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Abstract. This paper deals with nonlinear singular partial differential
equations of the form t∂u/∂t = F (t, x, u, ∂u/∂x) with independent variables
(t, x) ∈ R×C, where F (t, x, u, v) is a function continuous in t and holomorphic
in the other variables. Under a very weak assumption we show the uniqueness

of the solution of this equation. The results are applied to the problem of
analytic continuation of local holomorphic solutions of equations of this type.

1. Introduction.

To investigate the uniqueness of the solution is one of the most important problems

in the theory of partial differential equations, and there are many references in various

situations. In this paper, we consider the case of first order nonlinear singular partial

differential equations (1.1) given below, and show uniqueness results by a method quite

similar to Cauchy’s characteristic method.

Let t ∈ R, x ∈ C, u ∈ C and v ∈ C be the variables. For r > 0 we write Dr =

{z ∈ C ; |z| < r} where z represents x, u or v. Let T0 > 0, R0 > 0, ρ0 > 0, and set

Ω = {(t, x, u, v) ∈ [0, T0]×DR0 ×Dρ0 ×Dρ0}.
Let F (t, x, u, v) be a function on Ω. In this paper, we consider the equation

t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
(1.1)

under the following assumptions:

A1) F (t, x, u, v) is a continuous function on Ω which is holomorphic in the variable

(x, u, v) ∈ DR0 ×Dρ0 ×Dρ0 for any fixed t.

A2) There is a weight function µ(t) on (0, T0] satisfying the following:

sup
x∈DR0

|F (t, x, 0, 0)| = O(µ(t)) (as t −→ +0),∣∣∣∣∂F∂v (t, 0, 0, 0)

∣∣∣∣ = O(µ(t)) (as t −→ +0).
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Here, a weight function µ(t) on (0, T0] means that µ(t) is a positive real valued

continuous function on (0, T0] which is increasing in t and satisfies∫ T0

0

µ(s)

s
ds < ∞.

By this condition, we have µ(t) −→ 0 (as t −→ +0).

By A2) we can express (∂F/∂v)(t, x, 0, 0) in the form

∂F

∂v
(t, x, 0, 0) = b(t) + xp+1c(t, x)

where b(t) is a continuous function on [0, T0] satisfying b(t) = O(µ(t)) (as t −→ +0),

c(t, x) is a continuous function on [0, T0] × DR0 that is holomorphic in x, and p ∈
{0, 1, 2, . . .}. Then, we can divide our situation into the following three cases:

Case 1. c(t, x) ≡ 0 on [0, T0]×DR0 ,

Case 2. p = 0 and c(t, 0) ̸≡ 0 on [0, T0],

Case 3. p ≥ 1 and c(t, 0) ̸≡ 0 on [0, T0].

In Case 1, equation (1.1) is a generalization of Briot–Bouquet’s ordinary differential

equations (in Briot–Bouquet [4]) to partial differential equations, and this type of equa-

tions was studied by Baouendi–Goulaouic [3], Gérard–Tahara [8], Yamazawa [15], Koike

[10] and Lope–Roque–Tahara [11]. In Case 2, equation (1.1) has a regular singularity at

x = 0, and this type of equations was studied by Chen–Tahara [5] and Bacani–Tahara

[1]. In Case 3, equation (1.1) has an irregular singularity at x = 0, and this type of equa-

tions was studied by Chen–Luo–Zhang [6], Luo–Chen–Zhang [12] and Bacani–Tahara

[2]. In these papers, mainly the solvability (or the unique solvability) of equation (1.1)

is discussed.

As to the uniqueness of the solution, we know some results: in Case 1 we have a result

in Tahara [13] under the assumption: u(t, x) = O(µ(t)ϵ) (as t −→ +0) for some ϵ > 0,

and in Case 2 we have a result in Tahara [14] under the assumption: u(t, x) = O(|t|ϵ)
(as t −→ +0) for some ϵ > 0.

In this paper, we will show the uniqueness of the solution in each case under a much

weaker assumption like

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

= 0.

2. Analysis in Case 1.

Let us consider Case 1 in a little bit general setting. We consider equation (1.1)

under the following assumptions:

sup
x∈DR0

|F (t, x, 0, 0)| = O(µ(t)) (as t −→ +0), (2.1)

sup
x∈DR0

∣∣∣∣∂F∂v (t, x, 0, 0)

∣∣∣∣ = O(µ(t)) (as t −→ +0). (2.2)
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As to the existence of a solution, we know a unique solvability result in a certain

function space. To state the existence result, let us prepare some notations. We set

φ(t) =

∫ t

0

µ(s)

s
ds, 0 < t ≤ T0.

This is also an increasing function on (0, T0] and we have φ(t) −→ 0 (as t −→ +0). For

T > 0, R > 0 and r > 0 we set

WT,R,r = {(t, x) ∈ [0, T ]× C ; φ(t)/r + |x| < R}.

For W = WT,R,r, we denote by X0(W ) the set of all functions in C0(W ) that are

holomorphic in x for any fixed t, and by X1(W ) the set of all functions in C1(W ∩ {t >
0}) ∩ C0(W ) that are also holomorphic in x for any fixed t. We set

λ(t, x) =
∂F

∂u
(t, x, 0, 0).

By Theorem 1.1 (with α = 1) in Lope–Roque–Tahara [11] we have

Theorem 2.1. Suppose the conditions (2.1) and (2.2). If Reλ(0, 0) < 0 holds,

there are T > 0, R > 0, r > 0 and M > 0 such that equation (1.1) has a unique solution

u0(t, x) ∈ X1(WT,R,r) satisfying

|u0(t, x)| ≤ Mµ(t) and

∣∣∣∣∂u0

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t)

on WT,R,r.

2.1. Uniqueness result in Case 1.

For T > 0 and R > 0 we denote by X1((0, T ) × DR) the set of all functions in

C1((0, T )×DR) that are holomorphic in the variable x ∈ DR for any fixed t.

The following theorem is the main result of this section.

Theorem 2.2. Suppose the conditions (2.1), (2.2) and Reλ(0, 0) < 0. Let u(t, x) ∈
X1((0, T )×DR) be a solution of (1.1) with T > 0 and R > 0. If u(t, x) satisfies

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

= 0, (2.3)

we have u(t, x) = u0(t, x) on (0, T1) ×DR1 for some T1 > 0 and R1 > 0, where u0(t, x)

is the solution of (1.1) obtained in Theorem 2.1.

If

lim
t→+0

(
sup

x∈DR

|u(t, x)|
)
= 0 (2.4)

holds for some R > 0, we have (2.3), and so we have
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Corollary 2.3. Suppose the conditions (2.1), (2.2) and Reλ(0, 0) < 0. If a

solution u(t, x) ∈ X1((0, T )×DR) of (1.1) satisfies (2.4), we have u(t, x) = u0(t, x) on

(0, T1)×DR1
for some T1 > 0 and R1 > 0.

If a solution u(t, x) satisfies

sup
x∈DR

|u(t, x)| = O(µ(t)ϵ) (as t −→ +0) (2.5)

for some ϵ > 0, we can apply a result in Tahara [13]. We note that the condition (2.3) is

much weaker than (2.5). In [13] higher order equations are dealt with, but it is unclear

whether we can generalize Theorem 2.2 to higher order case.

Remark 2.4. (1) In the case Reλ(0, 0) > 0, we can give many examples in holo-

morphic category such that the equation has many solutions satisfying (2.4). Therefore,

the uniqueness of the solution is not valid in general. See [8] and [15].

(2) In the case Reλ(0, 0) = 0, we have the following counter example: the equation

t
∂u

∂t
= u

(
∂u

∂x

)k

(k ∈ {1, 2, . . .})

has a trivial solution u ≡ 0 and a family of nontrivial solutions

u =

(
1

k

)1/k
x+ α

(c− log t)1/k

with arbitrary constants α and c. These solutions satisfy (2.4).

(3) The following example shows that the assumption (2.3) is reasonable: the equa-

tion

t
∂u

∂t
= −u+

(
∂u

∂x

)2

has a trivial solution u ≡ 0 and a nontrivial solution u = x2/4. We note that for u = x2/4

we have

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

=
1

4
.

2.2. Proof of Theorem 2.2.

Let u0(t, x) be the unique solution of (1.1) obtained in Theorem 2.1. Set v0(t, x) =

(∂u0/∂x)(t, x). Then, by setting w = u−u0, our equation (1.1) is reduced to an equation

with respect to w = w(t, x):

t
∂w

∂t
= H

(
t, x, w,

∂w

∂x

)
(2.6)

where
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H(t, x, w, q) = F (t, x, w + u0(t, x), q + v0(t, x))

− F (t, x, u0(t, x), v0(t, x)).

For Ω∗ = {(t, x, u, v) ∈ [0, σ∗]×DR∗
0
×Dρ∗

0
×Dρ∗

0
} we denote by X0(Ω

∗) the set of

all functions in C0(Ω∗) that are holomorphic in the variable (x,w, q) for any fixed t.

Then, we may suppose that H(t, x, w, q) belongs to X0(Ω
∗) for sufficiently small

σ∗ > 0, R∗
0 > 0 and ρ∗0 > 0. By Taylor expansion in (u, v) we have the expression

F (t, x, u, v) = α(t, x) + λ(t, x)u+ β(t, x)v +
∑

i+j≥2

ai,j(t, x)u
ivj

and so we have

H(t, x, w, q) = λ(t, x)w + β(t, x)q +
∑

i+j≥2

ai,j(t, x)
[
(w + u0)

i(q + v0)
j − u0

iv0
j
]
.

Hence, it is easy to see that H(t, x, w, q) is expressed in the form

H(t, x, w, q) = λ(t, x)w + a1(t, x, w, q)w + b1(t, x, w, q)q

for some functions a1(t, x, w, q) ∈ X0(Ω
∗) and b1(t, x, w, q) ∈ X0(Ω

∗). Since (2.2) implies

β(t, x) = O(µ(t)) (as t −→ +0), and since u0 = O(µ(t)) (as t −→ +0) and v0 = O(µ(t))

(as t −→ +0) hold, we may assume:

sup
x∈DR∗

0

|a1(t, x, 0, 0)| = O(µ(t)) (as t −→ +0),

sup
x∈DR∗

0

|b1(t, x, 0, 0)| = O(µ(t)) (as t −→ +0).

To get Theorem 2.2 it is sufficient to show the following result.

Proposition 2.5. Suppose Reλ(0, 0) < 0. Let w(t, x) ∈ X1((0, σ0) × DR0) be a

solution of (2.6) with σ0 > 0 and R0 > 0. If w(t, x) satisfies

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|w(t, x)|
)]

= 0, (2.7)

we have w(t, x) = 0 on (0, σ)×Dδ for some σ > 0 and δ > 0.

Proof. Let us prove this step by step.

Step 1: Since σ∗ > 0 and R∗
0 > 0 are sufficiently small, we may suppose that there

is an a > 0 satisfying

Reλ(t, x) < −2a on [0, σ∗]×DR∗
0
.

Since a1(t, x, 0, 0) = O(µ(t)) and b1(t, x, 0, 0) = O(µ(t)) hold, we have the estimates

|a1(t, x, w, q)| ≤ A0µ(t) +A1|w|+A2|q| on Ω∗,

|b1(t, x, w, q)| ≤ B0µ(t) +B1|w|+B2|q| on Ω∗
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for some Ai > 0 (i = 0, 1, 2) and Bi > 0 (i = 0, 1, 2).

Step 2: Let w(t, x) ∈ X1((0, σ0)×DR0) be a solution of (2.6) for some 0 < σ0 < σ∗

and 0 < R0 < R∗
0. We suppose that w(t, x) satisfies (2.7). We set q(t, x) = (∂w/∂x)(t, x)

and

a(t, x) = a1(t, x, w(t, x), q(t, x)),

b(t, x) = b1(t, x, w(t, x), q(t, x)) :

these are functions belonging to X0((0, σ0) ×DR0
). Then, by (2.6) we see that w(t, x)

satisfies the following linear partial differential equation:

t
∂w

∂t
− b(t, x)

∂w

∂x
= (λ(t, x) + a(t, x))w. (2.8)

By applying ∂/∂x to (2.8), we have

t
∂q

∂t
− b(t, x)

∂q

∂x
= γ(t, x)w + (λ(t, x) + a(t, x) + ℓ(t, x))q, (2.9)

where

γ(t, x) = (∂λ/∂x)(t, x) + (∂a/∂x)(t, x),

ℓ(t, x) = (∂b/∂x)(t, x) :

these are also functions belonging to X0((0, σ0)×DR0). For 0 < σ < σ0 and 0 < R < R0

we set

A = sup
(0,σ)×DR

|a(t, x)|, Γ = sup
(0,σ)×DR

|γ(t, x)|, L = sup
(0,σ)×DR

|ℓ(t, x)|.

We set also

r1 = sup
(0,σ)×DR

|w(t, x)|, r2 = sup
(0,σ)×DR

|q(t, x)|.

Lemma 2.6. By taking σ > 0 and R > 0 sufficiently small, we have the conditions

A+ L < a, and

B0φ(σ) +

(
B1

a
+

B2Γ

a2

)
r1 +

B2

a
r2 <

R

2
.

Proof. By (2.7) we have

lim
σ→+0

sup
(0,σ)×DR

|w(t, x)| = o(R2) (as R −→ +0). (2.10)

By applying Cauchy’s integral formula in x to (2.10), we have

lim
σ→+0

sup
(0,σ)×DR

|q(t, x)| = o(R) (as R −→ +0). (2.11)
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Since |a1(t, x, w, q)| ≤ A0µ(t)+A1|w|+A2|q| and |b1(t, x, w, q)| ≤ B0µ(t)+B1|w|+B2|q|
are known, by (2.10) and (2.11) we have

lim
σ→+0

sup
(0,σ)×DR

|a(t, x)| = o(R) (as R −→ +0),

lim
σ→+0

sup
(0,σ)×DR

|b(t, x)| = o(R) (as R −→ +0),

lim
σ→+0

sup
(0,σ)×DR

|(∂b/∂x)(t, x)| = o(1) (as R −→ +0).

Therefore, by taking σ > 0 and R > 0 sufficiently small, the numbers A, L, r1/R and

r2/R will be as small as possible. This proves Lemma 2.6. □

Step 3: Let σ > 0 and R > 0 be as in Lemma 2.6. Take any t0 ∈ (0, σ) and ξ ∈ DR;

for a while we fix them.

Let us consider the initial value problem

t
dx

dt
= −b(t, x), x(t0) = ξ. (2.12)

Here, we regard b(t, x) as a function in X0((0, σ)×DR). Let x(t) be the unique solution

in a neighborhood of t = t0. Let (tξ, t0] be the maximal interval of the existence of this

solution. Set

w∗(t) = w(t, x(t)), q∗(t) = q(t, x(t)).

Then, by (2.8) and (2.9) we have

t
dw∗(t)

dt
= (λ(t, x(t)) + a(t, x(t)))w∗(t), w∗(t0) = w(t0, ξ) (2.13)

on (tξ, t0], and

t
dq∗(t)

dt
= γ(t, x(t))w∗(t) + (λ(t, x(t)) + a(t, x(t)) + ℓ(t, x(t)))q∗(t), (2.14)

q∗(t0) = q(t0, ξ)

on (tξ, t0].

Lemma 2.7. Under the above situation, we have the following estimates for any

(t1, τ) satisfying tξ < t1 < τ ≤ t0 :

|w∗(τ)| ≤
(
t1
τ

)a

|w∗(t1)|, (2.15)

|q∗(τ)| ≤
(
t1
τ

)a (
Γ|w∗(t1)| log(τ/t1) + |q∗(t1)|

)
. (2.16)

Proof. Let tξ < t1 < τ ≤ t0: set

ϕ(t) = exp

[ ∫ τ

t

(λ(s, x(s)) + a(s, x(s)))

s
ds

]
, t1 ≤ t ≤ τ.
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Since Re(λ(s, x(s)) + a(s, x(s))) < −2a+A < −a, we have

|ϕ(t)| ≤ exp

[ ∫ τ

t

Re(λ(s, x(s)) + a(s, x(s)))

s
ds

]
≤ exp

[ ∫ τ

t

−a

s
ds

]
=

(
t

τ

)a

, t1 ≤ t ≤ τ.

Let us show (2.15). By (2.13) we have

d

dt
(w∗(t)ϕ(t)) = 0

and so by integrating this from t1 to τ we have

w∗(τ)ϕ(τ) = w∗(t1)ϕ(t1).

Since ϕ(τ) = 1 and |ϕ(t1)| ≤ (t1/τ)
a holds, by applying this to the above equality we

have (2.15).

Let us show (2.16). In this case, we set

ϕ1(t) = exp

[ ∫ τ

t

(λ(s, x(s)) + a(s, x(s)) + ℓ(t, x(t)))

s
ds

]
, t1 ≤ t ≤ τ.

Since Re(λ(s, x(s))+a(s, x(s))+ ℓ(t, x(t))) < −2a+A+L < −a we have |ϕ1(t)| ≤ (t/τ)a

for t1 ≤ t ≤ τ . Then, we can reduce (2.14) into

d

dt
(ϕ1(t)q

∗(t)) =
ϕ1(t)γ(t, x(t))w

∗(t)

t
,

and so by integrating this from t1 to τ and by using (2.15) (with τ replaced by t), we

have

|q∗(τ)| ≤ |ϕ(t1)q∗(t1)|+
∫ τ

t1

|ϕ1(t)γ(t, x(t))w
∗(t)|dt

t

≤
(
t1
τ

)a

|q∗(t1)|+
∫ τ

t1

(
t

τ

)a

Γ

(
t1
t

)a

|w∗(t1)|
dt

t

=

(
t1
τ

)a

|q∗(t1)|+
(
t1
τ

)a

Γ|w∗(t1)| × log(τ/t1).

This proves (2.16). □

Step 4: Recall that |b1(t, x, w, q)| ≤ B0µ(t) +B1|w|+B2|q| holds on Ω∗. We have

Lemma 2.8. Under the above situation, we have the following estimate for any

t1 ∈ (tξ, t0):

|x(t1)| ≤ |ξ|+B0(φ(t0)− φ(t1)) +

(
B1

a
+

B2Γ

a2

)
|w∗(t1)|+

B2

a
|q∗(t1)|.
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Proof. Let t1 ∈ (tξ, t0). By (2.12) we have

x(t1) = ξ +

∫ t0

t1

b(τ, x(τ))
dτ

τ
.

Since

|b(τ, x(τ))| ≤ B0µ(τ) +B1|w∗(τ)|+B2|q∗(τ)|

≤ B0µ(τ) +B1

(
t1
τ

)a

|w∗(t1)|+B2

(
t1
τ

)a (
Γ|w∗(t1)| log(τ/t1) + |q∗(t1)|

)
holds for any τ ∈ (t1, t0], we have

|x(t1)| ≤ |ξ|+
∫ t0

t1

(
B0µ(τ) +B1

(
t1
τ

)a

|w∗(t1)|

+B2

(
t1
τ

)a (
Γ|w∗(t1)| log(τ/t1) + |q∗(t1)|

)) dτ

τ
. (2.17)

Here, we note:∫ t0

t1

(
t1
τ

)a
dτ

τ
=

1

a

(
1− t1

a

t0
a

)
≤ 1

a
,∫ t0

t1

(
t1
τ

)a

log(τ/t1)
dτ

τ
=

t1
a

−at0
a log(t0/t1) +

1

a2

(
1− t1

a

t0
a

)
≤ 1

a2
.

By applying these estimates to (2.17), we have Lemma 2.8. □

Corollary 2.9. If ξ ∈ DR/2 we have tξ = 0.

Proof. Let |ξ| < R/2. Let us show that if tξ > 0 holds we have a contradiction.

Suppose that tξ > 0 holds. Then, by Lemmas 2.6 and 2.8 we have

|x(t1)| ≤
R

2
+B0φ(σ) +

(
B1

2a
+

B2Γ

a2

)
r1 +

B2

a
r2 = R1 < R

for any t1 ∈ (tξ, t0). Since K = {x ∈ Cn ; |x| ≤ R1} is a compact subset of DR and

since x(t1) ∈ K for any t1 ∈ (tξ, t0], by a theorem in ordinary differential equations (for

example, by Theorem 4.1 in Coddington–Levinson [7]) we can extend x(t) to (tξ − ε, t0]

for some ε > 0. This contradicts the condition that (tξ, t0] is the maximal interval of the

existence of the solution x(t). □

Step 5: Since tξ = 0, by (2.15) with τ = t0 we have

|w∗(t0)| ≤
(
t1
t0

)a

|w∗(t1)| ≤
(
t1
t0

)a

r1

for any t1 ∈ (0, t0). Since r1 > 0 is independent of t1, by letting t1 −→ +0 we have

w∗(t0) = 0. Since w∗(t0) = w(t0, ξ), we have w(t0, x) = 0 for any x ∈ DR/2. Since

t0 ∈ (0, σ) is taken arbitrarily, we have w(t, x) = 0 on (0, σ)×DR/2.
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This completes the proof of Proposition 2.5. □

2.3. Application.

Let us apply Theorem 2.2 to the problem of analytic continuation of solutions of

Briot–Bouquet type partial differential equations.

Let (t, x) be the variables in Ct × Cx, and let F (t, x, u, v) be a function in a neigh-

borhood ∆ of the origin of Ct × Cx × Cu × Cv. Set ∆0 = ∆ ∩ {t = 0, u = 0, v = 0}. In

this subsection, we consider the following equation

t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
(2.18)

(in the germ sense at (0, 0) ∈ Ct × Cx) under the assumptions

B1) F (t, x, u, v) is holomorphic in ∆,

B2) F (0, x, 0, 0) ≡ 0 in ∆0, and

B3) (∂F/∂v)(0, x, 0, 0) ≡ 0 in ∆0.

Then, equation (2.18) is called a Briot–Bouquet type partial differential equation with

respect to t (by Gérard–Tahara [8], [9]), and the function

λ(x) =
∂F

∂u
(0, x, 0, 0)

is called the characteristic exponent of (2.18). This equation was studied by [8] and

Yamazawa [15].

By [8] we know that if λ(0) ̸∈ {1, 2, . . .}, equation (2.18) has a unique holomorphic

solution u0(t, x) in a neighborhood of (0, 0) ∈ Ct×Cx satisfying u0(0, x) = 0 near x = 0.

Therefore, by applying Theorem 2.2 (with µ(t) = t) to this case we have

Theorem 2.10. Suppose the conditions B1), B2), B3) and Reλ(0) < 0. Let u(t, x)

be a holomorphic solution of (2.18) in a neighborhood of (0, σ0)×DR0 for some σ0 > 0

and R0 > 0. If u(t, x) satisfies

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

= 0, (2.19)

u(t, x) can be continued holomorphically up to a neighborhood of (0, 0) ∈ Ct × Cx.

Remark 2.11. The following example shows that we need some condition like

(2.19) in order to get the analytic continuation of solutions: the equation

t
∂u

∂t
= −2u+ xt

(
∂u

∂x

)2

has a solution u = x/t.

3. Analysis in Case 2.

Let us consider Case 2 in a little bit general setting. We consider the equation
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t
∂u

∂t
= α(t, x) + λ(t, x)u+ (β(t, x) + xc(t, x))

∂u

∂x
+R2

(
t, x, u,

∂u

∂x

)
, (3.1)

where α(t, x), λ(t, x), β(t, x) and c(t, x) are continuous functions on [0, T0] × DR0 that

are holomorphic in x for any fixed t and satisfy

sup
x∈DR0

|α(t, x)| = O(µ(t)) (as t −→ +0), (3.2)

sup
x∈DR0

|β(t, x)| = O(µ(t)) (as t −→ +0), (3.3)

Re c(t, x) ≤ 0 on [0, T0]×DR0 , (3.4)

and R2(t, x, u, v) is a continuous function on Ω (where Ω is the same as in Section 1)

which is holomorphic in the variable (x, u, v) for any fixed t and has a Taylor expansion

in (u, v) of the form:

R2(t, x, u, v) =
∑

i+j≥2

ai,j(t, x)u
ivj .

As to the existence of a solution, we know a unique solvability result. By Theorem 5.1

in Bacani–Tahara [1] we have

Theorem 3.1. Suppose the conditions (3.2), (3.3) and (3.4). If Reλ(0, 0) < 0

holds, there are T > 0, R > 0, r > 0 and M > 0 such that equation (3.1) has a unique

solution u0(t, x) ∈ X1(WT,R,r) satisfying

|u0(t, x)| ≤ Mµ(t) and

∣∣∣∣∂u0

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t)

on WT,R,r.

3.1. Uniqueness result in Case 2.

The following theorem is the main result of this section.

Theorem 3.2. Suppose the conditions (3.2), (3.3), (3.4) and Reλ(0, 0) < 0. Let

u(t, x) ∈ X1((0, T )×DR) be a solution of (3.1) with T > 0 and R > 0. If u(t, x) satisfies

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

= 0, (3.5)

we have u(t, x) = u0(t, x) on (0, T1) ×DR1 for some T1 > 0 and R1 > 0, where u0(t, x)

is the solution obtained in Theorem 3.1.

Corollary 3.3. Suppose the conditions (3.2), (3.3), (3.4) and Reλ(0, 0) < 0. If

a solution u(t, x) ∈ X1((0, T )×DR) of (3.1) satisfies

lim
t→+0

(
sup

x∈DR

|u(t, x)|
)
= 0,

we have u(t, x) = u0(t, x) on (0, T1)×DR1 for some T1 > 0 and R1 > 0.
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Remark 3.4. (1) In the case Reλ(0, 0) > 0, we have the following counter example:

the equation

t
∂u

∂t
= 2u− x

∂u

∂x
+ u

(
∂u

∂x

)
has a trivial solution u ≡ 0, a nontrivial solution u = t2 and a family of solutions

u =
xt

c− t

with an arbitrary constant c.

(2) In the case Reλ(0, 0) = 0, we have the following counter example: the equation

t
∂u

∂t
= −x

∂u

∂x
+ u2 +

(
∂u

∂x

)2

has a trivial solution u ≡ 0 and a family of nontrivial solutions

u =
1

c− log t

with an arbitrary constant c.

(3) In the case Reλ(0, 0) < 0, the following example shows that the condition (3.5)

is reasonable: the equation

t
∂u

∂t
= −u− x

∂u

∂x
+

(
∂u

∂x

)2

has a trivial solution u ≡ 0 and a nontrivial solution u = 3x2/4.

3.2. Proof of Theorem 3.2.

Since the proof of Theorem 3.2 is quite similar to the proof of Theorem 2.2, we give

here only a sketch of the proof.

Let u(t, x) ∈ X1((0, T ) ×DR) be a solution of (3.1) satisfying (3.5). Set w(t, x) =

u(t, x) − u0(t, x), where u0(t, x) is the solution obtained in Theorem 3.1. Then, by the

same argument as in (2.8) we see that w(t, x) satisfies a partial differential equation of

the form

t
∂w

∂t
− (b(t, x) + xc(t, x))

∂w

∂x
= (λ(t, x) + a(t, x))w, (3.6)

on (0, σ0) × DR0 for some σ0 > 0 and R0 > 0, where a(t, x) and b(t, x) are functions

belonging to X0((0, σ0)×DR0
) that satisfy

lim
σ→+0

sup
(0,σ)×DR

|a(t, x)| = o(R) (as R −→ +0),

lim
σ→+0

sup
(0,σ)×DR

|b(t, x)| = o(R) (as R −→ +0).

By applying ∂/∂x to (3.6) we have
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t
∂q

∂t
− (b(t, x) + xc(t, x))

∂q

∂x
= γ(t, x)w + (λ(t, x) + a(t, x) + c(t, x) + ℓ(t, x))q, (3.7)

where

γ(t, x) = (∂λ/∂x)(t, x) + (∂a/∂x)(t, x),

ℓ(t, x) = (∂b/∂x)(t, x) + x(∂c/∂x)(t, x) :

these are also functions belonging to X0((0, σ0) × DR0
). If we notice the fact that

|x(∂c/∂x)(t, x)| ≤ C1|x| on (0, σ0) ×DR0 for some C1 > 0, by taking σ > 0 and R > 0

sufficiently small we have the same conditions as in Lemma 2.6.

Now, let us consider the initial value problem:

t
dx

dt
= −(b(t, x) + xc(t, x)), x(t0) = ξ. (3.8)

Let x(t) be the unique solution in a neighborhood of t = t0. Let (tξ, t0] be the maximal

interval of the existence of this solution. Set

w∗(t) = w(t, x(t)), q∗(t) = q(t, x(t)).

Since Re c(t, x) ≤ 0 is supposed (in (3.4)), we have Re c(s, x(s)) ≤ 0 and so Re(λ(s, x(s))+

a(s, x(s))+c(s, x(s))+ℓ(s, x(s))) < −2a+A+0+L < −a. Hence, by the same argument

as in the proof of Theorem 2.2 we can show the same conditions as in Lemmas 2.7, 2.8

and Corollary 2.9.

Thus, we have w(t, x) = 0 on (0, σ)×DR/2 as in Step 5 in the proof of Theorem 2.2.

This proves Theorem 3.2. □

3.3. Application.

Let us apply Theorem 3.2 to the problem of analytic continuation of solutions of

nonlinear totally characteristic type partial differential equations.

Let us consider the same equation

t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
(3.9)

as in (2.18) in the complex domain ∆ under B1), B2) and

B4) (∂F/∂v)(0, x, 0, 0) = xc(x) with c(0) ̸= 0.

Then, this equation is a typical model of nonlinear totally characteristic partial differ-

ential equations discussed by Chen–Tahara [5]. As in Subsection 2.3 we set λ(x) =

(∂F/∂u)(0, x, 0, 0). We write N∗ = {1, 2, . . .} and N = {0, 1, 2, . . .}.
Then, by [5] we know the following result: if c(0) ̸∈ [0,∞) and

i− c(0)j − λ(0) ̸= 0 for any (i, j) ∈ N∗ × N (3.10)

hold, equation (3.9) has a unique holomorphic solution u0(t, x) in a neighborhood of

(0, 0) ∈ Ct × Cx satisfying u0(0, x) = 0 near x = 0. Therefore, by applying Theorem 3.2
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(with µ(t) = t) to this case we have

Theorem 3.5. Suppose the conditions B1), B2), B4), Re c(0) < 0 and Reλ(0) < 0.

Let u(t, x) be a holomorphic solution of (3.9) in a neighborhood of (0, σ0)×DR0 for some

σ0 > 0 and R0 > 0. If u(t, x) satisfies

lim
R→+0

[
lim

σ→+0

(
1

R2
sup

(0,σ)×DR

|u(t, x)|
)]

= 0, (3.11)

u(t, x) can be continued holomorphically up to a neighborhood of (0, 0) ∈ Ct × Cx.

Remark 3.6. The following example shows that we need some condition like (3.11)

in order to get the analytic continuation of solutions: the equation

t
∂u

∂t
= −2u− x

∂u

∂x
+ 2xt

(
∂u

∂x

)2

has a solution u = x/t.

4. Analysis in Case 3.

Let us consider Case 3 in a little bit restricted setting. Let p ∈ {1, 2, 3, . . .}: we

consider the equation

t
∂u

∂t
= α(t, x) + λ(t, x)u+ (β(t, x) + xpc(t, x))

(
x
∂u

∂x

)
+R2

(
t, x, u, x

∂u

∂x

)
(4.1)

where α(t, x), λ(t, x), β(t, x) and c(t, x) are continuous functions on [0, T0] × DR0 that

are holomorphic in x for any fixed t and satisfy

sup
x∈DR0

|α(t, x)| = O(µ(t)) (as t −→ +0), (4.2)

sup
x∈DR0

|β(t, x)| = O(µ(t)) (as t −→ +0), (4.3)

c(0, 0) ̸= 0, (4.4)

and R2(t, x, u, v) is the same as in (3.1). In this case, equations of this type were studied

by Chen–Luo–Zhang [6], Luo–Chen–Zhang [12] and Bacani–Tahara [2].

By applying the change of variable x −→ eiθx in equation (4.1) we see that xpc(t, x)

is transformed into xp(eipθc(t, eiθx)) and so by taking θ suitably we have the condition:

eipθc(0, 0) < 0. Hence, without loss of generality we may assume

c(0, 0) < 0 (4.5)

from the first. For simplicity, we suppose this condition from now.

As to the existence of a solution, we know a unique solvability result. In order to

state the existence result, we prepare some notations: for T > 0, R > 0, 0 < θ < π/2p

and r > 0 we set
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S = S(θ,R) = {x ∈ C ; 0 < |x| < R, | arg x| < θ},
dS(x) = min

{
log(R/|x|), θ − | arg x|

}
,

WT,R,θ,r = {(t, x) ∈ (0, T )× S ; φ(t)/r < dS(x)}.

Then, by Theorem 8.1 in [2] we have

Theorem 4.1. Suppose the conditions (4.2), (4.3) and (4.5). If Reλ(0, 0) < 0

holds, there are T > 0, R > 0, 0 < θ < π/2p, r > 0 and M > 0 such that equation (4.1)

has a unique solution u0(t, x) ∈ X1(WT,R,θ,r) satisfying

|u0(t, x)| ≤ Mµ(t) and

∣∣∣∣x∂u0

∂x
(t, x)

∣∣∣∣ ≤ Mµ(t)

on WT,R,θ,r.

Remark 4.2. (1) In the above theorem we have supposed (4.5), but it is only for

simplicity. Even in the case of (4.4) only, we can get the same result as Theorem 4.1 by

replacing the definition of S(θ,R) by

S(θ,R) = {x ∈ C ; 0 < |x| < R, | arg x+ (arg c(0, 0)− π)/p| < θ}.

(2) In general, the existence domain of the solution u0(t, x) depends on the argument

of c(0, 0). This fact can be illustrated by the following example. Let λ ∈ C with Reλ < 0,

c ∈ C \ {0}, and let us consider

t
∂u

∂t
= tx+ λu+ cx2 ∂u

∂x
.

In this case, we have λ(t, x) = λ, c(t, x) = c, p = 1 and

u0(t, x) =
t

c

∫ 1

0

ξ−λ

log ξ + 1/(cx)
dξ

which is holomorphic on Ct×(Cx\{x ; cx ≥ 0}). We note that u0(t, x) is not well-defined

on {x ; cx ≥ 0}.

4.1. Uniqueness result in Case 3.

The following theorem is the main result of this section.

Theorem 4.3. Suppose the conditions (4.2), (4.3), (4.5) and Reλ(0, 0) < 0. Let

u(t, x) ∈ X1((0, T ) × S(θ,R)) be a solution of (4.1) with T > 0, θ > 0 and R > 0. If

u(t, x) satisfies

lim
η→+0

[
lim

σ→+0

(
1

η2
sup

(0,σ)×S(ηθ,ηR)

|u(t, x)|
)]

= 0, (4.6)

we have u(t, x) = u0(t, x) on (0, T1) × S(θ1, R1) for some T1 > 0, θ1 > 0 and R1 > 0,

where u0(t, x) is the solution obtained in Theorem 4.1.
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Corollary 4.4. Suppose the conditions (4.2), (4.3), (4.5) and Reλ(0, 0) < 0. Let

u(t, x) ∈ X1((0, T )× S(θ,R)) be a solution of (4.1). If u(t, x) satisfies

lim
t→+0

(
sup

x∈S(θ,R)

|u(t, x)|
)
= 0,

we have u(t, x) = u0(t, x) on (0, T1)× S(θ1, R1) for some T1 > 0, θ1 > 0 and R1 > 0.

Remark 4.5. (1) In the case Reλ(0, 0) > 0 we have the following counter example:

the equation

t
∂u

∂t
= 2u− x2 ∂u

∂x
+

x2t

(1− t)

∂u

∂x

has a trivial solution u ≡ 0, a nontrivial solution u = t2 and a family of solutions

u =
c te−1/x

1− t

with an arbitrary constant c. In this case we have p = 1, λ(t, x) = 2, c(t, x) = −1,

β(t, x) = xt/(1− t), R2 ≡ 0 and µ(t) = t.

(2) In the case Reλ(0, 0) = 0 we have the following counter example: the equation

t
∂u

∂t
= −x2 ∂u

∂x
+ u2 +

(
x
∂u

∂x

)2

has a trivial solution u ≡ 0 and a family of nontrivial solution

u =
1

c− log t

with an arbitrary constant c.

(3) We note: the equation

t
∂u

∂t
= −u− x2 ∂u

∂x
+ t

(
x
∂u

∂x

)2

has a trivial solution u ≡ 0 and a nontrivial solution u = x/t. This shows that even in

the case Reλ(0, 0) < 0, in order to get a uniqueness result we need some condition on

the behavior of u(t, x) (as t −→ +0). However, unfortunately the author does not know

whether our assumption (4.6) is reasonable or not: he has no good examples.

4.2. Proof of Theorem 4.2.

Let u(t, x) ∈ X1((0, σ0) × S(θ0, R0)) be a solution of (4.1) satisfying (4.6) (with θ

and R replaced by θ0 and R0, respectively). We may suppose: 0 < θ0 < π/2p. Set

w(t, x) = u(t, x)− u0(t, x),

where u0(t, x) is the solution obtained in Theorem 4.1. We set v0(t, x) = x(∂u0/∂x)(t, x).

By taking σ0, θ0 and R0 sufficiently small we may suppose that u0(t, x) and v0(t, x) are
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defined on (0, σ0) × S(θ0, R0) and satisfy |u0(t, x)| ≤ Mµ(t) and |v0(t, x)| ≤ Mµ(t) on

(0, σ0)× S(θ0, R0). Then, w(t, x) satisfies

lim
η→+0

[
lim

σ→+0

(
1

η2
sup

(0,σ)×S(ηθ0,ηR0)

|w(t, x)|
)]

= 0 (4.7)

and a partial differential equation

t
∂w

∂t
= λ(t, x)w + (β(t, x) + xpc(t, x))

(
x
∂w

∂x

)
+ a1

(
t, x, w, x

∂w

∂x

)
w + b1

(
t, x, w, x

∂w

∂x

)(
x
∂w

∂x

)
, (4.8)

where a1(t, x, w, q) and b1(t, x, w, q) are suitable functions satisfying

a1(t, x, w, q)w + b1(t, x, w, q)q

= R2(t, x, w + u0(t, x), q + v0(t, x))−R2(t, x, u0(t, x), v0(t, x)).

We may suppose that a1(t, x, w, q) and b1(t, x, w, q) belong to X0(Ω0) with Ω0 = [0, σ0]×
S(θ0, R0)×Dρ1 ×Dρ1 for some ρ1 > 0. In addition, we have the properties:

|β(t, x)| ≤ Bµ(t) on (0, σ0)×DR0 ,

|a1(t, x, w, q)| ≤ A0µ(t) +A1|w|+A2|q| on Ω0,

|b1(t, x, w, q)| ≤ B0µ(t) +B1|w|+B2|q| on Ω0

for some B > 0, Ai > 0 (i = 0, 1, 2) and Bi > 0 (i = 0, 1, 2). Without loss of generality

we may suppose

Reλ(t, x) < −2a on [0, σ0]×DR0

for some a > 0. Recall that we have supposed c(0, 0) < 0. Thus, to prove Theorem 4.3

it is sufficient to show the following result.

Proposition 4.6. In the above situation, we have w(t, x) = 0 on (0, T1)×S(θ1, R1)

for some T1 > 0, θ1 > 0 and R1 > 0.

Before the proof, we note

Lemma 4.7. If a holomorphic function f(x) on S(θ,R) satisfies

sup
S(ηθ,ηR)

|f(x)| = o(ηm) (as η −→ +0)

for some m ≥ 1, we have

sup
S(ηθ,ηR)

|x(d/dx)f(x)| = o(ηm−1) (as η −→ +0).
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Proof. By the assumption, for any ϵ > 0 there is an η0 ∈ (0, 1) such that

|f(x)| ≤ ϵηm on S(ηθ, ηR), 0 < η < η0.

Take any 0 < η < η0 and fix it. Set d(x) = min{ηθ − | arg x|, log(ηR) − log |x|} for

x ∈ S(ηθ, ηR). Then, by Nagumo’s lemma in a sectorial domain (see [2, Lemma 4.2]) we

have

|x(d/dx)f(x)| ≤ ϵηm

d(x)
on S(ηθ, ηR).

If x ∈ S((η/2)θ, (η/2)R), we have

ηθ − | arg x| > ηθ − (η/2)θ = (η/2)θ ≥ min{(η/2)θ, log 2},
log(ηR)− log |x| ≥ log(ηR)− log((η/2)R) = log 2 ≥ min{(η/2)θ, log 2}

and so d(x) ≥ min{(η/2)θ, log 2}. If η > 0 is sufficiently small, we have d(x) ≥ (η/2)θ,

and so

|x(d/dx)f(x)| ≤ ϵηm

(η/2)θ
=

2mϵ

θ
(η/2)m−1 on S((η/2)θ, (η/2)R).

This proves the result in Lemma 4.7. □

Proof of Proposition 4.5. Let us prove Proposition 4.6 step by step.

Step 1: We set q(t, x) = x(∂w/∂x)(t, x), and

a(t, x) = a1(t, x, w(t, x), q(t, x)),

b(t, x) = β(t, x) + b1(t, x, w(t, x), q(t, x)) :

we may suppose that these functions belong to X0((0, σ0)×S(θ0, R0)). By (4.8) we have

the relation

t
∂w

∂t
− x(b(t, x) + xpc(t, x))

∂w

∂x
= (λ(t, x) + a(t, x))w. (4.9)

By applying x(∂/∂x) to (4.9) we have

t
∂q

∂t
− x(b(t, x) + xpc(t, x))

∂q

∂x
= γ(t, x)w + (λ(t, x) + a(t, x) + ℓ(t, x))q, (4.10)

where

γ(t, x) = x(∂λ/∂x)(t, x) + x(∂a/∂x)(t, x),

ℓ(t, x) = x(∂b/∂x)(t, x) + x(∂(xpc)/∂x)(t, x) :

these are also functions belonging to X0((0, σ0) × S(θ0, R0)). For 0 < σ1 < σ0 and

0 < η < 1 we set
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A = sup
(0,σ1)×S(ηθ0,ηR0)

|a(t, x)|,

Γ = sup
(0,σ1)×S(ηθ0,ηR0)

|γ(t, x)|,

L = sup
(0,σ1)×S(ηθ0,ηR0)

|ℓ(t, x)|.

We set also

r1 = sup
(0,σ1)×S(ηθ0,ηR0)

|w(t, x)|, r2 = sup
(0,σ1)×S(ηθ0,ηR0)

|q(t, x)|.

By (4.7) and by the same argument as in the proof of Lemma 2.6 we have

Lemma 4.8. By taking σ1 > 0 and η > 0 sufficiently small we have the following

conditions : A+ L < a,

δ = (B +B0)φ(σ1) +

(
B1

a
+

B2Γ

a2

)
r1 +

B2

a
r2 < log 2,

and 0 < sin−1(2δ) < min{ηθ0/12, π/6p}.

Step 2: We take σ1 > 0 and η > 0 as in Lemma 4.8, and fix them. After that, we

take 0 < σ < σ1 and 0 < R < ηR0 sufficiently small so that

ϵ1 = sup
(0,σ)×S(ηθ0,R)

| arg(−c(t, x))| < min{p(ηθ0)/6, π/6}. (4.11)

Since arg(−c(0, 0)) = 0 holds, this is possible.

We take such σ > 0 and R > 0 and fix them. Set θ = ηθ0. Then, we have

ϵ1/p < min{θ/6, π/6p}.

Step 3: Take any t0 ∈ (0, σ) and ξ ∈ S(θ,R); for a while we fix them.

Let us consider the initial value problem

t
dx

dt
= −x(b(t, x) + xpc(t, x)), x(t0) = ξ. (4.12)

Here, we regard b(t, x) and c(t, x) as functions in X0((0, σ) × S(θ,R)). Let x(t) be the

unique solution in a neighborhood of t = t0. Let (tξ, t0] be the maximal interval of the

existence of this solution. Set

w∗(t) = w(t, x(t)), q∗(t) = q(t, x(t)).

Lemma 4.9. (1) We have x(t) ̸= 0 on (tξ, t0].

(2) For any (t1, τ) satisfying tξ < t1 < τ ≤ t0 we have

|w∗(τ)| ≤
(
t1
τ

)a

|w∗(t1)|, (4.13)

|q∗(τ)| ≤
(
t1
τ

)a (
Γ|w∗(t1)| log(τ/t1) + |q∗(t1)|

)
. (4.14)
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(3) For any t1 ∈ (tξ, t0] we have∣∣∣∣∫ t0

t1

b(τ, x(τ))
dτ

τ

∣∣∣∣ ≤ δ,

where δ is the one in Lemma 4.8.

Proof. If x(t1) = 0 holds for some t1 ∈ (tξ, t0], x(t) is a solution of

t
dx

dt
= −x(b(t, x) + xpc(t, x)), x(t1) = 0.

Since x ≡ 0 is also a solution of this initial value problem, by the uniqueness of the

solution we have x(t) ≡ 0 and so ξ = x(t0) = 0. This contradicts the condition ξ ∈ S(θ,R)

(this means ξ ̸= 0). This proves (1).

By applying the same argument as in the proof of Lemma 2.7 to (4.9) and (4.10) we

have the estimates in (2). By using (4.13) and (4.14) we can show∣∣∣∣∫ t0

t1

b(τ, x(τ))
dτ

τ

∣∣∣∣
≤ (B +B0)(φ(t0)− φ(t1)) +

(
B1

a
+

B2Γ

a2

)
r1 +

B2

a
r2

in the same way as in the proof of Lemma 2.8. Therefore, by combining this with

Lemma 4.8 we have the result (3). □

Lemma 4.10. We set

ϕ(t) = exp

[
−
∫ t0

t

b(τ, x(τ))
dτ

τ

]
, tξ < t < t0.

Then, we have 1/2 ≤ |ϕ(t)| ≤ 2 on (tξ, t0] and

θϕ = sup
(tξ,t0]

| arg ϕ(t)| < min{θ/12, π/6p}. (4.15)

Proof. By (3) of Lemma 4.9 and the condition δ < log 2 (by Lemma 4.8) we have

|ϕ(t)| ≤ eδ < elog 2 = 2. Similarly, we have 1/|ϕ(t)| ≤ eδ ≤ 2. This proves the first part.

Since

|ϕ(t)− 1| ≤
∑
m≥1

1

m!

∣∣∣∣∫ t0

t

b(τ, x(τ))
dτ

τ

∣∣∣∣m ≤
∑
m≥1

δm

m!
≤ δ

∑
m≥0

δm

m!
= δeδ < 2δ,

we have ϕ(t) ∈ {z ∈ C ; |z − 1| < 2δ}: this yields sin | arg ϕ(t)| < 2δ. Hence, we have

sin θϕ ≤ 2δ, that is, θϕ ≤ sin−1(2δ). By Lemma 4.8 and θ = ηθ0 (in Step 2) we have

θϕ < min{θ/12, π/6p}. This proves (4.15). □

Step 4: Let tξ < t1 < t0. By (4.12) we have
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t
d

dt
(ϕ(t)x(t)) = −(ϕ(t)x(t))p+1 c(t, x(t))

ϕ(t)p
.

Since x(t) ̸= 0 on (tξ, t0], we have

d

dt

(
−1/p

(ϕ(t)x(t))p

)
= −c(t, x(t))

ϕ(t)p
× 1

t

and so by integrating this from t1 to t0 we have

−1/p

(ϕ(t0)x(t0))p
− −1/p

(ϕ(t1)x(t1))p
= −

∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ
,

that is,

1

(ϕ(t1)x(t1))p
=

1

ξp
− p

∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ
.

Hence, by solving x(t1) we have the expression:

x(t1) =
ξ/ϕ(t1)(

1− pξp
∫ t0
t1

(
c(τ, x(τ))/ϕ(τ)p

)
(dτ/τ)

)1/p
, tξ < t1 ≤ t0. (4.16)

Lemma 4.11. We have the following properties.

(1) For any t1 ∈ (tξ, t0] we have

|ξ/ϕ(t1)| ≤ 2|ξ| and | arg(ξ/ϕ(t1))| ≤ | arg ξ|+ θϕ.

(2) If p| arg ξ|+ ϵ1 + pθϕ ≤ π/2, we have∣∣∣∣arg(−pξp
∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)∣∣∣∣ ≤ p| arg ξ|+ ϵ1 + pθϕ.

(3) If p| arg ξ|+ ϵ1 + pθϕ ≤ π/2, for any t1 ∈ (tξ, t0] we have

|ξ|/2(
1 + p|ξ|pC02p log(t0/t1)

)1/p ≤ |x(t1)| ≤ 2|ξ|, (4.17)

| arg x(t1)| ≤ 2| arg ξ|+ 2θϕ + ϵ1/p, (4.18)

where C0 is a constant satisfying |c(t, x)| ≤ C0 on (0, σ)× S(θ,R).

Proof. (1) follows from Lemma 4.10. By (4.11) and (4.15) we have

| arg(−c(t, x))| ≤ ϵ1 and | arg(1/ϕ(t)p)| ≤ pθϕ. Therefore, we have∣∣∣∣arg(−pξp
c(τ, x(τ))

ϕ(τ)p

)∣∣∣∣ ≤ p| arg ξ|+ ϵ1 + pθϕ.

If p| arg ξ|+ ϵ1 + pθϕ ≤ π/2 holds, the set {z ∈ C \ {0} ; | arg z| ≤ p| arg ξ|+ ϵ1 + pθϕ} is

closed with respect to the addition. This proves (2).
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Let us show (3). We know that |ξ/ϕ(t1)| ≥ |ξ|/2. Since∣∣∣∣1− pξp
∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

∣∣∣∣ ≤ 1 + p|ξ|p
∫ t0

t1

|c(τ, x(τ))|
|ϕ(τ)|p

dτ

τ

≤ 1 + p|ξ|p
∫ t0

t1

C02
p dτ

τ
= 1 + p|ξ|pC02

p log(t0/t1),

we have the first inequality of (4.17).

If p| arg ξ|+ ϵ1 + pθϕ ≤ π/2 holds, by (2) we have

Re

(
−pξp

∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)
≥ 0 (4.19)

and so we have

Re

(
1− pξp

∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)
≥ 1,

which yields ∣∣∣∣(1− pξp
∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)1/p∣∣∣∣ ≥ 1.

By combining this with (1) we have |x(t1)| ≤ 2|ξ|.
Similarly, by (4.19) and the result (2) we have∣∣∣∣arg(1− pξp

∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)∣∣∣∣ ≤ p| arg ξ|+ ϵ1 + pθϕ.

Hence, we have

| arg x(t1)|

≤ | arg ξ|+ | arg ϕ(t1)|+
1

p

∣∣∣∣arg(1− pξp
∫ t0

t1

c(τ, x(τ))

ϕ(τ)p
dτ

τ

)∣∣∣∣
≤ | arg ξ|+ θϕ +

1

p
(p| arg ξ|+ ϵ1 + pθϕ) = 2| arg ξ|+ 2θϕ + ϵ1/p.

This proves (4.18). □

Step 5: We recall that 0 < θ < θ0 < π/2p holds. By summing up we have

Lemma 4.12. If ξ ∈ S(θ/3, R/3), we have tξ = 0.

Proof. Let ξ ∈ S(θ/3, R/3). Suppose that tξ > 0, and let us derive a contradic-

tion. We note:

p| arg ξ|+ ϵ1 + pθϕ < p(θ/3) + pmin{θ/6, π/6p}+ pmin{θ/12, π/6p}
< p(π/6p) + p(π/6p) + p(π/6p) = π/2.
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Therefore, by (3) of Lemma 4.11 we have

R1 =
|ξ|/2(

1 + p|ξ|pC02p log(t0/tξ)
)1/p ≤ |x(t1)| ≤ 2|ξ| < 2R/3, (4.20)

| arg x(t1)| ≤ 2| arg ξ|+ 2θϕ + ϵ1/p ≤ 2(θ/3) + 2θϕ + ϵ1/p. (4.21)

If we set θ1 = 2(θ/3) + 2θϕ + ϵ1/p, we have θ1 < 2(θ/3) + 2(θ/12) + θ/6 = θ and so we

see that the set K = {x ∈ S(θ,R) ; R1 ≤ |x| ≤ 2R/3, | arg x| ≤ θ1} is a compact subset

of S(θ,R).

By (4.20) and (4.21) we have x(t1) ∈ K for any t1 ∈ (tξ, t0]. Therefore, we can

conclude that x(t) can be extended to an interval (tξ − ε, t0] for some ε > 0. This

contradicts the condition that (tξ, t0] is a maximal interval of the existence of the solution

x(t). □

Step 6: Since tξ = 0, by (4.13) with τ = t0 we have

|w∗(t0)| ≤
(
t1
t0

)a

|w∗(t1)| ≤
(
t1
t0

)a

r1

for any t1 ∈ (0, t0). Since r1 > 0 is independent of t1, by letting t1 −→ +0 we have

w∗(t0) = 0. Since w∗(t0) = w(t0, ξ), we have w(t0, x) = 0 for any x ∈ S(θ/3, R/3). Since

t0 ∈ (0, σ) is taken arbitrarily, we have w(t, x) = 0 on (0, σ)× S(θ/3, R/3).

This completes the proof of Proposition 4.6 □
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