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Abstract. In toric topology, to a simplicial complex K with m vertices,
one associates two spaces, the moment-angle complex ZK and the Davis–

Januszkiewicz space DJK . These spaces are connected by a homotopy fi-
bration ZK → DJK → (CP∞)m. In this paper, we show that the map
ZK → DJK is identified with a wedge of iterated (higher) Whitehead prod-
ucts for a certain class of simplicial complexes K including dual shellable

complexes. We will prove the result in a more general setting of polyhedral
products.

1. Introduction.

1.1. Moment-angle complex.

In the seminal work on quasitoric manifolds in toric topology [4], Davis and

Januszkiewicz constructed a certain space from a simple convex polytope (or equiva-

lently, a dual simplicial convex polytope) as a topological analogue of the hyperplane

arrangement appearing in the theory of toric varieties so that every quasitoric manifold

is obtained as the quotient of the space by a certain torus action. Later on, the con-

struction of this space is generalized to any simplicial complex as follows. Let K be a

simplicial complex on the vertex set [m] = {1, . . . ,m}. The moment-angle complex ZK

is defined as the union of subspaces Z(σ) = {(z1, . . . , zm) ∈ (D2)m | |zi| = 1 for i ̸∈ σ} of

(D2)m for all σ ∈ K, where D2 = {z ∈ C | |z| ≤ 1}.
The moment-angle complex is now a fundamental object not only as a source of

quasitoric manifolds but also as an object connecting toric topology with a broad area

of mathematics including algebraic geometry, algebraic topology, combinatorics, com-

mutative algebra, and geometry. In particular, recent development of the study on the

homotopy type of ZK in connection with combinatorics and commutative algebra is

significant [7], [8], [10], [11].

1.2. Object of study.

Davis and Januszkiewicz [4] also constructed a supplementary space from a simple

convex polytope, and it was also generalized to any simplicial complex. The supplemen-

tary space associated with a simplicial complexK is called the Davis–Januszkiewicz space

and denoted byDJK , which is defined as the union of subspacesDJ(σ) = {(x1, . . . , xm) ∈
(CP∞)m |xi = ∗ for i ̸∈ σ} of (CP∞)m for all σ ∈ K, where ∗ ∈ CP∞ is a basepoint.
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By definition, there is a natural action of torus (S1)m on ZK , and the Davis–

Januszkiewicz space DJK is homotopy equivalent to the Borel construction of this torus

action. Then in particular, there is a fundamental homotopy fibration

ZK
w̃−→ DJK → (CP∞)m. (1)

The object of study in this paper is the fiber inclusion w̃.

1.3. Problem.

For a finite set V , let ∆V denote the simplex with vertex set V and ∂∆V be its

boundary. When K = ∂∆[2], i.e. K consists of two vertices, we have ZK = S3 and

DJK = CP∞∨CP∞ by definition, and the homotopy fibration (1) coincides with Ganea’s

homotopy fibration

S3 → CP∞ ∨ CP∞ → (CP∞)2.

Then in particular, the map w̃ is the Whitehead product of the bottom cell inclusion

S2 → CP∞ with itself. More generally, when K = ∂∆[m] for general m, the map w̃ is the

higher Whitehead product of m-copies of the bottom cell inclusion S2 → CP∞. Thus

the following problem naturally arises.

Problem 1.1. For which simplicial complex is the map w̃ described by higher

Whitehead products?

Grbić and Theriault [6] previously studied this problem by introducing a new class

of simplicial complexes that they call directed MF-complexes. However, there is a gap in

the proof of the main theorem [6, Theorem 13.5]. In Step 4 of the proof, it is claimed that

since a subset R′ ⊂ H∗(
∨

β∈J Stβ ;Z) coincides with a subset R ⊂ H∗(
∨

β∈J Stβ ;Q) and

R generates H∗(
∨

β∈J Stβ ;Q) over Q, R′ generates H∗(
∨

β∈J Stβ ;Z) over Z, where an

ambiguous term “degree one map” used in the proof can only mean an injective integral

map. It is impossible to get such an integral generation as long as we use a rational

homology calculation without any implication on integral homology as in [6].

In this paper, we show that the map w̃ is identified with a wedge of iterated higher

Whitehead products by applying the fat wedge filtration technology for polyhedral prod-

ucts developed in [11], which is completely different from the method of Grbić and

Theriault [6]. The class of simplicial complexes that we consider includes directed MF-

complexes, and so our result implies that the main theorem of Grbić and Theriault [6]

itself is correct.

1.4. Polyhedral product.

In [2], Bahri, Bendersky, Cohen and Gitler unified and generalized the construction

of ZK and DJK , and introduced a space called a polyhedral product. Polyhedral products

enable us to study the homotopy theory of ZK and DJK with a wide viewpoint and rich

homotopy theoretical techniques.

In our case, the map w̃ can be defined in a more general setting using polyhedral

products so that we will study this generalized map w̃ in what follows. However, in this

introduction, we will state our result only in terms of ZK and DJK for readability.
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1.5. Totally fillable complex.

Now we introduce a simplicial complex for which we are going to study the map w̃.

We set notation. Let L be a simplicial complex with vertex set V . Let |L| denote the

geometric realization of L. For a non-empty subset I ⊂ V , define the full subcomplex of

L on I by LI = {σ ∈ L |σ ⊂ I}. A subset σ ⊂ V is called a minimal non-face of L if it

is not a simplex of L and all of its proper subsets are simplices of L. In particular, if we

add minimal non-faces to L, then we get a new simplicial complex.

Definition 1.2. A simplicial complex K is called fillable if there is a collection of

minimal non-faces {σ1, . . . , σr} such that |K ∪ σ1 ∪ · · · ∪ σr| is contractible. If any full

subcomplex of K is fillable, then it is called totally fillable.

Example 1.3. A typical example of totally fillable complexes is a skeleton of a

simplex, and a typical example of simplicial complexes which are not fillable is a square

graph.

The collection of minimal non-faces {σ1, . . . , σr} in the above definition is called a

filling of K and denoted by F(K), where there are possibly several fillings of a fillable

complex K. The class of totally fillable complexes includes dual shellable complexes

which are especially important in combinatorics, where we refer to Section 2 for the

definition of shellable complexes. As mentioned above, we will see that directed MF-

complexes that were considered in the previous work [6] are dual shellable, and so they

are totally fillable.

1.6. Statement of the result.

The key to study the map w̃ for a totally fillable complexK is the following homotopy

decomposition of ZK which was obtained in [11].

Theorem 1.4. Let K be a totally fillable complex on the vertex set [m] with fillings

F(KI) for ∅ ̸= I ⊂ [m]. Then there is a homotopy equivalence

ZK ≃
∨

∅≠I⊂[m]

∨
σ∈F(KI)

S|σ|+|I|−1.

Let ãi : S
2 → DJK be the inclusion of the bottom cell of the i-th CP∞ in DJK .

For σ ⊂ [m] with |σ| ≥ 2, let w̃σ be the higher Whitehead product of ãi for i ∈ σ if it

is defined, where we refer to Section 3 for the definition of higher Whitehead products.

Now we state our result.

Theorem 1.5. Let K be a totally fillable complex on the vertex set [m] with fillings

F(KI) for ∅ ̸= I ⊂ [m]. The equivalence of Theorem 1.4 can be chosen so that the

composite

S|σ|+|I|−1 →
∨

∅≠I⊂[m]

∨
σ∈F(KI)

S|σ|+|I|−1 ≃ ZK
w̃−→ DJK

is the iterated Whitehead product
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[· · · [[w̃σ, ãi1 ], ãi2 ], . . . , ãik ],

where i1, . . . , ik is a certain ordering of I − σ.

Remark 1.6. The equivalence in Theorem 1.4 and iterated Whitehead products

in Theorem 1.5 depend on the choice of fillings F(KI) for all ∅ ̸= I ⊂ [m].

Remark 1.7. Recently, Abramyan [1] showed that in general, w̃ is not necessarily

a wedge of iterated Whitehead products even if ZK is homotopy equivalent to a wedge

of spheres.

Throughout this paper, we assume that spaces have non-degenerate basepoints.

2. Fillable complex.

Throughout this paper, let K be a simplicial complex on the vertex set [m]. We

will assume that a totally fillable complex K is given specific fillings F(KI) of KI for all

∅ ̸= I ⊂ [m] unless otherwise is specified.

2.1. Deletable complex.

In [11], it is proved that dual shellable complexes are totally fillable. The proof

there actually shows that dual shellable complexes are in a certain subclass of totally

fillable complexes, which we introduce here. A simplicial complex K is called deletable

if there are facets σ1, . . . , σr such that K − {σ1, . . . , σr} is collapsible, where r can be 0,

i.e. K itself can be collapsible. K is called totally deletable if K itself and lkKV (v) are

deletable for any ∅ ≠ V ⊂ [m] and v ∈ V , where lkL(w) = {σ ∈ L |w ̸∈ σ, σ ∪ w ∈ L} is

the link of a vertex w of a simplicial complex L.

Let L be a simplicial complex with ground set S, where the ground set is a superset

of the vertex set and possibly they are different. The Alexander dual of L with respect

to S, denoted L∨, is the simplicial complex consisting of σ ⊂ S such that S − σ is not a

simplex of L. If we do not specify the ground set, then the Alexander dual will be taken

over the vertex set. The following dictionary is useful, which is proved in [11]. For a

vertex v of L, let dlL(v) = {σ ∈ L |σ ⊂ S − {v}} be the deletion of v.

Proposition 2.1. Let L be a simplicial complex with ground set S.

1. (L∨)∨ = L, where the Alexander duals are taken over S.

2. σ ⊂ S is a facet of L if and only if σ∨ is a minimal non-face of L∨, where σ∨ =

S − σ.

3. For any v ∈ V , dlL(v)
∨ = lkL∨(v), where the Alexander duals of dlL(v) and L are

taken over S − {v} and S, respectively.

The following is proved in [11].

Proposition 2.2. If K is collapsible, then |K∨| is contractible.

Then by Proposition 2.1 one gets:
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Corollary 2.3. Dual (totally) deletable complexes are (totally) fillable.

2.2. Shellable complex.

Recall that K is called shellable if there is an ordering of facets σ1, . . . , σk of K,

called a shelling, such that ⟨σ1, . . . , σi−1⟩ ∩ ⟨σi⟩ is pure and (|σi| − 2)-dimensional for

i = 2, . . . , k, where ⟨τ1, . . . , τr⟩ means the simplicial complex generated by simplices

τ1, . . . , τr and a simplicial complex is called pure if its facets have the same dimension.

Shellable complexes were originally introduced as a combinatorial criterion for Cohen–

Macaulayness and are now one of the most important classes of simplicial complexes in

combinatorics.

Example 2.4. Any skeleton of a simplex is a shellable complex, where any ordering

of its facets is a shelling.

As is seen in [3], [11], if K is shellable, then K is deletable and the link of any of

its vertices is shellable. Then by Proposition 2.1 we get the following.

Proposition 2.5. Shellable complexes are totally deletable.

By Corollary 2.3, we obtain:

Corollary 2.6. Dual shellable complexes are totally fillable.

Example 2.7. Any skeleton of a simplex is shellable as in Example 2.4, and its

Alexander dual is again a skeleton of a simplex which is obviously totally fillable.

Example 2.8. Let K be the following simplicial complex with six vertices.

Then K is collapsible, so it is deletable. Moreover, for any vertex v, lkK(v) is either the

interval graph or the disjoint union of the interval graph and one point. Then lkK(v)

is shellable for any vertex v, implying that K is totally deletable. However, we see that

K itself is not shellable by looking at the middle edge which is a facet. So the class of

deletable complexes is strictly larger than that of shellable complexes.

2.3. Directed MF-complex.

In the previous work [6], Grbić and Theriault introduced a simplicial complex called

a directed MF-complex and studied the map w̃ for a directed MF-complexK. A simplicial

complex K is called a directed MF-complex if there is a filtration of subcomplexes ∅ =

K1 ⊂ K2 ⊂ · · · ⊂ Kr = K such that for i = 1, . . . , r, Ki = Ki−1∪∂∆ni , and Ki−1∩∂∆ni

is a common face of Ki−1 and ∆ni .

Example 2.9. The k-skeleton of an n-dimensional simplex for k > 0 is a directed

MF-complex if and only if k = n− 1.

We shall show that directed MF-complexes are dual shellable. For this, we will use

the following lemma.
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Lemma 2.10. Suppose that there is an ordering of minimal non-faces σ1 < · · · < σr

of K such that for any i < j, there is k < j satisfying that σk ∪ σj ⊂ σi ∪ σj and

|σk ∪ σj | = |σj |+ 1. Then the ordering of facets σ∨
1 < · · · < σ∨

r of K∨ is a shelling.

Proof. The assumption is equivalent to that for any i < j, there is k < j satis-

fying that σ∨
k ∩ σ∨

j ⊃ σ∨
i ∩ σ∨

j and σ∨
k ∩ σ∨

j is (m − |σj | − 2)-dimensional. Then we get

that for j ≥ 2, ⟨σ∨
1 , . . . , σ

∨
j−1⟩ ∩ ⟨σ∨

j ⟩ is pure and (m− |σj | − 2)-dimensional, completing

the proof. □

Proposition 2.11. Directed MF-complexes are dual shellable.

Proof. Let K be a directed MF-complex. Then there is a filtration ∅ = K0 ⊂
K1 ⊂ · · · ⊂ Kr = K such that Ki = Ki−1 ∪ ∂∆σi and Ki−1 ∩ ∂∆σi is a common face

of Ki−1 and ∆σi . The filtration induces an ordering σ1 < · · · < σr. We consider an

ordering of the vertex set induced by this ordering of simplices with v < w whenever

v ∈ σi and w ∈ σi+1.

Let I be the set of all 1-dimensional minimal non-faces of K and put {τ1, . . . , τs} =

{σ1, . . . , σr} − I, where τ1 < · · · < τs. Then all minimal non-faces of dimension > 1

are included in {τ1, . . . , τs}. Consider the lexicographic ordering on I such that {k, l} <

{k′, l′} ∈ I if k < k′ or k = k′, l < l′. Then the ordering I < τ1 < · · · < τs satisfies the

condition of Lemma 2.10, where I ⊔ {τ1, . . . , τs} is the set of all minimal non-faces of K.

Thus the proof is done. □

Summarizing, we have obtained the implications:

directed MF ⇒ dual shellable ⇒ dual totally deletable ⇒ totally fillable.

2.4. Homotopy type.

It is observed in [11] that if K is fillable, then |ΣK| is homotopy equivalent to a

wedge of spheres. Here we consider the naturality of this homotopy equivalence which

will be used later. For a fillable complex K, we put K = K
∪

σ∈F(K) σ, where F(K) is

defined in Section 1.

Proposition 2.12. If K is fillable with filling F(K), then there is a homotopy

equivalence

|ΣK| ≃
∨

σ∈F(K)

S|σ|−1

such that for a fillable subcomplex L of K with filling F(L) satisfying F(L) ⊂ F(K)∪K,

the square diagram

|ΣL| ≃ //

��

∨
τ∈F(L) S

|τ |−1

g̃

��
|ΣK| ≃ // ∨

σ∈F(K) S
|σ|−1
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commutes, where g̃|S|τ|−1 is the inclusion for τ ∈ F(K) ∩ F(L) and the constant map

otherwise.

Proof. Since |K| is contractible, there is a homotopy equivalence |CK| → |K|
which restricts to the identity map of |K|. Then we get the desired homotopy equivalence

by pinching |K| to a point. The assumption on L is equivalent to that L is a subcomplex

of K, so one gets the commutative square in the statement. □

2.5. Contraction ordering.

We define a contraction ordering of vertices of a fillable complex. Let V be a finite

set and S ⊂ V be a subset with |S| ≥ 2. Let L be a simplicial complex with vertex set

V obtained by attaching trees T1, . . . , Tk to ∂∆S by their roots. Let Vi be the vertex set

of Ti and ri ∈ Vi ∩S be the root of Ti. Then one has V = S ⊔ (V1 − r1)⊔ · · · ⊔ (Vk − rk).

An ordering v1 < · · · < vn of Vi − ri is called a local contraction ordering if the full

subcomplex (Ti)Vi−{vj ,...,vn} is connected for any j = 1, . . . , n. An ordering of V − S is

called a contraction ordering if it is the union of local contraction orderings of Vi − ri.

Note that a deformation retract of |L| onto |∂∆S | is given by a contraction ordering.

For a finite set V and its non-empty subset S, let ∆(V, S) be the simplicial complex

which is the disjoint union of ∂∆S and vertices v ∈ V − S.

Proposition 2.13. If K is fillable and σ ∈ F(K), then there are trees T1, . . . , Tk

such that there is a subcomplex of K with vertex set [m] obtained by attaching T1, . . . , Tk

to ∂∆σ by their roots.

Proof. Choose any maximal tree of K. Then since K is connected, the vertex

set of T is [m]. If we remove all edges of ∂∆σ from T , then we get a collection of trees

which gives a desired subcomplex. □

Then we can define a contraction ordering of [m] − σ for a fillable complex K and

σ ∈ F(K).

3. Polyhedral products and the map w.

3.1. Polyhedral product.

Let (X,A) = {(Xi, Ai)}mi=1 be a collection of pairs of spaces. The polyhedral product

of (X,A) associated with K is defined in [2] as

Z(K; (X,A)) =
∪
σ∈K

(X,A)σ ⊂
m∏
i=1

Xi,

where (X,A)σ = Y1×· · ·×Ym such that Yi = Xi for i ∈ σ and Yi = Ai for i ̸∈ σ. The most

fundamental property of polyhedral products, first observed in [5], is the following which

we will use implicitly, where we omit the proof because it is obvious. For ∅ ̸= I ⊂ [m],

let (X,A)I = {(Xi, Ai)}i∈I .

Proposition 3.1. For ∅ ≠ I ⊂ [m], Z(KI ; (X,A)I) is a retract of Z(K; (X,A)).
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If all (Xi, Ai) are (D2, S1) (resp. (CP∞, ∗)), the resulting polyhedral product is the

moment-angle complex ZK (resp. DJK). Hereafter, let X = {Xi}mi=1 be a collection of

pointed spaces. We will generalize the map w̃ : ZK → DJK to the polyhedral products

ZK(X) = Z(K; (CX,X)) and DJK(X) = Z(K; (X, ∗))

which are generalization of ZK and DJK , respectively, where (CX,X) = {(CXi, Xi)}mi=1

and (X, ∗) = {(Xi, ∗)}mi=1. Here we remark that the same notation ZK(X) is used in [6]

to express a different polyhedral product Z(K; (CΩX,ΩX)), where ΩX = {ΩXi}mi=1.

3.2. Decomposition of the map w̃.

As in [11], there is a homotopy fibration

ZK(ΩX)
w̃−→ DJK(X) →

m∏
i=1

Xi (2)

which specializes to the homotopy fibration (1). We decompose the map w̃ to clarify the

point of our study.

Let ΩXi → PXi → Xi be the path-loop fibration. Then for each i, there is a

pair of fibrations (PXi,ΩXi) → (X
[0,1]
i , PXi) → (Xi, Xi), where the second map is the

evaluation at 1, and as in [5], [11], this induces a homotopy fibration

Z(K; (PX,ΩX)) → Z(K; (X [0,1], PX)) →
m∏
i=1

Xi. (3)

The maps CΩXi → PXi, (s, l) 7→ [t 7→ l((1 − s)t)] and the evaluations X
[0,1]
i → Xi at

0 induce homotopy equivalences Z(K; (PX,ΩX)) ≃ ZK(ΩX) and Z(K; (X [0,1], PX)) ≃
DJK(X). Then by applying these homotopy equivalences to (3), one gets the homotopy

fibration (2). Hence one gets the following. Let w : ZK(X) → DJK(ΣX) be the map

induced by the maps of pairs (CXi, Xi) → (ΣXi, ∗), where ΣX = {ΣXi}mi=1 and CXi →
ΣXi is the pinch map.

Proposition 3.2. The map w̃ : ZK(ΩX) → DJ(X) is the composite of maps

ZK(ΩX)
w−→ DJK(ΣΩX) → DJK(X),

where the second map is induced from the evaluation maps ΣΩXi → Xi.

Thus we study the map w and apply its properties to understand the map w̃. By

definition, the map w has the following naturality.

Proposition 3.3. For a subcomplex L of K on the same vertex set [m], the fol-

lowing diagram commutes.
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ZL(X)
w //

��

DJL(ΣX)

��
ZK(X)

w // DJK(ΣX)

3.3. Higher Whitehead product.

Suppose that K consists only of two vertices, where m = 2. Then we have ZK(X) =

X1 ∗ X2 and DJK(ΣX) = ΣX1 ∨ ΣX2 so that the map w : ZK(X) → DJK(ΣX) is by

definition the (generalized) Whitehead product of the inclusions ΣXi → DJK(ΣX) for

i = 1, 2, where X ∗ Y means the join of spaces X and Y .

Suppose next that K = ∂∆[m] for general m. Then we have ZK(X) = X1 ∗ · · · ∗Xm

and DJK(ΣX) is the fat wedge of ΣXi, which is the subspace of
∏m

i=1 ΣXi consisting

of points (x1, . . . , xm), where at least one xi is the basepoint. Porter [15] defined the

universal higher Whitehead product of the inclusions ai : ΣXi → DJK(ΣX) for i =

1, . . . ,m by the map w : ZK(X) → DJK(ΣX) in this special case that K is the boundary

of ∆[m].

We finally consider general K. Suppose that σ ⊂ [m] is a minimal non-face of

K. Then there is the inclusion DJ∂∆σ (ΣXσ) → DJK(ΣX), where Xσ = {Xi}i∈σ.

Let ai : ΣXi → DJK(ΣX) be the inclusion for i = 1, . . . ,m. Then the higher White-

head product of the inclusions ai for i ∈ σ is defined as the composite ZK(Xσ)
w−→

DJ∂∆σ (ΣXσ) → DJK(ΣX), which we write wσ.

4. Fat wedge filtration.

4.1. Definition.

For a collection of pointed spaces Y = {Yi}mi=1, let T
i(Y ) be the subspace of

∏m
i=1 Yi

consisting of points (y1, . . . , ym) such that at least m− i of yj are the basepoints, where

T i(Y ) are called the generalized fat wedge of Yi. Put Zi
K(X) = ZK(X)∩T i(CX). Then

there is a filtration

∗ = Z0
K(X) ⊂ Z1

K(X) ⊂ · · · ⊂ Zm
K (X) = ZK(X)

which we call the fat wedge filtration of ZK(X). The fat wedge filtration of ZK(X)

is studied in [11]: the fat wedge filtration connects the homotopy type of ZK(X) and

the combinatorics of a simplicial complex K, and produces application of homotopical

technique to combinatorics.

4.2. Cone decomposition.

In [11], it is shown that if all Xi are suspensions, then the fat wedge filtration of

ZK(X) is a cone decomposition with explicitly described attaching maps. We recall this

result here. Let RZK be the polyhedral product ZK(X) such that all Xi are S0, which

we call the real moment-angle complex. We first recall from [11] properties of the fat

wedge filtration of RZK . We denote the i-th filter of the fat wedge filtration of RZK by

RZi
K .
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Theorem 4.1. For any ∅ ̸= I ⊂ [m], there is a map φKI : |KI | → RZ |I|−1
KI

satis-

fying the following properties :

1. RZi
K is obtained from RZi−1

K by attaching cones by φKI for |I| = i so that

RZi
K = RZi−1

K

∪
I⊂[m], |I|=i

C|KI |.

2. If L is a subcomplex of K, then the following diagram commutes, where the vertical

arrows are the inclusions.

|LI |
φLI //

��

RZ|I|−1
LI

��
|KI |

φKI // RZ|I|−1
KI

3. Let K̂I be the simplicial complex obtained from KI by adding all of its minimal

non-faces. Then φKI factors through the inclusion |KI | → |K̂I |.

The fat wedge filtration of ZK(X) is not a cone decomposition in general unlikely to

RZK in Theorem 4.1. However, as mentioned above, it is indeed a cone decomposition

whenever all Xi are suspensions. This is proved in [11] only for the moment-angle

complex ZK , but it can be proved in the general case by the same construction using

higher Whitehead product. We demonstrate it here. Define a map Φ̃: Im ×
∏m

i=1 Xi →∏m
i=1 CXi by Φ̃(t1, . . . , tm, x1, . . . , xm) = ((t1, x1), . . . , (tm, xm)). Then Φ̃ restricts to a

map Φ: RZK ×
∏m

i=1 Xi → ZK(X) such that

Φ−1(Zm−1
K (X)) = (RZK × Tm−1(X)) ∪

(
RZm−1

K ×
m∏
i=1

Xi

)
.

If X = ΣY for Y = {Yi}mi=1, then there is the higher Whitehead product ω : Y ∗[m] →
Tm−1(X), where Y ∗[m] = Y1 ∗ · · · ∗ Ym. Now we define the map φK : |K| ∗ Y ∗[m] →
Zm−1

K (X) by the composite

|K| ∗ Y ∗[m] = (C|K| × Y ∗[m]) ∪ (|K| × C(Y ∗[m]))

(CφK×ω)∪(φK×Cω)−−−−−−−−−−−−−−→ (RZK × Tm−1(X)) ∪

(
RZm−1

K ×
m∏
i=1

Xi

)
Φ−→ Zm−1

K (X).

Theorem 4.2. If X = ΣY , then the fat wedge filtration of ZK(X) is a cone

decomposition such that

Zi
K(X) = Zi−1

K (X)
∪

I⊂[m], |I|=i

C(|KI | ∗ Y ∗I),

where the attaching maps are φKI
.
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It is shown in [11] that if φKI
≃ ∗ for any I, then φKI

≃ ∗ for any I as a consequence

of a more general result, where φKI
is as in Theorem 4.1. We will prove this fact by a more

direct argument, which enables us to consider the naturality among null homotopies.

Proposition 4.3. If φK is null homotopic, then so is φK . Moreover, if a null

homotopy of φK restricts to that of φL for a subcomplex L ⊂ K, then we may choose a

null homotopy of φK such that it restricts to that of φL.

Proof. Suppose that φK ≃ ∗ and we fix a null homotopy. Then the map (CφK×
ω) ∪ (φK × Cω) in the definition of φK is homotopic to the composite

(C|K| × Y ∗[m]) ∪ (|K| × C(Y ∗[m])) → (|ΣK| × Y ∗[m]) ∪ (∗ × C(Y ∗[m]))

(f×ω)∪(∗×Cω)−−−−−−−−−−→ (RZK × Tm−1(X)) ∪

(
RZm−1

K ×
m∏
i=1

Xi

)

for a map f : |ΣK| → RZK defined by gluing CφK and the null homotopy of φK . Then

for Φ(RZK ∨
∏m

i=1 Xi) = ∗, the map φK factors through the map f ∧ω : |ΣK| ∧Y ∗[m] →
RZK ∧Tm−1(X). Note that f ∧ω = (f ∧1Y ∗[m])◦ (1|ΣK|∧ω) = (f ∧1Y ∗[m])◦Σ(1|K|∧ω).

For Σω ≃ ∗, one gets Σ(1|K| ∧ ω) ≃ ∗ so that φK ≃ ∗ as desired. The naturality of null

homotopies is obvious by the above deformation of maps. □

4.3. Homotopy decomposition.

We apply Theorem 4.2 to obtain a homotopy decomposition of ZK(X) together with

its naturality. To this end, we will use the following simple lemma, where the proof is

easy and omitted.

Lemma 4.4. If a map φ : A → X is null homotopic, then there is a homotopy

equivalence

ϵφ : X ∨ ΣA
≃−→ X ∪φ CA

which is natural with respect to φ and its null homotopy.

By Theorem 4.2, Proposition 4.3 and Lemma 4.4, one gets:

Corollary 4.5. Suppose that X = ΣY . If φKI ≃ ∗ for any ∅ ̸= I ⊂ [m], then

there is a homotopy equivalence

ϵK : ZK(X)
≃−→

∨
∅̸=I⊂[m]

|ΣKI | ∧ X̂I ,

where X̂I =
∧

i∈I Xi. Moreover, if L is a subcomplex of K with vertex set [m] such that

a null homotopy of φKI
restricts to that of φLI

for any ∅ ̸= I ⊂ [m], up to homotopy,

then there is a homotopy commutative diagram
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ZL(X)
ϵL //

��

∨
∅≠I⊂[m] |ΣLI | ∧ X̂I

��
ZK(X)

ϵK // ∨
∅̸=I⊂[m] |ΣKI | ∧ X̂I ,

where the vertical arrows are inclusions.

5. Main theorem and its proof.

5.1. Main theorem.

We first show the homotopy decomposition of ZK(X) for a totally fillable complex

K. By Theorem 4.1, we have:

Lemma 5.1. If K is totally fillable, then φKI
≃ ∗ for any ∅ ̸= I ⊂ [m].

For a totally fillable complex K, we put

WK(X) =
∨

∅≠I⊂[m]

∨
σ∈F(KI)

Σ|σ|−1X̂I .

Then by Proposition 2.12, Corollary 4.5 and Lemma 5.1, one gets the following homotopy

decomposition which specializes to Theorem 1.4 by putting Xi = S1 for all i.

Theorem 5.2. If K is totally fillable and X = ΣY , then there is a homotopy

equivalence

ϵK : ZK(X)
≃−→ WK(X).

Remark 5.3. As is seen in [11], the assumption X = ΣY in Theorem 5.2 is

redundant to get the decomposition. But under this assumption, we can construct ϵK
explicitly as above, which gives us its naturality that will be used to prove the main

theorem.

Remark 5.4. The homotopy equivalence ϵK depends on the choice of F(KI) and

contraction ordering of I − σ for σ ∈ F(KI).

Now we state the main theorem. For a totally fillable complexK, we fix a contraction

ordering of I − σ for each σ ∈ F(KI) and ∅ ̸= I ⊂ [m]. Let ai : Xi → DJK(X) be the

inclusion for i = 1, . . . ,m as above. Now we state the main theorem.

Theorem 5.5. Suppose that X = ΣY and K is a totally fillable complex. Then

for σ ∈ F(KI), the composite

Σ|σ|−1X̂I → WK(X)
ϵ−1
K−−→ ZK(X)

w−→ DJK(ΣX)

is the iterated Whitehead product
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[[· · · [wσ, ai1 ], · · · ], aik ]

up to permutation of the smash factors of Σ|σ|−1X̂I , where i1 < · · · < ik is a contraction

ordering of I − σ and wσ is the higher Whitehead product defined in Section 3.

Remark 5.6. As in Remark 5.4, a different choice of F(KI) and contraction or-

dering may produce a different equivalence ϵK so that the appearing Whitehead products

may change.

Let ãi : S
2 → DJK be the inclusion of the bottom cell of the i-th CP∞ → DJK .

For a minimal non-face σ of K, let w̃σ be the composite

Z∂∆σ
wσ−−→ DJK(S2) → DJK ,

where the second arrow is induced from the bottom cell inclusion S2 → CP∞. Then

w̃σ is the higher Whitehead product of ãi for i ∈ σ. The following is immediate from

Theorem 5.5 and the naturality of (higher) Whitehead products.

Corollary 5.7. If K is a totally fillable complex, then for σ ∈ F(KI), the com-

posite

S|σ|+|I|−1 →
∨

∅̸=I⊂[m]

∨
σ∈F(KI)

S|σ|+|I|−1 ϵ−1
K−−→ ZK

w̃−→ DJK

is the iterated Whitehead product

[[· · · [w̃σ, ãi1 ], · · · ], ãik ],

where i1 < · · · < ik is a contraction ordering of I − σ.

5.2. Proof of Theorem 5.5.

Let ϵK be the homotopy equivalence of Theorem 5.2. The following naturality of ϵK
is obvious by its construction.

Corollary 5.8. The homotopy equivalence ϵK retracts to ϵKI
for any ∅ ̸= I ⊂

[m].

Corollary 5.9. Suppose that K is totally fillable and X = ΣY . The homotopy

equivalence ϵK satisfies a homotopy commutative diagram

Z∆([m],σ)(X) //

ϵ∆([m],σ)

��

ZK(X)

ϵK

��
W∆([m],σ)(X)

g // WK(X)

for σ ∈ F(K), where g restricts to the identity map of Σ|σ|−1X̂ [m].

Proof. The null homotopy of φKI is given by the contraction of |KI | which

1251(227)



1252 K. Iriye and D. Kishimoto

restricts to a contraction of |∆([m], σ)I | given by a contraction ordering. Then the

corollary follows from Corollary 4.5. □

For k < m, put Z̃(k) = (Z∆([m−1],[k])(X [m−1]) × Xm) ∪ (∗ × CXm) and Z̃i(k) =

Z̃(k) ∩ T i(CX). Then the following is clear from the definition of φK .

Proposition 5.10. If X = ΣY , then for each I ⊂ [m] with I ̸= ∅, {m}, the map

φ∆([m],[k])I restricts to a map φ̃I : |∆([m− 1], [k])I | ∗ Y ∗I → Z̃|I|−1(k) such that

Z̃i(k) = Z̃i−1(k)
∪

I⊂[m], |I|=i

C(|∆([m− 1], [k])I | ∗ Y ∗I),

where the attaching maps are φ̃I .

As mentioned above, ∆([m], [k]) is totally fillable. Put F(∆([m − 1], [k])I) =

F(∆([m], k)I) for any ∅ ≠ I ⊂ [m− 1]. Then any null homotopy of φ∆([m],[k])I given by

a contraction ordering induces a null homotopy of φ̃I . Put

W̃ (k) =
∨

∅≠I⊂[m−1]

∨
σ∈F(∆([m],[k])I)

(Σ|σ|−1X̂I ∨ Σ|σ|−1X̂I∪{m}).

Then by Proposition 5.10, one gets:

Corollary 5.11. If X = ΣY , then any null homotopy of φ∆([m],[k])I given by

a contraction ordering induces a homotopy equivalence ϵ̃ : Z̃(k) → W̃ (k) satisfying a

homotopy commutative diagram

Z̃(k) //

ϵ̃

��

Z∆([m],[k])(X)

ϵ∆([m],[k])

��
W̃ (k) // W∆([m],[k])(X),

where the horizontal arrows are inclusions.

We will use the following lemma to show the naturality of the homotopy equivalence

ϵ̃. To state the lemma, we set notation. Let A,B be pointed spaces. Put A ⋊ B =

(A × B)/(∗ × B). Let π : CB → ΣB, q̄ : A ∗ B/CB → ΣA ∧ B, r : A ∗ B → A ∗ B/CB,

and p′ : A ⋊ ΣB → A ∧ ΣB be the obvious projections. Then q and q̄ are homotopy

equivalences, and q = q̄ ◦ r. Put p = q−1 ◦ p′.

Lemma 5.12. Given a map f : (CA,A) → (V,W ), there is a homotopy commuta-

tive diagram
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A⋊ ΣB
f⋊1 //

p

��

W ⋊ ΣB

��
A ∗B

f̄ // (V ⋊ ∗) ∪ (W ⋊ ΣB),

where f̄ is the composite A ∗B f×π−−−→ (V × ∗) ∪ (W × ΣZ)
proj−−→ (V ⋊ ∗) ∪ (W ⋊ ΣZ).

Proof. Let ct : CA → CA be a contraction. Since (A ∗B, (CA×B)∪ (∗ ×CB))

is an NDR-pair [14], (A ∗ B/CB,CA ⋊ B) is an NDR-pair too. Then by applying the

homotopy extension property, we get an extension ht : A ∗ B/CB → A ∗ B/CB of a

contraction ct ⋊ 1: CA ⋊ B → CA ⋊ B such that h0 is the identity map of A ∗ B/CB.

Thus there is a homotopy commutative diagram

A⋊ CB
f⋊π //

h1◦j
��

W ⋊ ΣB

��
A ∗B/CB

f⋊π // (V ⋊ ∗) ∪ (W ⋊ ΣB)

such that a commuting homotopy is (f ⋊ π) ◦ ht ◦ j, where j : A ⋊ CB → A ∗ B/CB is

the inclusion. By definition, the map h1 decomposes as

A ∗B/CB
proj−−→ A ∗B/(CA×B) ∪ (∗ × CB) = A ∧ ΣB

r′−→ A ∗B/CB. (4)

for some map r′. Then h1 ◦ j decomposes as

A⋊ CB
proj−−→ A⋊ ΣB

p′

−→ A ∧ ΣB
r′−→ A ∗B/CB.

Since the first arrow of (4) is homotopic to q̄ and h1 is homotopic to the identity map,

r′ is homotopic to q̄−1.

On the other hand, since (f⋊π)◦ht◦j(a, b) = (ct(a), ∗) for (a, b) ∈ A⋊B ⊂ A⋊CB,

the above homotopy commutative diagram induces a homotopy commutative diagram.

A⋊ ΣB
f⋊1 //

r′◦p′

��

W ⋊ ΣB

��
A ∗B/CB

f⋊π // (V ⋊ ∗) ∪ (W ⋊ ΣB).

Since r−1 ◦r′ ◦p′ ≃ r−1 ◦ q̄−1 ◦p′ = q−1 ◦p′ = p and r ◦ (f ⋊π) = f̄ , the proof is done. □

For k ≥ 2, let q̂ be the composite of maps

Σk−1X̂ [m] q−1

−−→ (Σk−2X̂ [m−1]) ∗Xm
proj−−→ (Σk−1X̂ [m−1] ×Xm) ∪ (∗ × CXm).

Proposition 5.13. If X = ΣY , then the homotopy equivalence ϵ̃ of Corollary 5.11

satisfies a homotopy commutative diagram
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Σk−1X̂ [m] q̂ //

��

(Σk−1X̂ [m−1] ×Xm) ∪ (∗ × CXm)

��
W̃ (k)

ϵ̃−1

��

(W∆([m−1],[k])(X [m−1])×Xm) ∪ (∗ × CXm)

ϵ−1
∆([m−1],[k])

×1

��
Z̃(k) Z̃(k),

where k ≥ 2 and the upper vertical arrows are inclusions.

Proof. Let wk : Y
∗[k] → T k−1(ΣY [k]) denote the higher Whitehead product.

Then wk = wk−1 × π for the projection π : CYk → ΣYk. Then by Lemma 5.12, we

get a homotopy commutative diagram

Y ∗[m−1] ⋊ ΣYm

wm−1⋊1 //

p

��

Tm−2(ΣY [m−1])× ΣYm

��
Y ∗[m] w̄m // Tm−1(ΣY )/ΣYm,

where w̄k is the composite of wk and the projection T k−1(ΣY [k]) → T k−1(ΣY [k])/ΣYk.

Put L = ∆([m − 1], [k]). Then by the definition of φL, one gets a homotopy com-

mutative diagram

(|L| ∗ Y ∗[m−1])⋊ ΣYm

φL⋊1 //

p1

��

Zm−2
L (X [m−1])⋊Xm

��
|L| ∗ Y ∗[m] r̃◦φ̃ // Z̃m−1(k)/CXm,

where p1 is induced from p and r̃ : Z̃m−1(k) → Z̃m−1(k)/CXm is the projection which

is a homotopy equivalence, and the right vertical arrow is the inclusion. Thus by the

definitions of ϵ̃ and ϵL, one obtains a homotopy commutative diagram

Σk−1X̂ [m−1] ⋊Xm

p2

��

// WL(X [m−1])⋊Xm

ϵ−1
L ⋊1 // Z̃(k)/CXm

r̃−1

��
Σk−1X̂ [m] // W̃ (k)

ϵ̃−1
// Z̃(k),

where p2 is induced from p. Since p2 ◦ q̂ ≃ 1, the proof is completed. □

Lemma 5.14. If X = ΣY and 2 ≤ k < m, then the composite

Σk−1X̂ [m] → WM (X)
ϵ−1
M−−→ ZM (X)

w−→ DJM (ΣX)
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is the iterated Whitehead product [[· · · [w[k], ak+1], · · · ], am], where M = ∆([m], [k]).

Proof. Put L = ∆([m − 1], [k]). By Proposition 5.13, we see that there is a

homotopy commutative diagram

Σk−1X̂ [m]

w

��

Σk−1X̂ [m]

q̂

��

Σk−1X̂ [m]

��

Σk−1X̂ [m−1] ∨ ΣXm

��

(Σk−1X̂ [m−1] ×Xm) ∪ (∗ × CXm)
projoo

��
WL(X [m−1]) ∨ ΣXm

ϵ−1
L ∨1

��

(WL(X [m−1])×Xm) ∪ (∗ × CXm)
projoo

ϵ−1
L ×1

��

W̃ (k)

ϵ̃−1

��
ZL(X [m−1]) ∨ ΣXm

w∨1

��

Z̃(k)
projoo

w

��

Z̃(k)

w

��
DJL(ΣX [m−1]) ∨ ΣXm DJL(ΣX [m−1]) ∨ ΣXm DJL(ΣX [m−1]) ∨ ΣXm,

where w is the Whitehead product of the identity maps of Σk−1X̂ [m−1] and ΣXm. On

the other hand, by Corollaries 5.9 and 5.11 there is a homotopy commutative diagram

W̃ (k)

ϵ̃−1

��

// WM (X)

ϵ−1
M

��
Z̃(k)

w

��

// ZM (X)

w

��
DJL(ΣX [m−1]) ∨ ΣXm DJM (ΣX).

Then by juxtaposing the above two diagrams, one gets that the composite in the state-

ment is the Whitehead product of the identity map of ΣXm and w ◦ ϵL. Thus the proof

is completed by induction on m. □

Proof of Theorem 5.5. The proof is done by Theorem 5.2, Corollary 5.9 and

Lemma 5.14, where the induction in the proof of Lemma 5.14 is done by a contraction

ordering. □

6. Example.

Let K be the following 1-dimensional simplicial complex with five vertices.

1

2

3 4 5

1255(231)



1256 K. Iriye and D. Kishimoto

We explain how to apply Corollary 5.7 to this simplicial complex K. We first have

to show that K is a totally fillable complex, so we check that all non-contractible full

subcomplexes of K are fillable. Non-contractible full subcomplexes of K are K itself and

KI for

I = {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5},
{1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},

where

K{i,j} = ∂∆{i,j}, K{1,2,3} = ∂∆{1,2,3}, K{p,q,r} = ∆{p,q} ⊔ {r}

for (i, j) = (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5),

(4, 5, 1), (4, 5, 2) and

K{1,2,3,4} = ∂∆{1,2,3}∪∆{3,4}, K{1,2,3,5} = ∂∆{1,2,3}⊔{5}, K{1,2,4,5} = ∆{1,2}⊔∆{4,5}.

Then we see that these full subcomplexes are fillable, so K is totally fillable as desired.

Next we choose fillings of these KI . Each of K{i,j} for (i, j) = (1, 4), (1, 5), (2, 4),

(2, 5), (3, 5) and KI for I = {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, has the unique filling such

that

F(K{i,j}) = {ij}, F(KI) = {123}.

In the remaining cases, there are several choices of fillings, and here we choose

F(K{1,2,3,5}) = {123, 35}, F(K{1,2,4,5}) = {24}, F(K{p,q,r}) = {qr}

for (p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5), (2, 3, 5), (4, 5, 1), (4, 5, 2).

Next we choose contraction ordering. This is needed for 35 ∈ F(K{1,2,3,5}), 24 ∈
F(K{1,2,4,5}), 123 ∈ F(K). For 35 ∈ F(K{1,2,3,5}), there are two contraction ordering

1 < 2 and 2 < 1, and we choose 1 < 2. For 24 ∈ F(K{1,2,4,5}), there are also two

contraction ordering 1 < 5 and 5 < 1, and we choose 1 < 5. For 123 ∈ F(K), there is

only one contraction ordering 4 < 5.

With this choice of fillings and contraction ordering, we get a homotopy equivalence

ϵK : S3
1,4 ∨ S3

1,5 ∨ S3
2,4 ∨ S3

2,5 ∨ S3
3,5 ∨ S4

1,2,4 ∨ S4
1,2,5 ∨ S4

1,3,5 ∨ S4
2,3,5 ∨ S4

4,5,1∨
S4
4,5,2 ∨ S5

1,2,3 ∨ S6
1,2,3,4 ∨ S6

1,2,3,5 ∨ S5
1,2,3,5 ∨ S5

1,2,4,5 ∨ S7
1,2,3,4,5 ≃ ZK ,

where the indices of spheres indicate the corresponding full subcomplexes. Then through

this homotopy equivalence, we obtain

w|S3
i,j

= [ãi, ãj ] w|S4
p,q,r

= [[ãq, ãr], ãp] w|S5
1,2,3

= w̃1,2,3

w|S6
1,2,3,5

= [w̃1,2,3, ã5] w|S5
1,2,3,5

= [[[ã3, ã5], ã1], ã2] w|S5
1,2,4,5

= [[[ã2, ã4], ã1], ã5]

w|S7
1,2,3,4,5

= [[w̃1,2,3, ã4], ã5]
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for (i, j) = (1, 4), (1, 5), (2, 4), (2, 5), (3, 5) and (p, q, r) = (1, 2, 4), (1, 2, 5), (1, 3, 5),

(2, 3, 5), (4, 5, 1), (4, 5, 2).
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