃k

IF (Γ, σ, ψ).

The following properties hold :

1. The value of ZFk (ψ) does not depend on the choice of the family F of propagating

forms of (M◦, τ).

2. The value of Zk(ψ) = ZFk (ψ) does not depend on the choice of the parallelization τ

of the ambient manifold M◦.

3. For any φ ∈ Diffeo+(M◦) that fixes B◦
∞ pointwise, and for any long knot ψ of M◦,

Zk(ψ) = Zk(φ ◦ ψ). In particular, Zk is a long knot isotopy invariant.

4. The invariant Zk takes only rational values.

5. If k is odd, Zk is always zero.

The obtained invariant Zk is called the generalized BCR invariant of degree k.

When M◦ = Rn+2, and when all the propagators are pullbacks of the homogeneous

unit volume forms on Sn−1 and Sn+1 with total volume one, our definition matches the

definition of the invariants6 (Θk)k≥2 of [CR05, Section 6] and of the invariants 2zk of

[Wat07, Section 2.4] (we have Zk = Θk = 2zk). Our definition allows more flexibility

on the choice of the forms. It extends the invariant to an invariant for long knots in any

parallelized asymptotic homology Rn+2. In [Wat07, Theorem 4.1], Watanabe proved

that zk is not trivial when k is even and M◦ = Rn+2, and he related zk to Alexander

polynomial for long ribbon knots.

6Only Θ2 and Θ3 are explicitly defined in [CR05], but the definition for higher k is mentioned.
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824 D. Leturcq

2.7. Propagating chains.

Let us first fix some notations on the chains used in this article.

Definition 2.11. A rational k-chain A of a manifold X is a finite rational combi-

nation
∑r
i=1 qiYi of compact oriented k-submanifolds with corners (Yi)1≤i≤r of X. The

boundary ∂A of A is the rational (k−1)-chain ∂A =
∑r
i=1 qi∂Yi, up to the usual algebraic

cancellations7.

If the (Yi)1≤i≤r have pairwise disjoint interiors, A is called an embedded rational

k-chain.8 If A is an embedded rational k-chain, Supp(A) =
∪r
i=1 Yi denotes the support

of A, A(k−1) =
∪r
i=1 ∂Yi denotes its (k − 1)-skeleton, and Int(A) = Supp(A) \A(k−1) its

interior.

Let us now define the notion of propagating chains, which will give us another way of

computing the invariant Zk, and help us to prove the fourth assertion of Theorem 2.10.

Definition 2.12. An internal propagating chain (or internal propaga-

tor) is an embedded rational (n + 1)-chain A of C2(Rn) such that ∂A =

(1/2)(G|∂C2(Rn))
−1({−xA, xA}) for some xA ∈ Sn−1.

An external propagating chain (or external propagator) of (M◦, τ) is an embedded

rational (n + 3)-chain B of C2(M
◦) such that ∂B = (1/2)G−1

τ ({−xB , xB}) for some

xB ∈ Sn+1.

A family F∗ = (Ai, Bi)1≤i≤2k of propagating chains of (M◦, τ) is the data of 2k

internal propagating chains (Ai)1≤i≤2k and 2k external propagating chains (Bi)1≤i≤2k

of (M◦, τ).

Consider a family F∗ = (Ai, Bi)1≤i≤2k of propagating chains of (M◦, τ). For any

BCR diagram Γ, set

PΓ : CΓ(ψ) →
∏

e∈Ei(Γ)

C2(Rn)×
∏

e∈Ee(Γ)

C2(M
◦) =

∏
e∈E(Γ)

Ce

c 7→ (pe(c))e∈E(Γ).

The family F∗ is in general position if, for any numbered BCR diagram

(Γ, σ) ∈ G̃k, and for any c ∈ CΓ(ψ) such that PΓ(c) ∈ (
∏
e∈Ei(Γ)

Supp(Aσ(e))) ×
(
∏
e∈Ee(Γ)

Supp(Bσ(e))):

• For any internal edge e of Γ, pe(c) ∈ Int(Aσ(e)).

• For any external edge e of Γ, pe(c) ∈ Int(Bσ(e)).

• We have the transversality property

7These cancellations allow us to write 1.(−Y ) = (−1).Y for a submanifold Y , where −Y denotes the
manifold Y with the opposite orientation, and 1.(Y ⊔ Z) = 1.Y + 1.Z for disjoint submanifolds Y and

Z, for example.
8Note that any rational chain is homologous to an embedded one.
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TPΓ(c)

 ∏
e∈E(Γ)

Ce


= TcPΓ(TcCΓ(ψ)) +

 ∏
e∈Ei(Γ)

Tpe(c)Int(Aσ(e))

×

 ∏
e∈Ee(Γ)

Tpe(c)Int(Bσ(e))

.
In the following, DF∗

e,σ denotes the chain p−1
e (Aσ(e)) if e is internal, and the chain

p−1
e (Bσ(e)) if e is external. This is a chain of codimension n(e) of CΓ(ψ).

2.8. Computation of Zk in terms of propagating chains.

We can now give a discrete definition of our generalized BCR invariants.

Theorem 2.13. Let F∗ = (Ai, Bi)1≤i≤2k be a family of propagating chains of

(M◦, τ) in general position.

The algebraic intersection number IF∗(Γ, σ, ψ) of the chains (DF∗
e,σ)e∈E(Γ) inside

CΓ(ψ) makes sense and

Zk(ψ) =
1

(2k)!

∑
(Γ,σ)∈G̃k

IF∗(Γ, σ, ψ).

This theorem is proved in Section 4.1, where a more precise definition of this in-

tersection number is given. The existence of families of propagating chains in general

position is proved in Section 3.5.

2.9. Additivity of Zk under connected sum.

Let M◦
1 and M◦

2 be two asymptotic homology Rn+2. Let us define the connected

sumM◦
1 ♯M

◦
2 . Let B

◦
∞,1/4 be the complement in Rn+2 of the two open balls B̊1 and B̊2 of

radius 1/4 and with respective centers Ω1 = (0, 0, . . . , 0,−1/2) and Ω2 = (0, 0, . . . , 0, 1/2).

For i ∈ {1, 2} and x in ∂B(Mi) ⊂ Rn+2, define the map φi(x) = (1/4)x+Ωi, which is a

diffeomorphism from ∂B(Mi) to ∂Bi.

Set M◦
1 ♯M

◦
2 = B◦

∞,1/4 ∪ B(M1) ∪ B(M2), where B(Mi) is glued to B◦
∞,1/4 along

∂Bi using the map φi, and set B(M◦
1 ♯M

◦
2 ) = (M◦

1 ♯M
◦
2 ) \B◦

∞, where B◦
∞ is defined in

Section 2.1. The manifold M◦
1 ♯M

◦
2 with the decomposition M◦

1 ♯M
◦
2 = B(M◦

1 ♯M
◦
2 )∪B◦

∞
is called the connected sum of M◦

1 and M◦
2 .

Proposition 2.14. The obtained manifold M◦
1 ♯M

◦
2 is an asymptotic homology

Rn+2 with two canonical injections ιi : B(Mi) ↪→ B(M◦
1 ♯M

◦
2 ) ⊂M◦

1 ♯M
◦
2 for i ∈ {1, 2}.

If M◦
1 and M◦

2 are parallelized, M◦
1 ♯M

◦
2 inherits a natural parallelization, up to

homotopy.

Proof. This is immediate. □

Definition 2.15. Let M◦
1 and M◦

2 be two asymptotic homology Rn+2.

Let ψ1 : Rn ↪→M◦
1 and ψ2 : Rn ↪→M◦

2 be two long knots. The formula
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(ψ1♯ψ2)(x) =



ι2(ψ2(4.x1, . . . , 4.xn−1, 4.xn − 2)) if

∥∥∥∥x−
(
0, . . . , 0,

1

2

)∥∥∥∥ ≤ 1

4
,

ι1(ψ1(4.x1, . . . , 4.xn−1, 4.xn + 2)) if

∥∥∥∥x−
(
0, . . . , 0,−1

2

)∥∥∥∥ ≤ 1

4
,

(0, 0, x) ∈ B◦
∞,1/4 otherwise,

defines a long knot ψ1♯ψ2 ↪→M◦
1 ♯M

◦
2 , which is called the connected sum of ψ1 and ψ2.

Let us assert the following immediate result about connected sum.

Lemma 2.16. Set ψtriv : x ∈ Rn 7→ (0, 0, x) ∈ Rn+2. The embedding ψtriv is called

the trivial knot.

For any parallelizable asymptotic homology Rn+2 M◦ and for any long knot ψ inM◦,

there exist two diffeomorphisms T (1)
M◦,ψ : Rn+2♯M◦ → M◦ and T (2)

M◦,ψ : M
◦♯Rn+2 → M◦

such that T (1)
M◦,ψ ◦ (ψtriv♯ψ) = ψ = T (2)

M◦,ψ ◦ (ψ♯ψtriv).
Similarly, the connected sum is associative and commutative up to ambient diffeo-

morphisms.

In Section 9, we prove the following theorem.

Theorem 2.17. Let M◦
1 and M◦

2 be two parallelizable asymptotic homology Rn+2

and let ψ1 : Rn ↪→M◦
1 and ψ2 : Rn ↪→M◦

2 be two long knots. Then, for any k ≥ 2,

Zk(ψ1♯ψ2) = Zk(ψ1) + Zk(ψ2).

2.10. Extension of Zk to any asymptotic homology Rn+2.

We prove the following proposition at the end of Section 8.

Proposition 2.18. For any odd n ≥ 1, the connected sum of any asymptotic

homology Rn+2 with itself is parallelizable in the sense of Definition 2.1.

Theorem 2.10, Proposition 2.18 and the additivity of Zk under connected sum of

Theorem 2.17 show that the following definition is consistent.

Definition 2.19. Let ψ be a long knot in a (possibly non-parallelizable) asymp-

totic homology Rn+2 with n odd ≥ 3. Define Zk(ψ) as (1/2)Zk(ψ♯ψ).

By construction, Zk still satisfies the three last points of Theorem 2.10: it is in-

variant under ambient diffeomorphisms, takes rational values, and is trivial when k is

even. The associativity and commutativity of connected sum up to ambient diffeomor-

phisms of Lemma 2.16 and Theorem 2.17 show the following proposition, which extends

Theorem 2.17.

Proposition 2.20. Let M◦
1 and M◦

2 be two asymptotic homology Rn+2 and let

ψ1 : Rn ↪→M◦
1 and ψ2 : Rn ↪→M◦

2 be two long knots. Then, for any k ≥ 2,

Zk(ψ1♯ψ2) = Zk(ψ1) + Zk(ψ2).
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3. Independence of the propagating forms.

In this section, we study the effect on Zk of a change in the family of propagating

forms. Without loss of generality, it suffices to study how Zk changes when α1 and β1
change.

3.1. Expression of the dependence in terms of boundary integrals.

For later purposes, we allow a more general context: as previously, we suppose

that a family F = (αi, βi)1≤i≤2k of propagating forms is given, but we allow the

forms βi to be compatible with different parallelizations τi of M◦ (which means that

(βi)|∂C2(M◦) = G∗
τi(ωβi)). This will allow us to use the results of this section in the

proof of the independence of the parallelization in Section 6.2. For simplicity, we set

ωn−1
i = ωαi and ωn+1

i = ωβi .

Let τ ′1 be a parallelization ofM◦. Let F ′ = (α′
i, β

′
i)1≤i≤2k be a family of propagating

forms such that for any i ≥ 2, (α′
i, β

′
i) = (αi, βi), that β

′
1 is an external propagating form

for τ ′1, and that α′
1 − α1 and β′

1 − β1 are exact forms. We set (ωn−1
1 )′ = ωα′

1
and

(ωn+1
1 )′ = ωβ′

1
.

Let ζn−2
1 be an (n − 2)-form on C2(Rn) and let ξn1 be an n-form on C2(M

◦) such

that α′
1 = α1 + dζn−2

1 and β′
1 = β1 + dξn1 .

We say that (α′
1−α1, β

′
1−β1) has the sphere factorization property if we can choose

the forms (ζn−2
1 , ξn1 ) such that ζn−2

1 |∂C2(Rn) = G|∂C2(Rn)
∗(ηn−2

1 ) for some antisymmetric

(n − 2)-form ηn−2
1 on Sn−1 and that ξn1 |∂C2(M◦) = Gτ1

∗(θn1 ) for some antisymmetric n-

form θn1 on Sn+1. In the following, when this property is assumed, we always choose such

primitives.

For any (Γ, σ) ∈ G̃k, and for any edge e of Γ, define the form

ω̃e,σ =


ωFe,σ if σ(e) ̸= 1,

p∗e(ζ
n−2
1 ) if σ(e) = 1 and e is internal,

p∗e(ξ
n
1 ) if σ(e) = 1 and e is external,

and set ω̃(Γ, σ, ψ) =
∧
e∈E(Γ) ω̃e,σ, where the order of the forms is not important since

all of them except one have even degrees.

Lemma 3.1. With these notations,

ZF
′

k (ψ)− ZFk (ψ) =
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
∂CΓ(ψ)

ω̃(Γ, σ, ψ).

Proof. From the Stokes formula, it directly follows that

IF
′
(Γ, σ, ψ)− IF (Γ, σ, ψ) =

∫
CΓ(ψ)

dω̃(Γ, σ, ψ) =

∫
∂CΓ(ψ)

ω̃(Γ, σ, ψ). □

3.2. Codimension 1 faces of CΓ(ψ).

The codimension 1 open faces of CΓ(ψ) are in bijection with the subsets S of car-

dinality at least two of V ∗(Γ) = V (Γ) ⊔ {∗}. Let ∂SCΓ(ψ) denote the face associated to
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such an S and let F(Γ) denote the set of the codimension 1 faces. There are four types

of faces in F(Γ):

• If S contains ∗, ∂SCΓ(ψ) is called an infinite face, and its elements are configurations

of CΓ(ψ) that map the vertices of S \ {∗} to infinity, and all the other vertices to

pairwise distinct points of M◦.

• If S = V (Γ), ∂SCΓ(ψ) is called the anomalous face. Its elements are configurations

that map all the vertices to one point, which is necessarily on the knot.

• If S has exactly two points, which are connected by exactly one edge, ∂SCΓ(ψ) is

called a principal face and its elements are configurations that map the two vertices

of S to one point xS and all the other ones to pairwise distinct vertices ofM◦\{xS}.

• Otherwise, ∂SCΓ(ψ) is called a hidden face, and its elements are configurations that

map all the vertices of S to one point xS , and all the other ones to pairwise distinct

points of M◦ \ {xS}.

One can find precise descriptions of these faces in Section 7 or in [Ros02, pp.61–62].

A numbered (codimension 1) face of CΓ(ψ) is a face ∂SCΓ(ψ) as above, together

with a numbering σ of Γ.

For any numbered face (∂SCΓ(ψ), σ), set δSI (Γ, σ, ψ) =
∫
∂SCΓ(ψ)

ω̃(Γ, σ, ψ), so that

ZF
′

k (ψ)− ZFk (ψ) =
1

(2k)!

∑
(Γ,σ)∈G̃k

∑
S∈F(Γ)

δSI (Γ, σ, ψ).

3.3. Vanishing lemma for the face contributions.

Lemma 3.2. If S ⊂ V (Γ), ΓS denotes the subgraph of Γ whose vertices are the

elements of S and whose edges are the edges of Γ that connect two vertices of S.

• For any numbered infinite face (∂SCΓ(ψ), σ), such that no end of σ−1(1) is in S,

δSI (Γ, σ, ψ) = 0.

• The set of hidden faces splits into two sets H1(Γ) and H2(Γ), such that :

– For any hidden face ∂SCΓ(ψ) of H1(Γ) and any numbering σ, δSI (Γ, σ, ψ) = 0.

– For any hidden face ∂SCΓ(ψ) of H2(Γ), we have an involution σ 7→ σ∗ of the

numberings of Γ such that δSI(Γ, σ
∗, ψ) = −δSI(Γ, σ, ψ).

• Represent the principal faces by pairs (Γ, e) where Γ ∈ Gk and e ∈ E(Γ). For any

numbering σ, let δeI (Γ, σ, ψ) denote the integral δSI (Γ, σ, ψ) where S is the set of

the two ends of e. Let N ̸=1(Γ, e) denote the set of the numberings of Γ such that

σ(e) ̸= 1, and let N (Γ) denote the set of all the numberings of Γ. Then :

– There exists an involution s : (Γ, e) 7→ (Γ∗, e∗) of the set of principal faces

such that, for any (Γ, e), there exists a canonical map sΓ,e : σ ∈ N ̸=1(Γ, e) 7→
σ∗ ∈ N ̸=1(Γ

∗, e∗), such that δe∗I(Γ
∗, σ∗, ψ) = −δeI(Γ, σ, ψ) and such that

sΓ,e ◦ sΓ∗,e∗ = Id.

828(158)



Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots 829

– If σ is a numbering of Γ such that σ(e) = 1, and, if e is internal, or if e is

external with at least one external end, then δeI (Γ, σ, ψ) = 0.

Furthermore, if (α′
1 − α1, β

′
1 − β1) has the sphere factorization property :

• For any infinite face ∂SCΓ(ψ) such that S contains an end of σ−1(1), δSI (Γ, σ, ψ) =

0.

• The anomalous faces do not contribute : for any (Γ, σ) ∈ G̃k, δV (Γ)I (Γ, σ, ψ) = 0.

• For the principal faces (Γ, e) associated to an edge e where e is external with internal

ends, the map sΓ,e above can be extended to a map N (Γ) → N (Γ∗) such that

δe∗I(Γ
∗, σ∗, ψ) = −δeI(Γ, σ, ψ) and sΓ,e ◦ sΓ∗,e∗ = Id.

The proof of this lemma is given in Section 7.

3.4. Cohomology groups of two-point configuration spaces.

In this section, we study the cohomology of configuration spaces. This allows us to

prove the existence of families of propagating forms and the independence of ZFk of the

propagating forms (first point of Theorem 2.10) up to Lemma 3.2 in the next subsection.

Lemma 3.3. Let (M◦, τ) be a parallelized asymptotic homology Rn+2. The relative

cohomology of C2(M
◦) is

H∗(C2(M
◦), ∂C2(M

◦);R) =

{
R if ∗ = n+ 3 or ∗ = 2n+ 4,

0 otherwise.

Proof. Since C2(M
◦) is a compact oriented (2n+ 4)-manifold,

H2n+4(C2(M
◦), ∂C2(M

◦);R) = R.

Fix 0 ≤ ℓ ≤ 2n+ 3. The Poincaré–Lefschetz duality yields

Hℓ(C2(M
◦), ∂C2(M

◦)) = H2n+4−ℓ(C2(M
◦)) = H2n+4−ℓ(C

0
2 (M

◦)).

Furthermore, we have a long exact sequence

H2n+5−ℓ((M
◦)2) → H2n+5−ℓ((M

◦)2, C0
2 (M

◦)) → H2n+4−ℓ(C
0
2 (M

◦)) → H2n+4−ℓ((M
◦)2)

where H∗((M
◦)2) = H∗(pt) by the Künneth formula. Then, we have an isomorphism

H2n+4−ℓ(C
0
2 (M

◦)) ∼= H2n+5−ℓ((M
◦)2, C0

2 (M
◦)). The excision theorem yields

H2n+5−ℓ((M
◦)2, C0

2 (M
◦)) = H2n+5−ℓ(N (∆M◦),N (∆M◦) \∆M◦)

= H2n+5−ℓ(∆M◦ × Dn+2,∆M◦ × (Dn+2 \ {0})),

where N (∆M◦) is a tubular neighborhood of ∆M◦ , which can be identified with ∆M◦ ×
Dn+2 using the parallelization. By Künneth’s formula,

H2n+5−ℓ(∆M◦ × Dn+2,∆M◦ × (Dn+2 \ {0})) =
⊕

i+j=2n+5−ℓ

Hi(∆M◦)⊗Hj(Dn+2, Sn+1)
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= Hn+3−ℓ(M
◦)⊗ R.

Therefore, Hℓ(C2(M
◦), ∂C2(M

◦)) ∼= Hn+3−ℓ(M
◦). □

3.5. Existence of propagating forms. Independence of ZF
k of a choice of

propagating forms.

The results of this section are applications of Lemma 3.3.

Corollary 3.4. For any parallelized asymptotic homology Rn+2 (M◦, τ), there

exist external propagating forms for (M◦, τ).

Proof. The triviality of the cohomology group Hn+2(C2(M
◦), ∂C2(M

◦)) follows

from the lemma. The restriction map Hn+1(C2(M
◦)) → Hn+1(∂C2(M

◦)) is there-

fore surjective. Thus, given an antisymmetric closed (n + 1)-form ωn+1 on Sn+1, there

exists a closed form βn+1
0 on C2(M

◦) such that [(βn+1
0 )|∂C2(M◦)] = [Gτ

∗(ωn+1)] in

Hn+1(∂C2(M
◦)). Then, there exists a form ρn0 on ∂C2(M

◦) such that (βn+1
0 )|∂C2(M◦) =

Gτ
∗(ωn+1)+dρn0 . Extend ρ

n
0 to a form ρn on C2(M

◦), and set βn+1 = βn+1
0 −dρn. The

form βn+1 is closed, and (βn+1)|∂C2(M◦) = Gτ
∗(ωn+1). The corollary is proved. □

Let us now prove the first point of Theorem 2.10, i.e. that ZFk does not depend on

the choice of the family F of propagating forms of (M◦, τ). Fix (M◦, τ), and choose two

families F = (αi, βi)1≤i≤2k and F ′ = (α′
i, β

′
i)1≤i≤2k of propagating forms of (M◦, τ).

As previously said, it suffices to show that ZFk does not change if α1 and β1 change.

Therefore, we assume that for any i ≥ 2, (α′
i, β

′
i) = (αi, βi), without loss of generality,

and we use the notations of Section 3.1.

Lemma 3.5. The pair (α′
1 − α1, β

′
1 − β1) has the sphere factorization property.

Proof. By construction, (β′
1 − β1)|∂C2(M◦) = G∗

τ ((ω
n+1
1 )′ − ωn+1

1 ). Since∫
Sn+1(ω

n+1
1 )′ =

∫
Sn+1 ω

n+1
1 , there exists an n-form θn1 on Sn+1 such that dθn1 =

(ωn+1
1 )′ − ωn+1

1 . Since ωn+1
1 and (ωn+1

1 )′ are antisymmetric, θn1 can be assumed

to be antisymmetric. Extend the form Gτ
∗(θn1 ) to a form ρn1 on C2(M

◦). Then,

β′
1−β1−dρn1 is a closed form on C2(M

◦), whose restriction to ∂C2(M
◦) vanishes. Since

Hn+1(C2(M
◦), ∂C2(M

◦)) = 0, there exists an n-form ρn2 on C2(M
◦), which vanishes on

∂C2(M
◦), such that β′

1 − β1 − dρn1 = dρn2 . Set ξn1 = ρn1 + ρn2 , so that β′
1 − β1 = dξn1 ,

ξn1 |∂C2(M◦) = Gτ
∗(θn1 ) and θ

n
1 is antisymmetric.

The same argument on α′
1 − α1 concludes the proof of Lemma 3.5. □

From the previous lemma and Lemma 3.2, it follows that ZF
′

k −ZFk = 0. This proves

the independence of ZFk (ψ) of the family F of propagating forms of (M◦, τ). This is the

first point of Theorem 2.10.

4. Rationality of Zk.

4.1. Proof of Theorem 2.13.

Fix a family F∗ = (Ai, Bi)1≤i≤2k of propagating chains of (M
◦, τ) in general position.

In order to prove that Zk can be computed with these propagators, we are going to
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define forms dual to them, and use the definition of Zk. Fix Riemannian metrics on the

configuration spaces C2(M
◦), C2(Rn), and CΓ(ψ), and denote by Nε(X) = {c | d(c,X) ≤

ε} the closed ε-neighborhood of a subset X of any of these spaces. Define

D(Γ, σ) =

{
c ∈ CΓ(ψ)

∣∣∣∣∣ (pe(c))e∈E(Γ) ∈
∏

e∈Ei(Γ)

Supp(Aσ(e))×
∏

e∈Ee(Γ)

Supp(Bσ(e))

}

=
∩

e∈E(Γ)

DF∗
e,σ.

Let ε > 0 be such that for any internal edge e, pe(D(Γ, σ)) ⊂ Supp(Aσ(e))\Nε(A
(n)
σ(e)),

and such that for any external edge e, pe(D(Γ, σ)) ⊂ Supp(Bσ(e)) \Nε(B
(n+2)
σ(e) ).

Set A0
i = Ai \ Nε(A(n)

i ), Nε(Ai) = Nε(Supp(Ai)), B
0
i = Bi \ Nε(B(n+2)

i ), and

Nε(Bi) = Nε(Supp(Bi)). For ε small enough, for any x in A0
i , there exists an open

neighborhood Vx ⊂ Nε(Ai) of x in C2(Rn), which can be thought of as a tubular neigh-

borhood of an open neighborhood Wx of x in A0
i , so that there is a local (orientation-

preserving) trivialization Vx → Wx × Dn−1. This induces a local fiber projection map

px : Vx → Dn−1. This construction can be made so that if Vx ∩ Vx′ ̸= ∅, there exists a

rotation rx,x′ ∈ SO(Rn−1) such that (px)|Vx∩Vx′ = (rx,x′ ◦ px′)|Vx∩Vx′ . For any x ∈ B0
i ,

similarly define an open neighborhood Vx ⊂ Nε(Bi) of x in C2(M
◦), and a local fiber

projection map px : Vx → Dn+1.

Some use of linear algebra and inverse function theorem proves the following lemma.

Lemma 4.1. For any c ∈ D(Γ, σ), there exists a neighborhood Uc of c in CΓ(ψ)

such that for any e ∈ E(Γ), pe(Uc) ⊂ Vpe(c) and

φc : Uc →
∏

e∈E(Γ)

Dn(e)

y 7→ (ppe(c)(pe(y)))e∈E(Γ)

is a diffeomorphism onto its image.

Lemma 4.1 implies that D(Γ, σ) is discrete in the compact space CΓ(ψ), so it is a

finite set.

Since n(e) is even for any edge,
∏
e∈E(Γ) Dn(e) is naturally oriented, and we can

define sgn(det(dφc)) as the sign of the Jacobian det(dφc). For c ∈ D(Γ, σ), set

i(c) = sgn(det(dφc))
∏
e∈E(Γ) q(pe(c)), where q(pe(c)) is the coefficient qj of the sub-

manifold Yj in which pe(c) lies in the rational chain Aσ(e) (if e is internal) or Bσ(e) (if e

is external), which reads
∑
i qiYi. Then, the intersection number IF∗(Γ, σ, ψ) is defined

as IF∗(Γ, σ, ψ) =
∑
c∈D(Γ,σ) i(c).

The following lemma, which can be obtained as in [Les20, Section 11.4,

Lemma 11.13] connects this intersection number to a configuration space integral, thus

to the Zk invariant.

Lemma 4.2. There exists a family F = (αi, βi)1≤i≤2k of propagating forms of

(M◦, τ) such that for any (Γ, σ) ∈ G̃k :
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• The support of ωF (Γ, σ, ψ) is a disjoint union of some neighborhoods Uc of c ∈
D(Γ, σ) as in Lemma 4.1.

• For any c ∈ D(Γ, σ),
∫
Uc
ωF (Γ, σ, ψ) = i(c).

Sketch of proof. The main idea is to define the form αi supported on Nε(Ai),

such that for any x ∈ A0
i (αi)|Vx

= q(x).p∗x(ω
n−1) where ωn−1 is a volume form of total

volume one on Dn−1 supported in the interior of Dn−1 and q(x) is the coefficient of the

submanifold Yj in which x lies in Ai =
∑
k qkYk. The proof of [Les20, Section 11.4,

Lemma 11.13] explains how these forms can be “glued” along Nε(A
(n)
i ) in order to get a

closed form and how they can be defined on a collar of the boundary to get an internal

propagating form. The construction of βi is similar. □

Lemma 4.2 implies Theorem 2.13. Indeed, with the family F of propagating forms

of the lemma, the integrals IF (Γ, σ, ψ) of the definition of Zk in Theorem 2.10 are exactly

the rational numbers IF∗(Γ, σ, ψ) of Theorem 2.13.

4.2. Existence of propagating chains in general position.

Lemma 3.3 and the Poincaré–Lefschetz duality imply that Hn(C2(Rn)) and

Hn+2(C2(M
◦)) are trivial groups. Therefore, propagating chains exist.

As stated in the following theorem, these propagating chains can also be assumed

to be in general position.

Theorem 4.3. For any family (Ai, Bi)1≤i≤2k of propagating chains of (M
◦, τ), and

any ε > 0, there exists a family (A′
i, B

′
i)1≤i≤2k of propagating chains of (M◦, τ) in general

position such that for any 1 ≤ i ≤ 2k, Supp(A′
i) ⊂ Nε(Ai) and Supp(B′

i) ⊂ Nε(Bi).

Sketch of proof. This theorem could be proved as in [Les20, Section 11.3,

Lemma 11.11]. The main idea is to look at families of diffeomorphisms (φi, φ
′
i) isotopic

to the identity of the tubular neighborhoods Nε(Ai), Nε(Bi) that act only fiberwise. In

the space of such diffeomorphisms, the condition of general position on (φi(Ai), φ
′
i(Bi))

can be proved to correspond to an open dense (so non empty) subset. Therefore, there

exist some diffeomorphisms such that these perturbed chains are in general position. □

In particular, Zk can be computed with such propagating chains. By construction,

this gives a rational number. This proves the fourth assertion of Theorem 2.10.

5. Nullity of Zk when k is odd.

In this section, we prove the fifth assertion of Theorem 2.10. The method is the same

as in [Wat07, Section 2.5], but we have to deal with some more general propagating

forms, and our orientations are not the same9.

Let (M◦, τ) be a parallelized asymptotic homology Rn+2.

Let us fix an integer k ≥ 1, a long knot ψ, and a family F = (αi, βi)1≤i≤2k of

propagating forms of (M◦, τ).

9The orientation of our configuration spaces is wk(Γ).ΩWat(Γ) with the notations of [Wat07].
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Let Tα : C2(Rn) → C2(Rn) denote the extension of the map (x, y) ∈ C0
2 (Rn) 7→

(y, x) ∈ C2(Rn) to C2(Rn). Similarly define Tβ : C2(M
◦) → C2(M

◦).

Set F ′ = (α′
i, β

′
i)1≤i≤2k = ((1/2)(αi − T ∗

α(αi)), (1/2)(βi − T ∗
β (βi)))1≤i≤2k. Since

the forms ωαi and ωβi are antisymmetric for any 1 ≤ i ≤ 2k, F ′ is again a family of

propagating forms of (M◦, τ). For any 1 ≤ i ≤ 2k, T ∗
α(α

′
i) = −α′

i and T
∗
β (β

′
i) = −β′

i.

Proposition 5.1. For any (Γ, σ) ∈ G̃k, let (Γ∗, σ∗) denote the numbered BCR

diagram obtained from (Γ, σ) by reversing all the edges of the cycle. Then,

IF
′
(Γ∗, σ∗, ψ) = (−1)kIF

′
(Γ, σ, ψ).

Proof. Since the vertices and their natures are the same for Γ and Γ∗, we have

a canonical diffeomorphism CΓ(ψ) ∼= CΓ∗(ψ), but it may change the orientation.

It follows from the definition of the orientation of configuration spaces in Section 2.4

that the orientation Ω(Γ∗) can be obtained from Ω(Γ) as follows: first, exchange the

coordinate forms dX2
v and dX3

v ∧ · · · ∧ dXn+2
v for any external vertex v; next, for any

external edge e of the cycle, exchange the forms Ωe− and Ωe+ .

Set r = 0 if there is no internal edge in Γ. In this case, there are k external vertices

and k external edges in the cycle, so Ω(Γ∗) = (−1)k+kΩ(Γ) = Ω(Γ). Otherwise, any

external edge of the cycle is contained in one maximal sequence of consecutive external

edges of the cycle. If such a sequence has d edges, it has d − 1 external vertices. Let

us denote by (d1, . . . , dr) the lengths of the r maximal sequences of consecutive external

edges of the cycle. Then, the previous analysis yields Ω(Γ∗) = (−1)
∑r

i=1(di+(di−1))Ω(Γ) =

(−1)rΩ(Γ).

Let L denote the number of edges of the cycle of Γ. Since F ′ is such that for any 1 ≤
i ≤ 2k, T ∗

α(α
′
i) = −α′

i and T
∗
β (β

′
i) = −β′

i, we have10 ωF
′
(Γ∗, σ∗, ψ) = (−1)LωF

′
(Γ, σ, ψ).

Then, IF
′
(Γ∗, σ∗, ψ) = (−1)L+rIF

′
(Γ, σ, ψ).

It remains to check that L + r ≡ k mod 2. It is direct when there is no internal

edge.

Otherwise, let u (resp. b, resp. t) denote the number of univalent (resp. bivalent,

resp. trivalent) vertices of Γ. By definition of the BCR diagrams, u = t, and 2k =

u+ b+ t = b+ 2t.

Note that there is a bijection between maximal sequences of consecutive external

edges of the cycle and bivalent vertices with an external outgoing edge. This bijection is

defined by taking the source of the first edge of a sequence. Taking the head of the last

edge of a sequence also gives a bijection between the maximal sequences of consecutive

external edges of the cycle and the bivalent vertices with an internal outgoing edge. Then,

r = b/2 = k − t.

The cycle is composed of all the bivalent and trivalent vertices, and has as many

vertices and edges. Then, L = b+ t = 2k − t.

Eventually, L+r = 3k−2t ≡ k mod 2. This concludes the proof of Proposition 5.1.

□

Proposition 5.1 directly implies that Zk(ψ) = 0 when k is odd.

10We consider ωF ′
(Γ∗, σ∗, ψ) as a form on CΓ(ψ) via the canonical identification CΓ(ψ) ∼= CΓ∗ (ψ).
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6. Independence of the parallelization, invariance under ambient diffeo-

morphisms.

In this section, we prove the second and third assertions of Theorem 2.10.

6.1. Homotopy classes of parallelizations of M◦.

Let M◦ be a fixed parallelizable asymptotic homology Rn+2. Let Zτk denote the

value of the invariant Zk when computed with a family of propagating forms of (M◦, τ).

We recall that two parallelizations τ and τ ′ are homotopic if there exists a smooth

family (τt)0≤t≤1 of parallelizations such that τ0 = τ and τ1 = τ ′, as in Definition 2.1.

Denote by Par(M◦) the set of homotopy classes of parallelizations of M◦.

Lemma 6.1. If τ and τ ′ are homotopic, then Zτk = Zτ
′

k .

Proof. Let (τt)0≤t≤1 be a smooth homotopy of parallelizations. Assume without

loss of generality that there exists ε > 0 such that τt = τ0 for any t ∈ [0, ε]. Let (αi, βi)

be a family of propagating forms of (M◦, τ0). For any 1 ≤ i ≤ 2k, there exists a form

ωβi such that (βi)|∂C2(M◦) = Gτ0
∗(ωβi).

For any 1 ≤ i ≤ 2k, we define a smooth family (βsi )0≤s≤1 of external propagating

forms such that (βsi )|∂C2(M◦) = Gτs
∗(ωβi) as follows.

Let [−1, 0]×UM◦ be a collar of UM◦ = ∂∆C2(M
◦) such that {0}×UM◦ corresponds

to ∂∆C2(M
◦). Let N(∂C2(M

◦)) be a regular neighborhood of ∂C2(M
◦) that contains

[−1, 0]× UB(M). Extend Gτ0 to a smooth map Gτ0 on N(∂C2(M
◦)) such that for any

(t, x) ∈ [−1, 0]×UB(M), Gτ0(t, x) = Gτ0(x). Assume that (βi)|N(∂C2(M◦)) = Gτ0
∗
(ωβi

).

Since (Gτs)|∂UB(M) = (Gτ0)|∂UB(M) for any s ∈ [0, 1], the map

ps : (t, x) ∈ [−1, 0]× UB(M) 7→ Gτ(1+t)s
(x) ∈ Sn+1

coincide with Gτ0 on ([−1, 0]× ∂UB(M)) ∪ ({−1} × UB(M)). The forms ps
∗(ωβi) and

βi coincide on ([−1, 0]× ∂UB(M))∪ ({−1}×UB(M)). This allows us to define a closed

form βsi such that (βsi )|[−1,0]×UB(M) = ps
∗(ωβi) and (βsi )|C2(M◦)\([−1,0]×UB(M)) = βi.

Therefore, Fs = (αi, β
s
i )1≤i≤2k is a family of propagating forms of (M◦, τs), and

Zτsk =
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ)

ωFs(Γ, σ, ψ).

By construction, ωFs(Γ, σ, ψ) depends continuously on s, and then, Zτsk depends contin-

uously on s. Since it takes only rational values, it is constant, and Zτ0k = Zτ1k . □

The following theorem will allow us to obtain the independence of Zk of the paral-

lelization in the next subsection. It is proved in Section 8.

Theorem 6.2. Let M◦ be an asymptotic homology Rn+2, and let B ⊂ B(M) be a

standard (n+ 2)-ball. Let [τ ] and [τ ′] be two homotopy classes of parallelizations of M◦

as defined in Definition 2.1.

It is possible to choose representatives τ and τ ′ of the classes [τ ] and [τ ′], such that

τ and τ ′ coincide on (M◦ \ B)× Rn+2.
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6.2. Proof of the independence of the parallelization.

Let [τ0] and [τ1] be two homotopy classes of parallelizations of M◦. Let B be a ball

of B(M) such that B∩ψ(Rn) = ∅. Theorem 6.2 allows us to pick representatives τ0 and

τ1 that coincide outside B.
Fix a family F = (αi, βi)1≤i≤2k of propagating forms of (M◦, τ0). The following

lemma defines a family of propagating forms of (M◦, τ1).

Lemma 6.3. There exists a family of n-forms (ξni )1≤i≤2k on C2(M
◦) such that :

• The family of forms F ′ = (αi, β
′
i)1≤i≤2k obtained by setting β′

i = βi + dξni is a

family of propagating forms of (M◦, τ1).

• For any index 1 ≤ i ≤ 2k, the form ξni |∂C2(M◦) is supported on UB ⊂ UM◦ ∼=
∂∆C2(M

◦) (with the notations of Notation 2.3).

Proof. Fix the index i ∈ {1, . . . , 2k}. First note that Gτ1 and Gτ0 coincide

outside UB. The form G∗
τ1(ωβ1)−G∗

τ0(ωβ1) defines a class in Hn+1(UB, ∂UB) but

Hn+1(UB, ∂UB) = Hn+1(Dn+2 × Sn+1,Sn+1 × Sn+1) = Hn+2(Dn+2 × Sn+1) = 0.

Therefore, there exists an n-form (ξni )
0 on UB, which vanishes on ∂UB, and satisfies that

(Gτ1 −Gτ0)
∗(ωβ1) = d(ξni )

0. It remains to extend this form (ξni )
0. Since (ξni )

0 is zero on

the boundary of UB, we can extend it by 0 to a form (ξni )
1 on ∂C2(M

◦). Then, pull this

form (ξni )
1 back on a collar N of ∂C2(M

◦), and multiply it by a smooth function, which

sends ∂C2(M
◦) to 1 and the other component of ∂N to 0. Eventually, extend this last

form to C2(M
◦) by 0 outside N . This gives an n-form ξni as in the statement. □

Let Fj denote the family of propagating forms with internal forms (αi)1≤i≤2k and

external forms (β′
1, . . . , β

′
j , βj+1, . . . , β2k), so that F0 = F and F2k = F ′. For any 1 ≤

j ≤ 2k, set ∆jZk(ψ) = (Z
Fj

k (ψ)− Z
Fj−1

k (ψ)), so that

Zτ1k (ψ)− Zτ0k (ψ) = ZF
′

k (ψ)− ZFk (ψ) =
∑

1≤j≤2k

∆jZk(ψ).

Let us prove that ∆1Zk(ψ) = 0. Since j = 1, with the notations of Section 3.2,

Lemma 3.1 reads ∆1Zk(ψ) = (1/(2k)!)
∑

(Γ,σ)∈G̃k

∑
S∈F(Γ) δSI (Γ, σ, ψ). Since the in-

ternal forms are the same for F1 and F2, the numbered faces such that e0 = σ−1(1)

is internal do not contribute. According to Lemma 3.2, the only possibly contributing

codimension 1 numbered faces are:

• numbered infinite faces (∂SCΓ(ψ), σ), such that S contains at least one end of e0,

where e0 is external,

• numbered principal faces (∂SCΓ(ψ), σ), such that S is composed of the ends of e0,

and such that e0 is external with internal ends,

• all the numbered anomalous faces (∂V (Γ)CΓ(ψ), σ) such that e0 is external.
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In these three cases, the map pe0 maps the face to ∂C2(M
◦). Infinite faces are sent

to configurations with at least one of the two points at infinity. Anomalous and principal

faces are sent to configurations where points of S coincide, but since there exists at

least one internal vertex, these points are necessarily on the knot, which does not meet

B. Then, pe0 maps the face outside the support of ξ1, and the restriction of the form

ω̃(Γ, σ, ψ) to the face vanishes.

This proves that ∆1Zk(ψ) = 0. Similarly ∆iZk(ψ) = 0 for any 2 ≤ i ≤ 2k. The

independence of Zk of the parallelization follows.

6.3. Invariance of Zk under ambient diffeomorphisms.

In this section, we prove the third assertion of Theorem 2.10.

Fix a knot ψ0 inside a parallelized asymptotic homology Rn+2 denoted by (M◦, τ),

and fix a family F = (αi, βi)1≤i≤2k of propagating forms of (M◦, τ) .

Let φ ∈ Diffeo(M◦) be a diffeomorphism that fixes B◦
∞ pointwise, and let ψ1 denote

the knot φ ◦ ψ0. In this section, for any i ∈ {0, 1} and for any edge e of a BCR diagram

Γ, pe,i denotes the map pψi
e : CΓ(ψi) → Sn(e) of Definition 2.7.

With these notations, φ induces a diffeomorphism Φ: CΓ(ψ0) → CΓ(ψ1), and a

diffeomorphism Φβ : C2(M
◦) → C2(M

◦). These diffeomorphisms extend the maps given

by the formula c 7→ φ ◦ c on the interiors of these configuration spaces. Then,

Zτk (ψ1) =
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ1)

ωF (Γ, σ, ψ1)

=
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ0)

Φ∗(ωF (Γ, σ, ψ1))

=
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ0)

∧
e∈E(Γ)

Φ∗(ωFe (Γ, σ, ψ1))

=
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ0)

∧
e∈Ei(Γ)

Φ∗(p∗e,1(ασ(e))) ∧
∧

e∈Ee(Γ)

Φ∗(p∗e,1(βσ(e))).

Note that, by construction, if e ∈ Ei(Γ), we have pe,1 ◦ Φ = pe,0, and if e ∈ Ee(Γ),

we have pe,1 ◦ Φ = Φβ ◦ pe,0. Define the family F ′ = (αi,Φ
∗
β(βi))1≤i≤2k of propagating

forms of (M◦, τ ′), where τ ′ is the parallelization defined for any x by the formula τ ′x =

Tφ(x)φ
−1 ◦ τφ(x). The previous equation becomes

Zτk (ψ1) =
1

(2k)!

∑
(Γ,σ)∈G̃k

∫
CΓ(ψ0)

∧
e∈E(Γ)

ωF
′

e (Γ, σ, ψ0) = Zτ
′

k (ψ0).

Since Zk does not depend on the parallelization, this reads Zk(φ ◦ ψ0) = Zk(ψ0).

This proves the third assertion of Theorem 2.10.
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7. Proof of Lemma 3.2.

In this section, we analyse the variations of the integral IF (Γ, σ, ψ) under a change

of the forms (α1, β1). These variations can be expressed as the sum of the integrals

δSI(Γ, σ, ψ) over the numbered codimension 1 faces (∂SCΓ(ψ), σ) of CΓ(ψ) described in

Section 3.2. Here, we study all these integrals in order to obtain the face cancellations

precisely described in Lemma 3.2.

Recall that for any edge e, n(e) = n−1 if e is internal, and n(e) = n+1 if e is external.

In all this section, for any edge e that has at least one end in S, let Ge,S : ∂SCΓ(ψ) → Sn(e)
be the map G◦(pe)|∂SCΓ(ψ)

if e is internal, and the map Gτσ(e)
◦(pe)|∂SCΓ(ψ)

if e is external.

7.1. Infinite faces.

In this section, we prove that the infinite face contributions vanish. As in Section 3.2,

V ∗(Γ) = V (Γ) ⊔ {∗}. When S ⊊ V ∗(Γ), our proof is inspired from the proof of [Ros02,

Lemma 6.5.9]. Let S′ = S \ {∗}, so that S = S′ ⊔ {∞} ⊂ V ∗(Γ).

For infinite faces, the open face ∂SCΓ(ψ) is diffeomorphic to the product C0
Γ|V (Γ)\S

×
CS′,∞ where:

• The manifold C0
Γ|V (Γ)\S

is the set of configurations c : V (Γ) \ S′ ↪→ M◦ such that

c(Vi(Γ) \ (S′ ∩ Vi(Γ))) ⊂ ψ(Rn).

• The manifold CS′,∞ is the quotient set of maps uS′ : S′ ↪→ Rn+2 \ {0} such that

uS′(S′ ∩ Vi(Γ)) ⊂ {0}2 × Rn by dilations.

Denote by (c, [uS′ ]) a generic element of the infinite face ∂SCΓ(ψ). Such a configuration

can be seen as the limit of the map

cλ : v ∈ V (Γ) 7→


c(v) if v ̸∈ S′,

λuS′(v)

||λuS′(v)||2
if v ∈ S′,

∈M◦

when λ approaches zero (cλ is well-defined for λ sufficiently close to 0).

First case: S = V ∗(Γ) and (α′
1 − α1, β

′
1 − β1) has the sphere factorization property.

In this case, ∂V ∗(Γ)CΓ(ψ) is diffeomorphic to CV (Γ),∞. The following lemma directly

implies that δV ∗(Γ)I (Γ, σ, ψ) = 0.

Lemma 7.1. The form (ω̃(Γ, σ, ψ))|∂V ∗(Γ)CΓ(ψ)
is zero.

Proof. Define the equivalence relation on CV (Γ),∞ such that [uV (Γ)] and [u′V (Γ)]

are equivalent if and only if there exist representatives uV (Γ) and u′V (Γ), and a vector

x ∈ {0}2 × Rn, such that, for any v ∈ V (Γ),

u′V (Γ)(v)

||u′V (Γ)(v)||2
=

uV (Γ)(v)

||uV (Γ)(v)||2
+ x.

Let φ : ∂V ∗(Γ)CΓ(ψ) = CV (Γ),∞ → Q denote the induced quotient map. Then, for

any e ∈ E(Γ), the map Ge,V ∗(Γ) factors through φ. Since (α
′
1−α1, β

′
1−β1) has the sphere
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factorization property, (ω̃e,σ)|∂V ∗(Γ)CΓ(ψ)
is the pullback of a form on the sphere by the

mapGe,V ∗(Γ), for any edge e, including σ−1(1). Then, (ω̃e,σ)|∂V ∗(Γ)CΓ(ψ)
= φ∗(θe,σ) where

θe,σ is a form on Q, and ω̃(Γ, σ, ψ)|∂V ∗(Γ)CΓ(ψ)
therefore reads ω̃(Γ, σ, ψ)|∂V ∗(Γ)CΓ(ψ)

=

φ∗(θσ) where θσ =
∧
e∈E(Γ) θe,σ. Since deg(θσ) = deg(ω̃(Γ, σ, ψ)) = dim(∂CΓ(ψ)) >

dim(Q), we have θσ = 0, so (ω̃(Γ, σ, ψ))|∂V ∗(Γ)CΓ(ψ)
= 0. □

Second case: S ⊊ V ∗(Γ) and either σ−1(1) has no end in S′, or σ−1(1) has at least

one end in S′ and (α′
1 − α1, β

′
1 − β1) has the sphere factorization property. In this case,

let ES
′

i (Γ) (resp. ES
′

e (Γ)) denote the set of internal (resp. external) edges with at least

one end in S′, and set ES
′
(Γ) = ES

′

i (Γ) ⊔ ES′

e (Γ).

Lemma 7.2. For any S = S′ ⊔ {∗} ⊊ V ∗(Γ),

n.Card(S′ ∩ Vi(Γ)) + (n+ 2).Card(S′ ∩ Ve(Γ))

< (n− 1).Card(ES
′

i (Γ)) + (n+ 1).Card(ES
′

e (Γ)).

Proof. Split any edge e of Γ in two halves e− (the tail) and e+ (the head), and

let v(e±) denote the vertex adjacent to the half-edge e±, as in the proof of Lemma 2.9.

Recall the definition of the integers d(e±) from the proof of Lemma 2.9:

• If e is external, d(e+) = 1 and d(e−) = n as in
n 1
e− e+

.

• If e is internal, d(e+) = 0 and d(e−) = n− 1 as in
n− 1 0
e− e+

.

As in the proof of Lemma 2.9 and Figure 6, these integers satisfy:

• for any vertex v ∈ V (Γ),
∑
e±,v(e±)=v d(e±) =

{
n if v is internal,

n+ 2 if v is external.

• for any edge e ∈ E(Γ), d(e+) + d(e−) = n(e).

Since S ⊊ V ∗(Γ), S′ ⊊ V (Γ), and one of the following behaviors happens:

• S′ contains only univalent vertices, and there exists an external edge going from S′

to V (Γ) \ S′.

• S′ contains at least one vertex of the cycle of Γ, and there exists an edge going

from V (Γ) \ S′ to S′.

In both cases, there exists a half-edge e± such that v(e±) ∈ S′, v(e∓) ̸∈ S′, and

d(e∓) ̸= 0 (n− 1 is indeed positive since n ̸= 1). Therefore:

n.Card(S′ ∩ Vi(Γ)) + (n+ 2).Card(S′ ∩ Ve(Γ))

=
∑

e±,v(e±)∈S′

d(e±)
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<
∑

e∈ES′ (Γ)

(d(e+) + d(e−))

= (n− 1).Card(ES
′

i (Γ)) + (n+ 1).Card(ES
′

e (Γ)). □

Since the edges of ES
′
(Γ) have at least one vertex at infinity, their directions do not

depend on the position of the points that are not at infinity, and we have the following.

Lemma 7.3. For any edge e ∈ ES
′
(Γ), the map Ge,S factors through φ : ∂SCΓ(ψ) →

CS′,∞.

From this lemma, and since either (α′
1 − α1, β

′
1 − β1) has the sphere factorization

property, or σ−1(1) ̸∈ ES
′
(Γ), we can write ω̃e,σ = φ∗(θe,σ) for any e ∈ ES

′
(Γ), where

deg(θe,σ) =

{
n(e) if σ(e) ̸= 1,

n(e)− 1 if σ(e) = 1.

Then, deg(
∧
e∈ES′ (Γ) θe,σ) ≥ (

∑
e∈ES′ (Γ) n(e))− 1.

Since dim(CS′,∞) = n.Card(S′ ∩ Vi(Γ)) + (n+ 2).Card(S′ ∩ Ve(Γ))− 1, Lemma 7.2

implies that (
∑
e∈ES′ (Γ) n(e))− 1 > dim(CS′,∞), and deg(

∧
e∈ES′ (Γ) θe,σ) > dim(CS′,∞).

Therefore,
∧
e∈ES′ (Γ) θe,σ and ω̃(Γ, σ, ψ)|∂SCΓ(ψ)

are zero. Then, δSI (Γ, σ, ψ) = 0, as

expected.

7.2. Finite faces.

In this section, we study the contribution of the anomalous, hidden and principal

faces. Our analysis resembles the analysis in [Wat07, Appendix A], but we have to take

care of the fact that the propagating forms are not the same on each edge, and that they

may not be pullbacks of forms on the spheres.

7.2.1. Description and restriction to the connected case.

Let S be a subset of V (Γ) of cardinality at least two, and let δSΓ be the graph

obtained from Γ by collapsing all the vertices in S to a unique vertex ∗S , internal if at
least one of the vertices of S is, external otherwise. Let I(Rn,Rn+2) denote the space of

linear injections of Rn in Rn+2. Define the following spaces:

• The space C0
δSΓ is composed of the injective maps c : V (δSΓ) ↪→ M◦ such that

c|Vi(δSΓ) = ψ ◦ ci for some ci : Vi(δSΓ) ↪→ Rn.

• If S contains internal vertices, the space ĈS is the quotient of the set ĈS
0
of pairs

(u, ι) where ι is a linear injection of Rn inside Rn+2 and u is an injective map

u : S ↪→ Rn+2 such that u(S ∩ Vi(Γ)) ⊂ ι(Rn), by dilations and by translations of

u along ι(Rn).

If S contains only external vertices, ĈS is the quotient of the set of injective maps

u : S ↪→ Rn+2 by dilations and translations along Rn+2.

Then:

• If S contains an internal vertex,
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∂SCΓ(ψ) = C0
δSΓ ×I(Rn,Rn+2) ĈS =

{
(c, [u, ι]) ∈ C0

δSΓ × ĈS
∣∣ ι = τ−1

c(∗S) ◦ Tψci(∗S)

}
.

• If S contains only external vertices, ∂SCΓ(ψ) = C0
δSΓ × ĈS .

Keep the notation ∂SCΓ(ψ) = C0
δSΓ ×I(Rn,Rn+2) ĈS in both cases. In the following, an

element of ∂SCΓ(ψ) will be represented by (c, [u]) since ι can be deduced from c when

S ∩ Vi(Γ) ̸= ∅.

Lemma 7.4. Let ΓS be the graph defined in Lemma 3.2. If ΓS is not connected,

then δSI (Γ, σ, ψ) = 0.

Proof. Suppose that ΓS is not connected. Then, there exists a partition S =

S1 ⊔S2 such that no edge connects S1 and S2, and where S1 and S2 are non-empty sets.

Suppose that S contains at least one internal vertex, and set ι(c) = τ−1
c(∗S) ◦Tψci(∗S).

Define the equivalence relation on ∂SCΓ(ψ) such that (c, [u]) and (c′, [u′]) are equivalent

if and only if c = c′ and there exist representatives u and u′ and a vector x ∈ Rn such

that, for any v ∈ S,

u′(v) =

{
u(v) + ι(c)(x) if v ∈ S1,

u(v) if v ∈ S2.

Let φ : ∂SCΓ(ψ) → Q denote the quotient map. With these notations, for any edge

e, the map pe factors through φ. We conclude as in the proof of Lemma 7.1, since

deg(ω̃(Γ, σ, ψ)) > dim(Q).

If S contains only external vertices, we proceed similarly with the equivalence re-

lation such that (c, [u]) and (c′, [u′]) are equivalent if and only if c = c′ and there exist

representatives u and u′ and a vector x ∈ Rn+2 such that, for any v ∈ S,

u′(v) =

{
u(v) + x if v ∈ S1,

u(v) if v ∈ S2. □

7.2.2. Anomalous face.

In this section, according to the hypotheses of Lemma 3.2, assume that (α′
1−α1, β

′
1−

β1) has the sphere factorization property.

Lemma 7.5. There exists an orientation-reversing diffeomorphism of the anoma-

lous face T : ∂V (Γ)CΓ(ψ) → ∂V (Γ)CΓ(ψ), such that, for any edge e ∈ E(Γ),

Ge,S ◦ T = (−IdSn(e)) ◦Ge,S ,

where −IdSn(e) is the antipodal map.

Proof. Here, since δV (Γ)Γ is a graph with only one internal vertex ∗V (Γ), the

face is diffeomorphic to ψ(Rn)×I(Rn,Rn+2) ĈV (Γ). Choose an internal vertex v of Γ. For

[u] ∈ ĈV (Γ), define [u′] ∈ ĈV (Γ) as the class of the map u′ such that, for any vertex w,

u′(w) = 2u(v)− u(w). Then the map T : (c, [u]) ∈ ∂V (Γ)CΓ(ψ) 7→ (c, [u′]) ∈ ∂V (Γ)CΓ(ψ)
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is a diffeomorphism. The sign of its Jacobian determinant is (−1)(2k−1)(n+2) = −1, since

n is odd. It is easy to check that Ge,S ◦ T = (−IdSn(e)) ◦Ge,S for any edge e. □

Since (α′
1−α1, β

′
1−β1) has the sphere factorization property, (ω̃e,σ)|∂V (Γ)CΓ(ψ)

reads

Ge,S
∗(θe), where, for any edge e, θe is an antisymmetric form on the sphere. Then,

Lemma 7.5 yields T ∗((ω̃e,σ)|∂V (Γ)CΓ(ψ)
) = Ge,S

∗((−IdSn(e))∗(θe)) = −(ω̃e,σ)|∂V (Γ)CΓ(ψ)
.

Then,

δV (Γ)I (Γ, σ, ψ) =

∫
∂V (Γ)CΓ(ψ)

ω̃(Γ, σ, ψ)|∂V (Γ)CΓ(ψ)

= −
∫
∂V (Γ)CΓ(ψ)

T ∗
(
ω̃(Γ, σ, ψ)|∂V (Γ)CΓ(ψ)

)
= −

∫
∂V (Γ)CΓ(ψ)

(−1)Card(E(Γ))ω̃(Γ, σ, ψ)|∂V (Γ)CΓ(ψ)

= −δV (Γ)I (Γ, σ, ψ) since Card(E(Γ)) = 2k.

Eventually, this implies that δV (Γ)I (Γ, σ, ψ) = 0.

7.2.3. Hidden faces.

Lemma 7.6. Let H1(Γ) be the set of hidden faces such that at least one of the

following properties hold :

• ΓS is non connected.

• ΓS has at least three vertices, ΓS has a univalent vertex v0, and, if this vertex is

internal, then its only adjacent edge e0 in ΓS is internal (as in Figure 7).

For any face ∂SCΓ(ψ) in H1(Γ), δSI (Γ, σ, ψ) = 0.

S
v0 v1e0

S
v0 v1e0 e0

S
v0 v1

Figure 7. The second property in the definition of H1(Γ).

Proof. If ΓS is not connected, this is Lemma 7.4.

If ΓS is connected, we have a univalent vertex v0 as in Figure 7. There is a natural

map ∂SCΓ(ψ) → C0
δSΓ ×I(Rn,Rn+2) ×ĈS\{v0}. Let

φ : ∂SCΓ(ψ) → Q = (C0
δSΓ ×I(Rn,Rn+2) ×ĈS\{v0})× Sn(e0)

denote the product of this map and the Gauss map Ge0,S . As in the similar lemmas of

the previous subsection, for any edge whose ends are both in S, Ge,S factors through

φ, and for any other edge, pe factors through φ. Then, all the forms ω̃e,σ are pullbacks
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of forms on Q by φ, and ω̃(Γ, σ, ψ) also is. The hypotheses of the lemma imply that

dim(Q) < dim(∂SCΓ(ψ)), so δSI (Γ, σ, ψ) = 0. □

Lemma 7.7. Let Ha
2(Γ) denote the set of hidden faces that are not in H1(Γ) and

such that there exists a vertex v that satisfies the following properties :

• the vertex v is trivalent in Γ, and is bivalent as a vertex of ΓS,

• the vertex v has one incoming and one outgoing edge in ΓS,

• if v is internal, these two edges are both internal.

For any face ∂SCΓ(ψ) in Ha
2(Γ), δSI(Γ, σ, ψ) = −δSI(Γ, σ ◦ ρ, ψ), where ρ denotes the

transposition of e and f .

S

v

e

f

a

b
S

v

e

f

a

b

Figure 8. Hypotheses of Lemma 7.7.

Proof. Let e and f denote the incoming and the outgoing edge of v in ΓS , and

let a and b denote the other ends of e and f , as in Figure 8.11

Let T be the orientation-reversing diffeomorphism of ∂SCΓ(ψ) defined as follows: if

(c, [u]) ∈ ∂SCΓ(ψ), let u
′ : S → Rn+2 be the map such that, for any w ∈ S,

u′(w) =

{
u(w) if w ̸= v,

u(b) + u(a)− u(v) if w = v,

and set T (c, [u]) = (c, [u′]).

For any g ∈ E(Γ), pg ◦ T = pρ(g), so T ∗((ω̃(Γ, σ, ψ))|∂SCΓ(ψ)
) =

(ω̃(Γ, σ ◦ ρ, ψ))|∂SCΓ(ψ)
, and thus δSI(Γ, σ, ψ) = −δSI(Γ, σ ◦ ρ, ψ). □

Lemma 7.8. Let Hb
2(Γ) be the set of hidden faces that are neither in H1(Γ) nor in

Ha
2(Γ). For any face ∂SCΓ(ψ) in Hb

2(Γ), we have the following properties :

• If S contains the head of an external edge, then it contains its tail.

• If S contains a univalent vertex, then it contains its only adjacent vertex.

In particular, S necessarily contains at least one vertex of the cycle, but cannot contain

all of them, since it would imply S = V (Γ).

11Note that we may have a = b.
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Proof. Let ∂SCΓ(ψ) be a face in Hb
2(Γ). The second point directly follows from

the connectedness of ΓS . Let us prove the first point. Let e = (v, w) be an external edge

with w in S.

• If e is a leg, we have three possible cases:

– If the two neighbors of w in the cycle are in S, then v is in S. Indeed, otherwise

S would contain a piece as in Figure 8.

– If S contains one of the neighbors of w in the cycle, then v ∈ S. Indeed,

otherwise S would contain a piece such as in the two first pieces of Figure 7.

– If none of the neighbors of w in the cycle are in S, then ΓS is not connected,

which is impossible.

• Otherwise, e is an external edge of the cycle, and we have two possible cases:

– If w is bivalent, then it has two neighbors v and w′.

∗ If w′ ∈ S, then v ∈ S: otherwise, we would have a piece as the third one

of Figure 7.

∗ If w′ ̸∈ S, then v ∈ S because of the connectedness of ΓS .

– Otherwise w is trivalent, and external.

∗ If its two other neighbors than v are in S, v is in S: otherwise, we would

have a piece as the first one of Figure 8.

∗ If S contains one of these two neighbors, v is in S: otherwise, we would

have a piece as the first one of Figure 7.

∗ Eventually, if none of these two neighbors are in S, v is in S because of

the connectedness of ΓS . □

Lemma 7.9. Suppose that ∂SCΓ(ψ) is a face of Hb
2(Γ) and that S contains at least

one external vertex.

Then, there exists a transposition ρ of two edges such that

δSI(Γ, σ, ψ) = −δSI(Γ, σ ◦ ρ, ψ).

Proof. Choose an external vertex of S and follow the cycle backwards until get-

ting out of S. Let d be the last met vertex in S. It follows from the previous lemma

that d is an internal vertex, with an incoming internal edge coming from V (Γ) \S. From
d, move forward along the cycle, and let v0 be the first seen external vertex. There are

two incoming edges in v0, one coming from a univalent vertex b, denoted by f , and one

coming from a bivalent vertex a, denoted by e (we may have a = d). Let S0 be the

set of vertices of the cycle between d and a, with their univalent adjacent vertices. The

obtained situation is like in Figure 9.
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v0

f

b

e

a d

S0

S

Figure 9. Notations for the proof of Lemma 7.9.

Then, if (c, [u]) ∈ ∂SCΓ(ψ), let u
′ denote the map such that, for any w ∈ S,

u′(w) =


u(a) if w = b,

u(w) + u(b)− u(a) if w ∈ S0,

u(w) otherwise,

and define an orientation-reversing diffeomorphism T : ∂SCΓ(ψ) → ∂SCΓ(ψ) by the for-

mula T (c, [u]) = (c, [u′]). Thus, if ρ denotes the transposition of e and f , we have

pg ◦ T = pρ(g) for any g, and we conclude as in Lemma 7.7. □

Lemma 7.10. Suppose that the face ∂SCΓ(ψ) is in Hb
2(Γ), and that ΓS contains

no external vertex. Then, it contains at least one of the following pieces :

• Two non adjacent external edges with their sources a and b univalent in ΓS (not

necessarily in Γ).

• A sequence of one external, one internal and one external edge, as in the second

part of Figure 10.

• A trivalent internal vertex with all its neighbors.

In all of the above cases, we have a transposition of two edges ρ such that

δSI(Γ, σ, ψ) = −δSI(Γ, σ ◦ ρ, ψ).

Proof. Figure 10 describes the three possible cases of the lemma, and we use its

notations.

c

S

de f

a b

a

S

be f

c d a

S

b

e

f

c

d

Figure 10. The three behaviors of Lemma 7.10.
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Let ρ be the transposition swapping e and f . The involution T is defined by

T (c, [u]) = (c, [u′]) where, for any vertex w ∈ S :

• In the first case,

u′(w) =


u(c) + u(b)− u(d) if w = a,

u(d) + u(a)− u(c) if w = b,

u(w) otherwise.

• In the second case,

u′(w) =


u(c) + u(d)− u(b) if w = a,

u(c) + u(d)− u(a) if w = b,

u(w) otherwise.

• In the third case,

u′(w) =


u(c) + u(d) + u(a)− 2u(b) if w = a,

u(c) + u(d)− u(b) if w = b,

u(w) otherwise.

As in the previous proofs, T reverses the orientation, and pg ◦ T = pρ(g) for any edge g

of ΓS . □

For a given Γ, set H2(Γ) = Ha
2(Γ) ∪ Hb

2(Γ). For any ∂SCΓ(ψ) in H2(Γ), define the

involution σ 7→ σ∗ of Lemma 3.2 as follows: put a total order on non-ordered pairs of

{1, . . . , 2k}. If there is a v as in Lemma 7.7, choose the one minimizing {σ(e), σ(f)}, and
set σ∗ = σ ◦ ρ as in the lemma. Otherwise, if there is an external vertex in S, choose

one such that the outgoing edge is of minimal σ, and proceed as in Lemma 7.9, setting

σ∗ = σ ◦ ρ. Otherwise, if there are two edges e and f as in the first case of Lemma 7.10,

choose the pair that minimizes {σ(e), σ(f)}. If not, and if there is a piece as in the

second case, choose the one with minimal {σ(e), σ(f)}, and otherwise, there is a piece

as in the third case: take the one of minimal {σ(e), σ(f)}. In these last three cases, set

σ∗ = σ ◦ ρ where ρ is the transposition of e and f .

7.2.4. Principal faces.

It only remains to study the principal faces, which are the faces such that the ends

of an edge e collide, where this edge is the only edge between its two ends. Then,

∂eCΓ(ψ)
∼= C0

δeΓ
× Sm(e), where

m(e) =

{
n− 1 if the ends of e are both internal,

n+ 1 otherwise.

Choose this diffeomorphism in such a way that the Gauss map reads as the second

projection map pr2 in the product, and orient C0
δeΓ

in such a way that this diffeomorphism

preserves the orientation.
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Lemma 7.11. If σ(e) = 1, and if e is either an internal edge or an external edge

with at least one external end, then δeI (Γ, σ, ψ) = 0.

Proof. For any edge f ̸= e, the map pf factors through pr1 : ∂eCΓ(ψ) → C0
δeΓ

.

Then ω̃(Γ, σ, ψ)|∂eCΓ(ψ)
= ω̃e,σ ∧

∧
f∈E(Γ),f ̸=e pr

∗
1(θf,σ), where θf,σ are forms on C0

δeΓ
.

But we have

deg

 ∧
f∈E(Γ),f ̸=e

θf,σ

 = dim(∂SCΓ(ψ))− (n(e)− 1) = dim(C0
δeΓ) + 1,

since m(e) = n(e) under the hypotheses of the lemma.

Then, deg(
∧
f∈E(Γ),f ̸=e θf,σ) > dim(C0

δeΓ
), and δeI (Γ, σ, ψ) = 0. □

Lemmas 7.12 to 7.16 are proved after the statement of Lemma 7.16.

Lemma 7.12. Suppose that Γ looks as in Figure 11 around e.

w

gf

v

e

Figure 11.

Let Γ∗ denote the BCR diagram where this part of Γ is replaced as in Figure 12.

v w

e∗f g

Figure 12.

If (α′
1 − α1, β

′
1 − β1) has the sphere factorization property, or if σ(e) ̸= 1, then

δeI(Γ, σ, ψ) = −δe∗I(Γ∗, σ∗, ψ), where σ∗ is naturally induced by σ.

In all the remaining cases, σ(e) ̸= 1, since the numbered faces with σ(e) = 1 are all

studied by Lemmas 7.11 and 7.12.

Lemma 7.13. Suppose that Γ looks as in Figure 13 around e.

v w

ef g

Figure 13.

Let Γ∗ denote the BCR diagram where this part of Γ is replaced as in Figure 14.
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v

w
e∗

gf

Figure 14.

If σ(e) ̸= 1, then δeI(Γ, σ, ψ) = −δe∗I(Γ∗, σ∗, ψ), where σ∗ is naturally induced by σ.

Lemma 7.14. Suppose that Γ looks as in Figure 15 around e.

v w

ef

g

x

Figure 15.

Let Γ∗ denote the BCR diagram where this part of Γ is replaced as in Figure 16.

v w

e∗f

g

x

Figure 16.

If σ(e) ̸= 1, then δeI(Γ, σ, ψ) = −δe∗I(Γ∗, σ∗, ψ), where σ∗ is naturally induced by σ.

Lemma 7.15. Suppose that Γ looks as in Figure 17 around e.

v w

e f

g

x

Figure 17.

Let Γ∗ denote the BCR diagram where this part of Γ is replaced as in Figure 18.

v w

e∗ f

g

x

Figure 18.
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If σ(e) ̸= 1, then δeI(Γ, σ, ψ) = −δe∗I(Γ∗, σ∗, ψ), where σ∗ is naturally induced by

σ.

Lemma 7.16. Suppose that Γ looks as in Figure 19 around e.

v w

e

f

x y

g
v w

e

f

x y

g

Figure 19.

If σ(e) ̸= 1, then δeI(Γ, σ, ψ) = −δeI(Γ, σ ◦ ρ, ψ), where ρ is the transposition of f

and g.

Proof. Let us prove Lemma 7.13, and explain why it is possible to deal with

σ(e) = 1 in Lemma 7.12. Lemmas 7.14 and 7.15 are proved similarly. Lemma 7.16 is

proved as Lemma 7.7 (for example), using the orientation-reversing diffeomorphism that

exchanges x and y.

In Lemma 7.13, we have ∂eCΓ(ψ) = C0
δeΓ

× Sn−1 and ∂e∗CΓ∗(ψ) = −C0
δeΓ

× Sn+1

since the graphs δeΓ and δe∗Γ
∗ are identical, and one can check by computation that

the orientations are different, as in the second row of Table 20. For any edge h ̸= e of

Γ or Γ∗ the maps ph : ∂eCΓ(ψ) → Ce and p∗h : ∂e∗CΓ∗(ψ) → Ce factor through the maps

pr1 : ∂eCΓ(ψ) → C0
δeΓ

and pr1,∗ : ∂e∗CΓ∗(ψ) → C0
δeΓ

. The maps G ◦ pe and Gτσ(e)
◦ pe∗

are exactly the maps pr2 : ∂eCΓ(ψ) → Sn−1 and pr2,∗ : ∂e∗CΓ∗(ψ) → Sn+1. Then, one

can write ω̃(Γ, σ, ψ) = pr∗1(λ)∧ pr∗2(ωασ(e)
) and ω̃(Γ∗, σ∗, ψ) = pr∗1,∗(λ)∧ pr∗2,∗(ωβσ(e)

) for

some form λ on C0
δeΓ

. This implies that

δeI(Γ, σ, ψ) =

∫
C0

δeΓ

(
λ

∫
Sn−1

ωασ(e)

)
=

∫
C0

δeΓ

λ =

∫
C0

δeΓ

(
λ

∫
Sn+1

ωβσ(e)

)
= −δe∗I(Γ∗, σ∗, ψ),

where the minus sign comes from the identification ∂e∗CΓ∗(ψ) = −C0
δeΓ

× Sn+1. This

proves Lemma 7.13.

In the proof of Lemma 7.12, we can similarly prove that ω̃(Γ, σ, ψ) = pr∗1(λ)∧pr∗2(µe)
and ω̃(Γ∗, σ∗, ψ) = pr∗1,∗(λ) ∧ pr∗2,∗(µe) where λ is a form on C0

δeΓ
and where

µe =

{
ωβσ(e)

if σ(e) ̸= 1,

θn1 if σ(e) = 1 and (α′
1 − α1, β

′
1 − β1) has the sphere factorization property,

so that ω̃(Γ, σ, ψ) = ω̃(Γ∗, σ∗, ψ). Since both faces are diffeomorphic with opposite

orientations, δeI(Γ, σ, ψ) = −δe∗I(Γ∗, σ∗, ψ).

Table 20 describes the different orientations used to check Lemmas 7.12 to 7.15,

where Ω′ denotes the wedge products of the Ωh, on the external edges h not named on

the pictures, dY∗ =
∧n
i=1 dY

i
∗ , and dX∗ =

∧n+2
i=1 dXi

∗. □
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Table 20. Face orientations.

Lemma ε(Γ∗)/ε(Γ) Ω(CδeΓ) Ω(CδeΓ∗)

7.12 −1 ε(Γ)dYvΩ
′ ε(Γ∗)dYvΩ

′

7.13 −1 ε(Γ)dYvΩf−Ωg+Ω
′ ε(Γ∗)dYvΩf−Ωg+Ω

′

7.14 +1 ε(Γ)dYvdYxΩf−Ω
′ −ε(Γ∗)dYvdYxΩf−Ω

′

7.15 +1 ε(Γ)dYvdYxΩf+Ω
′ −ε(Γ∗)dYvdYxΩf+Ω

′

8. Proofs of Theorem 6.2 and Proposition 2.18.

A topological pair (X,A) is the data of a topological space X and a subset A ⊂ X.

A map f : (X,A) → (Y,B) between two such pairs is a continuous map f : X → Y such

that f(A) ⊂ B.

If (X,A) and (Y,B) are two topological pairs, [(X,A), (Y,B)] denotes the set of

homotopy classes of maps from (X,A) to (Y,B).

Lemma 8.1. Let M◦ be a parallelizable asymptotic homology Rn+2, and fix a par-

allelization τ0 of M◦. For any map g : M◦ → SO(n + 2) that sends B◦
∞ to the identity

matrix In+2, define the map ψ(g) : (x, v) ∈M◦ × Rn+2 7→ (x, g(x)(v)) ∈M◦ × Rn+2.

The map

[(M◦, B◦
∞), (SO(n+ 2), In+2)] → Par(M◦)

[g] 7→ [τ0 ◦ ψ(g)]

is well-defined and is a bijection.

Proof. The lemma would be direct with GL+
n+2(R) instead of SO(n + 2), and

SO(n+ 2) is a deformation retract of GL+
n+2(R). □

A homology (n + 2)-ball is a compact smooth manifold that has the same integral

homology as a point, and whose boundary is the (n+ 1)-sphere Sn+1.

We are going to prove the following theorem, which implies Theorem 6.2.

Theorem 8.2. Let B be a standard (n + 2)-ball inside the interior of a homol-

ogy (n + 2)-ball B(M). For any map f : (B, ∂B) → (SO(n + 2), In+2), define the map

I(f) : (B(M), ∂B(M)) → (SO(n+ 2), In+2) such that

I(f)(x) =

{
f(x) if x ∈ B,
In+2 otherwise.

Then, the induced map

[(B, ∂B), (SO(n+ 2), In+2)] → [(B(M), ∂B(M)), (SO(n+ 2), In+2)]

[f ] 7→ [I(f)]

is surjective.
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In order to prove this theorem, we are going to build a right inverse to this map. To

a map f : (B(M), ∂B(M)) → (SO(n+2), In+2), we will associate a map g homotopic to

f , such that g(M \ B) = {In+2}.

Lemma 8.3. Let (Y, y0) be a path-connected pointed space with abelian fundamental

group, and let B(M) be a homology (n+ 2)-ball. Let f : (B(M), ∂B(M)) → (Y, y0) be a

continuous map.

Then, f is homotopic to a map g that sends the complement of B to y0, among the

maps that send ∂B(M) to y0.

Proof. In this proof, “homotopic” will always mean “homotopic among the maps

that send ∂B(M) to y0”.

Fix a triangulation T of (B(M), ∂B(M)), and denote by T (k) its k-skeleton. The first

projection map p : B = B(M)×Y → B(M) defines a trivial bundle over (B(M), ∂B(M)).

Set f0 : x ∈ B(M) 7→ (x, f(x)) ∈ B and f1 : x ∈ B(M) 7→ (x, y0) ∈ B. Since

Hq(B(M), ∂B(M),Z) = 0 for any 0 ≤ q ≤ n+1, the groupsHq(B(M), ∂B(M), πq(Y, y0))

are also trivial. Obstruction theory defined by Steenrod in [Ste99], or more precisely in

Theorem 34.10, therefore guarantees the existence of a homotopy between f0 and a map

f2 such that (f2)|T (n+1) = (f1)|T (n+1) among maps from B(M) to B that coincide with

f1 on ∂B(M). This implies that f is homotopic to a map g that maps T (n+1) to y0.

It remains to prove that g is homotopic to a map that sends the complement of B to

y0. Let U be a regular neighborhood of T (n+1). Up to a homotopy, assume that g sends

U to y0. There exists a closed ball V such that U ∪V = B(M) and such that V contains

B: indeed, it suffices to take a closed regular neighborhood V0 of a tree with exactly one

vertex in each (n + 2)-cell of T ; up to homotopy, we can assume that B is contained in

one (n+2)-cell of T and that B does not meet the tree neither its neighborhood V0, and

we let V be the union of V0, B and a cylinder between these two disjoint closed balls.

Then, g maps the complement of V to y0. Since V is a ball, and B a ball inside V ,

g|V is homotopic to a map that sends V \ B to y0, among the maps that send ∂V to y0.

This implies Lemma 8.3. □

Then, any element of [(B(M), ∂B(M)), (SO(n+ 2), In+2)] can be represented by a

map f : M◦ → SO(n+ 2), such that f(B(M) \ B) = {In+2}. This proves Theorem 8.2,

and therefore Theorem 6.2.

Proof of Proposition 2.18. We are going to prove that the connected sum of

any asymptotic homology Rn+2 with itself is parallelizable in the sense of Definition 2.1.

As in the previous proof, obstruction theory shows that for any ball B inside the

interior of B(M), there exists a parallelization on B(M) \ B that coincides with the

standard one on ∂B(M) = ∂B◦
∞ ⊂ Rn+2, and that the obstruction to extending it to a

parallelization as in Definition 2.1 lies in Hn+2(B(M), ∂B(M), πn+1(SO(n+2), In+2)) ∼=
πn+1(SO(n+ 2), In+2).

This group is known (see for example [Ker60]) and, for any odd n ≥ 1, any element

of πn+1(SO(n+ 2), In+2) is of order 1 or 2. This proves Proposition 2.18. □
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Remark 8.4. Any asymptotic homology R3 or R7 is parallelizable in the sense of

Definition 2.1.

Proof. This follows from the same arguments as above and from the fact that

π2(SO(3), I3) and π6(SO(7), I7) are trivial (see again for example [Ker60]). □

9. Proof of Theorem 2.17: additivity of Zk.

Recall that G is the Gauss map C2(Rn) → Sn−1. In this section, Gext denotes the

Gauss map C2(Rn+2) → Sn+1.

The proof in this section is an adaptation to the higher dimensional case of the

method developed in [Les20, Sections 16.1–16.2]. Important differences appear in Sec-

tion 9.1.

9.1. Definition of extended BCR diagrams.

Fix an integer k ≥ 2, and let ψtriv : x ∈ Rn ↪→ (0, 0, x) ∈ Rn+2 be the trivial knot.

For any (Γ, σ) ∈ G̃k, and any S1 ⊔ S2 ⊊ V (Γ), define the graph ΓS1,S2 as follows:

remove the edges of Γ between two vertices of S1 or two vertices of S2. Next, remove

the isolated vertices. Eventually blow up the obtained graph at each vertex of S1 ⊔ S2,

by replacing such a vertex with a univalent vertex for each adjacent half-edge on the

corresponding half-edge. Note that the corresponding half-edges do not meet anymore in

ΓS1,S2 . Let Si denote the set of all the vertices in ΓS1,S2 coming from a (possibly blown-

up) vertex of Si in Γ. The graph ΓS1,S2 is endowed with a partition S1⊔S2⊔(V (Γ)\(S1⊔
S2)), and its edges are the edges of Γ that do not have both ends in S1 or both ends in S2.

We set Vi(ΓS1,S2) = (Vi(Γ)\ (S1 ⊔S2))⊔ (S1 ⊔S2) so that Ve(ΓS1,S2) = Ve(Γ)\ (S1 ⊔S2).

Figure 21 shows an example of the obtained graph ΓS1,S2 . This graph can be thought

of as a modified version of Γ where we only look at the directions between vertices which

are not in the same Si.

S1

S2

S1

S2

Figure 21. Construction of ΓS1,S2 for some degree 5 BCR diagram.

Since any edge of ΓS1,S2 comes from an edge of Γ, the numbering σ induces a map

σS1,S2 : E(ΓS1,S2) ↪→ {1, . . . , 2k}. Set Ωi = (0, 0, . . . , 0, (−1)i/2) as in Section 2.9. One

can associate the configuration space
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C0
ΓS1,S2

(ψtriv) =

c : V (ΓS1,S2) → Rn+2

∣∣∣∣∣∣∣∣
c|V (ΓS1,S2 )\(S1⊔S2)

is injective

and does not take the values Ω1 or Ω2,

c(Vi(ΓS1,S2)) ⊂ ψtriv(Rn),
c(S1) = {Ω1}, c(S2) = {Ω2}


to the obtained graph ΓS1,S2 . As before, ci : Rn ↪→ Rn+2 denotes the map such that

c|Vi(ΓS1,S2
) = ψtriv ◦ ci. This space admits a compactification CΓS1,S2

(ψtriv) as in Sec-

tion 2.4 such that for any e = (v, w) ∈ E(ΓS1,S2) the map

G0
e : c ∈ C0

ΓS1,S2
(ψtriv) 7→


ci(w)− ci(v)

||ci(w)− ci(v)||
if e is internal,

c(w)− c(v)

||c(w)− c(v)||
if e is external,

∈ Sn(e)

extends to a smooth map Ge : CΓS1,S2
(ψtriv) → Sn(e). For simplicity, we will simply

denote this compact space by CΓS1,S2
in the following.

Lemma 9.1. For any (Γ, σ) ∈ G̃k and any S1 ⊔ S2 ⊊ V (Γ),

dim(CΓS1,S2
) ≤

∑
e∈E(ΓS1,S2

)

n(e).

Furthermore, this inequality is an equality if and only if S1 = S2 = ∅.

Proof. We use the same method as in the proof of Lemmas 2.9 and 7.2. Split any

edge of ΓS1,S2 into two halves e− and e+, and assign an integer d̃(e±) to each half-edge

e± as follows:

• if e± is adjacent to a vertex of S1 ⊔ S2, d̃(e±) = 0,

• otherwise, d̃(e±) is the integer d(e±) of Lemma 2.9.

Note that for any vertex v,

∑
e± adjacent to v

d̃(e±) =


0 if v ∈ S1 ∪ S2,

n if v is internal and v ̸∈ S1 ∪ S2,

n+ 2 if v is external and v ̸∈ S1 ∪ S2.

This implies that
∑
e∈E(ΓS1,S2

)(d̃(e+) + d̃(e−)) = dim(CΓS1,S2
). This construction also

ensures that d̃(e−) + d̃(e+) ≤ n(e) for any edge e = (v, w), with equality if and only if

(v, w) ∈ (V (ΓS1,S2)\(S1⊔S2))
2 or if e is an internal edge coming from V (ΓS1,S2)\(S1⊔S2)

and going to S1 ⊔ S2. This proves the inequality of the lemma.

Let us prove that the inequality is strict when S1⊔S2 ̸= ∅. In this case, S1⊔S2 ̸= ∅,
so there exists an edge e with one end in S1⊔S2 and the other one in V (ΓS1,S2)\(S1⊔S2).

If there exists such an edge that is not an internal edge going from V (ΓS1,S2) \ (S1 ⊔S2)

to S1 ⊔ S2, it satisfies d̃(e−) + d̃(e+) < n(e), and the inequality of the lemma is strict.

But if there is an internal edge from V (ΓS1,S2) \ (S1 ⊔ S2) to S1 ⊔ S2, neither S1 ⊔ S2
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nor V (Γ) \ (S1 ⊔S2) contains the whole cycle of Γ. This implies that there is at least one

edge from S1 ⊔ S2 to V (ΓS1,S2) \ (S1 ⊔ S2), and concludes.

If S1 ⊔ S2 = ∅, the inequality of the lemma is an equality, since Γ∅,∅ = Γ. □

Corollary 9.2. For any (Γ, S1, S2) as in Lemma 9.1 and any numbering σ of Γ,

define the maps

GΓS1,S2
: CΓS1,S2

→
∏

e∈E(ΓS1,S2
)

Sn(e)

c 7→ (Ge(c))e∈E(ΓS1,S2
)

and

πΓS1,S2
,σ : (Sn−1 × Sn+1)2k →

∏
e∈E(ΓS1,S2 )

Sn(e)

(Xn−1
i , Xn+1

i )1≤i≤2k 7→ (X
n(e)
σ(e) )e∈E(ΓS1,S2

).

For any maps ε̂, ε̂′ : {1, . . . , 2k} → {±1}, set

Tε̂,ε̂′ : (Sn−1 × Sn+1)2k → (Sn−1 × Sn+1)2k

(Xn−1
i , Xn+1

i )1≤i≤2k 7→ (ε̂(i)Xn−1
i , ε̂′(i)Xn+1

i )1≤i≤2k .

For any (Γ, σ, S1, S2, ε̂, ε̂
′), the set Tε̂,ε̂′

−1(πΓS1,S2
,σ

−1(GΓS1,S2
(CΓS1,S2

))) is a closed sub-

set with empty interior of (Sn−1 × Sn+1)2k.

Then, Ok =
∩

Γ,S1,S2,σ,ε̂,ε̂′
((Sn−1×Sn+1)2k \Tε̂,ε̂′−1(πΓS1,S2

,σ
−1(GΓS1,S2

(CΓS1,S2
))))

is an open dense set of (Sn−1 × Sn+1)2k.

Proof. Since CΓS1,S2
is compact, GΓS1,S2

(CΓS1,S2
) is compact and therefore

closed. Let us prove that its interior is empty.

If S1 ⊔ S2 ̸= ∅, Lemma 9.1 and the Morse–Sard theorem ensure that the image of

GΓS1,S2
has empty interior, since the target of this map has greater dimension than its

source.

If S1⊔S2 = ∅, GΓ∅,∅ is a map between two manifolds of same dimension. Let Rn act

by translations along {0}2×Rn ⊂ Rn+2 on CΓ∅,∅(ψtriv). The map GΓ∅,∅ factors through

the quotient map of this action. Using the Morse–Sard theorem, this again implies that

the image of GΓ∅,∅ has empty interior.

Then, GΓS1,S2
(CΓS1,S2

) is always closed with empty interior. This implies that

πΓS1,S2 ,σ
−1(GΓS1,S2

(CΓS1,S2
)) is also closed with empty interior since πΓS1,S2 ,σ

is an open

map. Since Tε̂,ε̂′ is a diffeomorphism, the first assertion of the lemma follows. Then, Ok

is a finite intersection of open dense sets in the complete metric space (Sn−1 × Sn+1)2k.

The lemma follows from the Baire category theorem. □

Corollary 9.2, which is used in Section 9.3 to prove Theorem 2.17, also yields a proof

(but not the simplest one) of the following result.

Corollary 9.3. For the trivial knot ψtriv, Zk(ψtriv) = 0.
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Proof. Because of Corollary 9.2, Ok is non empty. Fix (Xn−1
i , Xn+1

i )1≤i≤2k ∈
Ok. Compute Zk with the propagating chains Ai = (1/2)G−1({−Xn−1

i ,+Xn−1
i }) and

Bi = (1/2)G−1
ext({−Xn+1

i ,+Xn+1
i }). The definition of Ok implies that the intersection

numbers in Theorem 2.13 are all zero. □

9.2. An extension of the Gauss map.

Let (M◦
1 , τ1) and (M◦

2 , τ2) be two parallelized asymptotic homology Rn+2. Fix two

knots ψ1 : Rn ↪→M◦
1 and ψ2 : Rn ↪→M◦

2 , and an integer k ≥ 2.

Fix η ∈ (0, 1/2), and let B◦
∞,η be the complement in Rn+2 of the open balls B̊1

η and

B̊2
η of respective centers Ω1 = (0, . . . , 0,−1/2) and Ω2 = (0, . . . , 0, 1/2) and radius η.

Glue B◦
∞,η and the two closed balls B(M1) and B(M2) along ∂B1

η and ∂B2
η . In

this setting, Bη(M1) and Bη(M2) denote the images of B(M1) and B(M2), since they

“replace” the balls B1
η and B2

η . The obtained manifoldM◦ is identified withM◦
1 ♯M

◦
2 and

comes with a decomposition B◦
∞,η ∪Bη(M1) ∪Bη(M2) and a parallelization τ naturally

induced by τ1, τ2, and the standard parallelization of B◦
∞,η ⊂ Rn+2 up to homotopy. For

η < r < 1/2, Br(Mi) denotes the union of Bη(Mi) with {x ∈ B◦
∞,η | d(x,Ωi) ≤ r}.

Definition 9.4. Let χπ : [0, 3η] → R+ be a smooth increasing map such that

χ−1
π ({0}) = [0, η] and χπ([2η, 3η]) = {1}. Let π : M◦

1 ♯M
◦
2 → Rn+2 be the smooth map

such that, for any x ∈M◦
1 ♯M

◦
2 ,

π(x) =


x if x ∈ B◦

∞,2η,

Ω1 if x ∈ Bη(M1),

Ω2 if x ∈ Bη(M2),

Ω1 + χπ(||x− Ω1||).(x− Ω1) if x ∈ B2η(M1) \Bη(M1),

Ω2 + χπ(||x− Ω2||).(x− Ω2) if x ∈ B2η(M2) \Bη(M2).

Set C2(B2η(Mi)) = p−1
b (B2η(Mi)

2), and set

D(Gτ,η) = (C2(M
◦) \ (C2(B2η(M1)) ∪ C2(B2η(M2)))) ∪ UM◦.

Define the analogue Gτ,η : D(Gτ,η) → Sn+1 of the Gauss map as the map such that for

any c ∈ D(Gτ,η),

Gτ,η(c) =


π(y)− π(x)

||π(y)− π(x)||
if c = (x, y) ̸∈ C2(B2η(M1)) ∪ C2(B2η(M2)) ∪ UM◦,

Gτ (c) if c ∈ UM◦.

Note that (Gτ,η)|C2(B∞,2η) = (Gext)|C2(B∞,2η) and (Gτ,η)|∂C2(M◦) = Gτ .

9.3. Proof of the additivity.

Define the distance on (Sn−1 × Sn+1)2k given by the maximum of the Euclidean

distances on each spherical factor. For d = n ± 1, set Sdh = {X ∈ Sd | Xd+1
2 < 1/2}.

Let O′
k denote the intersection Ok ∩ (Sn−1

h × Sn+1
h )2k. Corollary 9.2 ensures that O′

k is

a non-empty open set.
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Fix (Xn−1
i , Xn+1

i ) ∈ O′
k, and 1/4 > δ > 0 such that the ball of radius 9δ and center

(Xn−1
i , Xn+1

i ) in (Sn−1 × Sn+1)2k is contained in O′
k. Choose η > 0 in Section 9.2 such

that η < (1/8)(δ/2)2k.

Proposition 9.5. For any 1 ≤ i ≤ 2k, fix a closed antisymmetric (n + 1)-form

ωβi on Sn+1 with total mass one, and with support contained in the union of the two balls

of center ±Xn+1
i and radius δ.

For any 1 ≤ i ≤ 2k, there exists an external propagating form βi of (M◦, τ)

such that (βi)|D(Gτ,η) = G∗
τ,η(ωβi). Furthermore, βi|B1/4(M1)×B1/4(M2) = 0 and

βi|B1/4(M2)×B1/4(M1) = 0.

For any 1 ≤ i ≤ 2k, fix a closed antisymmetric (n− 1)-form ωαi on Sn−1 with total

mass one, with support contained in the union of the two balls of center ±Xn−1
i and

radius δ, and set αi = G∗(ωαi). These forms satisfy αi|ψ−1(B1/4(M1))×ψ−1(B1/4(M2)) = 0

and αi|ψ−1(B1/4(M2))×ψ−1(B1/4(M1)) = 0, where ψ = ψ1♯ψ2.

Proof. Let us first construct the forms βi. First note that the condition on

the restriction is compatible with the property of being a propagating form since

(Gτ,η)|∂C2(M◦) = Gτ . It remains to prove that the closed form G∗
τ,η(ωβi) on D(Gτ,η)

extends to a closed form on C2(M
◦). It suffices to prove that the restrictions to

∂C2(B2η(M1)) and to ∂C2(B2η(M2)) extend to C2(B2η(M1)) and to C2(B2η(M2)) as

closed (n + 1)-forms. Note that C2(B2η(Mi)) is diffeomorphic to C2(M
◦
i ). Then,

Lemma 3.3 yields Hn+2(C2(B2η(Mi)), ∂C2(B2η(M2))) = 0 and implies the existence

of the form βi. Since the support of ωβi is contained in Sn+1
h , the restriction

βi|B1/4(M1)×B1/4(M2) = 0 vanishes. The same argument proves the similar assertion

about αi. □

We are going to prove the following proposition, which implies Theorem 2.17.

Proposition 9.6. Fix propagating forms (αi)1≤i≤2k and (βi)1≤i≤2k as in Propo-

sition 9.5, and set F = (αi, βi)1≤i≤2k. Then, for any (Γ, σ) ∈ G̃k,

IF (Γ, σ, ψ1♯ψ2) = IF (Γ, σ, ψ1) + IF (Γ, σ, ψ2).

Proof. Fix (Γ, σ) ∈ G̃k. For 1 ≤ j ≤ 2k + 1, set rj = (1/4)(δ/2)2k+1−j , and note

that r1 + · · ·+ rj < (δ/(2− δ))rj+1 < δrj+1 and that r2k+1 = 1/4.

A coloring is a map χ : V (Γ) → {(1, 1), . . . , (1, 2k)}∪{(2, 1), . . . , (2, 2k)}∪{∞}. For
a given coloring χ, define U(χ) as the set of configurations in CΓ(ψ1♯ψ2) such that:

• If χ(v) = (1, 1), then c(v) is in B̊2r1(M1), and if χ(v) = (2, 1), c(v) is in B̊2r1(M2).

• If χ(v) ̸∈ {(1, 1), (2, 1)}, then c(v) is neither in Br1(M1) nor in Br1(M2). In partic-

ular, since 2η < r1, c(v) ∈ B◦
∞,r1 ⊂ B◦

∞,2η, and it makes sense to use the Euclidean

norm of Rn+2 for such vertices.

• If χ(v) = (i, 2) (for some i ∈ {1, 2}), then c(v) ∈ B̊2r2(Mi), and there exists a

vertex w, adjacent12 to v, such that χ(w) = (i, 1).

12We say that v and w are adjacent if there is an edge between v and w.
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• If χ(v) = (i, j + 1) for some 2 ≤ j ≤ 2k − 1, then there exists a vertex w adjacent

to v, such that χ(w) = (i, j) and ||c(v)− c(w)|| < 2rj+1.

• If χ(v) = ∞, and if there exists a vertex w adjacent to v such that χ(w) = (i, 1),

then ||c(v)− Ωi|| > r2.

• If χ(v) = ∞, and if there exists a vertex w adjacent to v such that χ(w) = (i, j)

with j > 1, then ||c(v)− c(w)|| > rj+1.

Note that if c ∈ U(χ), and if χ(v) = (i, j), c(v) ∈ B̊2r1+···+2rj (Mi) ⊂ B̊2δrj+1(Mi). In

the following, if e is an edge which connects two vertices v and w, such that χ(v), χ(w) ̸∈
{(1, 1), (1, 2)}, the distance ||c(v)− c(w)|| is called the length of e.

Lemma 9.7. The family (U(χ))χcoloring defines an open cover of CΓ(ψ1♯ψ2).

Proof. The fact that the U(χ) are open subsets is immediate. Let us prove that

any configuration is in at least one of these sets. Fix a configuration c.

First color all the vertices v such that c(v) ∈ B̊2r1(Mi) with χ(v) = (i, 1).

Next, for i ∈ {1, 2}, color with χ(w) = (i, 2) the vertices w adjacent to those of color

(i, 1) such that c(w) ∈ B̊2r2(Mi).

Next, for any 2 ≤ j ≤ 2k− 1, define the vertices of color (i, j+1) inductively: when

the vertices of color (i, j) are defined, color with (i, j + 1) the vertices v which are not

already colored, and such that there exists an edge of length less than 2rj+1 between v

and a vertex w colored by (i, j).

With this method, no vertex can be simultaneously colored by (1, j) and (2, j′).

Indeed, the construction above ensures that any vertex colored by (i, j) is in B2δrj+1(Mi).

Since 2δrj+1 = δ(1/2)(δ/2)2k−j ≤ (1/2)δ < 1/4, we have B2δrj+1(M1) ∩ B2δrj′+1
(M2) =

∅, which concludes.

Setting χ(v) = ∞ for all the vertices that remain still uncolored after this induction

gives a coloring such that c ∈ U(χ). □

We are going to use the following two lemmas in the proof of Theorem 2.17.

Lemma 9.8. If χ is a coloring such that there exists an edge between a vertex

colored by some (1, j) and a vertex colored by some (2, j′), then ωF (Γ, σ, ψ1♯ψ2)|U(χ) = 0.

Lemma 9.9. If χ is a coloring such that at least one vertex is colored by ∞, then

ωF (Γ, σ, ψ1♯ψ2)|U(χ) = 0.

Proof of Proposition 9.6 assuming Lemmas 9.8 and 9.9. First note that

these two lemmas imply that IF (Γ, σ, ψ1♯ψ2) =
∫
U
ωF (Γ, σ, ψ1♯ψ2) for the union U of all

the U(χ) where χ runs over all the colorings such that no vertex is colored by ∞, and

no edge connects two vertices colored by some (1, j) and (2, j′). By construction, since Γ

is connected, such a coloring χ takes only values of the form (1, j) or only values of the

form (2, j). Let U1 be the union of the U(χ) such that χ takes only values of the form

(1, j) and similarly define U2, so that U = U1 ⊔ U2. This implies that
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IF (Γ, σ, ψ1♯ψ2) =

∫
U1

ωF (Γ, σ, ψ1♯ψ2) +

∫
U2

ωF (Γ, σ, ψ1♯ψ2).

Note that the form (ωF (Γ, σ, ψ1♯ψ2))|Ui
does not depend on the knot ψ3−i, since

Ui is composed of configurations which send all vertices in B1/2(Mi). This implies that

Zk(ψ1♯ψ2) = F1(ψ1) + F2(ψ2) for some functions F1 and F2. For the trivial knot ψtriv,

Corollary 9.3 directly implies that F1(ψtriv) + F2(ψtriv) = 0. Lemma 2.16 implies that:

Zk(ψ1) = Zk(ψ1♯ψtriv) = F1(ψ1) + F2(ψtriv),

Zk(ψ2) = Zk(ψtriv♯ψ2) = F1(ψtriv) + F2(ψ2).

The sum of these two equalities gives Zk(ψ1) +Zk(ψ2) = F1(ψ1) + F2(ψ2) = Zk(ψ1♯ψ2).

This concludes the proof of Proposition 9.6, hence of Theorem 2.17. □

Proof of Lemma 9.8. Lemma 9.8 directly follows from Proposition 9.5, since it

implies that if c is in the support of ωF (Γ, σ, ψ1♯ψ2), no edge of Γ can connect a vertex

of B1/4(M1) and a vertex of B1/4(M2). □

Proof of Lemma 9.9. Fix a coloring χ that maps at least one vertex to ∞. For

j ∈ {1, 2}, let Sj be the set of the vertices of Γ colored by a color of {j} × {1, . . . , 2k}.
Take c ∈ U(χ) and suppose that c is in the support of ωF (Γ, σ, ψ1♯ψ2). For any

external edge e = (v, w) of ΓS1,S2 , since pe(c) ∈ D(Gτ,η), there exists a sign εσ(e) such

that ||Gτ,η(c(v), c(w)) − εσ(e)X
n+1
σ(e) || < δ, and for any internal edge e = (v, w), there

exists a sign εσ(e) such that ||G(ci(v), ci(w))− εσ(e)X
n−1
σ(e) || < δ.

Lemma 9.10. Endow the spheres Sn(e) with the usual distance coming from the

Euclidean norms || · || on Rn(e)+1.

Let χ be a coloring that maps at least one vertex to ∞, and let c ∈ U(χ). Define a

configuration c0 of CΓS1,S2
(ψtriv) from c as follows :

• If v is a vertex of S1 in ΓS1,S2 , c0(v) = Ω1 = (0, 0, . . . ,−1/2).

• If v is a vertex of S2 in ΓS1,S2 , c0(v) = Ω2 = (0, 0, . . . , 1/2).

• If v is a vertex of V (ΓS1,S2) \ (S1 ⊔ S2) = V (Γ) \ (S1 ∪ S2), c0(v) = c(v).

Then, d(Ge(c0), εσ(e)X
n(e)
σ(e) ) < 9δ for any edge e of ΓS1,S2 .

Proof. The edges of ΓS1,S2 are of four types:

• Those joining two vertices v and w of V (ΓS1,S2) \ (S1 ⊔ S2).

• Those joining one vertex v of V (ΓS1,S2) \ (S1 ⊔ S2) and one vertex w of S1.

• Those joining one vertex v of V (ΓS1,S2) \ (S1 ⊔ S2) and one vertex w of S2.

• Those joining one vertex v of S1 and one vertex w of S2.
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We have to check that in any of these four cases, the direction of the edge e between

c0(v) and c0(w) is at distance less than 9δ from εσ(e)X
n(e)
σ(e) . We prove this for external

edges, the case of internal edges can be proved with the same method. Assume that e

goes from v to w (the proof is similar in the other case). In this case, the construction

of Ge implies that the direction to look at is Gext(c0(v), c0(w)). Since c is in the support

of ωF (Γ, σ, ψ1♯ψ2),∣∣∣∣Gτ,η(c(v), c(w))− εσ(e)X
n+1
σ(e)

∣∣∣∣ = ∣∣∣∣∣∣∣∣ π(c(w))− π(c(v))

||π(c(w))− π(c(v))||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣ < δ.

Note the following easy lemma.

Lemma 9.11. For any a and h in Rn+2 such that a and a+h are non zero vectors :∣∣∣∣∣∣∣∣ a

||a||
− a+ h

||a+ h||

∣∣∣∣∣∣∣∣ ≤ 2||h||
||a||

.

Now, let us study the previous four cases:

• In the first case, c(v) and c(w) are in B◦
∞,2η, then the direction of the edge is

Gext(c0(v), c0(w)) = Gext(c(v), c(w)) = Gτ,η(c(v), c(w)). Therefore, it is at dis-

tance less than δ from εσ(e)X
n+1
σ(e) .

• In the second case, w comes from a vertex w0 of Γ with χ(w0) = (1, j), so c0(w) =

Ω1 and c0(v) = c(v). First suppose j = 1. This implies that ||π(c(w))−Ω1|| < 2r1.

Since χ(v) = ∞, we have ||Ω1 − c(v)|| > r2. Then, using the previous lemma and

triangle inequalities:∣∣∣∣∣∣∣∣ c0(v)− c0(w)

||c0(v)− c0(w)||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ c(v)− Ω1

||c(v)− Ω1||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ c(v)− π(c(w))

||c(v)− π(c(w))||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ c(v)− Ω1

||c(v)− Ω1||
− c(v)− π(c(w))

||c(v)− π(c(w))||

∣∣∣∣∣∣∣∣
< δ + 2

||Ω1 − π(c(w))||
||Ω1 − c(v)||

≤ δ + 2
2r1
r2

= 3δ < 9δ.

Suppose now j > 1. Then ||Ω1 − c(w)|| < 2δrj+1, and π(c(w)) = c(w). Since

χ(v) = ∞, we have ||c(v) − c(w)|| > rj+1. As in the previous computation, and

since δ < 1/4, we get∣∣∣∣∣∣∣∣ c0(v)− c0(w)

||c0(v)− c0(w)||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ c(v)− c(w)

||c(v)− c(w)||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ c0(v)− c0(w)

||c0(v)− c0(w)||
− c(v)− c(w)

||c(v)− c(w)||

∣∣∣∣∣∣∣∣
< δ + 2

||Ω1 − c(w)||
||c(w)− c(v)||
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≤ δ + 2
2δrj+1

rj+1
< 9δ.

• The third case, can be studied exactly like the second one.

• In the last case, note that c(v) ∈ B2δr2k+1
(M1) = Bδ/2(M1) and c(w) ∈ Bδ/2(M2).

The direction we look at is Gext(c0(v), c0(w)) = Gext(Ω1,Ω2) = (0, . . . , 0, 1). But,

we have ||(π(c(v))−π(c(w)))/||π(c(v))−π(c(w))||−εσ(e)Xn+1
σ(e) || < δ. The previous

method yields∣∣∣∣∣∣∣∣ c0(v)− c0(w)

||c0(v)− c0(w)||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ π(c(v))− π(c(w))

||π(c(v))− π(c(w))||
− εσ(e)X

n+1
σ(e)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ Ω1 − Ω2

||Ω1 − Ω2||
− π(c(v))− π(c(w))

||π(c(v))− π(c(w))||

∣∣∣∣∣∣∣∣
< δ +

∣∣∣∣∣∣∣∣ Ω1 − Ω2

||Ω1 − Ω2||
− π(c(v))− Ω2

||π(c(v))− Ω2||

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ π(c(v))− Ω2

||π(c(v))− Ω2||
− π(c(v))− π(c(w))

||π(c(v))− π(c(w))||

∣∣∣∣∣∣∣∣
≤ δ + 2

||π(c(v))− Ω1||
||Ω1 − Ω2||

+ 2
||π(c(w))− Ω2||
||π(c(v))− Ω2||

≤ δ + 2
δ/2

1
+ 2

δ/2

1− δ/2
≤

(
1 + 1 +

8

7

)
δ < 9δ.

This concludes the proof of Lemma 9.10 □

For any 1 ≤ i ≤ 2k, set

ε̂(i) = ε̂′(i) =

{
εσ(σ

−1(i)) if e ∈ σS1,S2
(E(ΓS1,S2

)),

1 otherwise.

For any 1 ≤ i ≤ 2k, also set

Y n−1
i =

{
Gσ(e)(c0) if i ∈ σ(Ei(ΓS1,S2)),

Xn−1
i otherwise,

and Y n+1
i =

{
Gσ(e)(c0) if i ∈ σ(Ee(ΓS1,S2)),

Xn+1
i otherwise.

Lemma 9.10 implies that Y = Tε̂,ε̂′((Y
n−1
i , Y n+1

i )1≤i≤2k) is at distance less than 9δ

from (Xn−1
i , Xn+1

i )1≤i≤2k. So it belongs to O′
k and then to the set Ok of Corollary 9.2,

which is a contradiction since πΓS1,S2 ,σ
(Tε̂,ε̂′(Y )) = GΓS1,S2

(c0). This concludes the proof

of Lemma 9.9. □
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